Properties

Label 731.2.p.a.16.15
Level 731
Weight 2
Character 731.16
Analytic conductor 5.837
Analytic rank 0
Dimension 384
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.p (of order \(14\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(384\)
Relative dimension: \(64\) over \(\Q(\zeta_{14})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 16.15
Character \(\chi\) = 731.16
Dual form 731.2.p.a.594.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.359164 - 1.57360i) q^{2} +(-1.14363 - 0.261026i) q^{3} +(-0.545279 + 0.262592i) q^{4} +(-0.961694 + 0.766926i) q^{5} +1.89337i q^{6} +0.0287002i q^{7} +(-1.40365 - 1.76012i) q^{8} +(-1.46315 - 0.704615i) q^{9} +O(q^{10})\) \(q+(-0.359164 - 1.57360i) q^{2} +(-1.14363 - 0.261026i) q^{3} +(-0.545279 + 0.262592i) q^{4} +(-0.961694 + 0.766926i) q^{5} +1.89337i q^{6} +0.0287002i q^{7} +(-1.40365 - 1.76012i) q^{8} +(-1.46315 - 0.704615i) q^{9} +(1.55224 + 1.23787i) q^{10} +(0.135381 - 0.281121i) q^{11} +(0.692142 - 0.157977i) q^{12} +(-2.17511 - 2.72751i) q^{13} +(0.0451626 - 0.0103081i) q^{14} +(1.30001 - 0.626053i) q^{15} +(-3.02027 + 3.78730i) q^{16} +(3.94917 + 1.18492i) q^{17} +(-0.583272 + 2.55548i) q^{18} +(0.616817 - 0.297043i) q^{19} +(0.323003 - 0.670722i) q^{20} +(0.00749150 - 0.0328224i) q^{21} +(-0.490995 - 0.112066i) q^{22} +(-1.43200 + 2.97358i) q^{23} +(1.14582 + 2.37932i) q^{24} +(-0.775924 + 3.39954i) q^{25} +(-3.51078 + 4.40238i) q^{26} +(4.24074 + 3.38188i) q^{27} +(-0.00753645 - 0.0156496i) q^{28} +(-6.25439 + 1.42752i) q^{29} +(-1.45207 - 1.82084i) q^{30} +(-3.42590 + 0.781939i) q^{31} +(2.98781 + 1.43885i) q^{32} +(-0.228205 + 0.286161i) q^{33} +(0.446194 - 6.64000i) q^{34} +(-0.0220109 - 0.0276008i) q^{35} +0.982850 q^{36} +6.89643i q^{37} +(-0.688966 - 0.863936i) q^{38} +(1.77558 + 3.68702i) q^{39} +(2.69976 + 0.616204i) q^{40} +(-8.44800 + 1.92820i) q^{41} -0.0543400 q^{42} +(4.54781 + 4.72413i) q^{43} +0.188839i q^{44} +(1.94749 - 0.444502i) q^{45} +(5.19354 + 1.18539i) q^{46} +(-6.97044 + 3.35679i) q^{47} +(4.44267 - 3.54291i) q^{48} +6.99918 q^{49} +5.62820 q^{50} +(-4.20710 - 2.38595i) q^{51} +(1.90227 + 0.916083i) q^{52} +(0.296847 - 0.372235i) q^{53} +(3.79860 - 7.88788i) q^{54} +(0.0854039 + 0.374179i) q^{55} +(0.0505158 - 0.0402850i) q^{56} +(-0.782948 + 0.178703i) q^{57} +(4.49270 + 9.32919i) q^{58} +(4.24592 - 5.32422i) q^{59} +(-0.544472 + 0.682747i) q^{60} +(3.47592 + 0.793357i) q^{61} +(2.46092 + 5.11015i) q^{62} +(0.0202226 - 0.0419926i) q^{63} +(-0.964782 + 4.22698i) q^{64} +(4.18359 + 0.954877i) q^{65} +(0.532265 + 0.256325i) q^{66} +(-4.16727 + 2.00685i) q^{67} +(-2.46455 + 0.390910i) q^{68} +(2.41386 - 3.02689i) q^{69} +(-0.0355271 + 0.0445495i) q^{70} +(-6.10869 - 12.6848i) q^{71} +(0.813539 + 3.56435i) q^{72} +(-0.596573 + 0.475751i) q^{73} +(10.8522 - 2.47695i) q^{74} +(1.77474 - 3.68529i) q^{75} +(-0.258336 + 0.323943i) q^{76} +(0.00806821 + 0.00388545i) q^{77} +(5.16418 - 4.11829i) q^{78} -5.25189i q^{79} -5.95856i q^{80} +(-0.929499 - 1.16556i) q^{81} +(6.06843 + 12.6012i) q^{82} +(-1.81177 + 7.93790i) q^{83} +(0.00453396 + 0.0198646i) q^{84} +(-4.70664 + 1.88919i) q^{85} +(5.80048 - 8.85317i) q^{86} +7.52534 q^{87} +(-0.684833 + 0.156309i) q^{88} +(3.64740 - 15.9803i) q^{89} +(-1.39893 - 2.90492i) q^{90} +(0.0782799 - 0.0624261i) q^{91} -1.99746i q^{92} +4.12207 q^{93} +(7.78577 + 9.76305i) q^{94} +(-0.365379 + 0.758718i) q^{95} +(-3.04137 - 2.42541i) q^{96} +(4.21461 - 8.75172i) q^{97} +(-2.51385 - 11.0139i) q^{98} +(-0.396164 + 0.315930i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 384q - 12q^{2} - 72q^{4} - 8q^{8} + 62q^{9} + O(q^{10}) \) \( 384q - 12q^{2} - 72q^{4} - 8q^{8} + 62q^{9} - 18q^{13} - 12q^{15} - 20q^{16} - 14q^{17} + 30q^{18} + 8q^{19} + 20q^{21} + 46q^{25} + 2q^{26} - 30q^{30} + 50q^{32} - 90q^{33} + 8q^{34} + 52q^{35} - 328q^{36} - 46q^{38} + 184q^{42} + 60q^{43} - 2q^{47} - 340q^{49} - 172q^{50} - 68q^{51} + 38q^{52} - 8q^{53} - 28q^{55} + 10q^{59} + 58q^{60} - 44q^{64} + 90q^{66} - 104q^{67} + 60q^{68} - 2q^{69} + 40q^{70} - 164q^{72} - 72q^{76} + 94q^{77} + 120q^{81} - 66q^{83} + 112q^{84} - 96q^{85} - 136q^{86} + 72q^{87} - 6q^{89} - 220q^{93} - 142q^{94} + 124q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.359164 1.57360i −0.253967 1.11270i −0.927582 0.373620i \(-0.878116\pi\)
0.673615 0.739083i \(-0.264741\pi\)
\(3\) −1.14363 0.261026i −0.660276 0.150704i −0.120764 0.992681i \(-0.538534\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(4\) −0.545279 + 0.262592i −0.272639 + 0.131296i
\(5\) −0.961694 + 0.766926i −0.430083 + 0.342980i −0.814483 0.580187i \(-0.802980\pi\)
0.384401 + 0.923166i \(0.374408\pi\)
\(6\) 1.89337i 0.772965i
\(7\) 0.0287002i 0.0108476i 0.999985 + 0.00542382i \(0.00172646\pi\)
−0.999985 + 0.00542382i \(0.998274\pi\)
\(8\) −1.40365 1.76012i −0.496265 0.622297i
\(9\) −1.46315 0.704615i −0.487716 0.234872i
\(10\) 1.55224 + 1.23787i 0.490861 + 0.391449i
\(11\) 0.135381 0.281121i 0.0408188 0.0847611i −0.879562 0.475784i \(-0.842164\pi\)
0.920381 + 0.391023i \(0.127879\pi\)
\(12\) 0.692142 0.157977i 0.199804 0.0456040i
\(13\) −2.17511 2.72751i −0.603268 0.756474i 0.382615 0.923908i \(-0.375023\pi\)
−0.985883 + 0.167434i \(0.946452\pi\)
\(14\) 0.0451626 0.0103081i 0.0120702 0.00275495i
\(15\) 1.30001 0.626053i 0.335662 0.161646i
\(16\) −3.02027 + 3.78730i −0.755069 + 0.946826i
\(17\) 3.94917 + 1.18492i 0.957815 + 0.287386i
\(18\) −0.583272 + 2.55548i −0.137478 + 0.602333i
\(19\) 0.616817 0.297043i 0.141508 0.0681464i −0.361790 0.932260i \(-0.617834\pi\)
0.503298 + 0.864113i \(0.332120\pi\)
\(20\) 0.323003 0.670722i 0.0722256 0.149978i
\(21\) 0.00749150 0.0328224i 0.00163478 0.00716244i
\(22\) −0.490995 0.112066i −0.104681 0.0238926i
\(23\) −1.43200 + 2.97358i −0.298593 + 0.620034i −0.995248 0.0973721i \(-0.968956\pi\)
0.696656 + 0.717406i \(0.254671\pi\)
\(24\) 1.14582 + 2.37932i 0.233890 + 0.485677i
\(25\) −0.775924 + 3.39954i −0.155185 + 0.679909i
\(26\) −3.51078 + 4.40238i −0.688521 + 0.863378i
\(27\) 4.24074 + 3.38188i 0.816131 + 0.650843i
\(28\) −0.00753645 0.0156496i −0.00142425 0.00295750i
\(29\) −6.25439 + 1.42752i −1.16141 + 0.265085i −0.759446 0.650570i \(-0.774530\pi\)
−0.401965 + 0.915655i \(0.631673\pi\)
\(30\) −1.45207 1.82084i −0.265111 0.332439i
\(31\) −3.42590 + 0.781939i −0.615310 + 0.140440i −0.518806 0.854892i \(-0.673623\pi\)
−0.0965040 + 0.995333i \(0.530766\pi\)
\(32\) 2.98781 + 1.43885i 0.528175 + 0.254356i
\(33\) −0.228205 + 0.286161i −0.0397255 + 0.0498142i
\(34\) 0.446194 6.64000i 0.0765216 1.13875i
\(35\) −0.0220109 0.0276008i −0.00372052 0.00466539i
\(36\) 0.982850 0.163808
\(37\) 6.89643i 1.13377i 0.823798 + 0.566883i \(0.191851\pi\)
−0.823798 + 0.566883i \(0.808149\pi\)
\(38\) −0.688966 0.863936i −0.111765 0.140149i
\(39\) 1.77558 + 3.68702i 0.284320 + 0.590396i
\(40\) 2.69976 + 0.616204i 0.426870 + 0.0974303i
\(41\) −8.44800 + 1.92820i −1.31936 + 0.301134i −0.823522 0.567284i \(-0.807994\pi\)
−0.495833 + 0.868418i \(0.665137\pi\)
\(42\) −0.0543400 −0.00838485
\(43\) 4.54781 + 4.72413i 0.693534 + 0.720424i
\(44\) 0.188839i 0.0284686i
\(45\) 1.94749 0.444502i 0.290314 0.0662624i
\(46\) 5.19354 + 1.18539i 0.765746 + 0.174777i
\(47\) −6.97044 + 3.35679i −1.01674 + 0.489638i −0.866588 0.499024i \(-0.833692\pi\)
−0.150156 + 0.988662i \(0.547978\pi\)
\(48\) 4.44267 3.54291i 0.641244 0.511375i
\(49\) 6.99918 0.999882
\(50\) 5.62820 0.795948
\(51\) −4.20710 2.38595i −0.589112 0.334100i
\(52\) 1.90227 + 0.916083i 0.263797 + 0.127038i
\(53\) 0.296847 0.372235i 0.0407751 0.0511303i −0.761026 0.648722i \(-0.775304\pi\)
0.801801 + 0.597591i \(0.203875\pi\)
\(54\) 3.79860 7.88788i 0.516924 1.07340i
\(55\) 0.0854039 + 0.374179i 0.0115159 + 0.0504543i
\(56\) 0.0505158 0.0402850i 0.00675045 0.00538331i
\(57\) −0.782948 + 0.178703i −0.103704 + 0.0236698i
\(58\) 4.49270 + 9.32919i 0.589921 + 1.22498i
\(59\) 4.24592 5.32422i 0.552772 0.693154i −0.424431 0.905460i \(-0.639526\pi\)
0.977203 + 0.212306i \(0.0680974\pi\)
\(60\) −0.544472 + 0.682747i −0.0702911 + 0.0881422i
\(61\) 3.47592 + 0.793357i 0.445046 + 0.101579i 0.439170 0.898404i \(-0.355272\pi\)
0.00587596 + 0.999983i \(0.498130\pi\)
\(62\) 2.46092 + 5.11015i 0.312537 + 0.648990i
\(63\) 0.0202226 0.0419926i 0.00254780 0.00529057i
\(64\) −0.964782 + 4.22698i −0.120598 + 0.528373i
\(65\) 4.18359 + 0.954877i 0.518910 + 0.118438i
\(66\) 0.532265 + 0.256325i 0.0655173 + 0.0315515i
\(67\) −4.16727 + 2.00685i −0.509113 + 0.245176i −0.670763 0.741672i \(-0.734033\pi\)
0.161649 + 0.986848i \(0.448319\pi\)
\(68\) −2.46455 + 0.390910i −0.298871 + 0.0474047i
\(69\) 2.41386 3.02689i 0.290595 0.364394i
\(70\) −0.0355271 + 0.0445495i −0.00424630 + 0.00532469i
\(71\) −6.10869 12.6848i −0.724968 1.50541i −0.857640 0.514251i \(-0.828070\pi\)
0.132672 0.991160i \(-0.457644\pi\)
\(72\) 0.813539 + 3.56435i 0.0958765 + 0.420063i
\(73\) −0.596573 + 0.475751i −0.0698236 + 0.0556824i −0.657780 0.753210i \(-0.728504\pi\)
0.587956 + 0.808893i \(0.299933\pi\)
\(74\) 10.8522 2.47695i 1.26154 0.287939i
\(75\) 1.77474 3.68529i 0.204929 0.425540i
\(76\) −0.258336 + 0.323943i −0.0296332 + 0.0371588i
\(77\) 0.00806821 + 0.00388545i 0.000919458 + 0.000442788i
\(78\) 5.16418 4.11829i 0.584728 0.466305i
\(79\) 5.25189i 0.590883i −0.955361 0.295442i \(-0.904533\pi\)
0.955361 0.295442i \(-0.0954668\pi\)
\(80\) 5.95856i 0.666187i
\(81\) −0.929499 1.16556i −0.103278 0.129506i
\(82\) 6.06843 + 12.6012i 0.670146 + 1.39157i
\(83\) −1.81177 + 7.93790i −0.198868 + 0.871298i 0.772744 + 0.634718i \(0.218884\pi\)
−0.971612 + 0.236580i \(0.923973\pi\)
\(84\) 0.00453396 + 0.0198646i 0.000494696 + 0.00216740i
\(85\) −4.70664 + 1.88919i −0.510507 + 0.204911i
\(86\) 5.80048 8.85317i 0.625482 0.954662i
\(87\) 7.52534 0.806801
\(88\) −0.684833 + 0.156309i −0.0730035 + 0.0166626i
\(89\) 3.64740 15.9803i 0.386624 1.69391i −0.289546 0.957164i \(-0.593504\pi\)
0.676170 0.736746i \(-0.263638\pi\)
\(90\) −1.39893 2.90492i −0.147461 0.306205i
\(91\) 0.0782799 0.0624261i 0.00820596 0.00654404i
\(92\) 1.99746i 0.208250i
\(93\) 4.12207 0.427439
\(94\) 7.78577 + 9.76305i 0.803041 + 1.00698i
\(95\) −0.365379 + 0.758718i −0.0374871 + 0.0778428i
\(96\) −3.04137 2.42541i −0.310409 0.247543i
\(97\) 4.21461 8.75172i 0.427929 0.888603i −0.569835 0.821759i \(-0.692993\pi\)
0.997763 0.0668437i \(-0.0212929\pi\)
\(98\) −2.51385 11.0139i −0.253937 1.11257i
\(99\) −0.396164 + 0.315930i −0.0398159 + 0.0317521i
\(100\) −0.469600 2.05745i −0.0469600 0.205745i
\(101\) −9.58395 + 4.61539i −0.953639 + 0.459248i −0.844960 0.534829i \(-0.820376\pi\)
−0.108678 + 0.994077i \(0.534662\pi\)
\(102\) −2.24350 + 7.47724i −0.222139 + 0.740357i
\(103\) −10.9340 + 13.7108i −1.07736 + 1.35096i −0.144999 + 0.989432i \(0.546318\pi\)
−0.932359 + 0.361533i \(0.882253\pi\)
\(104\) −1.74764 + 7.65693i −0.171371 + 0.750823i
\(105\) 0.0179678 + 0.0373106i 0.00175348 + 0.00364114i
\(106\) −0.692365 0.333425i −0.0672484 0.0323851i
\(107\) −18.8464 4.30157i −1.82195 0.415848i −0.831709 0.555211i \(-0.812637\pi\)
−0.990241 + 0.139363i \(0.955495\pi\)
\(108\) −3.20044 0.730480i −0.307963 0.0702905i
\(109\) 0.438635 0.910836i 0.0420136 0.0872422i −0.878905 0.476996i \(-0.841726\pi\)
0.920919 + 0.389754i \(0.127440\pi\)
\(110\) 0.558134 0.268783i 0.0532160 0.0256275i
\(111\) 1.80015 7.88698i 0.170863 0.748599i
\(112\) −0.108696 0.0866824i −0.0102708 0.00819072i
\(113\) 2.10522 + 1.67886i 0.198043 + 0.157934i 0.717490 0.696568i \(-0.245291\pi\)
−0.519447 + 0.854502i \(0.673862\pi\)
\(114\) 0.562413 + 1.16786i 0.0526748 + 0.109380i
\(115\) −0.903367 3.95791i −0.0842394 0.369077i
\(116\) 3.03553 2.42075i 0.281842 0.224761i
\(117\) 1.26067 + 5.52336i 0.116549 + 0.510635i
\(118\) −9.90317 4.76911i −0.911660 0.439032i
\(119\) −0.0340075 + 0.113342i −0.00311746 + 0.0103900i
\(120\) −2.92669 1.40942i −0.267169 0.128662i
\(121\) 6.79769 + 8.52403i 0.617972 + 0.774912i
\(122\) 5.75465i 0.521002i
\(123\) 10.1647 0.916521
\(124\) 1.66274 1.32599i 0.149318 0.119077i
\(125\) −4.52950 9.40560i −0.405130 0.841262i
\(126\) −0.0733427 0.0167400i −0.00653389 0.00149132i
\(127\) −4.12461 18.0711i −0.366000 1.60355i −0.737654 0.675179i \(-0.764067\pi\)
0.371655 0.928371i \(-0.378791\pi\)
\(128\) 13.6305 1.20478
\(129\) −3.96790 6.58977i −0.349354 0.580197i
\(130\) 6.92625i 0.607472i
\(131\) −15.5009 + 3.53799i −1.35432 + 0.309115i −0.837247 0.546824i \(-0.815837\pi\)
−0.517076 + 0.855940i \(0.672979\pi\)
\(132\) 0.0492920 0.215962i 0.00429032 0.0187971i
\(133\) 0.00852520 + 0.0177028i 0.000739228 + 0.00153502i
\(134\) 4.65472 + 5.83683i 0.402106 + 0.504225i
\(135\) −6.67195 −0.574230
\(136\) −3.45765 8.61424i −0.296491 0.738665i
\(137\) 2.72043 + 3.41131i 0.232422 + 0.291448i 0.884342 0.466840i \(-0.154608\pi\)
−0.651920 + 0.758288i \(0.726036\pi\)
\(138\) −5.63008 2.71130i −0.479264 0.230802i
\(139\) 6.61970 + 5.27904i 0.561476 + 0.447762i 0.862646 0.505808i \(-0.168806\pi\)
−0.301170 + 0.953570i \(0.597377\pi\)
\(140\) 0.0192498 + 0.00927023i 0.00162691 + 0.000783478i
\(141\) 8.84783 2.01946i 0.745122 0.170069i
\(142\) −17.7668 + 14.1686i −1.49096 + 1.18900i
\(143\) −1.06123 + 0.242218i −0.0887442 + 0.0202553i
\(144\) 7.08770 3.41326i 0.590642 0.284438i
\(145\) 4.92001 6.16950i 0.408585 0.512349i
\(146\) 0.962909 + 0.767894i 0.0796909 + 0.0635514i
\(147\) −8.00448 1.82697i −0.660198 0.150686i
\(148\) −1.81095 3.76048i −0.148859 0.309109i
\(149\) −12.6437 6.08887i −1.03581 0.498819i −0.162869 0.986648i \(-0.552075\pi\)
−0.872940 + 0.487828i \(0.837789\pi\)
\(150\) −6.43659 1.46911i −0.525545 0.119952i
\(151\) 0.441316 1.93353i 0.0359138 0.157349i −0.953791 0.300470i \(-0.902857\pi\)
0.989705 + 0.143121i \(0.0457138\pi\)
\(152\) −1.38863 0.668728i −0.112633 0.0542410i
\(153\) −4.94331 4.51636i −0.399643 0.365126i
\(154\) 0.00321633 0.0140916i 0.000259179 0.00113554i
\(155\) 2.69498 3.37940i 0.216466 0.271440i
\(156\) −1.93637 1.54420i −0.155034 0.123635i
\(157\) −2.28486 + 1.10033i −0.182351 + 0.0878158i −0.522832 0.852436i \(-0.675125\pi\)
0.340481 + 0.940252i \(0.389410\pi\)
\(158\) −8.26436 + 1.88629i −0.657477 + 0.150065i
\(159\) −0.436647 + 0.348214i −0.0346284 + 0.0276152i
\(160\) −3.97685 + 0.907691i −0.314398 + 0.0717592i
\(161\) −0.0853422 0.0410986i −0.00672591 0.00323903i
\(162\) −1.50027 + 1.88129i −0.117873 + 0.147808i
\(163\) 1.38759 2.88136i 0.108684 0.225686i −0.839532 0.543310i \(-0.817171\pi\)
0.948217 + 0.317624i \(0.102885\pi\)
\(164\) 4.10018 3.26979i 0.320170 0.255327i
\(165\) 0.450216i 0.0350492i
\(166\) 13.1418 1.02000
\(167\) −20.0617 + 15.9986i −1.55242 + 1.23801i −0.701568 + 0.712602i \(0.747516\pi\)
−0.850850 + 0.525409i \(0.823912\pi\)
\(168\) −0.0682869 + 0.0328852i −0.00526845 + 0.00253715i
\(169\) 0.184601 0.808792i 0.0142001 0.0622147i
\(170\) 4.66328 + 6.72785i 0.357657 + 0.516002i
\(171\) −1.11180 −0.0850212
\(172\) −3.72035 1.38175i −0.283674 0.105357i
\(173\) 1.49696i 0.113812i 0.998380 + 0.0569060i \(0.0181235\pi\)
−0.998380 + 0.0569060i \(0.981876\pi\)
\(174\) −2.70283 11.8419i −0.204901 0.897730i
\(175\) −0.0975675 0.0222691i −0.00737541 0.00168339i
\(176\) 0.655803 + 1.36179i 0.0494330 + 0.102649i
\(177\) −6.24553 + 4.98065i −0.469443 + 0.374368i
\(178\) −26.4566 −1.98301
\(179\) −2.96493 −0.221609 −0.110805 0.993842i \(-0.535343\pi\)
−0.110805 + 0.993842i \(0.535343\pi\)
\(180\) −0.945201 + 0.753773i −0.0704512 + 0.0561829i
\(181\) −5.59724 + 11.6228i −0.416039 + 0.863914i 0.582650 + 0.812723i \(0.302016\pi\)
−0.998689 + 0.0511910i \(0.983698\pi\)
\(182\) −0.126349 0.100760i −0.00936561 0.00746883i
\(183\) −3.76809 1.81462i −0.278545 0.134140i
\(184\) 7.24388 1.65337i 0.534026 0.121888i
\(185\) −5.28905 6.63226i −0.388859 0.487613i
\(186\) −1.48050 6.48649i −0.108556 0.475613i
\(187\) 0.867747 0.949778i 0.0634560 0.0694547i
\(188\) 2.91937 3.66077i 0.212917 0.266989i
\(189\) −0.0970605 + 0.121710i −0.00706012 + 0.00885310i
\(190\) 1.32515 + 0.302457i 0.0961364 + 0.0219425i
\(191\) 22.9404 11.0475i 1.65991 0.799371i 0.661117 0.750283i \(-0.270083\pi\)
0.998794 0.0490880i \(-0.0156315\pi\)
\(192\) 2.20671 4.58228i 0.159256 0.330698i
\(193\) 15.9541 + 3.64143i 1.14840 + 0.262116i 0.754033 0.656836i \(-0.228106\pi\)
0.394370 + 0.918952i \(0.370963\pi\)
\(194\) −15.2854 3.48880i −1.09743 0.250481i
\(195\) −4.53524 2.18406i −0.324775 0.156403i
\(196\) −3.81650 + 1.83793i −0.272607 + 0.131281i
\(197\) −13.1259 2.99589i −0.935179 0.213448i −0.272332 0.962203i \(-0.587795\pi\)
−0.662847 + 0.748755i \(0.730652\pi\)
\(198\) 0.639435 + 0.509932i 0.0454426 + 0.0362393i
\(199\) −0.443368 0.353574i −0.0314296 0.0250642i 0.607649 0.794206i \(-0.292113\pi\)
−0.639079 + 0.769141i \(0.720684\pi\)
\(200\) 7.07273 3.40605i 0.500118 0.240844i
\(201\) 5.28967 1.20733i 0.373104 0.0851587i
\(202\) 10.7050 + 13.4236i 0.753200 + 0.944482i
\(203\) −0.0409702 0.179502i −0.00287554 0.0125986i
\(204\) 2.92058 + 0.196257i 0.204481 + 0.0137407i
\(205\) 6.64560 8.33332i 0.464149 0.582025i
\(206\) 25.5024 + 12.2813i 1.77684 + 0.855679i
\(207\) 4.19045 3.34178i 0.291257 0.232269i
\(208\) 16.8993 1.17176
\(209\) 0.213614i 0.0147760i
\(210\) 0.0522585 0.0416748i 0.00360618 0.00287583i
\(211\) −1.05161 2.18368i −0.0723955 0.150331i 0.861630 0.507537i \(-0.169444\pi\)
−0.934026 + 0.357206i \(0.883729\pi\)
\(212\) −0.0641185 + 0.280921i −0.00440368 + 0.0192938i
\(213\) 3.67501 + 16.1013i 0.251808 + 1.10324i
\(214\) 31.2017i 2.13290i
\(215\) −7.99666 1.05534i −0.545368 0.0719736i
\(216\) 12.2112i 0.830867i
\(217\) −0.0224418 0.0983239i −0.00152345 0.00667466i
\(218\) −1.59083 0.363097i −0.107745 0.0245920i
\(219\) 0.806443 0.388363i 0.0544944 0.0262431i
\(220\) −0.144826 0.181605i −0.00976413 0.0122438i
\(221\) −5.35801 13.3487i −0.360419 0.897933i
\(222\) −13.0575 −0.876361
\(223\) 2.94902 + 3.69795i 0.197481 + 0.247633i 0.870705 0.491805i \(-0.163663\pi\)
−0.673225 + 0.739438i \(0.735091\pi\)
\(224\) −0.0412953 + 0.0857506i −0.00275916 + 0.00572945i
\(225\) 3.53066 4.42731i 0.235377 0.295154i
\(226\) 1.88573 3.91577i 0.125437 0.260473i
\(227\) −18.5736 + 4.23931i −1.23277 + 0.281373i −0.788791 0.614662i \(-0.789292\pi\)
−0.443984 + 0.896035i \(0.646435\pi\)
\(228\) 0.379999 0.303039i 0.0251660 0.0200692i
\(229\) −1.82827 8.01016i −0.120815 0.529327i −0.998724 0.0504987i \(-0.983919\pi\)
0.877909 0.478828i \(-0.158938\pi\)
\(230\) −5.90371 + 2.84308i −0.389279 + 0.187467i
\(231\) −0.00821286 0.00654954i −0.000540366 0.000430928i
\(232\) 11.2916 + 9.00474i 0.741329 + 0.591190i
\(233\) 20.1572 + 4.60074i 1.32054 + 0.301405i 0.823991 0.566603i \(-0.191743\pi\)
0.496550 + 0.868008i \(0.334600\pi\)
\(234\) 8.23877 3.96758i 0.538585 0.259369i
\(235\) 4.12903 8.57402i 0.269348 0.559307i
\(236\) −0.917112 + 4.01813i −0.0596989 + 0.261558i
\(237\) −1.37088 + 6.00622i −0.0890483 + 0.390146i
\(238\) 0.190569 + 0.0128058i 0.0123528 + 0.000830079i
\(239\) 1.75777 0.846499i 0.113701 0.0547555i −0.376169 0.926551i \(-0.622759\pi\)
0.489870 + 0.871796i \(0.337044\pi\)
\(240\) −1.55534 + 6.81439i −0.100397 + 0.439867i
\(241\) −19.5725 15.6085i −1.26077 1.00543i −0.999190 0.0402532i \(-0.987184\pi\)
−0.261585 0.965181i \(-0.584245\pi\)
\(242\) 10.9719 13.7584i 0.705302 0.884421i
\(243\) −6.30154 13.0853i −0.404244 0.839421i
\(244\) −2.10368 + 0.480150i −0.134674 + 0.0307385i
\(245\) −6.73107 + 5.36785i −0.430032 + 0.342939i
\(246\) −3.65079 15.9952i −0.232766 1.01982i
\(247\) −2.15184 1.03627i −0.136918 0.0659362i
\(248\) 6.18507 + 4.93243i 0.392752 + 0.313210i
\(249\) 4.14401 8.60512i 0.262616 0.545327i
\(250\) −13.1738 + 10.5058i −0.833185 + 0.664443i
\(251\) −30.5033 −1.92535 −0.962677 0.270653i \(-0.912760\pi\)
−0.962677 + 0.270653i \(0.912760\pi\)
\(252\) 0.0282080i 0.00177693i
\(253\) 0.642069 + 0.805129i 0.0403665 + 0.0506180i
\(254\) −26.9552 + 12.9810i −1.69132 + 0.814498i
\(255\) 5.87580 0.931977i 0.367957 0.0583627i
\(256\) −2.96603 12.9950i −0.185377 0.812189i
\(257\) 8.44665 0.526888 0.263444 0.964675i \(-0.415142\pi\)
0.263444 + 0.964675i \(0.415142\pi\)
\(258\) −8.94453 + 8.61068i −0.556862 + 0.536078i
\(259\) −0.197929 −0.0122987
\(260\) −2.53197 + 0.577905i −0.157026 + 0.0358401i
\(261\) 10.1570 + 2.31826i 0.628700 + 0.143497i
\(262\) 11.1348 + 23.1215i 0.687907 + 1.42845i
\(263\) −3.91497 4.90922i −0.241407 0.302715i 0.646337 0.763052i \(-0.276300\pi\)
−0.887744 + 0.460337i \(0.847729\pi\)
\(264\) 0.823998 0.0507135
\(265\) 0.585636i 0.0359753i
\(266\) 0.0247951 0.0197734i 0.00152029 0.00121239i
\(267\) −8.34257 + 17.3235i −0.510557 + 1.06018i
\(268\) 1.74534 2.18859i 0.106614 0.133689i
\(269\) 5.84451 12.1362i 0.356346 0.739960i −0.643326 0.765593i \(-0.722446\pi\)
0.999671 + 0.0256330i \(0.00816013\pi\)
\(270\) 2.39632 + 10.4990i 0.145836 + 0.638947i
\(271\) 3.33048 + 4.17628i 0.202312 + 0.253691i 0.872629 0.488384i \(-0.162413\pi\)
−0.670317 + 0.742075i \(0.733842\pi\)
\(272\) −16.4152 + 11.3779i −0.995320 + 0.689888i
\(273\) −0.105818 + 0.0509594i −0.00640441 + 0.00308420i
\(274\) 4.39095 5.50608i 0.265267 0.332634i
\(275\) 0.850637 + 0.678360i 0.0512953 + 0.0409067i
\(276\) −0.521390 + 2.28436i −0.0313840 + 0.137502i
\(277\) −8.71859 18.1043i −0.523849 1.08778i −0.980205 0.197986i \(-0.936560\pi\)
0.456356 0.889797i \(-0.349154\pi\)
\(278\) 5.92953 12.3128i 0.355630 0.738473i
\(279\) 5.56356 + 1.26985i 0.333082 + 0.0760238i
\(280\) −0.0176851 + 0.0774837i −0.00105689 + 0.00463054i
\(281\) 16.8127 + 8.09656i 1.00296 + 0.483000i 0.861942 0.507007i \(-0.169248\pi\)
0.141018 + 0.990007i \(0.454962\pi\)
\(282\) −6.35564 13.1976i −0.378473 0.785907i
\(283\) −23.2105 5.29765i −1.37972 0.314912i −0.532625 0.846351i \(-0.678794\pi\)
−0.847097 + 0.531439i \(0.821652\pi\)
\(284\) 6.66187 + 5.31267i 0.395309 + 0.315249i
\(285\) 0.615905 0.772320i 0.0364831 0.0457483i
\(286\) 0.762308 + 1.58295i 0.0450762 + 0.0936018i
\(287\) −0.0553397 0.242459i −0.00326660 0.0143119i
\(288\) −3.35777 4.21051i −0.197858 0.248107i
\(289\) 14.1919 + 9.35893i 0.834819 + 0.550525i
\(290\) −11.4754 5.52626i −0.673859 0.324513i
\(291\) −7.10439 + 8.90863i −0.416467 + 0.522233i
\(292\) 0.200370 0.416072i 0.0117258 0.0243488i
\(293\) 12.1832 + 15.2772i 0.711750 + 0.892506i 0.997840 0.0656969i \(-0.0209270\pi\)
−0.286090 + 0.958203i \(0.592356\pi\)
\(294\) 13.2520i 0.772874i
\(295\) 8.37658i 0.487703i
\(296\) 12.1385 9.68017i 0.705539 0.562648i
\(297\) 1.52483 0.734320i 0.0884796 0.0426095i
\(298\) −5.04029 + 22.0830i −0.291976 + 1.27923i
\(299\) 11.2252 2.56208i 0.649171 0.148169i
\(300\) 2.47554i 0.142926i
\(301\) −0.135583 + 0.130523i −0.00781490 + 0.00752321i
\(302\) −3.20111 −0.184203
\(303\) 12.1652 2.77664i 0.698875 0.159514i
\(304\) −0.737963 + 3.23323i −0.0423251 + 0.185438i
\(305\) −3.95122 + 1.90281i −0.226246 + 0.108954i
\(306\) −5.33149 + 9.40090i −0.304781 + 0.537414i
\(307\) −12.3433 −0.704470 −0.352235 0.935912i \(-0.614578\pi\)
−0.352235 + 0.935912i \(0.614578\pi\)
\(308\) −0.00541971 −0.000308817
\(309\) 16.0833 12.8260i 0.914950 0.729648i
\(310\) −6.28576 3.02706i −0.357007 0.171925i
\(311\) −5.48154 4.37138i −0.310829 0.247878i 0.455632 0.890168i \(-0.349413\pi\)
−0.766462 + 0.642290i \(0.777985\pi\)
\(312\) 3.99732 8.30052i 0.226304 0.469925i
\(313\) 31.9350 7.28896i 1.80507 0.411997i 0.818393 0.574659i \(-0.194865\pi\)
0.986682 + 0.162662i \(0.0520081\pi\)
\(314\) 2.55212 + 3.20025i 0.144024 + 0.180601i
\(315\) 0.0127573 + 0.0558933i 0.000718791 + 0.00314923i
\(316\) 1.37911 + 2.86374i 0.0775807 + 0.161098i
\(317\) 12.9781 + 10.3497i 0.728921 + 0.581295i 0.916061 0.401038i \(-0.131351\pi\)
−0.187141 + 0.982333i \(0.559922\pi\)
\(318\) 0.704778 + 0.562041i 0.0395220 + 0.0315177i
\(319\) −0.445417 + 1.95150i −0.0249385 + 0.109263i
\(320\) −2.31396 4.80498i −0.129354 0.268607i
\(321\) 20.4305 + 9.83882i 1.14032 + 0.549150i
\(322\) −0.0340210 + 0.149056i −0.00189591 + 0.00830654i
\(323\) 2.78789 0.442195i 0.155122 0.0246044i
\(324\) 0.812902 + 0.391473i 0.0451612 + 0.0217485i
\(325\) 10.9600 5.27806i 0.607951 0.292774i
\(326\) −5.03248 1.14863i −0.278723 0.0636168i
\(327\) −0.739389 + 0.927165i −0.0408883 + 0.0512723i
\(328\) 15.2519 + 12.1630i 0.842145 + 0.671588i
\(329\) −0.0963404 0.200053i −0.00531142 0.0110293i
\(330\) −0.708459 + 0.161701i −0.0389994 + 0.00890136i
\(331\) −12.4613 15.6260i −0.684935 0.858882i 0.310863 0.950455i \(-0.399382\pi\)
−0.995798 + 0.0915729i \(0.970811\pi\)
\(332\) −1.09651 4.80413i −0.0601789 0.263661i
\(333\) 4.85933 10.0905i 0.266289 0.552956i
\(334\) 32.3809 + 25.8229i 1.77180 + 1.41297i
\(335\) 2.46854 5.12597i 0.134871 0.280062i
\(336\) 0.101682 + 0.127505i 0.00554721 + 0.00695599i
\(337\) 26.0738i 1.42033i 0.704036 + 0.710164i \(0.251379\pi\)
−0.704036 + 0.710164i \(0.748621\pi\)
\(338\) −1.33902 −0.0728329
\(339\) −1.96937 2.46952i −0.106962 0.134126i
\(340\) 2.07035 2.26606i 0.112280 0.122895i
\(341\) −0.243981 + 1.06895i −0.0132123 + 0.0578869i
\(342\) 0.399317 + 1.74952i 0.0215926 + 0.0946033i
\(343\) 0.401779i 0.0216940i
\(344\) 1.93151 14.6357i 0.104140 0.789105i
\(345\) 4.76219i 0.256388i
\(346\) 2.35562 0.537655i 0.126639 0.0289045i
\(347\) 25.0578 + 5.71928i 1.34517 + 0.307027i 0.833674 0.552257i \(-0.186233\pi\)
0.511499 + 0.859284i \(0.329090\pi\)
\(348\) −4.10341 + 1.97610i −0.219966 + 0.105930i
\(349\) −1.11943 1.40372i −0.0599217 0.0751395i 0.750967 0.660339i \(-0.229588\pi\)
−0.810889 + 0.585200i \(0.801016\pi\)
\(350\) 0.161530i 0.00863416i
\(351\) 18.9226i 1.01002i
\(352\) 0.808982 0.645142i 0.0431189 0.0343862i
\(353\) −16.0560 7.73217i −0.854575 0.411542i −0.0453013 0.998973i \(-0.514425\pi\)
−0.809274 + 0.587432i \(0.800139\pi\)
\(354\) 10.0807 + 8.03910i 0.535784 + 0.427273i
\(355\) 15.6030 + 7.51401i 0.828121 + 0.398802i
\(356\) 2.20746 + 9.67150i 0.116995 + 0.512589i
\(357\) 0.0684773 0.120745i 0.00362420 0.00639048i
\(358\) 1.06490 + 4.66561i 0.0562815 + 0.246585i
\(359\) 16.3642 7.88061i 0.863672 0.415922i 0.0510378 0.998697i \(-0.483747\pi\)
0.812634 + 0.582774i \(0.198033\pi\)
\(360\) −3.51597 2.80389i −0.185308 0.147778i
\(361\) −11.5541 + 14.4884i −0.608109 + 0.762545i
\(362\) 20.2999 + 4.63333i 1.06694 + 0.243522i
\(363\) −5.54905 11.5227i −0.291250 0.604786i
\(364\) −0.0262917 + 0.0545954i −0.00137806 + 0.00286157i
\(365\) 0.208855 0.915054i 0.0109320 0.0478961i
\(366\) −1.50212 + 6.58121i −0.0785169 + 0.344005i
\(367\) 3.12413 6.48731i 0.163078 0.338635i −0.803377 0.595471i \(-0.796966\pi\)
0.966455 + 0.256836i \(0.0826799\pi\)
\(368\) −6.93681 14.4044i −0.361606 0.750883i
\(369\) 13.7193 + 3.13134i 0.714198 + 0.163011i
\(370\) −8.53688 + 10.7049i −0.443811 + 0.556522i
\(371\) 0.0106832 + 0.00851956i 0.000554644 + 0.000442314i
\(372\) −2.24768 + 1.08243i −0.116537 + 0.0561211i
\(373\) 0.645765 + 2.82928i 0.0334364 + 0.146495i 0.988891 0.148645i \(-0.0474911\pi\)
−0.955454 + 0.295139i \(0.904634\pi\)
\(374\) −1.80623 1.02436i −0.0933981 0.0529684i
\(375\) 2.72497 + 11.9389i 0.140717 + 0.616520i
\(376\) 15.6924 + 7.55707i 0.809275 + 0.389726i
\(377\) 17.4976 + 13.9539i 0.901172 + 0.718661i
\(378\) 0.226384 + 0.109021i 0.0116439 + 0.00560741i
\(379\) −3.57554 + 2.85140i −0.183663 + 0.146467i −0.711006 0.703186i \(-0.751760\pi\)
0.527342 + 0.849653i \(0.323189\pi\)
\(380\) 0.509659i 0.0261449i
\(381\) 21.7433i 1.11394i
\(382\) −25.6238 32.1312i −1.31103 1.64397i
\(383\) −11.0915 + 5.34140i −0.566751 + 0.272933i −0.695240 0.718778i \(-0.744702\pi\)
0.128489 + 0.991711i \(0.458987\pi\)
\(384\) −15.5883 3.55793i −0.795487 0.181565i
\(385\) −0.0107390 + 0.00245111i −0.000547310 + 0.000124920i
\(386\) 26.4133i 1.34440i
\(387\) −3.32542 10.1166i −0.169041 0.514254i
\(388\) 5.87885i 0.298454i
\(389\) 4.41418 + 19.3398i 0.223808 + 0.980565i 0.954583 + 0.297947i \(0.0963017\pi\)
−0.730775 + 0.682618i \(0.760841\pi\)
\(390\) −1.80794 + 7.92108i −0.0915483 + 0.401100i
\(391\) −9.17867 + 10.0464i −0.464185 + 0.508066i
\(392\) −9.82439 12.3194i −0.496207 0.622223i
\(393\) 18.6509 0.940812
\(394\) 21.7309i 1.09478i
\(395\) 4.02781 + 5.05071i 0.202661 + 0.254129i
\(396\) 0.133059 0.276299i 0.00668646 0.0138846i
\(397\) 24.3471 + 19.4162i 1.22195 + 0.974470i 1.00000 0.000589276i \(-0.000187572\pi\)
0.221946 + 0.975059i \(0.428759\pi\)
\(398\) −0.397143 + 0.824675i −0.0199070 + 0.0413372i
\(399\) −0.00512880 0.0224707i −0.000256761 0.00112494i
\(400\) −10.5316 13.2062i −0.526580 0.660311i
\(401\) 13.9222 3.17764i 0.695239 0.158684i 0.139724 0.990190i \(-0.455378\pi\)
0.555515 + 0.831507i \(0.312521\pi\)
\(402\) −3.79971 7.89019i −0.189513 0.393527i
\(403\) 9.58446 + 7.64336i 0.477436 + 0.380743i
\(404\) 4.01396 5.03334i 0.199702 0.250418i
\(405\) 1.78779 + 0.408051i 0.0888359 + 0.0202762i
\(406\) −0.267749 + 0.128941i −0.0132882 + 0.00639925i
\(407\) 1.93873 + 0.933643i 0.0960992 + 0.0462789i
\(408\) 1.70573 + 10.7541i 0.0844462 + 0.532405i
\(409\) −2.47534 + 10.8452i −0.122398 + 0.536260i 0.876133 + 0.482070i \(0.160115\pi\)
−0.998531 + 0.0541899i \(0.982742\pi\)
\(410\) −15.5002 7.46449i −0.765499 0.368645i
\(411\) −2.22072 4.61138i −0.109540 0.227463i
\(412\) 2.36172 10.3474i 0.116354 0.509779i
\(413\) 0.152806 + 0.121859i 0.00751909 + 0.00599627i
\(414\) −6.76367 5.39385i −0.332416 0.265093i
\(415\) −4.34541 9.02333i −0.213308 0.442938i
\(416\) −2.57434 11.2789i −0.126218 0.552995i
\(417\) −6.19253 7.76519i −0.303250 0.380263i
\(418\) −0.336143 + 0.0767224i −0.0164413 + 0.00375262i
\(419\) 1.98241 4.11651i 0.0968470 0.201105i −0.846917 0.531726i \(-0.821544\pi\)
0.943764 + 0.330621i \(0.107258\pi\)
\(420\) −0.0195949 0.0156265i −0.000956136 0.000762493i
\(421\) −10.5689 5.08971i −0.515096 0.248057i 0.158231 0.987402i \(-0.449421\pi\)
−0.673327 + 0.739345i \(0.735135\pi\)
\(422\) −3.05854 + 2.43910i −0.148887 + 0.118734i
\(423\) 12.5640 0.610884
\(424\) −1.07185 −0.0520535
\(425\) −7.09245 + 12.5060i −0.344034 + 0.606629i
\(426\) 24.0170 11.5660i 1.16363 0.560374i
\(427\) −0.0227695 + 0.0997596i −0.00110189 + 0.00482770i
\(428\) 11.4061 2.60337i 0.551335 0.125839i
\(429\) 1.27688 0.0616482
\(430\) 1.21143 + 12.9626i 0.0584203 + 0.625111i
\(431\) 32.9764i 1.58842i −0.607646 0.794208i \(-0.707886\pi\)
0.607646 0.794208i \(-0.292114\pi\)
\(432\) −25.6164 + 5.84678i −1.23247 + 0.281303i
\(433\) 3.40107 14.9011i 0.163445 0.716100i −0.825076 0.565021i \(-0.808868\pi\)
0.988522 0.151079i \(-0.0482748\pi\)
\(434\) −0.146662 + 0.0706288i −0.00704001 + 0.00339029i
\(435\) −7.23708 + 5.77138i −0.346991 + 0.276716i
\(436\) 0.611842i 0.0293019i
\(437\) 2.25952i 0.108087i
\(438\) −0.900772 1.12953i −0.0430406 0.0539712i
\(439\) −15.9362 + 33.0919i −0.760594 + 1.57939i 0.0534395 + 0.998571i \(0.482982\pi\)
−0.814033 + 0.580818i \(0.802733\pi\)
\(440\) 0.538723 0.675537i 0.0256826 0.0322050i
\(441\) −10.2408 4.93172i −0.487659 0.234844i
\(442\) −19.0812 + 13.2257i −0.907598 + 0.629085i
\(443\) −0.833261 1.04488i −0.0395894 0.0496436i 0.761643 0.647997i \(-0.224393\pi\)
−0.801232 + 0.598354i \(0.795822\pi\)
\(444\) 1.08948 + 4.77331i 0.0517042 + 0.226531i
\(445\) 8.74803 + 18.1655i 0.414696 + 0.861126i
\(446\) 4.75991 5.96874i 0.225388 0.282628i
\(447\) 12.8703 + 10.2638i 0.608746 + 0.485459i
\(448\) −0.121315 0.0276894i −0.00573160 0.00130820i
\(449\) −11.9384 24.7904i −0.563409 1.16993i −0.966949 0.254969i \(-0.917935\pi\)
0.403540 0.914962i \(-0.367780\pi\)
\(450\) −8.23489 3.96572i −0.388197 0.186946i
\(451\) −0.601638 + 2.63595i −0.0283300 + 0.124122i
\(452\) −1.58879 0.362631i −0.0747304 0.0170567i
\(453\) −1.00941 + 2.09605i −0.0474261 + 0.0984813i
\(454\) 13.3419 + 27.7048i 0.626169 + 1.30025i
\(455\) −0.0274051 + 0.120070i −0.00128477 + 0.00562896i
\(456\) 1.41352 + 1.12725i 0.0661943 + 0.0527882i
\(457\) −21.9080 + 27.4718i −1.02482 + 1.28508i −0.0669814 + 0.997754i \(0.521337\pi\)
−0.957834 + 0.287323i \(0.907235\pi\)
\(458\) −11.9481 + 5.75392i −0.558300 + 0.268863i
\(459\) 12.7402 + 18.3806i 0.594660 + 0.857932i
\(460\) 1.53190 + 1.92095i 0.0714254 + 0.0895646i
\(461\) −7.40682 32.4514i −0.344970 1.51141i −0.788434 0.615119i \(-0.789108\pi\)
0.443464 0.896292i \(-0.353749\pi\)
\(462\) −0.00735658 + 0.0152761i −0.000342259 + 0.000710709i
\(463\) 9.74061 12.2143i 0.452685 0.567649i −0.502152 0.864779i \(-0.667458\pi\)
0.954837 + 0.297131i \(0.0960297\pi\)
\(464\) 13.4835 27.9988i 0.625956 1.29981i
\(465\) −3.96418 + 3.16132i −0.183834 + 0.146603i
\(466\) 33.3717i 1.54592i
\(467\) 7.00122 0.323978 0.161989 0.986793i \(-0.448209\pi\)
0.161989 + 0.986793i \(0.448209\pi\)
\(468\) −2.13781 2.68073i −0.0988203 0.123917i
\(469\) −0.0575970 0.119601i −0.00265958 0.00552268i
\(470\) −14.9751 3.41796i −0.690748 0.157659i
\(471\) 2.90025 0.661963i 0.133636 0.0305017i
\(472\) −15.3311 −0.705669
\(473\) 1.94374 0.638927i 0.0893731 0.0293779i
\(474\) 9.94376 0.456732
\(475\) 0.531209 + 2.32738i 0.0243735 + 0.106787i
\(476\) −0.0112192 0.0707330i −0.000514230 0.00324204i
\(477\) −0.696613 + 0.335471i −0.0318957 + 0.0153602i
\(478\) −1.96338 2.46200i −0.0898029 0.112609i
\(479\) 19.9805i 0.912934i 0.889740 + 0.456467i \(0.150885\pi\)
−0.889740 + 0.456467i \(0.849115\pi\)
\(480\) 4.78499 0.218404
\(481\) 18.8101 15.0005i 0.857665 0.683965i
\(482\) −17.5318 + 36.4053i −0.798554 + 1.65821i
\(483\) 0.0868722 + 0.0692783i 0.00395282 + 0.00315227i
\(484\) −5.94498 2.86295i −0.270226 0.130134i
\(485\) 2.65876 + 11.6488i 0.120728 + 0.528944i
\(486\) −18.3277 + 14.6159i −0.831362 + 0.662989i
\(487\) −4.24692 + 0.969332i −0.192446 + 0.0439246i −0.317658 0.948205i \(-0.602896\pi\)
0.125211 + 0.992130i \(0.460039\pi\)
\(488\) −3.48257 7.23164i −0.157649 0.327361i
\(489\) −2.33900 + 2.93302i −0.105773 + 0.132636i
\(490\) 10.8644 + 8.66407i 0.490804 + 0.391403i
\(491\) −7.72085 + 33.8272i −0.348437 + 1.52660i 0.432293 + 0.901733i \(0.357705\pi\)
−0.780730 + 0.624869i \(0.785152\pi\)
\(492\) −5.54260 + 2.66918i −0.249880 + 0.120336i
\(493\) −26.3912 1.77343i −1.18860 0.0798713i
\(494\) −0.857811 + 3.75832i −0.0385948 + 0.169095i
\(495\) 0.138694 0.607656i 0.00623381 0.0273121i
\(496\) 7.38571 15.3366i 0.331628 0.688633i
\(497\) 0.364056 0.175320i 0.0163302 0.00786419i
\(498\) −15.0294 3.43036i −0.673483 0.153718i
\(499\) −11.5933 9.24534i −0.518987 0.413878i 0.328652 0.944451i \(-0.393406\pi\)
−0.847640 + 0.530573i \(0.821977\pi\)
\(500\) 4.93968 + 3.93926i 0.220909 + 0.176169i
\(501\) 27.1192 13.0599i 1.21160 0.583474i
\(502\) 10.9557 + 48.0000i 0.488977 + 2.14235i
\(503\) −26.3434 + 21.0081i −1.17459 + 0.936707i −0.998860 0.0477308i \(-0.984801\pi\)
−0.175733 + 0.984438i \(0.556230\pi\)
\(504\) −0.102297 + 0.0233487i −0.00455669 + 0.00104003i
\(505\) 5.67717 11.7888i 0.252631 0.524593i
\(506\) 1.03634 1.29953i 0.0460711 0.0577713i
\(507\) −0.422232 + 0.876774i −0.0187520 + 0.0389389i
\(508\) 6.99439 + 8.77069i 0.310326 + 0.389136i
\(509\) 31.2460 1.38495 0.692477 0.721440i \(-0.256520\pi\)
0.692477 + 0.721440i \(0.256520\pi\)
\(510\) −3.57693 8.91142i −0.158389 0.394604i
\(511\) −0.0136541 0.0171217i −0.000604023 0.000757421i
\(512\) 5.17769 2.49345i 0.228824 0.110196i
\(513\) 3.62033 + 0.826316i 0.159841 + 0.0364828i
\(514\) −3.03373 13.2916i −0.133812 0.586269i
\(515\) 21.5712i 0.950539i
\(516\) 3.89403 + 2.55132i 0.171425 + 0.112316i
\(517\) 2.41398i 0.106167i
\(518\) 0.0710888 + 0.311461i 0.00312346 + 0.0136848i
\(519\) 0.390747 1.71197i 0.0171519 0.0751474i
\(520\) −4.19159 8.70394i −0.183814 0.381693i
\(521\) −13.1239 + 10.4660i −0.574969 + 0.458523i −0.867294 0.497796i \(-0.834143\pi\)
0.292325 + 0.956319i \(0.405571\pi\)
\(522\) 16.8156i 0.735999i
\(523\) −9.06177 −0.396244 −0.198122 0.980177i \(-0.563484\pi\)
−0.198122 + 0.980177i \(0.563484\pi\)
\(524\) 7.52328 5.99962i 0.328656 0.262095i
\(525\) 0.105768 + 0.0509354i 0.00461611 + 0.00222300i
\(526\) −6.31902 + 7.92381i −0.275523 + 0.345494i
\(527\) −14.4560 0.971413i −0.629713 0.0423154i
\(528\) −0.394534 1.72857i −0.0171699 0.0752262i
\(529\) 7.54873 + 9.46580i 0.328205 + 0.411557i
\(530\) 0.921556 0.210339i 0.0400298 0.00913655i
\(531\) −9.96393 + 4.79838i −0.432398 + 0.208232i
\(532\) −0.00929722 0.00741429i −0.000403086 0.000321450i
\(533\) 23.6345 + 18.8479i 1.02372 + 0.816393i
\(534\) 30.2566 + 6.90588i 1.30933 + 0.298847i
\(535\) 21.4235 10.3170i 0.926217 0.446043i
\(536\) 9.38170 + 4.51799i 0.405228 + 0.195147i
\(537\) 3.39079 + 0.773925i 0.146323 + 0.0333973i
\(538\) −21.1967 4.83801i −0.913855 0.208582i
\(539\) 0.947552 1.96761i 0.0408140 0.0847511i
\(540\) 3.63807 1.75200i 0.156558 0.0753942i
\(541\) −32.1317 7.33384i −1.38145 0.315306i −0.533686 0.845683i \(-0.679193\pi\)
−0.847762 + 0.530377i \(0.822051\pi\)
\(542\) 5.37561 6.74080i 0.230902 0.289542i
\(543\) 9.43503 11.8312i 0.404896 0.507723i
\(544\) 10.0944 + 9.22260i 0.432796 + 0.395416i
\(545\) 0.276710 + 1.21235i 0.0118530 + 0.0519312i
\(546\) 0.118196 + 0.148213i 0.00505831 + 0.00634292i
\(547\) −17.2781 + 3.94360i −0.738756 + 0.168616i −0.575309 0.817936i \(-0.695118\pi\)
−0.163447 + 0.986552i \(0.552261\pi\)
\(548\) −2.37917 1.14575i −0.101633 0.0489440i
\(549\) −4.52678 3.60998i −0.193198 0.154070i
\(550\) 0.761949 1.58220i 0.0324896 0.0674654i
\(551\) −3.43378 + 2.73835i −0.146284 + 0.116658i
\(552\) −8.71590 −0.370974
\(553\) 0.150730 0.00640969
\(554\) −25.3576 + 20.2220i −1.07734 + 0.859150i
\(555\) 4.31753 + 8.96544i 0.183269 + 0.380562i
\(556\) −4.99582 1.14026i −0.211870 0.0483579i
\(557\) −6.41671 28.1134i −0.271885 1.19120i −0.907786 0.419434i \(-0.862229\pi\)
0.635901 0.771771i \(-0.280629\pi\)
\(558\) 9.21090i 0.389929i
\(559\) 2.99310 22.6797i 0.126595 0.959249i
\(560\) 0.171012 0.00722656
\(561\) −1.24030 + 0.859692i −0.0523655 + 0.0362962i
\(562\) 6.70223 29.3644i 0.282717 1.23866i
\(563\) −18.0874 + 8.71042i −0.762292 + 0.367101i −0.774293 0.632827i \(-0.781894\pi\)
0.0120007 + 0.999928i \(0.496180\pi\)
\(564\) −4.29424 + 3.42454i −0.180820 + 0.144199i
\(565\) −3.31214 −0.139343
\(566\) 38.4268i 1.61520i
\(567\) 0.0334516 0.0266768i 0.00140484 0.00112032i
\(568\) −13.7524 + 28.5571i −0.577036 + 1.19823i
\(569\) −21.1229 + 26.4873i −0.885519 + 1.11041i 0.107704 + 0.994183i \(0.465650\pi\)
−0.993223 + 0.116223i \(0.962921\pi\)
\(570\) −1.43653 0.691798i −0.0601698 0.0289762i
\(571\) 31.0279 7.08192i 1.29848 0.296369i 0.483237 0.875490i \(-0.339461\pi\)
0.815242 + 0.579120i \(0.196604\pi\)
\(572\) 0.515060 0.410746i 0.0215357 0.0171742i
\(573\) −29.1191 + 6.64624i −1.21647 + 0.277651i
\(574\) −0.361657 + 0.174165i −0.0150953 + 0.00726950i
\(575\) −8.99768 7.17541i −0.375229 0.299235i
\(576\) 4.39001 5.50490i 0.182917 0.229371i
\(577\) −3.55610 + 15.5803i −0.148042 + 0.648616i 0.845385 + 0.534157i \(0.179371\pi\)
−0.993428 + 0.114460i \(0.963486\pi\)
\(578\) 9.62998 25.6938i 0.400554 1.06872i
\(579\) −17.2951 8.32890i −0.718762 0.346137i
\(580\) −1.06271 + 4.65605i −0.0441268 + 0.193332i
\(581\) −0.227819 0.0519982i −0.00945153 0.00215725i
\(582\) 16.5702 + 7.97981i 0.686859 + 0.330774i
\(583\) −0.0644555 0.133843i −0.00266947 0.00554322i
\(584\) 1.67476 + 0.382253i 0.0693020 + 0.0158177i
\(585\) −5.44839 4.34495i −0.225263 0.179641i
\(586\) 19.6645 24.6585i 0.812333 1.01863i
\(587\) 0.961245 0.462911i 0.0396748 0.0191064i −0.413941 0.910304i \(-0.635848\pi\)
0.453616 + 0.891197i \(0.350134\pi\)
\(588\) 4.84442 1.10571i 0.199781 0.0455986i
\(589\) −1.88088 + 1.49995i −0.0775005 + 0.0618046i
\(590\) 13.1814 3.00856i 0.542669 0.123861i
\(591\) 14.2291 + 6.85239i 0.585309 + 0.281870i
\(592\) −26.1189 20.8291i −1.07348 0.856071i
\(593\) 28.1804 + 13.5710i 1.15723 + 0.557293i 0.911198 0.411969i \(-0.135159\pi\)
0.246032 + 0.969262i \(0.420873\pi\)
\(594\) −1.70319 2.13573i −0.0698827 0.0876301i
\(595\) −0.0542200 0.135082i −0.00222280 0.00553780i
\(596\) 8.49321 0.347895
\(597\) 0.414758 + 0.520090i 0.0169749 + 0.0212859i
\(598\) −8.06338 16.7438i −0.329736 0.684704i
\(599\) 3.91606 17.1574i 0.160006 0.701031i −0.829735 0.558157i \(-0.811508\pi\)
0.989741 0.142874i \(-0.0456344\pi\)
\(600\) −8.97767 + 2.04909i −0.366512 + 0.0836539i
\(601\) 30.8961i 1.26028i −0.776482 0.630140i \(-0.782997\pi\)
0.776482 0.630140i \(-0.217003\pi\)
\(602\) 0.254087 + 0.166475i 0.0103558 + 0.00678501i
\(603\) 7.51140 0.305888
\(604\) 0.267091 + 1.17020i 0.0108678 + 0.0476148i
\(605\) −13.0746 2.98419i −0.531558 0.121325i
\(606\) −8.73863 18.1460i −0.354983 0.737129i
\(607\) −4.97521 + 3.96760i −0.201938 + 0.161040i −0.719237 0.694764i \(-0.755509\pi\)
0.517300 + 0.855804i \(0.326937\pi\)
\(608\) 2.27033 0.0920742
\(609\) 0.215979i 0.00875190i
\(610\) 4.41339 + 5.53422i 0.178693 + 0.224074i
\(611\) 24.3172 + 11.7105i 0.983767 + 0.473757i
\(612\) 3.88144 + 1.16460i 0.156898 + 0.0470762i
\(613\) 5.16718 + 2.48838i 0.208701 + 0.100505i 0.535314 0.844653i \(-0.320193\pi\)
−0.326614 + 0.945158i \(0.605908\pi\)
\(614\) 4.43327 + 19.4234i 0.178912 + 0.783865i
\(615\) −9.77534 + 7.79558i −0.394180 + 0.314348i
\(616\) −0.00448609 0.0196548i −0.000180750 0.000791916i
\(617\) 9.67012 + 20.0802i 0.389304 + 0.808398i 0.999865 + 0.0164291i \(0.00522979\pi\)
−0.610561 + 0.791969i \(0.709056\pi\)
\(618\) −25.9596 20.7021i −1.04425 0.832760i
\(619\) −14.6075 11.6491i −0.587124 0.468216i 0.284307 0.958733i \(-0.408236\pi\)
−0.871431 + 0.490517i \(0.836808\pi\)
\(620\) −0.582111 + 2.55039i −0.0233781 + 0.102426i
\(621\) −16.1290 + 7.76733i −0.647235 + 0.311692i
\(622\) −4.91003 + 10.1958i −0.196874 + 0.408814i
\(623\) 0.458638 + 0.104681i 0.0183749 + 0.00419396i
\(624\) −19.3266 4.41117i −0.773684 0.176588i
\(625\) −4.13886 1.99317i −0.165555 0.0797269i
\(626\) −22.9398 47.6350i −0.916860 1.90388i
\(627\) −0.0557589 + 0.244296i −0.00222680 + 0.00975623i
\(628\) 0.956946 1.19997i 0.0381863 0.0478841i
\(629\) −8.17173 + 27.2352i −0.325828 + 1.08594i
\(630\) 0.0833716 0.0401497i 0.00332161 0.00159960i
\(631\) −6.78244 29.7158i −0.270005 1.18297i −0.910006 0.414594i \(-0.863923\pi\)
0.640002 0.768374i \(-0.278934\pi\)
\(632\) −9.24395 + 7.37181i −0.367705 + 0.293235i
\(633\) 0.632651 + 2.77182i 0.0251456 + 0.110170i
\(634\) 11.6250 24.1395i 0.461687 0.958702i
\(635\) 17.8258 + 14.2156i 0.707395 + 0.564129i
\(636\) 0.146656 0.304534i 0.00581528 0.0120756i
\(637\) −15.2240 19.0903i −0.603197 0.756385i
\(638\) 3.23085 0.127911
\(639\) 22.8640i 0.904487i
\(640\) −13.1084 + 10.4536i −0.518155 + 0.413215i
\(641\) 15.9853 + 33.1939i 0.631383 + 1.31108i 0.933763 + 0.357892i \(0.116505\pi\)
−0.302380 + 0.953187i \(0.597781\pi\)
\(642\) 8.14446 35.6832i 0.321436 1.40830i
\(643\) −2.51697 + 0.574483i −0.0992597 + 0.0226554i −0.271862 0.962336i \(-0.587640\pi\)
0.172603 + 0.984992i \(0.444782\pi\)
\(644\) 0.0573275 0.00225902
\(645\) 8.86976 + 3.29426i 0.349247 + 0.129711i
\(646\) −1.69715 4.22820i −0.0667734 0.166356i
\(647\) −3.50085 15.3382i −0.137633 0.603008i −0.995952 0.0898916i \(-0.971348\pi\)
0.858319 0.513117i \(-0.171509\pi\)
\(648\) −0.746827 + 3.27206i −0.0293381 + 0.128539i
\(649\) −0.921932 1.91441i −0.0361890 0.0751472i
\(650\) −12.2420 15.3510i −0.480170 0.602114i
\(651\) 0.118304i 0.00463671i
\(652\) 1.93552i 0.0758007i
\(653\) 31.4109 25.0493i 1.22920 0.980256i 0.229226 0.973373i \(-0.426381\pi\)
0.999976 0.00688275i \(-0.00219086\pi\)
\(654\) 1.72455 + 0.830499i 0.0674352 + 0.0324751i
\(655\) 12.1938 15.2905i 0.476451 0.597450i
\(656\) 18.2126 37.8188i 0.711082 1.47658i
\(657\) 1.20810 0.275740i 0.0471323 0.0107576i
\(658\) −0.280201 + 0.223453i −0.0109234 + 0.00871111i
\(659\) −7.49566 32.8406i −0.291990 1.27929i −0.881752 0.471713i \(-0.843636\pi\)
0.589762 0.807577i \(-0.299221\pi\)
\(660\) 0.118223 + 0.245493i 0.00460183 + 0.00955580i
\(661\) −20.8223 + 26.1104i −0.809895 + 1.01558i 0.189537 + 0.981874i \(0.439301\pi\)
−0.999432 + 0.0337021i \(0.989270\pi\)
\(662\) −20.1134 + 25.2214i −0.781729 + 0.980257i
\(663\) 2.64322 + 16.6646i 0.102654 + 0.647200i
\(664\) 16.5148 7.95309i 0.640897 0.308640i
\(665\) −0.0217753 0.0104865i −0.000844411 0.000406647i
\(666\) −17.6237 4.02249i −0.682904 0.155868i
\(667\) 4.71143 20.6421i 0.182427 0.799267i
\(668\) 6.73808 13.9918i 0.260704 0.541357i
\(669\) −2.40733 4.99886i −0.0930726 0.193267i
\(670\) −8.95283 2.04343i −0.345878 0.0789444i
\(671\) 0.693601 0.869748i 0.0267762 0.0335763i
\(672\) 0.0696098 0.0872879i 0.00268526 0.00336721i
\(673\) −2.87399 5.96791i −0.110784 0.230046i 0.838204 0.545356i \(-0.183606\pi\)
−0.948989 + 0.315310i \(0.897891\pi\)
\(674\) 41.0297 9.36475i 1.58040 0.360717i
\(675\) −14.7873 + 11.7925i −0.569165 + 0.453894i
\(676\) 0.111723 + 0.489492i 0.00429705 + 0.0188266i
\(677\) 6.43102 13.3541i 0.247164 0.513242i −0.740068 0.672533i \(-0.765207\pi\)
0.987232 + 0.159291i \(0.0509208\pi\)
\(678\) −3.17870 + 3.98597i −0.122077 + 0.153080i
\(679\) 0.251176 + 0.120960i 0.00963925 + 0.00464202i
\(680\) 9.93168 + 5.63250i 0.380862 + 0.215997i
\(681\) 22.3480 0.856376
\(682\) 1.76973 0.0677664
\(683\) −1.86737 + 1.48918i −0.0714528 + 0.0569817i −0.658565 0.752524i \(-0.728836\pi\)
0.587112 + 0.809506i \(0.300265\pi\)
\(684\) 0.606239 0.291949i 0.0231801 0.0111630i
\(685\) −5.23244 1.19427i −0.199921 0.0456307i
\(686\) 0.632239 0.144304i 0.0241390 0.00550957i
\(687\) 9.63791i 0.367709i
\(688\) −31.6274 + 2.95576i −1.20578 + 0.112687i
\(689\) −1.66095 −0.0632771
\(690\) 7.49379 1.71041i 0.285284 0.0651141i
\(691\) −8.78164 2.00435i −0.334069 0.0762491i 0.0521960 0.998637i \(-0.483378\pi\)
−0.386265 + 0.922388i \(0.626235\pi\)
\(692\) −0.393091 0.816262i −0.0149431 0.0310296i
\(693\) −0.00906724 0.0113700i −0.000344436 0.000431909i
\(694\) 41.4851i 1.57475i
\(695\) −10.4148 −0.395054
\(696\) −10.5629 13.2455i −0.400387 0.502070i
\(697\) −35.6474 2.39543i −1.35024 0.0907333i
\(698\) −1.80684 + 2.26570i −0.0683897 + 0.0857580i
\(699\) −21.8515 10.5231i −0.826499 0.398021i
\(700\) 0.0590492 0.0134776i 0.00223185 0.000509405i
\(701\) −5.66534 7.10411i −0.213977 0.268318i 0.663246 0.748401i \(-0.269178\pi\)
−0.877223 + 0.480083i \(0.840607\pi\)
\(702\) −29.7766 + 6.79632i −1.12385 + 0.256511i
\(703\) 2.04854 + 4.25384i 0.0772621 + 0.160436i
\(704\) 1.05768 + 0.843472i 0.0398628 + 0.0317895i
\(705\) −6.96014 + 8.72773i −0.262134 + 0.328705i
\(706\) −6.40059 + 28.0428i −0.240890 + 1.05541i
\(707\) −0.132462 0.275061i −0.00498176 0.0103447i
\(708\) 2.09768 4.35587i 0.0788355 0.163704i
\(709\) 1.15993 + 0.264747i 0.0435622 + 0.00994279i 0.244246 0.969713i \(-0.421459\pi\)
−0.200684 + 0.979656i \(0.564317\pi\)
\(710\) 6.22001 27.2516i 0.233433 1.02274i
\(711\) −3.70056 + 7.68428i −0.138782 + 0.288183i
\(712\) −33.2470 + 16.0109i −1.24598 + 0.600033i
\(713\) 2.58073 11.3069i 0.0966491 0.423447i
\(714\) −0.214598 0.0643887i −0.00803113 0.00240969i
\(715\) 0.834812 1.04682i 0.0312202 0.0391489i
\(716\) 1.61671 0.778568i 0.0604194 0.0290965i
\(717\) −2.23120 + 0.509258i −0.0833259 + 0.0190186i
\(718\) −18.2784 22.9203i −0.682142 0.855379i
\(719\) 22.1102 5.04652i 0.824573 0.188203i 0.210642 0.977563i \(-0.432444\pi\)
0.613931 + 0.789360i \(0.289587\pi\)
\(720\) −4.19849 + 8.71825i −0.156468 + 0.324910i
\(721\) −0.393502 0.313808i −0.0146548 0.0116868i
\(722\) 26.9487 + 12.9778i 1.00293 + 0.482984i
\(723\) 18.3095 + 22.9593i 0.680936 + 0.853867i
\(724\) 7.80745i 0.290161i
\(725\) 22.3697i 0.830791i
\(726\) −16.1391 + 12.8705i −0.598980 + 0.477670i
\(727\) 25.6391 12.3471i 0.950900 0.457929i 0.106898 0.994270i \(-0.465908\pi\)
0.844002 + 0.536341i \(0.180194\pi\)
\(728\) −0.219755 0.0501577i −0.00814466 0.00185897i
\(729\) 4.78624 + 20.9699i 0.177268 + 0.776663i
\(730\) −1.51494 −0.0560705
\(731\) 12.3623 + 24.0452i 0.457238 + 0.889344i
\(732\) 2.53116 0.0935545
\(733\) 5.15667 + 22.5928i 0.190466 + 0.834485i 0.976365 + 0.216130i \(0.0693436\pi\)
−0.785899 + 0.618355i \(0.787799\pi\)
\(734\) −11.3305 2.58611i −0.418217 0.0954552i
\(735\) 9.09902 4.38185i 0.335622 0.161627i
\(736\) −8.55708 + 6.82404i −0.315418 + 0.251538i
\(737\) 1.44320i 0.0531608i
\(738\) 22.7134i 0.836090i
\(739\) 13.5803 + 17.0291i 0.499559 + 0.626427i 0.966130 0.258057i \(-0.0830821\pi\)
−0.466571 + 0.884484i \(0.654511\pi\)
\(740\) 4.62559 + 2.22757i 0.170040 + 0.0818869i
\(741\) 2.19041 + 1.74680i 0.0804668 + 0.0641702i
\(742\) 0.00956936 0.0198710i 0.000351302 0.000729487i
\(743\) 16.0422 3.66152i 0.588529 0.134328i 0.0821219 0.996622i \(-0.473830\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(744\) −5.78595 7.25535i −0.212123 0.265994i
\(745\) 16.8290 3.84112i 0.616569 0.140728i
\(746\) 4.22022 2.03235i 0.154513 0.0744096i
\(747\) 8.24406 10.3377i 0.301634 0.378237i
\(748\) −0.223760 + 0.745758i −0.00818146 + 0.0272676i
\(749\) 0.123456 0.540895i 0.00451098 0.0197639i
\(750\) 17.8083 8.57601i 0.650266 0.313152i
\(751\) 5.90591 12.2637i 0.215510 0.447510i −0.764987 0.644046i \(-0.777255\pi\)
0.980497 + 0.196535i \(0.0629690\pi\)
\(752\) 8.33947 36.5376i 0.304109 1.33239i
\(753\) 34.8846 + 7.96218i 1.27127 + 0.290158i
\(754\) 15.6733 32.5459i 0.570788 1.18525i
\(755\) 1.05847 + 2.19793i 0.0385215 +