Properties

Label 731.2.n.a.208.10
Level 731
Weight 2
Character 731.208
Analytic conductor 5.837
Analytic rank 0
Dimension 256
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.n (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(64\) over \(\Q(\zeta_{12})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 208.10
Character \(\chi\) = 731.208
Dual form 731.2.n.a.608.55

$q$-expansion

\(f(q)\) \(=\) \(q-2.21617i q^{2} +(-0.0692057 - 0.0185436i) q^{3} -2.91143 q^{4} +(-1.25645 - 0.336665i) q^{5} +(-0.0410959 + 0.153372i) q^{6} +(0.0334492 - 0.00896268i) q^{7} +2.01988i q^{8} +(-2.59363 - 1.49743i) q^{9} +O(q^{10})\) \(q-2.21617i q^{2} +(-0.0692057 - 0.0185436i) q^{3} -2.91143 q^{4} +(-1.25645 - 0.336665i) q^{5} +(-0.0410959 + 0.153372i) q^{6} +(0.0334492 - 0.00896268i) q^{7} +2.01988i q^{8} +(-2.59363 - 1.49743i) q^{9} +(-0.746107 + 2.78451i) q^{10} +(1.16878 + 1.16878i) q^{11} +(0.201487 + 0.0539884i) q^{12} +(0.160715 - 0.278367i) q^{13} +(-0.0198629 - 0.0741292i) q^{14} +(0.0807105 + 0.0465982i) q^{15} -1.34644 q^{16} +(-4.09840 - 0.450672i) q^{17} +(-3.31857 + 5.74794i) q^{18} +(-1.99124 + 1.14964i) q^{19} +(3.65806 + 0.980174i) q^{20} -0.00248108 q^{21} +(2.59021 - 2.59021i) q^{22} +(-1.55573 + 5.80606i) q^{23} +(0.0374559 - 0.139787i) q^{24} +(-2.86481 - 1.65400i) q^{25} +(-0.616909 - 0.356173i) q^{26} +(0.303713 + 0.303713i) q^{27} +(-0.0973849 + 0.0260942i) q^{28} +(1.16844 + 4.36068i) q^{29} +(0.103270 - 0.178869i) q^{30} +(5.50658 + 1.47548i) q^{31} +7.02372i q^{32} +(-0.0592126 - 0.102559i) q^{33} +(-0.998767 + 9.08277i) q^{34} -0.0450446 q^{35} +(7.55117 + 4.35967i) q^{36} +(1.17164 + 0.313940i) q^{37} +(2.54780 + 4.41292i) q^{38} +(-0.0162843 + 0.0162843i) q^{39} +(0.680023 - 2.53788i) q^{40} +(-8.15331 - 8.15331i) q^{41} +0.00549849i q^{42} +(5.85320 - 2.95635i) q^{43} +(-3.40280 - 3.40280i) q^{44} +(2.75463 + 2.75463i) q^{45} +(12.8673 + 3.44777i) q^{46} +1.08884 q^{47} +(0.0931816 + 0.0249679i) q^{48} +(-6.06114 + 3.49940i) q^{49} +(-3.66554 + 6.34891i) q^{50} +(0.275276 + 0.107188i) q^{51} +(-0.467910 + 0.810445i) q^{52} +(-3.27638 + 1.89162i) q^{53} +(0.673080 - 0.673080i) q^{54} +(-1.07502 - 1.86199i) q^{55} +(0.0181036 + 0.0675634i) q^{56} +(0.159123 - 0.0426370i) q^{57} +(9.66402 - 2.58947i) q^{58} +5.70413i q^{59} +(-0.234983 - 0.135667i) q^{60} +(-0.925838 + 0.248078i) q^{61} +(3.26993 - 12.2035i) q^{62} +(-0.100176 - 0.0268420i) q^{63} +12.8729 q^{64} +(-0.295647 + 0.295647i) q^{65} +(-0.227289 + 0.131225i) q^{66} +(-5.73331 - 9.93038i) q^{67} +(11.9322 + 1.31210i) q^{68} +(0.215331 - 0.372964i) q^{69} +0.0998267i q^{70} +(-3.20016 - 11.9431i) q^{71} +(3.02464 - 5.23883i) q^{72} +(0.890830 + 3.32462i) q^{73} +(0.695745 - 2.59656i) q^{74} +(0.167590 + 0.167590i) q^{75} +(5.79734 - 3.34709i) q^{76} +(0.0495699 + 0.0286192i) q^{77} +(0.0360889 + 0.0360889i) q^{78} +(-7.35398 + 1.97049i) q^{79} +(1.69174 + 0.453300i) q^{80} +(4.47691 + 7.75424i) q^{81} +(-18.0691 + 18.0691i) q^{82} +(-12.5047 + 7.21959i) q^{83} +0.00722347 q^{84} +(4.99771 + 1.94603i) q^{85} +(-6.55178 - 12.9717i) q^{86} -0.323451i q^{87} +(-2.36079 + 2.36079i) q^{88} +(-5.98865 - 10.3727i) q^{89} +(6.10474 - 6.10474i) q^{90} +(0.00288088 - 0.0107516i) q^{91} +(4.52940 - 16.9039i) q^{92} +(-0.353726 - 0.204224i) q^{93} -2.41307i q^{94} +(2.88893 - 0.774086i) q^{95} +(0.130245 - 0.486082i) q^{96} +(7.65213 - 7.65213i) q^{97} +(7.75528 + 13.4325i) q^{98} +(-1.28121 - 4.78153i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256q - 6q^{3} - 264q^{4} + 2q^{5} - 2q^{6} + O(q^{10}) \) \( 256q - 6q^{3} - 264q^{4} + 2q^{5} - 2q^{6} + 2q^{10} + 4q^{11} + 8q^{12} - 8q^{13} - 6q^{14} + 248q^{16} - 2q^{17} + 16q^{18} - 14q^{20} - 16q^{21} - 4q^{22} + 8q^{23} + 12q^{24} - 12q^{27} - 14q^{28} + 2q^{29} + 8q^{30} - 24q^{31} + 20q^{33} + 16q^{34} + 40q^{35} + 18q^{37} + 8q^{38} + 36q^{39} - 10q^{40} + 8q^{41} - 80q^{44} - 4q^{45} + 2q^{46} + 24q^{47} + 24q^{48} + 92q^{50} - 20q^{51} + 4q^{52} - 88q^{54} - 80q^{55} + 60q^{56} - 44q^{57} + 34q^{58} - 8q^{61} + 24q^{62} - 26q^{63} - 200q^{64} - 8q^{65} + 44q^{67} - 58q^{68} + 40q^{69} - 26q^{71} - 48q^{72} + 36q^{73} + 90q^{74} - 156q^{75} - 24q^{78} + 22q^{79} + 30q^{80} + 132q^{81} + 156q^{82} - 160q^{84} - 28q^{85} + 52q^{86} + 28q^{88} - 20q^{89} + 28q^{90} + 34q^{91} - 70q^{92} + 40q^{95} - 16q^{96} - 92q^{98} + 30q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21617i 1.56707i −0.621347 0.783536i \(-0.713414\pi\)
0.621347 0.783536i \(-0.286586\pi\)
\(3\) −0.0692057 0.0185436i −0.0399559 0.0107062i 0.238786 0.971072i \(-0.423251\pi\)
−0.278742 + 0.960366i \(0.589917\pi\)
\(4\) −2.91143 −1.45571
\(5\) −1.25645 0.336665i −0.561901 0.150561i −0.0333215 0.999445i \(-0.510609\pi\)
−0.528580 + 0.848884i \(0.677275\pi\)
\(6\) −0.0410959 + 0.153372i −0.0167773 + 0.0626138i
\(7\) 0.0334492 0.00896268i 0.0126426 0.00338757i −0.252492 0.967599i \(-0.581250\pi\)
0.265135 + 0.964211i \(0.414584\pi\)
\(8\) 2.01988i 0.714136i
\(9\) −2.59363 1.49743i −0.864544 0.499144i
\(10\) −0.746107 + 2.78451i −0.235940 + 0.880539i
\(11\) 1.16878 + 1.16878i 0.352399 + 0.352399i 0.861001 0.508602i \(-0.169838\pi\)
−0.508602 + 0.861001i \(0.669838\pi\)
\(12\) 0.201487 + 0.0539884i 0.0581644 + 0.0155851i
\(13\) 0.160715 0.278367i 0.0445743 0.0772050i −0.842877 0.538106i \(-0.819140\pi\)
0.887452 + 0.460901i \(0.152474\pi\)
\(14\) −0.0198629 0.0741292i −0.00530857 0.0198119i
\(15\) 0.0807105 + 0.0465982i 0.0208394 + 0.0120316i
\(16\) −1.34644 −0.336611
\(17\) −4.09840 0.450672i −0.994008 0.109304i
\(18\) −3.31857 + 5.74794i −0.782195 + 1.35480i
\(19\) −1.99124 + 1.14964i −0.456821 + 0.263746i −0.710707 0.703489i \(-0.751625\pi\)
0.253886 + 0.967234i \(0.418291\pi\)
\(20\) 3.65806 + 0.980174i 0.817967 + 0.219174i
\(21\) −0.00248108 −0.000541415
\(22\) 2.59021 2.59021i 0.552234 0.552234i
\(23\) −1.55573 + 5.80606i −0.324392 + 1.21065i 0.590529 + 0.807016i \(0.298919\pi\)
−0.914921 + 0.403632i \(0.867748\pi\)
\(24\) 0.0374559 0.139787i 0.00764566 0.0285340i
\(25\) −2.86481 1.65400i −0.572961 0.330799i
\(26\) −0.616909 0.356173i −0.120986 0.0698512i
\(27\) 0.303713 + 0.303713i 0.0584495 + 0.0584495i
\(28\) −0.0973849 + 0.0260942i −0.0184040 + 0.00493134i
\(29\) 1.16844 + 4.36068i 0.216974 + 0.809758i 0.985462 + 0.169894i \(0.0543425\pi\)
−0.768488 + 0.639864i \(0.778991\pi\)
\(30\) 0.103270 0.178869i 0.0188544 0.0326568i
\(31\) 5.50658 + 1.47548i 0.989011 + 0.265005i 0.716835 0.697243i \(-0.245590\pi\)
0.272176 + 0.962248i \(0.412257\pi\)
\(32\) 7.02372i 1.24163i
\(33\) −0.0592126 0.102559i −0.0103076 0.0178533i
\(34\) −0.998767 + 9.08277i −0.171287 + 1.55768i
\(35\) −0.0450446 −0.00761393
\(36\) 7.55117 + 4.35967i 1.25853 + 0.726612i
\(37\) 1.17164 + 0.313940i 0.192616 + 0.0516114i 0.353837 0.935307i \(-0.384877\pi\)
−0.161221 + 0.986918i \(0.551543\pi\)
\(38\) 2.54780 + 4.41292i 0.413308 + 0.715871i
\(39\) −0.0162843 + 0.0162843i −0.00260758 + 0.00260758i
\(40\) 0.680023 2.53788i 0.107521 0.401274i
\(41\) −8.15331 8.15331i −1.27333 1.27333i −0.944329 0.329004i \(-0.893287\pi\)
−0.329004 0.944329i \(-0.606713\pi\)
\(42\) 0.00549849i 0.000848436i
\(43\) 5.85320 2.95635i 0.892605 0.450839i
\(44\) −3.40280 3.40280i −0.512992 0.512992i
\(45\) 2.75463 + 2.75463i 0.410636 + 0.410636i
\(46\) 12.8673 + 3.44777i 1.89717 + 0.508346i
\(47\) 1.08884 0.158824 0.0794121 0.996842i \(-0.474696\pi\)
0.0794121 + 0.996842i \(0.474696\pi\)
\(48\) 0.0931816 + 0.0249679i 0.0134496 + 0.00360381i
\(49\) −6.06114 + 3.49940i −0.865877 + 0.499914i
\(50\) −3.66554 + 6.34891i −0.518386 + 0.897871i
\(51\) 0.275276 + 0.107188i 0.0385463 + 0.0150094i
\(52\) −0.467910 + 0.810445i −0.0648875 + 0.112388i
\(53\) −3.27638 + 1.89162i −0.450045 + 0.259834i −0.707849 0.706363i \(-0.750334\pi\)
0.257804 + 0.966197i \(0.417001\pi\)
\(54\) 0.673080 0.673080i 0.0915946 0.0915946i
\(55\) −1.07502 1.86199i −0.144956 0.251071i
\(56\) 0.0181036 + 0.0675634i 0.00241919 + 0.00902854i
\(57\) 0.159123 0.0426370i 0.0210764 0.00564741i
\(58\) 9.66402 2.58947i 1.26895 0.340014i
\(59\) 5.70413i 0.742615i 0.928510 + 0.371307i \(0.121090\pi\)
−0.928510 + 0.371307i \(0.878910\pi\)
\(60\) −0.234983 0.135667i −0.0303362 0.0175146i
\(61\) −0.925838 + 0.248078i −0.118541 + 0.0317631i −0.317602 0.948224i \(-0.602878\pi\)
0.199061 + 0.979987i \(0.436211\pi\)
\(62\) 3.26993 12.2035i 0.415281 1.54985i
\(63\) −0.100176 0.0268420i −0.0126210 0.00338178i
\(64\) 12.8729 1.60911
\(65\) −0.295647 + 0.295647i −0.0366704 + 0.0366704i
\(66\) −0.227289 + 0.131225i −0.0279774 + 0.0161527i
\(67\) −5.73331 9.93038i −0.700435 1.21319i −0.968314 0.249736i \(-0.919656\pi\)
0.267879 0.963453i \(-0.413677\pi\)
\(68\) 11.9322 + 1.31210i 1.44699 + 0.159115i
\(69\) 0.215331 0.372964i 0.0259228 0.0448996i
\(70\) 0.0998267i 0.0119316i
\(71\) −3.20016 11.9431i −0.379789 1.41739i −0.846220 0.532834i \(-0.821127\pi\)
0.466431 0.884557i \(-0.345540\pi\)
\(72\) 3.02464 5.23883i 0.356457 0.617402i
\(73\) 0.890830 + 3.32462i 0.104264 + 0.389118i 0.998261 0.0589555i \(-0.0187770\pi\)
−0.893997 + 0.448073i \(0.852110\pi\)
\(74\) 0.695745 2.59656i 0.0808787 0.301844i
\(75\) 0.167590 + 0.167590i 0.0193516 + 0.0193516i
\(76\) 5.79734 3.34709i 0.665000 0.383938i
\(77\) 0.0495699 + 0.0286192i 0.00564902 + 0.00326146i
\(78\) 0.0360889 + 0.0360889i 0.00408627 + 0.00408627i
\(79\) −7.35398 + 1.97049i −0.827388 + 0.221698i −0.647574 0.762003i \(-0.724216\pi\)
−0.179814 + 0.983701i \(0.557550\pi\)
\(80\) 1.69174 + 0.453300i 0.189142 + 0.0506805i
\(81\) 4.47691 + 7.75424i 0.497435 + 0.861582i
\(82\) −18.0691 + 18.0691i −1.99540 + 1.99540i
\(83\) −12.5047 + 7.21959i −1.37257 + 0.792453i −0.991251 0.131992i \(-0.957863\pi\)
−0.381317 + 0.924444i \(0.624529\pi\)
\(84\) 0.00722347 0.000788145
\(85\) 4.99771 + 1.94603i 0.542078 + 0.211077i
\(86\) −6.55178 12.9717i −0.706497 1.39878i
\(87\) 0.323451i 0.0346776i
\(88\) −2.36079 + 2.36079i −0.251661 + 0.251661i
\(89\) −5.98865 10.3727i −0.634796 1.09950i −0.986558 0.163410i \(-0.947751\pi\)
0.351762 0.936089i \(-0.385583\pi\)
\(90\) 6.10474 6.10474i 0.643497 0.643497i
\(91\) 0.00288088 0.0107516i 0.000301998 0.00112707i
\(92\) 4.52940 16.9039i 0.472222 1.76236i
\(93\) −0.353726 0.204224i −0.0366797 0.0211770i
\(94\) 2.41307i 0.248889i
\(95\) 2.88893 0.774086i 0.296398 0.0794196i
\(96\) 0.130245 0.486082i 0.0132931 0.0496105i
\(97\) 7.65213 7.65213i 0.776956 0.776956i −0.202356 0.979312i \(-0.564860\pi\)
0.979312 + 0.202356i \(0.0648598\pi\)
\(98\) 7.75528 + 13.4325i 0.783402 + 1.35689i
\(99\) −1.28121 4.78153i −0.128766 0.480562i
\(100\) 8.34067 + 4.81549i 0.834067 + 0.481549i
\(101\) 0.400801 0.694208i 0.0398812 0.0690763i −0.845396 0.534140i \(-0.820635\pi\)
0.885277 + 0.465064i \(0.153969\pi\)
\(102\) 0.237548 0.610059i 0.0235207 0.0604049i
\(103\) 4.53299 7.85136i 0.446648 0.773618i −0.551517 0.834164i \(-0.685951\pi\)
0.998165 + 0.0605460i \(0.0192842\pi\)
\(104\) 0.562268 + 0.324626i 0.0551349 + 0.0318322i
\(105\) 0.00311734 0.000835290i 0.000304222 8.15160e-5i
\(106\) 4.19216 + 7.26103i 0.407178 + 0.705253i
\(107\) −2.23210 + 2.23210i −0.215785 + 0.215785i −0.806719 0.590935i \(-0.798759\pi\)
0.590935 + 0.806719i \(0.298759\pi\)
\(108\) −0.884237 0.884237i −0.0850858 0.0850858i
\(109\) 3.61244 13.4818i 0.346009 1.29132i −0.545421 0.838162i \(-0.683630\pi\)
0.891430 0.453159i \(-0.149703\pi\)
\(110\) −4.12650 + 2.38243i −0.393446 + 0.227156i
\(111\) −0.0752626 0.0434529i −0.00714361 0.00412436i
\(112\) −0.0450374 + 0.0120677i −0.00425564 + 0.00114029i
\(113\) −3.60473 3.60473i −0.339104 0.339104i 0.516926 0.856030i \(-0.327076\pi\)
−0.856030 + 0.516926i \(0.827076\pi\)
\(114\) −0.0944910 0.352645i −0.00884989 0.0330282i
\(115\) 3.90939 6.77127i 0.364553 0.631424i
\(116\) −3.40183 12.6958i −0.315852 1.17878i
\(117\) −0.833671 + 0.481320i −0.0770729 + 0.0444981i
\(118\) 12.6413 1.16373
\(119\) −0.141127 + 0.0216581i −0.0129371 + 0.00198539i
\(120\) −0.0941230 + 0.163026i −0.00859221 + 0.0148821i
\(121\) 8.26793i 0.751630i
\(122\) 0.549783 + 2.05182i 0.0497750 + 0.185763i
\(123\) 0.413064 + 0.715447i 0.0372447 + 0.0645097i
\(124\) −16.0320 4.29576i −1.43972 0.385771i
\(125\) 7.64156 + 7.64156i 0.683482 + 0.683482i
\(126\) −0.0594866 + 0.222007i −0.00529949 + 0.0197780i
\(127\) 2.81131i 0.249464i −0.992190 0.124732i \(-0.960193\pi\)
0.992190 0.124732i \(-0.0398070\pi\)
\(128\) 14.4811i 1.27996i
\(129\) −0.459897 + 0.0960566i −0.0404916 + 0.00845731i
\(130\) 0.655204 + 0.655204i 0.0574652 + 0.0574652i
\(131\) 3.92920 3.92920i 0.343296 0.343296i −0.514309 0.857605i \(-0.671952\pi\)
0.857605 + 0.514309i \(0.171952\pi\)
\(132\) 0.172393 + 0.298594i 0.0150049 + 0.0259893i
\(133\) −0.0563013 + 0.0563013i −0.00488194 + 0.00488194i
\(134\) −22.0074 + 12.7060i −1.90115 + 1.09763i
\(135\) −0.279350 0.483849i −0.0240426 0.0416431i
\(136\) 0.910304 8.27829i 0.0780579 0.709858i
\(137\) −21.9104 −1.87193 −0.935965 0.352094i \(-0.885470\pi\)
−0.935965 + 0.352094i \(0.885470\pi\)
\(138\) −0.826553 0.477211i −0.0703609 0.0406229i
\(139\) 3.92536 + 1.05180i 0.332945 + 0.0892123i 0.421419 0.906866i \(-0.361532\pi\)
−0.0884739 + 0.996078i \(0.528199\pi\)
\(140\) 0.131144 0.0110837
\(141\) −0.0753543 0.0201911i −0.00634597 0.00170040i
\(142\) −26.4681 + 7.09211i −2.22115 + 0.595156i
\(143\) 0.513188 0.137508i 0.0429149 0.0114990i
\(144\) 3.49218 + 2.01621i 0.291015 + 0.168018i
\(145\) 5.87234i 0.487672i
\(146\) 7.36795 1.97423i 0.609775 0.163389i
\(147\) 0.484357 0.129783i 0.0399491 0.0107043i
\(148\) −3.41114 0.914013i −0.280394 0.0751314i
\(149\) −6.66493 11.5440i −0.546012 0.945721i −0.998542 0.0539716i \(-0.982812\pi\)
0.452530 0.891749i \(-0.350521\pi\)
\(150\) 0.371408 0.371408i 0.0303254 0.0303254i
\(151\) 18.4917i 1.50483i 0.658688 + 0.752416i \(0.271112\pi\)
−0.658688 + 0.752416i \(0.728888\pi\)
\(152\) −2.32214 4.02206i −0.188350 0.326232i
\(153\) 9.95489 + 7.30596i 0.804805 + 0.590652i
\(154\) 0.0634251 0.109856i 0.00511094 0.00885241i
\(155\) −6.42199 3.70774i −0.515827 0.297813i
\(156\) 0.0474107 0.0474107i 0.00379589 0.00379589i
\(157\) 5.52857 9.57576i 0.441228 0.764229i −0.556553 0.830812i \(-0.687876\pi\)
0.997781 + 0.0665831i \(0.0212098\pi\)
\(158\) 4.36696 + 16.2977i 0.347417 + 1.29658i
\(159\) 0.261822 0.0701549i 0.0207638 0.00556365i
\(160\) 2.36464 8.82495i 0.186941 0.697673i
\(161\) 0.208152i 0.0164046i
\(162\) 17.1847 9.92162i 1.35016 0.779516i
\(163\) −23.7522 + 6.36439i −1.86042 + 0.498497i −0.999940 0.0109919i \(-0.996501\pi\)
−0.860477 + 0.509489i \(0.829834\pi\)
\(164\) 23.7378 + 23.7378i 1.85361 + 1.85361i
\(165\) 0.0398696 + 0.148795i 0.00310384 + 0.0115837i
\(166\) 15.9999 + 27.7126i 1.24183 + 2.15091i
\(167\) −12.9383 3.46681i −1.00120 0.268270i −0.279250 0.960218i \(-0.590086\pi\)
−0.721947 + 0.691948i \(0.756753\pi\)
\(168\) 0.00501148i 0.000386644i
\(169\) 6.44834 + 11.1689i 0.496026 + 0.859143i
\(170\) 4.31275 11.0758i 0.330773 0.849474i
\(171\) 6.88604 0.526589
\(172\) −17.0412 + 8.60719i −1.29938 + 0.656292i
\(173\) −16.7927 + 16.7927i −1.27672 + 1.27672i −0.334232 + 0.942491i \(0.608477\pi\)
−0.942491 + 0.334232i \(0.891523\pi\)
\(174\) −0.716824 −0.0543423
\(175\) −0.110650 0.0296485i −0.00836432 0.00224121i
\(176\) −1.57369 1.57369i −0.118621 0.118621i
\(177\) 0.105775 0.394759i 0.00795055 0.0296719i
\(178\) −22.9876 + 13.2719i −1.72299 + 0.994771i
\(179\) 9.32690 + 5.38489i 0.697125 + 0.402485i 0.806276 0.591540i \(-0.201480\pi\)
−0.109151 + 0.994025i \(0.534813\pi\)
\(180\) −8.01991 8.01991i −0.597769 0.597769i
\(181\) −10.9704 + 2.93950i −0.815421 + 0.218491i −0.642343 0.766417i \(-0.722038\pi\)
−0.173077 + 0.984908i \(0.555371\pi\)
\(182\) −0.0238274 0.00638452i −0.00176620 0.000473252i
\(183\) 0.0686736 0.00507649
\(184\) −11.7276 3.14239i −0.864568 0.231660i
\(185\) −1.36641 0.788899i −0.100461 0.0580010i
\(186\) −0.452596 + 0.783919i −0.0331859 + 0.0574797i
\(187\) −4.26338 5.31684i −0.311769 0.388806i
\(188\) −3.17009 −0.231203
\(189\) 0.0128810 + 0.00743686i 0.000936956 + 0.000540952i
\(190\) −1.71551 6.40237i −0.124456 0.464477i
\(191\) −2.55320 4.42227i −0.184743 0.319984i 0.758747 0.651385i \(-0.225812\pi\)
−0.943490 + 0.331401i \(0.892479\pi\)
\(192\) −0.890878 0.238710i −0.0642936 0.0172274i
\(193\) 12.1159 + 12.1159i 0.872118 + 0.872118i 0.992703 0.120585i \(-0.0384770\pi\)
−0.120585 + 0.992703i \(0.538477\pi\)
\(194\) −16.9585 16.9585i −1.21755 1.21755i
\(195\) 0.0259428 0.0149781i 0.00185780 0.00107260i
\(196\) 17.6466 10.1883i 1.26047 0.727732i
\(197\) 6.47125 1.73397i 0.461057 0.123540i −0.0208113 0.999783i \(-0.506625\pi\)
0.481869 + 0.876244i \(0.339958\pi\)
\(198\) −10.5967 + 2.83938i −0.753076 + 0.201786i
\(199\) 11.3928 11.3928i 0.807614 0.807614i −0.176658 0.984272i \(-0.556529\pi\)
0.984272 + 0.176658i \(0.0565288\pi\)
\(200\) 3.34088 5.78657i 0.236236 0.409172i
\(201\) 0.212632 + 0.793555i 0.0149979 + 0.0559731i
\(202\) −1.53849 0.888245i −0.108248 0.0624967i
\(203\) 0.0781667 + 0.135389i 0.00548623 + 0.00950243i
\(204\) −0.801446 0.312071i −0.0561124 0.0218493i
\(205\) 7.49928 + 12.9891i 0.523773 + 0.907201i
\(206\) −17.4000 10.0459i −1.21231 0.699930i
\(207\) 12.7292 12.7292i 0.884740 0.884740i
\(208\) −0.216394 + 0.374805i −0.0150042 + 0.0259881i
\(209\) −3.67098 0.983635i −0.253927 0.0680395i
\(210\) 0.00185115 0.00690858i 0.000127741 0.000476737i
\(211\) −7.81730 7.81730i −0.538165 0.538165i 0.384824 0.922990i \(-0.374262\pi\)
−0.922990 + 0.384824i \(0.874262\pi\)
\(212\) 9.53894 5.50731i 0.655137 0.378244i
\(213\) 0.885877i 0.0606993i
\(214\) 4.94671 + 4.94671i 0.338150 + 0.338150i
\(215\) −8.34955 + 1.74393i −0.569435 + 0.118935i
\(216\) −0.613464 + 0.613464i −0.0417409 + 0.0417409i
\(217\) 0.197415 0.0134014
\(218\) −29.8780 8.00579i −2.02359 0.542220i
\(219\) 0.246602i 0.0166638i
\(220\) 3.12985 + 5.42105i 0.211014 + 0.365487i
\(221\) −0.784127 + 1.06843i −0.0527461 + 0.0718703i
\(222\) −0.0962991 + 0.166795i −0.00646317 + 0.0111945i
\(223\) 2.57711i 0.172576i 0.996270 + 0.0862882i \(0.0275006\pi\)
−0.996270 + 0.0862882i \(0.972499\pi\)
\(224\) 0.0629513 + 0.234938i 0.00420611 + 0.0156974i
\(225\) 4.95350 + 8.57971i 0.330233 + 0.571981i
\(226\) −7.98870 + 7.98870i −0.531400 + 0.531400i
\(227\) 5.74489 21.4402i 0.381302 1.42304i −0.462613 0.886560i \(-0.653088\pi\)
0.843915 0.536477i \(-0.180245\pi\)
\(228\) −0.463276 + 0.124135i −0.0306812 + 0.00822101i
\(229\) 12.5292 + 7.23376i 0.827955 + 0.478020i 0.853152 0.521662i \(-0.174688\pi\)
−0.0251969 + 0.999683i \(0.508021\pi\)
\(230\) −15.0063 8.66389i −0.989486 0.571280i
\(231\) −0.00289982 0.00289982i −0.000190794 0.000190794i
\(232\) −8.80806 + 2.36011i −0.578277 + 0.154949i
\(233\) −0.447079 1.66852i −0.0292891 0.109308i 0.949734 0.313059i \(-0.101354\pi\)
−0.979023 + 0.203750i \(0.934687\pi\)
\(234\) 1.06669 + 1.84756i 0.0697317 + 0.120779i
\(235\) −1.36808 0.366575i −0.0892435 0.0239127i
\(236\) 16.6072i 1.08103i
\(237\) 0.545478 0.0354326
\(238\) 0.0479980 + 0.312763i 0.00311125 + 0.0202734i
\(239\) −8.73933 15.1370i −0.565300 0.979129i −0.997022 0.0771218i \(-0.975427\pi\)
0.431721 0.902007i \(-0.357906\pi\)
\(240\) −0.108672 0.0627419i −0.00701476 0.00404997i
\(241\) −0.411061 1.53410i −0.0264788 0.0988202i 0.951422 0.307890i \(-0.0996230\pi\)
−0.977901 + 0.209070i \(0.932956\pi\)
\(242\) −18.3232 −1.17786
\(243\) −0.499536 1.86429i −0.0320452 0.119594i
\(244\) 2.69551 0.722260i 0.172562 0.0462379i
\(245\) 8.79364 2.35625i 0.561805 0.150535i
\(246\) 1.58556 0.915421i 0.101091 0.0583651i
\(247\) 0.739058i 0.0470251i
\(248\) −2.98030 + 11.1226i −0.189249 + 0.706289i
\(249\) 0.999274 0.267755i 0.0633264 0.0169683i
\(250\) 16.9350 16.9350i 1.07107 1.07107i
\(251\) 0.680300 1.17831i 0.0429402 0.0743746i −0.843757 0.536726i \(-0.819661\pi\)
0.886697 + 0.462352i \(0.152994\pi\)
\(252\) 0.291655 + 0.0781486i 0.0183725 + 0.00492290i
\(253\) −8.60428 + 4.96769i −0.540947 + 0.312316i
\(254\) −6.23036 −0.390927
\(255\) −0.309784 0.227352i −0.0193994 0.0142373i
\(256\) −6.34694 −0.396684
\(257\) 23.0969i 1.44074i 0.693588 + 0.720372i \(0.256029\pi\)
−0.693588 + 0.720372i \(0.743971\pi\)
\(258\) 0.212878 + 1.01921i 0.0132532 + 0.0634533i
\(259\) 0.0420041 0.00261001
\(260\) 0.860754 0.860754i 0.0533817 0.0533817i
\(261\) 3.49932 13.0597i 0.216603 0.808372i
\(262\) −8.70780 8.70780i −0.537969 0.537969i
\(263\) −20.7308 + 11.9689i −1.27832 + 0.738036i −0.976539 0.215342i \(-0.930913\pi\)
−0.301778 + 0.953378i \(0.597580\pi\)
\(264\) 0.207158 0.119603i 0.0127497 0.00736103i
\(265\) 4.75345 1.27368i 0.292002 0.0782417i
\(266\) 0.124774 + 0.124774i 0.00765036 + 0.00765036i
\(267\) 0.222103 + 0.828898i 0.0135925 + 0.0507278i
\(268\) 16.6921 + 28.9116i 1.01963 + 1.76606i
\(269\) 8.76969 8.76969i 0.534698 0.534698i −0.387269 0.921967i \(-0.626582\pi\)
0.921967 + 0.387269i \(0.126582\pi\)
\(270\) −1.07229 + 0.619089i −0.0652577 + 0.0376765i
\(271\) 8.10254 14.0340i 0.492194 0.852505i −0.507765 0.861495i \(-0.669528\pi\)
0.999960 + 0.00899013i \(0.00286169\pi\)
\(272\) 5.51827 + 0.606804i 0.334594 + 0.0367929i
\(273\) −0.000398746 0 0.000690649i −2.41332e−5 0 4.18000e-5i
\(274\) 48.5572i 2.93345i
\(275\) −1.41516 5.28146i −0.0853376 0.318484i
\(276\) −0.626920 + 1.08586i −0.0377362 + 0.0653610i
\(277\) −17.6338 4.72497i −1.05951 0.283896i −0.313336 0.949642i \(-0.601447\pi\)
−0.746178 + 0.665746i \(0.768113\pi\)
\(278\) 2.33097 8.69928i 0.139802 0.521748i
\(279\) −12.0726 12.0726i −0.722767 0.722767i
\(280\) 0.0909848i 0.00543738i
\(281\) 25.1978 14.5479i 1.50317 0.867857i 0.503179 0.864182i \(-0.332163\pi\)
0.999993 0.00367517i \(-0.00116985\pi\)
\(282\) −0.0447470 + 0.166998i −0.00266465 + 0.00994459i
\(283\) 30.9327 8.28840i 1.83876 0.492694i 0.840004 0.542580i \(-0.182552\pi\)
0.998755 + 0.0498859i \(0.0158858\pi\)
\(284\) 9.31703 + 34.7716i 0.552864 + 2.06332i
\(285\) −0.214285 −0.0126931
\(286\) −0.304742 1.13731i −0.0180198 0.0672508i
\(287\) −0.345797 0.199646i −0.0204117 0.0117847i
\(288\) 10.5176 18.2169i 0.619753 1.07344i
\(289\) 16.5938 + 3.69407i 0.976105 + 0.217298i
\(290\) −13.0141 −0.764216
\(291\) −0.671469 + 0.387673i −0.0393622 + 0.0227258i
\(292\) −2.59359 9.67940i −0.151778 0.566444i
\(293\) 11.4614 0.669585 0.334793 0.942292i \(-0.391334\pi\)
0.334793 + 0.942292i \(0.391334\pi\)
\(294\) −0.287622 1.07342i −0.0167745 0.0626031i
\(295\) 1.92038 7.16695i 0.111809 0.417276i
\(296\) −0.634121 + 2.36657i −0.0368576 + 0.137554i
\(297\) 0.709944i 0.0411951i
\(298\) −25.5835 + 14.7706i −1.48201 + 0.855640i
\(299\) 1.36619 + 1.36619i 0.0790086 + 0.0790086i
\(300\) −0.487926 0.487926i −0.0281704 0.0281704i
\(301\) 0.169288 0.151348i 0.00975760 0.00872354i
\(302\) 40.9808 2.35818
\(303\) −0.0406109 + 0.0406109i −0.00233303 + 0.00233303i
\(304\) 2.68109 1.54793i 0.153771 0.0887797i
\(305\) 1.24679 0.0713908
\(306\) 16.1913 22.0618i 0.925594 1.26119i
\(307\) −2.27774 3.94517i −0.129998 0.225162i 0.793678 0.608338i \(-0.208164\pi\)
−0.923675 + 0.383176i \(0.874830\pi\)
\(308\) −0.144319 0.0833228i −0.00822335 0.00474775i
\(309\) −0.459301 + 0.459301i −0.0261287 + 0.0261287i
\(310\) −8.21700 + 14.2323i −0.466694 + 0.808338i
\(311\) 0.0766645 + 0.0205422i 0.00434725 + 0.00116484i 0.260992 0.965341i \(-0.415950\pi\)
−0.256645 + 0.966506i \(0.582617\pi\)
\(312\) −0.0328924 0.0328924i −0.00186217 0.00186217i
\(313\) −0.718488 + 2.68143i −0.0406113 + 0.151564i −0.983254 0.182239i \(-0.941665\pi\)
0.942643 + 0.333803i \(0.108332\pi\)
\(314\) −21.2216 12.2523i −1.19760 0.691436i
\(315\) 0.116829 + 0.0674513i 0.00658257 + 0.00380045i
\(316\) 21.4106 5.73695i 1.20444 0.322729i
\(317\) −7.17971 7.17971i −0.403253 0.403253i 0.476125 0.879378i \(-0.342041\pi\)
−0.879378 + 0.476125i \(0.842041\pi\)
\(318\) −0.155476 0.580243i −0.00871863 0.0325384i
\(319\) −3.73101 + 6.46230i −0.208896 + 0.361819i
\(320\) −16.1741 4.33385i −0.904162 0.242269i
\(321\) 0.195865 0.113083i 0.0109321 0.00631166i
\(322\) 0.461300 0.0257073
\(323\) 8.67899 3.81429i 0.482912 0.212233i
\(324\) −13.0342 22.5759i −0.724123 1.25422i
\(325\) −0.920835 + 0.531644i −0.0510787 + 0.0294903i
\(326\) 14.1046 + 52.6390i 0.781181 + 2.91541i
\(327\) −0.500002 + 0.866030i −0.0276502 + 0.0478916i
\(328\) 16.4687 16.4687i 0.909333 0.909333i
\(329\) 0.0364209 0.00975896i 0.00200795 0.000538029i
\(330\) 0.329756 0.0883579i 0.0181525 0.00486394i
\(331\) 3.02804 + 1.74824i 0.166436 + 0.0960921i 0.580904 0.813972i \(-0.302699\pi\)
−0.414468 + 0.910064i \(0.636032\pi\)
\(332\) 36.4065 21.0193i 1.99807 1.15358i
\(333\) −2.56870 2.56870i −0.140764 0.140764i
\(334\) −7.68306 + 28.6736i −0.420398 + 1.56895i
\(335\) 3.86040 + 14.4072i 0.210916 + 0.787150i
\(336\) 0.00334063 0.000182246
\(337\) 7.44996 + 27.8036i 0.405825 + 1.51456i 0.802528 + 0.596614i \(0.203488\pi\)
−0.396703 + 0.917947i \(0.629846\pi\)
\(338\) 24.7521 14.2906i 1.34634 0.777309i
\(339\) 0.182623 + 0.316312i 0.00991872 + 0.0171797i
\(340\) −14.5505 5.66573i −0.789110 0.307267i
\(341\) 4.71144 + 8.16046i 0.255139 + 0.441914i
\(342\) 15.2607i 0.825202i
\(343\) −0.342782 + 0.342782i −0.0185085 + 0.0185085i
\(344\) 5.97148 + 11.8228i 0.321960 + 0.637442i
\(345\) −0.396116 + 0.396116i −0.0213262 + 0.0213262i
\(346\) 37.2155 + 37.2155i 2.00072 + 2.00072i
\(347\) 7.17034 26.7601i 0.384924 1.43656i −0.453362 0.891327i \(-0.649775\pi\)
0.838286 0.545230i \(-0.183558\pi\)
\(348\) 0.941704i 0.0504807i
\(349\) −1.55566 + 0.898161i −0.0832726 + 0.0480774i −0.541058 0.840985i \(-0.681976\pi\)
0.457786 + 0.889063i \(0.348643\pi\)
\(350\) −0.0657062 + 0.245219i −0.00351214 + 0.0131075i
\(351\) 0.133355 0.0357323i 0.00711795 0.00190725i
\(352\) −8.20915 + 8.20915i −0.437549 + 0.437549i
\(353\) 0.161515 0.279752i 0.00859658 0.0148897i −0.861695 0.507426i \(-0.830597\pi\)
0.870292 + 0.492537i \(0.163930\pi\)
\(354\) −0.874854 0.234416i −0.0464979 0.0124591i
\(355\) 16.0833i 0.853615i
\(356\) 17.4355 + 30.1992i 0.924081 + 1.60056i
\(357\) 0.0101684 + 0.00111815i 0.000538171 + 5.91788e-5i
\(358\) 11.9338 20.6700i 0.630723 1.09244i
\(359\) 3.12835 + 1.80615i 0.165108 + 0.0953252i 0.580277 0.814419i \(-0.302944\pi\)
−0.415169 + 0.909744i \(0.636278\pi\)
\(360\) −5.56403 + 5.56403i −0.293250 + 0.293250i
\(361\) −6.85665 + 11.8761i −0.360877 + 0.625057i
\(362\) 6.51444 + 24.3122i 0.342392 + 1.27782i
\(363\) −0.153317 + 0.572188i −0.00804707 + 0.0300321i
\(364\) −0.00838746 + 0.0313024i −0.000439622 + 0.00164069i
\(365\) 4.47713i 0.234344i
\(366\) 0.152193i 0.00795523i
\(367\) 0.937095 3.49729i 0.0489160 0.182557i −0.937145 0.348939i \(-0.886542\pi\)
0.986061 + 0.166382i \(0.0532086\pi\)
\(368\) 2.09470 7.81754i 0.109194 0.407517i
\(369\) 8.93763 + 33.3557i 0.465274 + 1.73643i
\(370\) −1.74834 + 3.02821i −0.0908917 + 0.157429i
\(371\) −0.0926382 + 0.0926382i −0.00480954 + 0.00480954i
\(372\) 1.02985 + 0.594583i 0.0533951 + 0.0308277i
\(373\) −11.5820 + 20.0605i −0.599691 + 1.03869i 0.393176 + 0.919463i \(0.371376\pi\)
−0.992866 + 0.119232i \(0.961957\pi\)
\(374\) −11.7831 + 9.44838i −0.609287 + 0.488564i
\(375\) −0.387138 0.670542i −0.0199917 0.0346267i
\(376\) 2.19934i 0.113422i
\(377\) 1.40165 + 0.375572i 0.0721888 + 0.0193429i
\(378\) 0.0164814 0.0285466i 0.000847710 0.00146828i
\(379\) 15.2496 15.2496i 0.783322 0.783322i −0.197068 0.980390i \(-0.563142\pi\)
0.980390 + 0.197068i \(0.0631420\pi\)
\(380\) −8.41091 + 2.25370i −0.431471 + 0.115612i
\(381\) −0.0521319 + 0.194559i −0.00267080 + 0.00996755i
\(382\) −9.80051 + 5.65833i −0.501438 + 0.289505i
\(383\) 26.8896i 1.37400i 0.726659 + 0.686998i \(0.241072\pi\)
−0.726659 + 0.686998i \(0.758928\pi\)
\(384\) −0.268533 + 1.00218i −0.0137035 + 0.0511422i
\(385\) −0.0526470 0.0526470i −0.00268314 0.00268314i
\(386\) 26.8508 26.8508i 1.36667 1.36667i
\(387\) −19.6080 1.09711i −0.996730 0.0557692i
\(388\) −22.2786 + 22.2786i −1.13103 + 1.13103i
\(389\) 6.10434i 0.309503i 0.987953 + 0.154751i \(0.0494576\pi\)
−0.987953 + 0.154751i \(0.950542\pi\)
\(390\) −0.0331940 0.0574937i −0.00168085 0.00291131i
\(391\) 8.99264 23.0945i 0.454777 1.16794i
\(392\) −7.06838 12.2428i −0.357007 0.618354i
\(393\) −0.344785 + 0.199062i −0.0173921 + 0.0100413i
\(394\) −3.84277 14.3414i −0.193596 0.722510i
\(395\) 9.90330 0.498289
\(396\) 3.73014 + 13.9211i 0.187447 + 0.699561i
\(397\) 8.23672 30.7399i 0.413389 1.54279i −0.374651 0.927166i \(-0.622237\pi\)
0.788040 0.615624i \(-0.211096\pi\)
\(398\) −25.2484 25.2484i −1.26559 1.26559i
\(399\) 0.00494040 0.00285234i 0.000247330 0.000142796i
\(400\) 3.85730 + 2.22701i 0.192865 + 0.111351i
\(401\) 2.76196 0.740066i 0.137926 0.0369571i −0.189196 0.981939i \(-0.560588\pi\)
0.327122 + 0.944982i \(0.393921\pi\)
\(402\) 1.75866 0.471231i 0.0877138 0.0235028i
\(403\) 1.29572 1.29572i 0.0645442 0.0645442i
\(404\) −1.16690 + 2.02114i −0.0580556 + 0.100555i
\(405\) −3.01444 11.2500i −0.149789 0.559018i
\(406\) 0.300045 0.173231i 0.0148910 0.00859731i
\(407\) 1.00246 + 1.73631i 0.0496900 + 0.0860656i
\(408\) −0.216508 + 0.556025i −0.0107187 + 0.0275273i
\(409\) 27.6654 1.36797 0.683983 0.729498i \(-0.260246\pi\)
0.683983 + 0.729498i \(0.260246\pi\)
\(410\) 28.7862 16.6197i 1.42165 0.820790i
\(411\) 1.51632 + 0.406298i 0.0747947 + 0.0200412i
\(412\) −13.1975 + 22.8587i −0.650192 + 1.12617i
\(413\) 0.0511243 + 0.190798i 0.00251566 + 0.00938858i
\(414\) −28.2101 28.2101i −1.38645 1.38645i
\(415\) 18.1421 4.86116i 0.890560 0.238625i
\(416\) 1.95517 + 1.12882i 0.0958601 + 0.0553448i
\(417\) −0.252153 0.145581i −0.0123480 0.00712912i
\(418\) −2.17991 + 8.13553i −0.106623 + 0.397922i
\(419\) 20.5401 + 20.5401i 1.00345 + 1.00345i 0.999994 + 0.00345650i \(0.00110024\pi\)
0.00345650 + 0.999994i \(0.498900\pi\)
\(420\) −0.00907592 0.00243189i −0.000442860 0.000118664i
\(421\) −11.5806 + 20.0583i −0.564406 + 0.977579i 0.432699 + 0.901538i \(0.357561\pi\)
−0.997105 + 0.0760409i \(0.975772\pi\)
\(422\) −17.3245 + 17.3245i −0.843344 + 0.843344i
\(423\) −2.82406 1.63047i −0.137310 0.0792762i
\(424\) −3.82085 6.61790i −0.185557 0.321394i
\(425\) 10.9957 + 8.06983i 0.533370 + 0.391444i
\(426\) 1.96326 0.0951201
\(427\) −0.0287451 + 0.0165960i −0.00139107 + 0.000803136i
\(428\) 6.49859 6.49859i 0.314121 0.314121i
\(429\) −0.0380654 −0.00183782
\(430\) 3.86486 + 18.5041i 0.186380 + 0.892345i
\(431\) −12.9655 12.9655i −0.624527 0.624527i 0.322158 0.946686i \(-0.395592\pi\)
−0.946686 + 0.322158i \(0.895592\pi\)
\(432\) −0.408932 0.408932i −0.0196748 0.0196748i
\(433\) −5.07349 + 2.92918i −0.243816 + 0.140767i −0.616929 0.787018i \(-0.711624\pi\)
0.373113 + 0.927786i \(0.378290\pi\)
\(434\) 0.437506i 0.0210009i
\(435\) −0.108895 + 0.406400i −0.00522109 + 0.0194854i
\(436\) −10.5173 + 39.2513i −0.503689 + 1.87979i
\(437\) −3.57706 13.3498i −0.171114 0.638606i
\(438\) −0.546514 −0.0261134
\(439\) 0.746893 + 2.78744i 0.0356473 + 0.133037i 0.981456 0.191686i \(-0.0613955\pi\)
−0.945809 + 0.324723i \(0.894729\pi\)
\(440\) 3.76100 2.17142i 0.179299 0.103518i
\(441\) 20.9605 0.998118
\(442\) 2.36782 + 1.73776i 0.112626 + 0.0826569i
\(443\) −13.8773 + 24.0362i −0.659331 + 1.14199i 0.321459 + 0.946924i \(0.395827\pi\)
−0.980789 + 0.195070i \(0.937506\pi\)
\(444\) 0.219122 + 0.126510i 0.0103990 + 0.00600389i
\(445\) 4.03233 + 15.0489i 0.191151 + 0.713385i
\(446\) 5.71133 0.270439
\(447\) 0.247184 + 0.922502i 0.0116914 + 0.0436329i
\(448\) 0.430588 0.115376i 0.0203434 0.00545099i
\(449\) −1.19494 + 4.45959i −0.0563929 + 0.210461i −0.988373 0.152048i \(-0.951413\pi\)
0.931980 + 0.362509i \(0.118080\pi\)
\(450\) 19.0141 10.9778i 0.896335 0.517499i
\(451\) 19.0588i 0.897442i
\(452\) 10.4949 + 10.4949i 0.493638 + 0.493638i
\(453\) 0.342903 1.27973i 0.0161110 0.0601270i
\(454\) −47.5152 12.7317i −2.23000 0.597527i
\(455\) −0.00723935 + 0.0125389i −0.000339386 + 0.000587834i
\(456\) 0.0861217 + 0.321411i 0.00403302 + 0.0150514i
\(457\) 9.90750i 0.463453i 0.972781 + 0.231727i \(0.0744375\pi\)
−0.972781 + 0.231727i \(0.925563\pi\)
\(458\) 16.0313 27.7670i 0.749092 1.29747i
\(459\) −1.10786 1.38161i −0.0517106 0.0644881i
\(460\) −11.3819 + 19.7141i −0.530684 + 0.919172i
\(461\) 23.5032 13.5696i 1.09465 0.631998i 0.159841 0.987143i \(-0.448902\pi\)
0.934811 + 0.355145i \(0.115568\pi\)
\(462\) −0.00642650 + 0.00642650i −0.000298988 + 0.000298988i
\(463\) −8.35820 14.4768i −0.388438 0.672795i 0.603801 0.797135i \(-0.293652\pi\)
−0.992240 + 0.124340i \(0.960319\pi\)
\(464\) −1.57324 5.87141i −0.0730358 0.272573i
\(465\) 0.375684 + 0.375684i 0.0174219 + 0.0174219i
\(466\) −3.69773 + 0.990805i −0.171294 + 0.0458981i
\(467\) −12.4948 + 7.21389i −0.578192 + 0.333819i −0.760414 0.649438i \(-0.775004\pi\)
0.182223 + 0.983257i \(0.441671\pi\)
\(468\) 2.42717 1.40133i 0.112196 0.0647765i
\(469\) −0.280777 0.280777i −0.0129651 0.0129651i
\(470\) −0.812394 + 3.03190i −0.0374730 + 0.139851i
\(471\) −0.560178 + 0.560178i −0.0258116 + 0.0258116i
\(472\) −11.5217 −0.530328
\(473\) 10.2964 + 3.38577i 0.473428 + 0.155678i
\(474\) 1.20887i 0.0555254i
\(475\) 7.60600 0.348987
\(476\) 0.410882 0.0630559i 0.0188328 0.00289016i
\(477\) 11.3303 0.518778
\(478\) −33.5461 + 19.3679i −1.53437 + 0.885866i
\(479\) −31.2885 8.38372i −1.42961 0.383062i −0.540725 0.841200i \(-0.681850\pi\)
−0.888881 + 0.458138i \(0.848517\pi\)
\(480\) −0.327293 + 0.566888i −0.0149388 + 0.0258748i
\(481\) 0.275690 0.275690i 0.0125704 0.0125704i
\(482\) −3.39984 + 0.910984i −0.154858 + 0.0414942i
\(483\) 0.00385988 0.0144053i 0.000175631 0.000655463i
\(484\) 24.0715i 1.09416i
\(485\) −12.1907 + 7.03831i −0.553552 + 0.319593i
\(486\) −4.13160 + 1.10706i −0.187413 + 0.0502172i
\(487\) −9.31290 + 2.49539i −0.422008 + 0.113077i −0.463572 0.886059i \(-0.653433\pi\)
0.0415643 + 0.999136i \(0.486766\pi\)
\(488\) −0.501087 1.87008i −0.0226832 0.0846547i
\(489\) 1.76181 0.0796717
\(490\) −5.22186 19.4882i −0.235899 0.880389i
\(491\) 16.3633 + 9.44734i 0.738464 + 0.426353i 0.821511 0.570193i \(-0.193132\pi\)
−0.0830463 + 0.996546i \(0.526465\pi\)
\(492\) −1.20261 2.08297i −0.0542176 0.0939077i
\(493\) −2.82350 18.3984i −0.127164 0.828622i
\(494\) 1.63788 0.0736918
\(495\) 6.43909i 0.289416i
\(496\) −7.41430 1.98666i −0.332912 0.0892035i
\(497\) −0.214085 0.370807i −0.00960304 0.0166329i
\(498\) −0.593391 2.21456i −0.0265905 0.0992370i
\(499\) −27.7266 + 7.42932i −1.24121 + 0.332582i −0.818936 0.573884i \(-0.805436\pi\)
−0.422277 + 0.906467i \(0.638769\pi\)
\(500\) −22.2479 22.2479i −0.994955 0.994955i
\(501\) 0.831119 + 0.479847i 0.0371317 + 0.0214380i
\(502\) −2.61135 1.50766i −0.116550 0.0672903i
\(503\) 28.5758 7.65685i 1.27413 0.341402i 0.442518 0.896760i \(-0.354085\pi\)
0.831612 + 0.555358i \(0.187419\pi\)
\(504\) 0.0542177 0.202343i 0.00241505 0.00901309i
\(505\) −0.737302 + 0.737302i −0.0328095 + 0.0328095i
\(506\) 11.0093 + 19.0686i 0.489421 + 0.847702i
\(507\) −0.239151 0.892524i −0.0106211 0.0396384i
\(508\) 8.18493i 0.363148i
\(509\) −14.1917 + 24.5807i −0.629035 + 1.08952i 0.358710 + 0.933449i \(0.383217\pi\)
−0.987746 + 0.156072i \(0.950117\pi\)
\(510\) −0.503852 + 0.686534i −0.0223109 + 0.0304003i
\(511\) 0.0595951 + 0.103222i 0.00263633 + 0.00456626i
\(512\) 14.8964i 0.658332i
\(513\) −0.953924 0.255603i −0.0421168 0.0112852i
\(514\) 51.1867 2.25775
\(515\) −8.33874 + 8.33874i −0.367449 + 0.367449i
\(516\) 1.33896 0.279662i 0.0589443 0.0123114i
\(517\) 1.27261 + 1.27261i 0.0559695 + 0.0559695i
\(518\) 0.0930884i 0.00409007i
\(519\) 1.47355 0.850752i 0.0646815 0.0373439i
\(520\) −0.597171 0.597171i −0.0261877 0.0261877i
\(521\) −4.84775 + 18.0920i −0.212384 + 0.792626i 0.774688 + 0.632344i \(0.217907\pi\)
−0.987071 + 0.160282i \(0.948760\pi\)
\(522\) −28.9425 7.75511i −1.26678 0.339432i
\(523\) 3.00917 5.21203i 0.131582 0.227906i −0.792705 0.609606i \(-0.791328\pi\)
0.924286 + 0.381699i \(0.124661\pi\)
\(524\) −11.4396 + 11.4396i −0.499741 + 0.499741i
\(525\) 0.00710780 + 0.00410369i 0.000310210 + 0.000179100i
\(526\) 26.5253 + 45.9431i 1.15656 + 2.00321i
\(527\) −21.9032 8.52878i −0.954119 0.371520i
\(528\) 0.0797265 + 0.138090i 0.00346965 + 0.00600961i
\(529\) −11.3715 6.56534i −0.494413 0.285450i
\(530\) −2.82270 10.5345i −0.122610 0.457588i
\(531\) 8.54156 14.7944i 0.370672 0.642023i
\(532\) 0.163917 0.163917i 0.00710671 0.00710671i
\(533\) −3.57997 + 0.959249i −0.155066 + 0.0415497i
\(534\) 1.83698 0.492218i 0.0794940 0.0213004i
\(535\) 3.55598 2.05305i 0.153739 0.0887610i
\(536\) 20.0582 11.5806i 0.866382 0.500206i
\(537\) −0.545619 0.545619i −0.0235452 0.0235452i
\(538\) −19.4352 19.4352i −0.837910 0.837910i
\(539\) −11.1741 2.99410i −0.481303 0.128965i
\(540\) 0.813308 + 1.40869i 0.0349992 + 0.0606204i
\(541\) −0.577014 2.15345i −0.0248078 0.0925839i 0.952412 0.304814i \(-0.0985942\pi\)
−0.977220 + 0.212230i \(0.931928\pi\)
\(542\) −31.1018 17.9566i −1.33594 0.771303i
\(543\) 0.813721 0.0349201
\(544\) 3.16539 28.7860i 0.135715 1.23419i
\(545\) −9.07768 + 15.7230i −0.388845 + 0.673500i
\(546\) 0.00153060 0.000883691i 6.55035e−5 3.78185e-5i
\(547\) −2.62270 0.702752i −0.112139 0.0300475i 0.202313 0.979321i \(-0.435154\pi\)
−0.314452 + 0.949273i \(0.601821\pi\)
\(548\) 63.7905 2.72499
\(549\) 2.77276 + 0.742959i 0.118339 + 0.0317087i
\(550\) −11.7046 + 3.13625i −0.499088 + 0.133730i
\(551\) −7.33985 7.33985i −0.312688 0.312688i
\(552\) 0.753344 + 0.434943i 0.0320644 + 0.0185124i
\(553\) −0.228324 + 0.131823i −0.00970932 + 0.00560568i
\(554\) −10.4714 + 39.0797i −0.444886 + 1.66034i
\(555\) 0.0799345 + 0.0799345i 0.00339303 + 0.00339303i
\(556\) −11.4284 3.06223i −0.484672 0.129868i
\(557\) 28.2228 1.19584 0.597919 0.801557i \(-0.295995\pi\)
0.597919 + 0.801557i \(0.295995\pi\)
\(558\) −26.7550 + 26.7550i −1.13263 + 1.13263i
\(559\) 0.117749 2.10447i 0.00498027 0.0890095i
\(560\) 0.0606500 0.00256293
\(561\) 0.196457 + 0.447014i 0.00829440 + 0.0188730i
\(562\) −32.2408 55.8426i −1.35999 2.35558i
\(563\) 16.0217i 0.675233i −0.941284 0.337617i \(-0.890379\pi\)
0.941284 0.337617i \(-0.109621\pi\)
\(564\) 0.219388 + 0.0587850i 0.00923792 + 0.00247529i
\(565\) 3.31557 + 5.74274i 0.139487 + 0.241599i
\(566\) −18.3685 68.5523i −0.772087 2.88147i
\(567\) 0.219248 + 0.219248i 0.00920754 + 0.00920754i
\(568\) 24.1238 6.46394i 1.01221 0.271221i
\(569\) 0.840955 0.485525i 0.0352547 0.0203543i −0.482269 0.876023i \(-0.660187\pi\)
0.517524 + 0.855669i \(0.326854\pi\)
\(570\) 0.474892i 0.0198911i
\(571\) −5.89484 + 21.9998i −0.246691 + 0.920665i 0.725834 + 0.687870i \(0.241454\pi\)
−0.972526 + 0.232795i \(0.925213\pi\)
\(572\) −1.49411 + 0.400345i −0.0624719 + 0.0167393i
\(573\) 0.0946910 + 0.353392i 0.00395578 + 0.0147632i
\(574\) −0.442450 + 0.766346i −0.0184675 + 0.0319867i
\(575\) 14.0601 14.0601i 0.586346 0.586346i
\(576\) −33.3875 19.2763i −1.39115 0.803179i
\(577\) −13.4700 + 23.3307i −0.560764 + 0.971271i 0.436666 + 0.899624i \(0.356159\pi\)
−0.997430 + 0.0716477i \(0.977174\pi\)
\(578\) 8.18669 36.7747i 0.340522 1.52963i
\(579\) −0.613815 1.06316i −0.0255093 0.0441833i
\(580\) 17.0969i 0.709910i
\(581\) −0.353565 + 0.353565i −0.0146683 + 0.0146683i
\(582\) 0.859151 + 1.48809i 0.0356130 + 0.0616834i
\(583\) −6.04023 1.61847i −0.250161 0.0670304i
\(584\) −6.71535 + 1.79937i −0.277883 + 0.0744586i
\(585\) 1.20951 0.324087i 0.0500070 0.0133993i
\(586\) 25.4006i 1.04929i
\(587\) −20.9667 12.1051i −0.865388 0.499632i 0.000424824 1.00000i \(-0.499865\pi\)
−0.865813 + 0.500368i \(0.833198\pi\)
\(588\) −1.41017 + 0.377854i −0.0581545 + 0.0155824i
\(589\) −12.6612 + 3.39255i −0.521694 + 0.139788i
\(590\) −15.8832 4.25589i −0.653901 0.175212i
\(591\) −0.480001 −0.0197446
\(592\) −1.57755 0.422702i −0.0648368 0.0173730i
\(593\) −16.0981 9.29422i −0.661068 0.381668i 0.131616 0.991301i \(-0.457984\pi\)
−0.792684 + 0.609633i \(0.791317\pi\)
\(594\) 1.57336 0.0645557
\(595\) 0.184611 + 0.0203003i 0.00756831 + 0.000832232i
\(596\) 19.4045 + 33.6095i 0.794837 + 1.37670i
\(597\) −0.999711 + 0.577183i −0.0409154 + 0.0236225i
\(598\) 3.02771 3.02771i 0.123812 0.123812i
\(599\) 7.39529 + 12.8090i 0.302163 + 0.523362i 0.976626 0.214947i \(-0.0689579\pi\)
−0.674462 + 0.738309i \(0.735625\pi\)
\(600\) −0.338512 + 0.338512i −0.0138197 + 0.0138197i
\(601\) −9.22597 9.22597i −0.376335 0.376335i 0.493443 0.869778i \(-0.335738\pi\)
−0.869778 + 0.493443i \(0.835738\pi\)
\(602\) −0.335413 0.375172i −0.0136704 0.0152909i
\(603\) 34.3410i 1.39847i
\(604\) 53.8372i 2.19061i
\(605\) −2.78352 + 10.3882i −0.113166 + 0.422342i
\(606\) 0.0900008 + 0.0900008i 0.00365603 + 0.00365603i
\(607\) −17.1768 4.60251i −0.697184 0.186810i −0.107215 0.994236i \(-0.534193\pi\)
−0.589969 + 0.807426i \(0.700860\pi\)
\(608\) −8.07475 13.9859i −0.327474 0.567202i
\(609\) −0.00289899 0.0108192i −0.000117473 0.000438415i
\(610\) 2.76310i 0.111875i
\(611\) 0.174994 0.303098i 0.00707949 0.0122620i
\(612\) −28.9829 21.2708i −1.17157 0.859820i
\(613\) −18.0304 −0.728241 −0.364121 0.931352i \(-0.618630\pi\)
−0.364121 + 0.931352i \(0.618630\pi\)
\(614\) −8.74317 + 5.04787i −0.352846 + 0.203716i
\(615\) −0.278128 1.03799i −0.0112152 0.0418557i
\(616\) −0.0578074 + 0.100125i −0.00232913 + 0.00403417i
\(617\) −3.75150 14.0008i −0.151030 0.563651i −0.999413 0.0342679i \(-0.989090\pi\)
0.848383 0.529383i \(-0.177577\pi\)
\(618\) 1.01789 + 1.01789i 0.0409456 + 0.0409456i
\(619\) 6.62962 1.77640i 0.266467 0.0713996i −0.123112 0.992393i \(-0.539287\pi\)
0.389579 + 0.920993i \(0.372621\pi\)
\(620\) 18.6972 + 10.7948i 0.750897 + 0.433530i
\(621\) −2.23587 + 1.29088i −0.0897224 + 0.0518012i
\(622\) 0.0455251 0.169902i 0.00182539 0.00681245i
\(623\) −0.293282 0.293282i −0.0117501 0.0117501i
\(624\) 0.0219259 0.0219259i 0.000877740 0.000877740i
\(625\) 1.24139 + 2.15015i 0.0496555 + 0.0860059i
\(626\) 5.94252 + 1.59229i 0.237511 + 0.0636409i
\(627\) 0.235813 + 0.136146i 0.00941745 + 0.00543716i
\(628\) −16.0960 + 27.8791i −0.642301 + 1.11250i
\(629\) −4.66036 1.81468i −0.185821 0.0723559i
\(630\) 0.149484 0.258914i 0.00595558 0.0103154i
\(631\) 12.8762 + 7.43408i 0.512594 + 0.295946i 0.733899 0.679258i \(-0.237698\pi\)
−0.221305 + 0.975205i \(0.571032\pi\)
\(632\) −3.98017 14.8542i −0.158323 0.590868i
\(633\) 0.396041 + 0.685963i 0.0157412 + 0.0272646i
\(634\) −15.9115 + 15.9115i −0.631926 + 0.631926i
\(635\) −0.946469 + 3.53227i −0.0375595 + 0.140174i
\(636\) −0.762275 + 0.204251i −0.0302262 + 0.00809908i
\(637\) 2.24963i 0.0891334i
\(638\) 14.3216 + 8.26856i 0.566997 + 0.327356i
\(639\) −9.58404 + 35.7681i −0.379139 + 1.41497i
\(640\) −4.87529 + 18.1948i −0.192713 + 0.719213i
\(641\) −26.7434 + 26.7434i −1.05630 + 1.05630i −0.0579850 + 0.998317i \(0.518468\pi\)
−0.998317 + 0.0579850i \(0.981532\pi\)
\(642\) −0.250611 0.434071i −0.00989083 0.0171314i
\(643\) 21.5967 21.5967i 0.851691 0.851691i −0.138651 0.990341i \(-0.544276\pi\)
0.990341 + 0.138651i \(0.0442765\pi\)
\(644\) 0.606018i 0.0238805i
\(645\) 0.610176 + 0.0341406i 0.0240256 + 0.00134429i
\(646\) −8.45314 19.2342i −0.332584 0.756758i
\(647\) 22.7549 0.894586 0.447293 0.894388i \(-0.352388\pi\)
0.447293 + 0.894388i \(0.352388\pi\)
\(648\) −15.6627 + 9.04284i −0.615287 + 0.355236i
\(649\) −6.66685 + 6.66685i −0.261697 + 0.261697i
\(650\) 1.17822 + 2.04073i 0.0462134 + 0.0800440i
\(651\) −0.0136622 0.00366079i −0.000535465 0.000143477i
\(652\) 69.1528 18.5294i 2.70823 0.725669i
\(653\) −18.5123 18.5123i −0.724441 0.724441i 0.245066 0.969506i \(-0.421190\pi\)
−0.969506 + 0.245066i \(0.921190\pi\)
\(654\) 1.91927 + 1.10809i 0.0750495 + 0.0433298i
\(655\) −6.25967 + 3.61402i −0.244585 + 0.141211i
\(656\) 10.9780 + 10.9780i 0.428618 + 0.428618i
\(657\) 2.66792 9.95681i 0.104085 0.388452i
\(658\) −0.0216276 0.0807151i −0.000843130 0.00314660i
\(659\) −10.3579 + 17.9404i −0.403486 + 0.698858i −0.994144 0.108064i \(-0.965535\pi\)
0.590658 + 0.806922i \(0.298868\pi\)
\(660\) −0.116077 0.433207i −0.00451831 0.0168625i
\(661\) 29.9264i 1.16400i 0.813188 + 0.582001i \(0.197730\pi\)
−0.813188 + 0.582001i \(0.802270\pi\)
\(662\) 3.87441 6.71067i 0.150583 0.260818i
\(663\) 0.0740786 0.0594008i 0.00287698 0.00230694i
\(664\) −14.5827 25.2580i −0.565919 0.980201i
\(665\) 0.0896944 0.0517851i 0.00347820 0.00200814i
\(666\) −5.69268 + 5.69268i −0.220587 + 0.220587i
\(667\) −27.1362 −1.05072
\(668\) 37.6690 + 10.0934i 1.45746 + 0.390524i
\(669\) 0.0477890 0.178351i 0.00184763 0.00689545i
\(670\) 31.9289 8.55532i 1.23352 0.330521i
\(671\) −1.37204 0.792150i −0.0529671 0.0305806i
\(672\) 0.0174264i 0.000672237i
\(673\) −22.8948 + 6.13464i −0.882530 + 0.236473i −0.671498 0.741006i \(-0.734349\pi\)
−0.211032 + 0.977479i \(0.567682\pi\)
\(674\) 61.6177 16.5104i 2.37343 0.635957i
\(675\) −0.367738 1.37242i −0.0141542 0.0528244i
\(676\) −18.7739 32.5173i −0.722072 1.25067i
\(677\) 12.5369 12.5369i 0.481831 0.481831i −0.423885 0.905716i \(-0.639334\pi\)
0.905716 + 0.423885i \(0.139334\pi\)
\(678\) 0.701003 0.404724i 0.0269219 0.0155433i
\(679\) 0.187374 0.324541i 0.00719075 0.0124547i
\(680\) −3.93076 + 10.0948i −0.150738 + 0.387117i
\(681\) −0.795158 + 1.37725i −0.0304705 + 0.0527765i
\(682\) 18.0850 10.4414i 0.692511 0.399821i
\(683\) −37.3273 10.0018i −1.42829 0.382709i −0.539874 0.841746i \(-0.681528\pi\)
−0.888417 + 0.459036i \(0.848195\pi\)
\(684\) −20.0482 −0.766562
\(685\) 27.5293 + 7.37645i 1.05184 + 0.281839i
\(686\) 0.759664 + 0.759664i 0.0290041 + 0.0290041i
\(687\) −0.732955 0.732955i −0.0279640 0.0279640i
\(688\) −7.88101 + 3.98056i −0.300461 + 0.151757i
\(689\) 1.21605i 0.0463277i
\(690\) 0.877862 + 0.877862i 0.0334196 + 0.0334196i
\(691\) 2.99601 11.1813i 0.113974 0.425356i −0.885234 0.465145i \(-0.846002\pi\)
0.999208 + 0.0397895i \(0.0126687\pi\)
\(692\) 48.8906 48.8906i 1.85854 1.85854i
\(693\) −0.0857107 0.148455i −0.00325588 0.00563935i
\(694\) −59.3050 15.8907i −2.25119 0.603204i
\(695\) −4.57791 2.64306i −0.173650 0.100257i
\(696\) 0.653333 0.0247645
\(697\) 29.7411 + 37.0900i 1.12652 + 1.40488i
\(698\) 1.99048 + 3.44761i 0.0753408 + 0.130494i
\(699\) 0.123762i 0.00468110i
\(700\) 0.322148 + 0.0863194i 0.0121761 + 0.00326257i
\(701\) −0.0961559 + 0.166547i −0.00363176 + 0.00629039i −0.867836 0.496852i \(-0.834489\pi\)
0.864204 + 0.503142i \(0.167823\pi\)
\(702\) −0.0791890 0.295537i −0.00298879 0.0111543i
\(703\) −2.69393 + 0.721836i −0.101603 + 0.0272245i
\(704\) 15.0455 + 15.0455i 0.567049 + 0.567049i
\(705\) 0.0878812 + 0.0507382i 0.00330980 + 0.00191091i
\(706\) −0.619980 0.357946i −0.0233333 0.0134715i
\(707\) 0.00718451 0.0268129i 0.000270201 0.00100840i
\(708\) −0.307957 + 1.14931i −0.0115737 + 0.0431938i
\(709\) 16.5425 16.5425i 0.621265 0.621265i −0.324590 0.945855i \(-0.605226\pi\)
0.945855 + 0.324590i \(0.105226\pi\)
\(710\) 35.6435 1.33768
\(711\) 22.0242 + 5.90137i 0.825972 + 0.221319i
\(712\) 20.9515 12.0964i 0.785192 0.453331i
\(713\) −17.1335 + 29.6761i −0.641655 + 1.11138i
\(714\) 0.00247802 0.0225350i 9.27374e−5 0.000843353i
\(715\) −0.691089 −0.0258452
\(716\) −27.1546 15.6777i −1.01481 0.585903i
\(717\) 0.324118 + 1.20962i 0.0121044 + 0.0451742i
\(718\) 4.00275 6.93297i 0.149381 0.258736i
\(719\) 47.2328 + 12.6560i 1.76149 + 0.471989i 0.987016 0.160623i \(-0.0513502\pi\)
0.774470 + 0.632611i \(0.218017\pi\)
\(720\) −3.70896 3.70896i −0.138225 0.138225i
\(721\) 0.0812554 0.303249i 0.00302611 0.0112936i
\(722\) 26.3194 + 15.1955i 0.979508 + 0.565519i
\(723\) 0.113791i 0.00423194i
\(724\) 31.9394 8.55814i 1.18702 0.318061i
\(725\) 3.86519 14.4251i 0.143550 0.535734i
\(726\) 1.26807 + 0.339778i 0.0470624 + 0.0126103i
\(727\) −20.4384 −0.758018 −0.379009 0.925393i \(-0.623735\pi\)
−0.379009 + 0.925393i \(0.623735\pi\)
\(728\) 0.0217169 + 0.00581903i 0.000804882 + 0.000215668i
\(729\) 26.7232i 0.989748i
\(730\) −9.92210 −0.367234
\(731\) −25.3211 + 9.47843i −0.936536 + 0.350572i
\(732\) −0.199938 −0.00738992
\(733\) 14.7254i 0.543897i 0.962312 + 0.271948i \(0.0876680\pi\)
−0.962312 + 0.271948i \(0.912332\pi\)
\(734\) −7.75059 2.07677i −0.286080 0.0766548i
\(735\) −0.652264 −0.0240591
\(736\) −40.7802 10.9270i −1.50318 0.402775i
\(737\) 4.90543 18.3073i 0.180694 0.674359i
\(738\) 73.9220 19.8073i 2.72111 0.729119i
\(739\) 34.0467i 1.25243i −0.779652 0.626213i \(-0.784604\pi\)
0.779652 0.626213i \(-0.215396\pi\)
\(740\) 3.97821 + 2.29682i 0.146242 + 0.0844328i
\(741\) 0.0137048 0.0511471i 0.000503459 0.00187893i
\(742\) 0.205302 + 0.205302i 0.00753689 + 0.00753689i
\(743\) −23.8306 6.38538i −0.874259 0.234257i −0.206330 0.978482i \(-0.566152\pi\)
−0.667928 + 0.744225i \(0.732819\pi\)
\(744\) 0.412508 0.714485i 0.0151233 0.0261943i
\(745\) 4.48769 + 16.7483i 0.164416 + 0.613610i
\(746\) 44.4576 + 25.6676i 1.62771 + 0.939758i
\(747\) 43.2434 1.58219
\(748\) 12.4125 + 15.4796i 0.453846 + 0.565990i
\(749\) −0.0546562 + 0.0946673i −0.00199709 + 0.00345907i
\(750\) −1.48604 + 0.857965i −0.0542625 + 0.0313284i
\(751\) −16.1041 4.31508i −0.587647 0.157460i −0.0472696 0.998882i \(-0.515052\pi\)
−0.540378 + 0.841423i \(0.681719\pi\)
\(752\) −1.46607 −0.0534620
\(753\) −0.0689309 + 0.0689309i −0.00251198 + 0.00251198i
\(754\) 0.832333 3.10631i 0.0303118 0.113125i
\(755\) 6.22550 23.2339i 0.226569 0.845567i
\(756\) −0.0375021