Properties

Label 731.2.m.c.87.17
Level 731
Weight 2
Character 731.87
Analytic conductor 5.837
Analytic rank 0
Dimension 128
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{8})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 87.17
Character \(\chi\) = 731.87
Dual form 731.2.m.c.689.17

$q$-expansion

\(f(q)\) \(=\) \(q+(0.413388 + 0.413388i) q^{2} +(2.13234 - 0.883246i) q^{3} -1.65822i q^{4} +(0.291415 + 0.703539i) q^{5} +(1.24661 + 0.516363i) q^{6} +(0.379677 - 0.916620i) q^{7} +(1.51227 - 1.51227i) q^{8} +(1.64545 - 1.64545i) q^{9} +O(q^{10})\) \(q+(0.413388 + 0.413388i) q^{2} +(2.13234 - 0.883246i) q^{3} -1.65822i q^{4} +(0.291415 + 0.703539i) q^{5} +(1.24661 + 0.516363i) q^{6} +(0.379677 - 0.916620i) q^{7} +(1.51227 - 1.51227i) q^{8} +(1.64545 - 1.64545i) q^{9} +(-0.170367 + 0.411303i) q^{10} +(5.41013 + 2.24095i) q^{11} +(-1.46462 - 3.53590i) q^{12} +4.61644i q^{13} +(0.535874 - 0.221966i) q^{14} +(1.24280 + 1.24280i) q^{15} -2.06613 q^{16} +(-3.61063 - 1.99082i) q^{17} +1.36042 q^{18} +(-0.636044 - 0.636044i) q^{19} +(1.16662 - 0.483231i) q^{20} -2.28990i q^{21} +(1.31010 + 3.16287i) q^{22} +(-1.23943 - 0.513389i) q^{23} +(1.88897 - 4.56037i) q^{24} +(3.12549 - 3.12549i) q^{25} +(-1.90838 + 1.90838i) q^{26} +(-0.594410 + 1.43503i) q^{27} +(-1.51996 - 0.629587i) q^{28} +(-3.03906 - 7.33694i) q^{29} +1.02752i q^{30} +(-2.25444 + 0.933821i) q^{31} +(-3.87865 - 3.87865i) q^{32} +13.5156 q^{33} +(-0.669609 - 2.31557i) q^{34} +0.755522 q^{35} +(-2.72852 - 2.72852i) q^{36} +(0.205361 - 0.0850634i) q^{37} -0.525867i q^{38} +(4.07745 + 9.84384i) q^{39} +(1.50464 + 0.623241i) q^{40} +(-2.31797 + 5.59608i) q^{41} +(0.946617 - 0.946617i) q^{42} +(-0.707107 + 0.707107i) q^{43} +(3.71599 - 8.97118i) q^{44} +(1.63715 + 0.678129i) q^{45} +(-0.300138 - 0.724596i) q^{46} -7.34678i q^{47} +(-4.40571 + 1.82490i) q^{48} +(4.25371 + 4.25371i) q^{49} +2.58408 q^{50} +(-9.45749 - 1.05604i) q^{51} +7.65507 q^{52} +(0.895614 + 0.895614i) q^{53} +(-0.838948 + 0.347504i) q^{54} +4.45928i q^{55} +(-0.812002 - 1.96035i) q^{56} +(-1.91805 - 0.794482i) q^{57} +(1.77669 - 4.28932i) q^{58} +(-9.99903 + 9.99903i) q^{59} +(2.06083 - 2.06083i) q^{60} +(2.43983 - 5.89026i) q^{61} +(-1.31799 - 0.545930i) q^{62} +(-0.883514 - 2.13299i) q^{63} +0.925492i q^{64} +(-3.24785 + 1.34530i) q^{65} +(5.58718 + 5.58718i) q^{66} -9.12075 q^{67} +(-3.30122 + 5.98721i) q^{68} -3.09635 q^{69} +(0.312324 + 0.312324i) q^{70} +(-6.37681 + 2.64136i) q^{71} -4.97671i q^{72} +(3.98331 + 9.61657i) q^{73} +(0.120058 + 0.0497297i) q^{74} +(3.90404 - 9.42520i) q^{75} +(-1.05470 + 1.05470i) q^{76} +(4.10820 - 4.10820i) q^{77} +(-2.38376 + 5.75490i) q^{78} +(-4.33421 - 1.79529i) q^{79} +(-0.602103 - 1.45361i) q^{80} +10.5660i q^{81} +(-3.27158 + 1.35513i) q^{82} +(1.43545 + 1.43545i) q^{83} -3.79715 q^{84} +(0.348428 - 3.12037i) q^{85} -0.584619 q^{86} +(-12.9606 - 12.9606i) q^{87} +(11.5705 - 4.79264i) q^{88} +5.50995i q^{89} +(0.396447 + 0.957108i) q^{90} +(4.23152 + 1.75275i) q^{91} +(-0.851313 + 2.05525i) q^{92} +(-3.98246 + 3.98246i) q^{93} +(3.03707 - 3.03707i) q^{94} +(0.262129 - 0.632835i) q^{95} +(-11.6964 - 4.84481i) q^{96} +(-0.351873 - 0.849496i) q^{97} +3.51687i q^{98} +(12.5895 - 5.21472i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} + O(q^{10}) \) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} - 8q^{10} - 4q^{11} + 12q^{12} + 12q^{14} - 12q^{15} - 144q^{16} - 12q^{17} + 64q^{18} - 28q^{19} - 8q^{20} - 12q^{22} + 16q^{23} - 16q^{24} - 20q^{25} + 16q^{26} - 8q^{27} + 20q^{28} + 12q^{31} - 4q^{32} - 104q^{33} + 20q^{34} + 32q^{35} - 96q^{36} - 12q^{37} + 8q^{39} + 216q^{40} + 24q^{41} - 4q^{42} + 24q^{44} - 28q^{45} - 48q^{46} + 28q^{48} - 80q^{50} - 20q^{51} + 56q^{52} - 36q^{53} - 12q^{54} - 8q^{56} + 72q^{57} - 32q^{58} + 48q^{59} - 40q^{60} - 76q^{61} - 44q^{62} + 36q^{65} - 68q^{66} - 48q^{67} + 32q^{68} + 216q^{69} - 196q^{70} + 4q^{71} + 20q^{73} + 88q^{74} + 80q^{75} + 72q^{76} + 28q^{77} - 120q^{78} + 68q^{79} - 68q^{80} + 28q^{82} - 36q^{83} - 152q^{84} + 28q^{85} - 24q^{86} - 56q^{87} + 20q^{88} - 112q^{90} + 96q^{91} - 28q^{92} + 24q^{93} - 36q^{94} - 108q^{95} + 272q^{96} + 8q^{97} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.413388 + 0.413388i 0.292310 + 0.292310i 0.837992 0.545682i \(-0.183729\pi\)
−0.545682 + 0.837992i \(0.683729\pi\)
\(3\) 2.13234 0.883246i 1.23111 0.509942i 0.330184 0.943916i \(-0.392889\pi\)
0.900925 + 0.433974i \(0.142889\pi\)
\(4\) 1.65822i 0.829110i
\(5\) 0.291415 + 0.703539i 0.130325 + 0.314632i 0.975550 0.219779i \(-0.0705335\pi\)
−0.845225 + 0.534411i \(0.820533\pi\)
\(6\) 1.24661 + 0.516363i 0.508926 + 0.210804i
\(7\) 0.379677 0.916620i 0.143504 0.346450i −0.835743 0.549122i \(-0.814962\pi\)
0.979247 + 0.202672i \(0.0649624\pi\)
\(8\) 1.51227 1.51227i 0.534667 0.534667i
\(9\) 1.64545 1.64545i 0.548483 0.548483i
\(10\) −0.170367 + 0.411303i −0.0538748 + 0.130065i
\(11\) 5.41013 + 2.24095i 1.63121 + 0.675671i 0.995367 0.0961434i \(-0.0306507\pi\)
0.635847 + 0.771815i \(0.280651\pi\)
\(12\) −1.46462 3.53590i −0.422798 1.02073i
\(13\) 4.61644i 1.28037i 0.768221 + 0.640185i \(0.221142\pi\)
−0.768221 + 0.640185i \(0.778858\pi\)
\(14\) 0.535874 0.221966i 0.143218 0.0593230i
\(15\) 1.24280 + 1.24280i 0.320889 + 0.320889i
\(16\) −2.06613 −0.516533
\(17\) −3.61063 1.99082i −0.875706 0.482845i
\(18\) 1.36042 0.320654
\(19\) −0.636044 0.636044i −0.145919 0.145919i 0.630373 0.776292i \(-0.282902\pi\)
−0.776292 + 0.630373i \(0.782902\pi\)
\(20\) 1.16662 0.483231i 0.260865 0.108054i
\(21\) 2.28990i 0.499697i
\(22\) 1.31010 + 3.16287i 0.279315 + 0.674325i
\(23\) −1.23943 0.513389i −0.258439 0.107049i 0.249702 0.968323i \(-0.419667\pi\)
−0.508142 + 0.861274i \(0.669667\pi\)
\(24\) 1.88897 4.56037i 0.385584 0.930883i
\(25\) 3.12549 3.12549i 0.625098 0.625098i
\(26\) −1.90838 + 1.90838i −0.374265 + 0.374265i
\(27\) −0.594410 + 1.43503i −0.114394 + 0.276172i
\(28\) −1.51996 0.629587i −0.287245 0.118981i
\(29\) −3.03906 7.33694i −0.564339 1.36244i −0.906265 0.422709i \(-0.861079\pi\)
0.341926 0.939727i \(-0.388921\pi\)
\(30\) 1.02752i 0.187598i
\(31\) −2.25444 + 0.933821i −0.404910 + 0.167719i −0.575837 0.817565i \(-0.695324\pi\)
0.170927 + 0.985284i \(0.445324\pi\)
\(32\) −3.87865 3.87865i −0.685654 0.685654i
\(33\) 13.5156 2.35276
\(34\) −0.669609 2.31557i −0.114837 0.397118i
\(35\) 0.755522 0.127707
\(36\) −2.72852 2.72852i −0.454753 0.454753i
\(37\) 0.205361 0.0850634i 0.0337612 0.0139843i −0.365739 0.930717i \(-0.619184\pi\)
0.399500 + 0.916733i \(0.369184\pi\)
\(38\) 0.525867i 0.0853068i
\(39\) 4.07745 + 9.84384i 0.652915 + 1.57628i
\(40\) 1.50464 + 0.623241i 0.237904 + 0.0985430i
\(41\) −2.31797 + 5.59608i −0.362006 + 0.873961i 0.633000 + 0.774152i \(0.281823\pi\)
−0.995007 + 0.0998091i \(0.968177\pi\)
\(42\) 0.946617 0.946617i 0.146066 0.146066i
\(43\) −0.707107 + 0.707107i −0.107833 + 0.107833i
\(44\) 3.71599 8.97118i 0.560206 1.35246i
\(45\) 1.63715 + 0.678129i 0.244052 + 0.101089i
\(46\) −0.300138 0.724596i −0.0442529 0.106836i
\(47\) 7.34678i 1.07164i −0.844333 0.535819i \(-0.820003\pi\)
0.844333 0.535819i \(-0.179997\pi\)
\(48\) −4.40571 + 1.82490i −0.635909 + 0.263402i
\(49\) 4.25371 + 4.25371i 0.607673 + 0.607673i
\(50\) 2.58408 0.365444
\(51\) −9.45749 1.05604i −1.32431 0.147876i
\(52\) 7.65507 1.06157
\(53\) 0.895614 + 0.895614i 0.123022 + 0.123022i 0.765937 0.642915i \(-0.222275\pi\)
−0.642915 + 0.765937i \(0.722275\pi\)
\(54\) −0.838948 + 0.347504i −0.114166 + 0.0472892i
\(55\) 4.45928i 0.601290i
\(56\) −0.812002 1.96035i −0.108508 0.261962i
\(57\) −1.91805 0.794482i −0.254052 0.105232i
\(58\) 1.77669 4.28932i 0.233291 0.563215i
\(59\) −9.99903 + 9.99903i −1.30176 + 1.30176i −0.374560 + 0.927203i \(0.622206\pi\)
−0.927203 + 0.374560i \(0.877794\pi\)
\(60\) 2.06083 2.06083i 0.266052 0.266052i
\(61\) 2.43983 5.89026i 0.312388 0.754171i −0.687228 0.726442i \(-0.741173\pi\)
0.999615 0.0277288i \(-0.00882748\pi\)
\(62\) −1.31799 0.545930i −0.167385 0.0693332i
\(63\) −0.883514 2.13299i −0.111312 0.268732i
\(64\) 0.925492i 0.115686i
\(65\) −3.24785 + 1.34530i −0.402846 + 0.166864i
\(66\) 5.58718 + 5.58718i 0.687734 + 0.687734i
\(67\) −9.12075 −1.11428 −0.557139 0.830419i \(-0.688101\pi\)
−0.557139 + 0.830419i \(0.688101\pi\)
\(68\) −3.30122 + 5.98721i −0.400332 + 0.726056i
\(69\) −3.09635 −0.372756
\(70\) 0.312324 + 0.312324i 0.0373299 + 0.0373299i
\(71\) −6.37681 + 2.64136i −0.756788 + 0.313472i −0.727508 0.686099i \(-0.759322\pi\)
−0.0292803 + 0.999571i \(0.509322\pi\)
\(72\) 4.97671i 0.586511i
\(73\) 3.98331 + 9.61657i 0.466212 + 1.12553i 0.965804 + 0.259274i \(0.0834831\pi\)
−0.499592 + 0.866261i \(0.666517\pi\)
\(74\) 0.120058 + 0.0497297i 0.0139565 + 0.00578096i
\(75\) 3.90404 9.42520i 0.450800 1.08833i
\(76\) −1.05470 + 1.05470i −0.120983 + 0.120983i
\(77\) 4.10820 4.10820i 0.468173 0.468173i
\(78\) −2.38376 + 5.75490i −0.269907 + 0.651614i
\(79\) −4.33421 1.79529i −0.487637 0.201986i 0.125298 0.992119i \(-0.460011\pi\)
−0.612935 + 0.790133i \(0.710011\pi\)
\(80\) −0.602103 1.45361i −0.0673172 0.162518i
\(81\) 10.5660i 1.17400i
\(82\) −3.27158 + 1.35513i −0.361285 + 0.149649i
\(83\) 1.43545 + 1.43545i 0.157562 + 0.157562i 0.781485 0.623924i \(-0.214462\pi\)
−0.623924 + 0.781485i \(0.714462\pi\)
\(84\) −3.79715 −0.414304
\(85\) 0.348428 3.12037i 0.0377923 0.338452i
\(86\) −0.584619 −0.0630411
\(87\) −12.9606 12.9606i −1.38953 1.38953i
\(88\) 11.5705 4.79264i 1.23342 0.510897i
\(89\) 5.50995i 0.584053i 0.956410 + 0.292027i \(0.0943296\pi\)
−0.956410 + 0.292027i \(0.905670\pi\)
\(90\) 0.396447 + 0.957108i 0.0417892 + 0.100888i
\(91\) 4.23152 + 1.75275i 0.443584 + 0.183739i
\(92\) −0.851313 + 2.05525i −0.0887555 + 0.214275i
\(93\) −3.98246 + 3.98246i −0.412961 + 0.412961i
\(94\) 3.03707 3.03707i 0.313250 0.313250i
\(95\) 0.262129 0.632835i 0.0268939 0.0649275i
\(96\) −11.6964 4.84481i −1.19376 0.494472i
\(97\) −0.351873 0.849496i −0.0357273 0.0862532i 0.905009 0.425393i \(-0.139864\pi\)
−0.940736 + 0.339140i \(0.889864\pi\)
\(98\) 3.51687i 0.355257i
\(99\) 12.5895 5.21472i 1.26529 0.524100i
\(100\) −5.18275 5.18275i −0.518275 0.518275i
\(101\) 14.8227 1.47492 0.737458 0.675393i \(-0.236026\pi\)
0.737458 + 0.675393i \(0.236026\pi\)
\(102\) −3.47306 4.34617i −0.343884 0.430335i
\(103\) 18.3771 1.81075 0.905375 0.424612i \(-0.139590\pi\)
0.905375 + 0.424612i \(0.139590\pi\)
\(104\) 6.98128 + 6.98128i 0.684571 + 0.684571i
\(105\) 1.61103 0.667312i 0.157221 0.0651230i
\(106\) 0.740473i 0.0719211i
\(107\) 2.40844 + 5.81448i 0.232832 + 0.562107i 0.996508 0.0834924i \(-0.0266074\pi\)
−0.763676 + 0.645600i \(0.776607\pi\)
\(108\) 2.37960 + 0.985662i 0.228977 + 0.0948454i
\(109\) −4.18284 + 10.0983i −0.400643 + 0.967239i 0.586867 + 0.809684i \(0.300361\pi\)
−0.987510 + 0.157555i \(0.949639\pi\)
\(110\) −1.84342 + 1.84342i −0.175763 + 0.175763i
\(111\) 0.362769 0.362769i 0.0344325 0.0344325i
\(112\) −0.784463 + 1.89386i −0.0741247 + 0.178953i
\(113\) −13.4404 5.56719i −1.26437 0.523718i −0.353119 0.935578i \(-0.614879\pi\)
−0.911247 + 0.411861i \(0.864879\pi\)
\(114\) −0.464470 1.12133i −0.0435016 0.105022i
\(115\) 1.02160i 0.0952646i
\(116\) −12.1663 + 5.03943i −1.12961 + 0.467899i
\(117\) 7.59612 + 7.59612i 0.702261 + 0.702261i
\(118\) −8.26696 −0.761036
\(119\) −3.19570 + 2.55371i −0.292949 + 0.234098i
\(120\) 3.75888 0.343137
\(121\) 16.4695 + 16.4695i 1.49722 + 1.49722i
\(122\) 3.44356 1.42637i 0.311766 0.129138i
\(123\) 13.9801i 1.26054i
\(124\) 1.54848 + 3.73836i 0.139058 + 0.335715i
\(125\) 6.62742 + 2.74517i 0.592774 + 0.245535i
\(126\) 0.516519 1.24699i 0.0460152 0.111091i
\(127\) 9.70850 9.70850i 0.861490 0.861490i −0.130021 0.991511i \(-0.541505\pi\)
0.991511 + 0.130021i \(0.0415046\pi\)
\(128\) −8.13988 + 8.13988i −0.719471 + 0.719471i
\(129\) −0.883246 + 2.13234i −0.0777655 + 0.187742i
\(130\) −1.89875 0.786490i −0.166532 0.0689797i
\(131\) 3.20489 + 7.73728i 0.280012 + 0.676009i 0.999835 0.0181482i \(-0.00577708\pi\)
−0.719823 + 0.694158i \(0.755777\pi\)
\(132\) 22.4118i 1.95070i
\(133\) −0.824502 + 0.341520i −0.0714934 + 0.0296135i
\(134\) −3.77041 3.77041i −0.325714 0.325714i
\(135\) −1.18282 −0.101801
\(136\) −8.47088 + 2.44958i −0.726372 + 0.210050i
\(137\) −7.69261 −0.657224 −0.328612 0.944465i \(-0.606581\pi\)
−0.328612 + 0.944465i \(0.606581\pi\)
\(138\) −1.27999 1.27999i −0.108960 0.108960i
\(139\) 2.82579 1.17048i 0.239681 0.0992790i −0.259610 0.965714i \(-0.583594\pi\)
0.499291 + 0.866435i \(0.333594\pi\)
\(140\) 1.25282i 0.105883i
\(141\) −6.48901 15.6659i −0.546474 1.31930i
\(142\) −3.72801 1.54419i −0.312847 0.129586i
\(143\) −10.3452 + 24.9755i −0.865109 + 2.08856i
\(144\) −3.39972 + 3.39972i −0.283310 + 0.283310i
\(145\) 4.27620 4.27620i 0.355119 0.355119i
\(146\) −2.32872 + 5.62203i −0.192726 + 0.465283i
\(147\) 12.8274 + 5.31330i 1.05799 + 0.438234i
\(148\) −0.141054 0.340534i −0.0115946 0.0279917i
\(149\) 2.00429i 0.164198i 0.996624 + 0.0820988i \(0.0261623\pi\)
−0.996624 + 0.0820988i \(0.973838\pi\)
\(150\) 5.51015 2.28238i 0.449902 0.186356i
\(151\) −8.59691 8.59691i −0.699606 0.699606i 0.264719 0.964326i \(-0.414721\pi\)
−0.964326 + 0.264719i \(0.914721\pi\)
\(152\) −1.92374 −0.156036
\(153\) −9.21690 + 2.66531i −0.745142 + 0.215477i
\(154\) 3.39656 0.273703
\(155\) −1.31396 1.31396i −0.105540 0.105540i
\(156\) 16.3233 6.76131i 1.30691 0.541338i
\(157\) 15.1194i 1.20666i −0.797491 0.603331i \(-0.793840\pi\)
0.797491 0.603331i \(-0.206160\pi\)
\(158\) −1.04956 2.53386i −0.0834986 0.201583i
\(159\) 2.70081 + 1.11871i 0.214188 + 0.0887195i
\(160\) 1.59848 3.85908i 0.126371 0.305087i
\(161\) −0.941166 + 0.941166i −0.0741743 + 0.0741743i
\(162\) −4.36788 + 4.36788i −0.343173 + 0.343173i
\(163\) 3.06176 7.39175i 0.239816 0.578966i −0.757448 0.652896i \(-0.773554\pi\)
0.997263 + 0.0739295i \(0.0235540\pi\)
\(164\) 9.27953 + 3.84371i 0.724610 + 0.300143i
\(165\) 3.93865 + 9.50873i 0.306623 + 0.740254i
\(166\) 1.18680i 0.0921136i
\(167\) −7.27693 + 3.01420i −0.563106 + 0.233246i −0.646033 0.763310i \(-0.723573\pi\)
0.0829272 + 0.996556i \(0.473573\pi\)
\(168\) −3.46293 3.46293i −0.267171 0.267171i
\(169\) −8.31151 −0.639347
\(170\) 1.43396 1.14589i 0.109980 0.0878858i
\(171\) −2.09316 −0.160068
\(172\) 1.17254 + 1.17254i 0.0894052 + 0.0894052i
\(173\) 10.7083 4.43551i 0.814135 0.337226i 0.0635324 0.997980i \(-0.479763\pi\)
0.750602 + 0.660754i \(0.229763\pi\)
\(174\) 10.7156i 0.812345i
\(175\) −1.67821 4.05156i −0.126861 0.306269i
\(176\) −11.1780 4.63010i −0.842577 0.349007i
\(177\) −12.4898 + 30.1530i −0.938789 + 2.26644i
\(178\) −2.27775 + 2.27775i −0.170724 + 0.170724i
\(179\) −4.04098 + 4.04098i −0.302037 + 0.302037i −0.841810 0.539774i \(-0.818510\pi\)
0.539774 + 0.841810i \(0.318510\pi\)
\(180\) 1.12449 2.71475i 0.0838143 0.202346i
\(181\) 1.49812 + 0.620541i 0.111354 + 0.0461244i 0.437665 0.899138i \(-0.355806\pi\)
−0.326311 + 0.945263i \(0.605806\pi\)
\(182\) 1.02469 + 2.47383i 0.0759554 + 0.183373i
\(183\) 14.7150i 1.08777i
\(184\) −2.65073 + 1.09797i −0.195415 + 0.0809434i
\(185\) 0.119691 + 0.119691i 0.00879985 + 0.00879985i
\(186\) −3.29260 −0.241425
\(187\) −15.0726 18.8618i −1.10222 1.37931i
\(188\) −12.1826 −0.888506
\(189\) 1.08970 + 1.08970i 0.0792637 + 0.0792637i
\(190\) 0.369968 0.153246i 0.0268403 0.0111176i
\(191\) 23.2433i 1.68182i −0.541172 0.840912i \(-0.682019\pi\)
0.541172 0.840912i \(-0.317981\pi\)
\(192\) 0.817437 + 1.97347i 0.0589934 + 0.142423i
\(193\) −5.70922 2.36484i −0.410959 0.170225i 0.167619 0.985852i \(-0.446392\pi\)
−0.578578 + 0.815627i \(0.696392\pi\)
\(194\) 0.205712 0.496632i 0.0147692 0.0356561i
\(195\) −5.73729 + 5.73729i −0.410856 + 0.410856i
\(196\) 7.05359 7.05359i 0.503828 0.503828i
\(197\) −1.41079 + 3.40595i −0.100515 + 0.242664i −0.966135 0.258037i \(-0.916924\pi\)
0.865620 + 0.500701i \(0.166924\pi\)
\(198\) 7.36004 + 3.04863i 0.523055 + 0.216657i
\(199\) −10.0771 24.3284i −0.714349 1.72459i −0.688836 0.724917i \(-0.741878\pi\)
−0.0255127 0.999674i \(-0.508122\pi\)
\(200\) 9.45314i 0.668438i
\(201\) −19.4486 + 8.05587i −1.37180 + 0.568217i
\(202\) 6.12754 + 6.12754i 0.431132 + 0.431132i
\(203\) −7.87905 −0.553001
\(204\) −1.75115 + 15.6826i −0.122605 + 1.09800i
\(205\) −4.61255 −0.322155
\(206\) 7.59689 + 7.59689i 0.529300 + 0.529300i
\(207\) −2.88418 + 1.19467i −0.200464 + 0.0830350i
\(208\) 9.53818i 0.661354i
\(209\) −2.01574 4.86642i −0.139432 0.336617i
\(210\) 0.941841 + 0.390123i 0.0649932 + 0.0269211i
\(211\) −6.29211 + 15.1905i −0.433167 + 1.04576i 0.545093 + 0.838376i \(0.316494\pi\)
−0.978260 + 0.207382i \(0.933506\pi\)
\(212\) 1.48513 1.48513i 0.101999 0.101999i
\(213\) −11.2646 + 11.2646i −0.771837 + 0.771837i
\(214\) −1.40802 + 3.39926i −0.0962503 + 0.232369i
\(215\) −0.703539 0.291415i −0.0479810 0.0198744i
\(216\) 1.27124 + 3.06906i 0.0864972 + 0.208823i
\(217\) 2.42102i 0.164349i
\(218\) −5.90365 + 2.44537i −0.399845 + 0.165621i
\(219\) 16.9876 + 16.9876i 1.14792 + 1.14792i
\(220\) 7.39447 0.498535
\(221\) 9.19051 16.6682i 0.618220 1.12123i
\(222\) 0.299929 0.0201299
\(223\) 8.58119 + 8.58119i 0.574639 + 0.574639i 0.933421 0.358782i \(-0.116808\pi\)
−0.358782 + 0.933421i \(0.616808\pi\)
\(224\) −5.02788 + 2.08262i −0.335939 + 0.139151i
\(225\) 10.2857i 0.685711i
\(226\) −3.25469 7.85752i −0.216499 0.522674i
\(227\) 18.6635 + 7.73068i 1.23874 + 0.513103i 0.903321 0.428965i \(-0.141122\pi\)
0.335420 + 0.942069i \(0.391122\pi\)
\(228\) −1.31743 + 3.18055i −0.0872486 + 0.210637i
\(229\) −0.915772 + 0.915772i −0.0605159 + 0.0605159i −0.736717 0.676201i \(-0.763625\pi\)
0.676201 + 0.736717i \(0.263625\pi\)
\(230\) 0.422317 0.422317i 0.0278468 0.0278468i
\(231\) 5.13154 12.3886i 0.337631 0.815113i
\(232\) −15.6913 6.49954i −1.03018 0.426716i
\(233\) −10.8339 26.1553i −0.709751 1.71349i −0.700621 0.713533i \(-0.747094\pi\)
−0.00913009 0.999958i \(-0.502906\pi\)
\(234\) 6.28029i 0.410556i
\(235\) 5.16875 2.14097i 0.337172 0.139661i
\(236\) 16.5806 + 16.5806i 1.07930 + 1.07930i
\(237\) −10.8277 −0.703336
\(238\) −2.37674 0.265392i −0.154061 0.0172028i
\(239\) −4.91896 −0.318181 −0.159091 0.987264i \(-0.550856\pi\)
−0.159091 + 0.987264i \(0.550856\pi\)
\(240\) −2.56778 2.56778i −0.165750 0.165750i
\(241\) −11.6308 + 4.81766i −0.749209 + 0.310332i −0.724419 0.689360i \(-0.757892\pi\)
−0.0247901 + 0.999693i \(0.507892\pi\)
\(242\) 13.6166i 0.875306i
\(243\) 7.54919 + 18.2253i 0.484281 + 1.16916i
\(244\) −9.76735 4.04577i −0.625291 0.259004i
\(245\) −1.75305 + 4.23225i −0.111999 + 0.270388i
\(246\) −5.77921 + 5.77921i −0.368469 + 0.368469i
\(247\) 2.93626 2.93626i 0.186830 0.186830i
\(248\) −1.99713 + 4.82150i −0.126818 + 0.306166i
\(249\) 4.32874 + 1.79302i 0.274323 + 0.113628i
\(250\) 1.60488 + 3.87452i 0.101501 + 0.245046i
\(251\) 19.2026i 1.21206i −0.795443 0.606029i \(-0.792762\pi\)
0.795443 0.606029i \(-0.207238\pi\)
\(252\) −3.53697 + 1.46506i −0.222808 + 0.0922901i
\(253\) −5.55501 5.55501i −0.349240 0.349240i
\(254\) 8.02676 0.503644
\(255\) −2.01309 6.96146i −0.126065 0.435944i
\(256\) −4.87888 −0.304930
\(257\) −10.6953 10.6953i −0.667152 0.667152i 0.289904 0.957056i \(-0.406377\pi\)
−0.957056 + 0.289904i \(0.906377\pi\)
\(258\) −1.24661 + 0.516363i −0.0776106 + 0.0321473i
\(259\) 0.220535i 0.0137034i
\(260\) 2.23081 + 5.38564i 0.138349 + 0.334003i
\(261\) −17.0732 7.07194i −1.05680 0.437742i
\(262\) −1.87364 + 4.52337i −0.115754 + 0.279454i
\(263\) −17.2844 + 17.2844i −1.06580 + 1.06580i −0.0681275 + 0.997677i \(0.521702\pi\)
−0.997677 + 0.0681275i \(0.978298\pi\)
\(264\) 20.4391 20.4391i 1.25794 1.25794i
\(265\) −0.369104 + 0.891095i −0.0226739 + 0.0547396i
\(266\) −0.482020 0.199659i −0.0295545 0.0122419i
\(267\) 4.86664 + 11.7491i 0.297833 + 0.719034i
\(268\) 15.1242i 0.923859i
\(269\) 26.6414 11.0352i 1.62436 0.672831i 0.629774 0.776778i \(-0.283147\pi\)
0.994583 + 0.103947i \(0.0331474\pi\)
\(270\) −0.488965 0.488965i −0.0297574 0.0297574i
\(271\) −20.2533 −1.23030 −0.615151 0.788409i \(-0.710905\pi\)
−0.615151 + 0.788409i \(0.710905\pi\)
\(272\) 7.46004 + 4.11330i 0.452331 + 0.249406i
\(273\) 10.5712 0.639797
\(274\) −3.18004 3.18004i −0.192113 0.192113i
\(275\) 23.9134 9.90524i 1.44203 0.597308i
\(276\) 5.13442i 0.309056i
\(277\) 1.86161 + 4.49431i 0.111853 + 0.270037i 0.969887 0.243556i \(-0.0783140\pi\)
−0.858034 + 0.513593i \(0.828314\pi\)
\(278\) 1.65201 + 0.684287i 0.0990812 + 0.0410408i
\(279\) −2.17302 + 5.24613i −0.130095 + 0.314077i
\(280\) 1.14255 1.14255i 0.0682804 0.0682804i
\(281\) −22.2159 + 22.2159i −1.32529 + 1.32529i −0.415865 + 0.909427i \(0.636521\pi\)
−0.909427 + 0.415865i \(0.863479\pi\)
\(282\) 3.79360 9.15857i 0.225906 0.545385i
\(283\) 22.8226 + 9.45345i 1.35667 + 0.561949i 0.938140 0.346256i \(-0.112547\pi\)
0.418525 + 0.908205i \(0.362547\pi\)
\(284\) 4.37996 + 10.5742i 0.259903 + 0.627461i
\(285\) 1.58095i 0.0936472i
\(286\) −14.6012 + 6.04801i −0.863386 + 0.357626i
\(287\) 4.24940 + 4.24940i 0.250834 + 0.250834i
\(288\) −12.7642 −0.752140
\(289\) 9.07326 + 14.3762i 0.533721 + 0.845660i
\(290\) 3.53546 0.207609
\(291\) −1.50063 1.50063i −0.0879683 0.0879683i
\(292\) 15.9464 6.60521i 0.933192 0.386541i
\(293\) 21.1622i 1.23631i 0.786056 + 0.618156i \(0.212120\pi\)
−0.786056 + 0.618156i \(0.787880\pi\)
\(294\) 3.10626 + 7.49917i 0.181161 + 0.437361i
\(295\) −9.94858 4.12084i −0.579229 0.239924i
\(296\) 0.181922 0.439199i 0.0105740 0.0255279i
\(297\) −6.43167 + 6.43167i −0.373203 + 0.373203i
\(298\) −0.828549 + 0.828549i −0.0479966 + 0.0479966i
\(299\) 2.37003 5.72176i 0.137062 0.330898i
\(300\) −15.6290 6.47376i −0.902344 0.373763i
\(301\) 0.379677 + 0.916620i 0.0218842 + 0.0528331i
\(302\) 7.10772i 0.409004i
\(303\) 31.6072 13.0921i 1.81578 0.752122i
\(304\) 1.31415 + 1.31415i 0.0753718 + 0.0753718i
\(305\) 4.85503 0.277998
\(306\) −4.91197 2.70835i −0.280798 0.154826i
\(307\) 3.86610 0.220650 0.110325 0.993896i \(-0.464811\pi\)
0.110325 + 0.993896i \(0.464811\pi\)
\(308\) −6.81230 6.81230i −0.388167 0.388167i
\(309\) 39.1863 16.2315i 2.22923 0.923378i
\(310\) 1.08635i 0.0617006i
\(311\) −0.478295 1.15471i −0.0271216 0.0654773i 0.909738 0.415182i \(-0.136282\pi\)
−0.936860 + 0.349704i \(0.886282\pi\)
\(312\) 21.0527 + 8.72031i 1.19187 + 0.493690i
\(313\) −0.501443 + 1.21059i −0.0283432 + 0.0684266i −0.937417 0.348208i \(-0.886790\pi\)
0.909074 + 0.416634i \(0.136790\pi\)
\(314\) 6.25020 6.25020i 0.352719 0.352719i
\(315\) 1.24317 1.24317i 0.0700449 0.0700449i
\(316\) −2.97698 + 7.18708i −0.167468 + 0.404305i
\(317\) −7.63946 3.16437i −0.429075 0.177729i 0.157685 0.987489i \(-0.449597\pi\)
−0.586760 + 0.809761i \(0.699597\pi\)
\(318\) 0.654020 + 1.57894i 0.0366756 + 0.0885427i
\(319\) 46.5042i 2.60373i
\(320\) −0.651120 + 0.269703i −0.0363987 + 0.0150768i
\(321\) 10.2712 + 10.2712i 0.573285 + 0.573285i
\(322\) −0.778135 −0.0433637
\(323\) 1.03027 + 3.56277i 0.0573257 + 0.198238i
\(324\) 17.5208 0.973379
\(325\) 14.4286 + 14.4286i 0.800357 + 0.800357i
\(326\) 4.32136 1.78997i 0.239338 0.0991370i
\(327\) 25.2275i 1.39508i
\(328\) 4.95737 + 11.9681i 0.273725 + 0.660830i
\(329\) −6.73421 2.78940i −0.371269 0.153785i
\(330\) −2.30261 + 5.55899i −0.126754 + 0.306012i
\(331\) 1.21075 1.21075i 0.0665491 0.0665491i −0.673049 0.739598i \(-0.735016\pi\)
0.739598 + 0.673049i \(0.235016\pi\)
\(332\) 2.38030 2.38030i 0.130636 0.130636i
\(333\) 0.197944 0.477879i 0.0108473 0.0261876i
\(334\) −4.25423 1.76216i −0.232781 0.0964212i
\(335\) −2.65793 6.41681i −0.145218 0.350588i
\(336\) 4.73124i 0.258110i
\(337\) 22.5047 9.32174i 1.22591 0.507788i 0.326624 0.945154i \(-0.394089\pi\)
0.899283 + 0.437367i \(0.144089\pi\)
\(338\) −3.43588 3.43588i −0.186887 0.186887i
\(339\) −33.5768 −1.82364
\(340\) −5.17427 0.577770i −0.280614 0.0313340i
\(341\) −14.2895 −0.773818
\(342\) −0.865287 0.865287i −0.0467894 0.0467894i
\(343\) 11.9304 4.94174i 0.644182 0.266829i
\(344\) 2.13867i 0.115309i
\(345\) −0.902323 2.17840i −0.0485794 0.117281i
\(346\) 6.26026 + 2.59309i 0.336554 + 0.139405i
\(347\) 4.57491 11.0448i 0.245594 0.592917i −0.752226 0.658905i \(-0.771020\pi\)
0.997820 + 0.0659881i \(0.0210199\pi\)
\(348\) −21.4916 + 21.4916i −1.15207 + 1.15207i
\(349\) 16.1564 16.1564i 0.864832 0.864832i −0.127062 0.991895i \(-0.540555\pi\)
0.991895 + 0.127062i \(0.0405549\pi\)
\(350\) 0.981115 2.36862i 0.0524428 0.126608i
\(351\) −6.62474 2.74406i −0.353602 0.146467i
\(352\) −12.2921 29.6758i −0.655173 1.58173i
\(353\) 27.9910i 1.48981i −0.667171 0.744905i \(-0.732495\pi\)
0.667171 0.744905i \(-0.267505\pi\)
\(354\) −17.6280 + 7.30176i −0.936918 + 0.388084i
\(355\) −3.71660 3.71660i −0.197257 0.197257i
\(356\) 9.13670 0.484244
\(357\) −4.55878 + 8.26797i −0.241276 + 0.437587i
\(358\) −3.34099 −0.176577
\(359\) 11.1162 + 11.1162i 0.586692 + 0.586692i 0.936734 0.350042i \(-0.113833\pi\)
−0.350042 + 0.936734i \(0.613833\pi\)
\(360\) 3.50131 1.45029i 0.184535 0.0764371i
\(361\) 18.1909i 0.957416i
\(362\) 0.362780 + 0.875829i 0.0190673 + 0.0460325i
\(363\) 49.6651 + 20.5720i 2.60674 + 1.07975i
\(364\) 2.90645 7.01679i 0.152339 0.367780i
\(365\) −5.60483 + 5.60483i −0.293370 + 0.293370i
\(366\) 6.08303 6.08303i 0.317965 0.317965i
\(367\) −0.913879 + 2.20630i −0.0477041 + 0.115168i −0.945935 0.324355i \(-0.894853\pi\)
0.898231 + 0.439523i \(0.144853\pi\)
\(368\) 2.56083 + 1.06073i 0.133493 + 0.0552944i
\(369\) 5.39396 + 13.0222i 0.280798 + 0.677907i
\(370\) 0.0989576i 0.00514456i
\(371\) 1.16098 0.480894i 0.0602752 0.0249668i
\(372\) 6.60379 + 6.60379i 0.342390 + 0.342390i
\(373\) 13.1491 0.680834 0.340417 0.940275i \(-0.389432\pi\)
0.340417 + 0.940275i \(0.389432\pi\)
\(374\) 1.56641 14.0281i 0.0809972 0.725376i
\(375\) 16.5566 0.854979
\(376\) −11.1103 11.1103i −0.572969 0.572969i
\(377\) 33.8705 14.0296i 1.74442 0.722563i
\(378\) 0.900935i 0.0463391i
\(379\) −13.0558 31.5195i −0.670632 1.61905i −0.780539 0.625108i \(-0.785055\pi\)
0.109906 0.993942i \(-0.464945\pi\)
\(380\) −1.04938 0.434667i −0.0538321 0.0222980i
\(381\) 12.1269 29.2768i 0.621278 1.49990i
\(382\) 9.60850 9.60850i 0.491614 0.491614i
\(383\) −9.96297 + 9.96297i −0.509084 + 0.509084i −0.914245 0.405161i \(-0.867215\pi\)
0.405161 + 0.914245i \(0.367215\pi\)
\(384\) −10.1675 + 24.5466i −0.518859 + 1.25264i
\(385\) 4.08747 + 1.69309i 0.208317 + 0.0862876i
\(386\) −1.38253 3.33772i −0.0703689 0.169886i
\(387\) 2.32702i 0.118289i
\(388\) −1.40865 + 0.583482i −0.0715134 + 0.0296218i
\(389\) 11.4869 + 11.4869i 0.582407 + 0.582407i 0.935564 0.353157i \(-0.114892\pi\)
−0.353157 + 0.935564i \(0.614892\pi\)
\(390\) −4.74346 −0.240195
\(391\) 3.45306 + 4.32115i 0.174629 + 0.218530i
\(392\) 12.8655 0.649805
\(393\) 13.6678 + 13.6678i 0.689452 + 0.689452i
\(394\) −1.99119 + 0.824776i −0.100314 + 0.0415516i
\(395\) 3.57246i 0.179750i
\(396\) −8.64716 20.8761i −0.434536 1.04906i
\(397\) 3.97007 + 1.64446i 0.199252 + 0.0825329i 0.480078 0.877226i \(-0.340608\pi\)
−0.280826 + 0.959759i \(0.590608\pi\)
\(398\) 5.89129 14.2228i 0.295304 0.712926i
\(399\) −1.45648 + 1.45648i −0.0729150 + 0.0729150i
\(400\) −6.45768 + 6.45768i −0.322884 + 0.322884i
\(401\) 3.09074 7.46171i 0.154344 0.372620i −0.827727 0.561131i \(-0.810366\pi\)
0.982071 + 0.188511i \(0.0603662\pi\)
\(402\) −11.3700 4.70962i −0.567085 0.234894i
\(403\) −4.31093 10.4075i −0.214743 0.518434i
\(404\) 24.5793i 1.22287i
\(405\) −7.43363 + 3.07911i −0.369380 + 0.153002i
\(406\) −3.25711 3.25711i −0.161648 0.161648i
\(407\) 1.30165 0.0645206
\(408\) −15.8993 + 12.7052i −0.787130 + 0.629002i
\(409\) 6.78572 0.335532 0.167766 0.985827i \(-0.446345\pi\)
0.167766 + 0.985827i \(0.446345\pi\)
\(410\) −1.90678 1.90678i −0.0941690 0.0941690i
\(411\) −16.4033 + 6.79447i −0.809115 + 0.335146i
\(412\) 30.4733i 1.50131i
\(413\) 5.36891 + 12.9617i 0.264187 + 0.637804i
\(414\) −1.68615 0.698425i −0.0828696 0.0343257i
\(415\) −0.591585 + 1.42821i −0.0290398 + 0.0701082i
\(416\) 17.9055 17.9055i 0.877891 0.877891i
\(417\) 4.99174 4.99174i 0.244447 0.244447i
\(418\) 1.17844 2.84501i 0.0576394 0.139154i
\(419\) 10.0310 + 4.15496i 0.490045 + 0.202983i 0.614002 0.789304i \(-0.289559\pi\)
−0.123957 + 0.992288i \(0.539559\pi\)
\(420\) −1.10655 2.67145i −0.0539941 0.130353i
\(421\) 23.3381i 1.13743i −0.822535 0.568715i \(-0.807441\pi\)
0.822535 0.568715i \(-0.192559\pi\)
\(422\) −8.88067 + 3.67849i −0.432304 + 0.179066i
\(423\) −12.0888 12.0888i −0.587775 0.587775i
\(424\) 2.70881 0.131552
\(425\) −17.5073 + 5.06269i −0.849227 + 0.245576i
\(426\) −9.31330 −0.451231
\(427\) −4.47279 4.47279i −0.216453 0.216453i
\(428\) 9.64169 3.99372i 0.466049 0.193044i
\(429\) 62.3938i 3.01240i
\(430\) −0.170367 0.411303i −0.00821583 0.0198348i
\(431\) 32.9181 + 13.6351i 1.58561 + 0.656781i 0.989289 0.145967i \(-0.0466293\pi\)
0.596319 + 0.802747i \(0.296629\pi\)
\(432\) 1.22813 2.96497i 0.0590884 0.142652i
\(433\) −18.0371 + 18.0371i −0.866807 + 0.866807i −0.992118 0.125310i \(-0.960007\pi\)
0.125310 + 0.992118i \(0.460007\pi\)
\(434\) −1.00082 + 1.00082i −0.0480409 + 0.0480409i
\(435\) 5.34139 12.8953i 0.256100 0.618280i
\(436\) 16.7452 + 6.93607i 0.801947 + 0.332177i
\(437\) 0.461795 + 1.11487i 0.0220907 + 0.0533315i
\(438\) 14.0449i 0.671094i
\(439\) −5.08422 + 2.10595i −0.242656 + 0.100512i −0.500697 0.865622i \(-0.666923\pi\)
0.258041 + 0.966134i \(0.416923\pi\)
\(440\) 6.74362 + 6.74362i 0.321490 + 0.321490i
\(441\) 13.9985 0.666596
\(442\) 10.6897 3.09121i 0.508458 0.147034i
\(443\) 13.2589 0.629949 0.314974 0.949100i \(-0.398004\pi\)
0.314974 + 0.949100i \(0.398004\pi\)
\(444\) −0.601551 0.601551i −0.0285483 0.0285483i
\(445\) −3.87646 + 1.60568i −0.183762 + 0.0761167i
\(446\) 7.09473i 0.335945i
\(447\) 1.77028 + 4.27383i 0.0837313 + 0.202145i
\(448\) 0.848325 + 0.351388i 0.0400796 + 0.0166015i
\(449\) −3.24401 + 7.83174i −0.153094 + 0.369603i −0.981755 0.190148i \(-0.939103\pi\)
0.828661 + 0.559751i \(0.189103\pi\)
\(450\) 4.25198 4.25198i 0.200440 0.200440i
\(451\) −25.0810 + 25.0810i −1.18102 + 1.18102i
\(452\) −9.23163 + 22.2871i −0.434220 + 1.04830i
\(453\) −25.9248 10.7384i −1.21805 0.504533i
\(454\) 4.51951 + 10.9111i 0.212111 + 0.512081i
\(455\) 3.48782i 0.163512i
\(456\) −4.10207 + 1.69913i −0.192097 + 0.0795691i
\(457\) 8.49359 + 8.49359i 0.397313 + 0.397313i 0.877284 0.479971i \(-0.159353\pi\)
−0.479971 + 0.877284i \(0.659353\pi\)
\(458\) −0.757139 −0.0353788
\(459\) 5.00308 3.99800i 0.233524 0.186611i
\(460\) −1.69404 −0.0789848
\(461\) −21.5740 21.5740i −1.00480 1.00480i −0.999988 0.00481431i \(-0.998468\pi\)
−0.00481431 0.999988i \(-0.501532\pi\)
\(462\) 7.24264 3.00000i 0.336958 0.139573i
\(463\) 24.0496i 1.11768i −0.829276 0.558840i \(-0.811247\pi\)
0.829276 0.558840i \(-0.188753\pi\)
\(464\) 6.27911 + 15.1591i 0.291500 + 0.703744i
\(465\) −3.96236 1.64126i −0.183750 0.0761118i
\(466\) 6.33370 15.2909i 0.293403 0.708338i
\(467\) 1.84122 1.84122i 0.0852013 0.0852013i −0.663222 0.748423i \(-0.730811\pi\)
0.748423 + 0.663222i \(0.230811\pi\)
\(468\) 12.5960 12.5960i 0.582252 0.582252i
\(469\) −3.46294 + 8.36027i −0.159904 + 0.386041i
\(470\) 3.02175 + 1.25165i 0.139383 + 0.0577343i
\(471\) −13.3542 32.2398i −0.615328 1.48553i
\(472\) 30.2424i 1.39202i
\(473\) −5.41013 + 2.24095i −0.248758 + 0.103039i
\(474\) −4.47605 4.47605i −0.205592 0.205592i
\(475\) −3.97590 −0.182427
\(476\) 4.23461 + 5.29917i 0.194093 + 0.242887i
\(477\) 2.94737 0.134951
\(478\) −2.03344 2.03344i −0.0930075 0.0930075i
\(479\) −36.5163 + 15.1256i −1.66847 + 0.691104i −0.998676 0.0514398i \(-0.983619\pi\)
−0.669797 + 0.742544i \(0.733619\pi\)
\(480\) 9.64074i 0.440037i
\(481\) 0.392690 + 0.948038i 0.0179051 + 0.0432268i
\(482\) −6.79962 2.81650i −0.309714 0.128288i
\(483\) −1.17561 + 2.83817i −0.0534921 + 0.129141i
\(484\) 27.3100 27.3100i 1.24136 1.24136i
\(485\) 0.495112 0.495112i 0.0224819 0.0224819i
\(486\) −4.41340 + 10.6549i −0.200196 + 0.483316i
\(487\) 14.3730 + 5.95349i 0.651303 + 0.269778i 0.683774 0.729694i \(-0.260338\pi\)
−0.0324709 + 0.999473i \(0.510338\pi\)
\(488\) −5.21798 12.5973i −0.236207 0.570253i
\(489\) 18.4660i 0.835063i
\(490\) −2.47425 + 1.02487i −0.111775 + 0.0462989i
\(491\) −27.9350 27.9350i −1.26069 1.26069i −0.950760 0.309927i \(-0.899695\pi\)
−0.309927 0.950760i \(-0.600305\pi\)
\(492\) 23.1821 1.04513
\(493\) −3.63362 + 32.5412i −0.163650 + 1.46558i
\(494\) 2.42763 0.109224
\(495\) 7.33753 + 7.33753i 0.329797 + 0.329797i
\(496\) 4.65798 1.92940i 0.209149 0.0866326i
\(497\) 6.84798i 0.307174i
\(498\) 1.04824 + 2.53067i 0.0469726 + 0.113402i
\(499\) 9.02147 + 3.73681i 0.403856 + 0.167283i 0.575359 0.817901i \(-0.304862\pi\)
−0.171503 + 0.985184i \(0.554862\pi\)
\(500\) 4.55209 10.9897i 0.203576 0.491475i
\(501\) −12.8546 + 12.8546i −0.574303 + 0.574303i
\(502\) 7.93813 7.93813i 0.354296 0.354296i
\(503\) 3.90345 9.42376i 0.174046 0.420185i −0.812652 0.582750i \(-0.801977\pi\)
0.986698 + 0.162565i \(0.0519768\pi\)
\(504\) −4.56176 1.88954i −0.203197 0.0841669i
\(505\) 4.31957 + 10.4284i 0.192218 + 0.464056i
\(506\) 4.59275i 0.204173i
\(507\) −17.7230 + 7.34111i −0.787107 + 0.326030i
\(508\) −16.0988 16.0988i −0.714270 0.714270i
\(509\) −35.5829 −1.57718 −0.788592 0.614916i \(-0.789190\pi\)
−0.788592 + 0.614916i \(0.789190\pi\)
\(510\) 2.04560 3.70998i 0.0905807 0.164280i
\(511\) 10.3271 0.456845
\(512\) 14.2629 + 14.2629i 0.630337 + 0.630337i
\(513\) 1.29081 0.534673i 0.0569909 0.0236064i
\(514\) 8.84260i 0.390030i
\(515\) 5.35538 + 12.9290i 0.235986 + 0.569721i
\(516\) 3.53590 + 1.46462i 0.155659 + 0.0644761i
\(517\) 16.4638 39.7470i 0.724075 1.74807i
\(518\) 0.0911665 0.0911665i 0.00400563 0.00400563i
\(519\) 18.9161 18.9161i 0.830324 0.830324i
\(520\) −2.87715 + 6.94606i −0.126171 + 0.304605i
\(521\) 21.4112 + 8.86882i 0.938043 + 0.388550i 0.798724 0.601698i \(-0.205509\pi\)
0.139319 + 0.990248i \(0.455509\pi\)
\(522\) −4.13440 9.98132i −0.180958 0.436870i
\(523\) 8.18465i 0.357890i −0.983859 0.178945i \(-0.942732\pi\)
0.983859 0.178945i \(-0.0572684\pi\)
\(524\) 12.8301 5.31441i 0.560486 0.232161i
\(525\) −7.15705 7.15705i −0.312359 0.312359i
\(526\) −14.2904 −0.623090
\(527\) 9.99902 + 1.11651i 0.435564 + 0.0486361i
\(528\) −27.9250 −1.21528
\(529\) −14.9908 14.9908i −0.651775 0.651775i
\(530\) −0.520952 + 0.215785i −0.0226287 + 0.00937311i
\(531\) 32.9058i 1.42799i
\(532\) 0.566315 + 1.36721i 0.0245529 + 0.0592759i
\(533\) −25.8340 10.7008i −1.11899 0.463502i
\(534\) −2.84513 + 6.86876i −0.123121 + 0.297240i
\(535\) −3.38886 + 3.38886i −0.146513 + 0.146513i
\(536\) −13.7930 + 13.7930i −0.595767 + 0.595767i
\(537\) −5.04758 + 12.1859i −0.217819 + 0.525862i
\(538\) 15.5751 + 6.45142i 0.671490 + 0.278140i
\(539\) 13.4808 + 32.5455i 0.580658 + 1.40183i
\(540\) 1.96138i 0.0844043i
\(541\) 13.0212 5.39355i 0.559824 0.231887i −0.0847847 0.996399i \(-0.527020\pi\)
0.644609 + 0.764513i \(0.277020\pi\)
\(542\) −8.37250 8.37250i −0.359630 0.359630i
\(543\) 3.74259 0.160610
\(544\) 6.28266 + 21.7260i 0.269367 + 0.931496i
\(545\) −8.32347 −0.356538
\(546\) 4.37000 + 4.37000i 0.187019 + 0.187019i
\(547\) 19.4525 8.05750i 0.831730 0.344514i 0.0741425 0.997248i \(-0.476378\pi\)
0.757587 + 0.652734i \(0.226378\pi\)
\(548\) 12.7560i 0.544911i
\(549\) −5.67752 13.7067i −0.242311 0.584989i
\(550\) 13.9802 + 5.79079i 0.596118 + 0.246920i
\(551\) −2.73364 + 6.59960i −0.116457 + 0.281152i
\(552\) −4.68250 + 4.68250i −0.199300 + 0.199300i
\(553\) −3.29120 + 3.29120i −0.139956 + 0.139956i
\(554\) −1.08833 + 2.62746i −0.0462388 + 0.111630i
\(555\) 0.360939 + 0.149506i 0.0153210 + 0.00634616i
\(556\) −1.94092 4.68579i −0.0823132 0.198722i
\(557\) 8.40687i 0.356211i 0.984011 + 0.178105i \(0.0569968\pi\)
−0.984011 + 0.178105i \(0.943003\pi\)
\(558\) −3.06699 + 1.27039i −0.129836 + 0.0537798i
\(559\) −3.26432 3.26432i −0.138066 0.138066i
\(560\) −1.56101 −0.0659647
\(561\) −48.7997 26.9071i −2.06032 1.13602i
\(562\) −18.3676 −0.774791
\(563\) −6.32977 6.32977i −0.266768 0.266768i 0.561028 0.827797i \(-0.310406\pi\)
−0.827797 + 0.561028i \(0.810406\pi\)
\(564\) −25.9774 + 10.7602i −1.09385 + 0.453087i
\(565\) 11.0782i 0.466064i
\(566\) 5.52667 + 13.3426i 0.232303 + 0.560830i
\(567\) 9.68505 + 4.01168i 0.406734 + 0.168475i
\(568\) −5.64899 + 13.6379i −0.237026 + 0.572232i
\(569\) −23.1008 + 23.1008i −0.968435 + 0.968435i −0.999517 0.0310820i \(-0.990105\pi\)
0.0310820 + 0.999517i \(0.490105\pi\)
\(570\) 0.653545 0.653545i 0.0273740 0.0273740i
\(571\) −9.25834 + 22.3516i −0.387449 + 0.935386i 0.603029 + 0.797719i \(0.293960\pi\)
−0.990479 + 0.137667i \(0.956040\pi\)
\(572\) 41.4149 + 17.1546i 1.73164 + 0.717271i
\(573\) −20.5295 49.5627i −0.857633 2.07051i
\(574\) 3.51331i 0.146643i
\(575\) −5.47842 + 2.26924i −0.228466 + 0.0946338i
\(576\) 1.52285 + 1.52285i 0.0634521 + 0.0634521i
\(577\) 11.5206 0.479607 0.239804 0.970821i \(-0.422917\pi\)
0.239804 + 0.970821i \(0.422917\pi\)
\(578\) −2.19218 + 9.69375i −0.0911829 + 0.403207i
\(579\) −14.2628 −0.592740
\(580\) −7.09088 7.09088i −0.294433 0.294433i
\(581\) 1.86077 0.770758i 0.0771979 0.0319764i
\(582\) 1.24068i 0.0514280i
\(583\) 2.83836 + 6.85241i 0.117553 + 0.283798i
\(584\) 20.5666 + 8.51898i 0.851053 + 0.352518i
\(585\) −3.13054 + 7.55779i −0.129432 + 0.312476i
\(586\) −8.74822 + 8.74822i −0.361386 + 0.361386i
\(587\) −13.4903 + 13.4903i −0.556806 + 0.556806i −0.928397 0.371591i \(-0.878812\pi\)
0.371591 + 0.928397i \(0.378812\pi\)
\(588\) 8.81062 21.2707i 0.363344 0.877190i
\(589\) 2.02788 + 0.839974i 0.0835572 + 0.0346105i
\(590\) −2.40912 5.81613i −0.0991820 0.239446i
\(591\) 8.50874i 0.350003i
\(592\) −0.424304 + 0.175752i −0.0174388 + 0.00722338i
\(593\) −21.4477 21.4477i −0.880751 0.880751i 0.112860 0.993611i \(-0.463999\pi\)
−0.993611 + 0.112860i \(0.963999\pi\)
\(594\) −5.31755 −0.218182
\(595\) −2.72791 1.50411i −0.111833 0.0616625i
\(596\) 3.32355 0.136138
\(597\) −42.9758 42.9758i −1.75888 1.75888i
\(598\) 3.34505 1.38557i 0.136789 0.0566600i
\(599\) 7.61955i 0.311327i 0.987810 + 0.155663i \(0.0497515\pi\)
−0.987810 + 0.155663i \(0.950249\pi\)
\(600\) −8.34945 20.1574i −0.340865 0.822921i
\(601\) 28.9959 + 12.0105i 1.18277 + 0.489918i 0.885393 0.464842i \(-0.153889\pi\)
0.297374 + 0.954761i \(0.403889\pi\)
\(602\) −0.221966 + 0.535874i −0.00904667 + 0.0218406i
\(603\) −15.0077 + 15.0077i −0.611162 + 0.611162i
\(604\) −14.2556 + 14.2556i −0.580051 + 0.580051i
\(605\) −6.78746 + 16.3864i −0.275949 + 0.666201i
\(606\) 18.4782 + 7.65391i 0.750624 + 0.310919i
\(607\) −10.2505 24.7469i −0.416055 1.00444i −0.983480 0.181020i \(-0.942060\pi\)
0.567425 0.823425i \(-0.307940\pi\)
\(608\) 4.93398i 0.200099i
\(609\) −16.8008 + 6.95914i −0.680805 + 0.281999i
\(610\) 2.00701 + 2.00701i 0.0812617 + 0.0812617i
\(611\) 33.9160 1.37209
\(612\) 4.41967 + 15.2836i 0.178655 + 0.617805i
\(613\) 1.04693 0.0422851 0.0211425 0.999776i \(-0.493270\pi\)
0.0211425 + 0.999776i \(0.493270\pi\)
\(614\) 1.59820 + 1.59820i 0.0644981 + 0.0644981i
\(615\) −9.83555 + 4.07402i −0.396608 + 0.164280i
\(616\) 12.4254i 0.500633i
\(617\) −8.35231 20.1643i −0.336252 0.811783i −0.998069 0.0621178i \(-0.980215\pi\)
0.661817 0.749665i \(-0.269785\pi\)
\(618\) 22.9091 + 9.48926i 0.921539 + 0.381714i
\(619\) 14.2877 34.4935i 0.574271 1.38641i −0.323617 0.946188i \(-0.604899\pi\)
0.897888 0.440224i \(-0.145101\pi\)
\(620\) −2.17883 + 2.17883i −0.0875040 + 0.0875040i
\(621\) 1.47346 1.47346i 0.0591279 0.0591279i
\(622\) 0.279620 0.675063i 0.0112118 0.0270676i
\(623\) 5.05053 + 2.09200i 0.202345 + 0.0838141i
\(624\) −8.42456 20.3387i −0.337252 0.814199i
\(625\) 16.6379i 0.665517i
\(626\) −0.707735 + 0.293153i −0.0282868 + 0.0117168i
\(627\) −8.59650 8.59650i −0.343311 0.343311i
\(628\) −25.0713 −1.00046
\(629\) −0.910829 0.101705i −0.0363171 0.00405525i
\(630\) 1.02783 0.0409496
\(631\) 34.9995 + 34.9995i 1.39331 + 1.39331i 0.817783 + 0.575527i \(0.195203\pi\)
0.575527 + 0.817783i \(0.304797\pi\)
\(632\) −9.26943 + 3.83953i −0.368718 + 0.152728i
\(633\) 37.9489i 1.50833i
\(634\) −1.84995 4.46618i −0.0734709 0.177374i
\(635\) 9.65951 + 4.00110i 0.383326 + 0.158779i
\(636\) 1.85507 4.47853i 0.0735582 0.177585i
\(637\) −19.6370 + 19.6370i −0.778046 + 0.778046i
\(638\) 19.2243 19.2243i 0.761097 0.761097i
\(639\) −6.14649 + 14.8389i −0.243151 + 0.587020i
\(640\) −8.09881 3.35464i −0.320134 0.132604i
\(641\) 15.3237 + 36.9946i 0.605248 + 1.46120i 0.868114 + 0.496365i \(0.165332\pi\)
−0.262866 + 0.964832i \(0.584668\pi\)
\(642\) 8.49202i 0.335153i
\(643\) 45.2778 18.7547i 1.78558 0.739612i 0.794352 0.607457i \(-0.207810\pi\)
0.991229 0.132155i \(-0.0421896\pi\)
\(644\) 1.56066 + 1.56066i 0.0614987 + 0.0614987i
\(645\) −1.75758 −0.0692046
\(646\) −1.04691 + 1.89871i −0.0411900 + 0.0747037i
\(647\) 1.40958 0.0554164 0.0277082 0.999616i \(-0.491179\pi\)
0.0277082 + 0.999616i \(0.491179\pi\)
\(648\) 15.9787 + 15.9787i 0.627701 + 0.627701i
\(649\) −76.5033 + 31.6887i −3.00302 + 1.24389i
\(650\) 11.9293i 0.467904i
\(651\) 2.13835 + 5.16244i 0.0838087 + 0.202332i
\(652\) −12.2571 5.07707i −0.480027 0.198834i
\(653\) −7.20938 + 17.4050i −0.282125 + 0.681110i −0.999885 0.0151811i \(-0.995168\pi\)
0.717760 + 0.696291i \(0.245168\pi\)
\(654\) −10.4287 + 10.4287i −0.407796 + 0.407796i
\(655\) −4.50953 + 4.50953i −0.176202 + 0.176202i
\(656\) 4.78924 11.5622i 0.186988 0.451430i
\(657\) 22.3779 + 9.26924i 0.873046 + 0.361627i
\(658\) −1.63074 3.93695i −0.0635728 0.153478i
\(659\) 31.6756i 1.23391i −0.787000 0.616953i \(-0.788367\pi\)
0.787000 0.616953i \(-0.211633\pi\)
\(660\) 15.7676 6.53114i 0.613752 0.254224i
\(661\) −21.2469 21.2469i −0.826411 0.826411i 0.160608 0.987018i \(-0.448655\pi\)
−0.987018 + 0.160608i \(0.948655\pi\)
\(662\) 1.00102 0.0389059
\(663\) 4.87517 43.6599i 0.189336 1.69561i
\(664\) 4.34158 0.168486
\(665\) −0.480545 0.480545i −0.0186347 0.0186347i
\(666\) 0.279377 0.115722i 0.0108257 0.00448413i
\(667\) 10.6539i 0.412519i
\(668\) 4.99821 + 12.0668i 0.193387 + 0.466877i
\(669\) 25.8774 + 10.7188i 1.00048 + 0.414411i
\(670\) 1.55388 3.75139i 0.0600315 0.144929i
\(671\) 26.3996 26.3996i 1.01914 1.01914i
\(672\) −8.88171 + 8.88171i −0.342619 + 0.342619i
\(673\) −11.2937 + 27.2654i −0.435340 + 1.05100i 0.542199 + 0.840250i \(0.317592\pi\)
−0.977539 + 0.210754i \(0.932408\pi\)
\(674\) 13.1567 + 5.44967i 0.506776 + 0.209913i
\(675\) 2.62736 + 6.34300i 0.101127 + 0.244142i
\(676\) 13.7823i 0.530089i
\(677\) −14.4155 + 5.97110i −0.554033 + 0.229488i −0.642093 0.766627i \(-0.721934\pi\)
0.0880592 + 0.996115i \(0.471934\pi\)
\(678\) −13.8802 13.8802i −0.533067 0.533067i
\(679\) −0.912263 −0.0350094
\(680\) −4.19192 5.24575i −0.160753 0.201165i
\(681\) 46.6252 1.78668
\(682\) −5.90710 5.90710i −0.226195 0.226195i
\(683\) 13.6221 5.64246i 0.521235 0.215903i −0.106524 0.994310i \(-0.533972\pi\)
0.627759 + 0.778407i \(0.283972\pi\)
\(684\) 3.47091i 0.132714i
\(685\) −2.24175 5.41205i −0.0856527 0.206784i
\(686\) 6.97475 + 2.88904i 0.266297 + 0.110304i
\(687\) −1.14389 + 2.76159i −0.0436421 + 0.105361i
\(688\) 1.46098 1.46098i 0.0556992 0.0556992i
\(689\) −4.13455 + 4.13455i −0.157514 + 0.157514i
\(690\) 0.527516 1.27354i 0.0200822 0.0484827i
\(691\) 23.1688 + 9.59684i 0.881383 + 0.365081i 0.777033 0.629460i \(-0.216724\pi\)
0.104350 + 0.994541i \(0.466724\pi\)
\(692\) −7.35505 17.7567i −0.279597 0.675007i
\(693\) 13.5197i 0.513569i
\(694\) 6.45701 2.67458i 0.245105 0.101526i
\(695\) 1.64696 + 1.64696i 0.0624728 + 0.0624728i
\(696\) −39.1999 −1.48587
\(697\) 19.5101 15.5907i 0.738999 0.590539i
\(698\) 13.3577 0.505598
\(699\) −46.2032 46.2032i −1.74756 1.74756i
\(700\) −6.71838 + 2.78284i −0.253931 + 0.105182i
\(701\) 2.92707i 0.110554i −0.998471 0.0552769i \(-0.982396\pi\)
0.998471 0.0552769i \(-0.0176042\pi\)
\(702\) −1.60423 3.87295i −0.0605477 0.146175i
\(703\) −0.184723 0.0765147i −0.00696696 0.00288581i
\(704\) −2.07398 + 5.00703i −0.0781660 + 0.188710i
\(705\) 9.13055 9.13055i 0.343876 0.343876i
\(706\) 11.5711 11.5711i 0.435486 0.435486i
\(707\) 5.62784 13.5868i 0.211657 0.510985i
\(708\) 50.0003 + 20.7108i 1.87912 + 0.778359i
\(709\) 4.04758 + 9.77172i 0.152010 + 0.366985i 0.981479 0.191568i \(-0.0613571\pi\)
−0.829469 + 0.558552i \(0.811357\pi\)
\(710\) 3.07280i 0.115320i
\(711\) −10.0858 + 4.17767i −0.378246 + 0.156675i
\(712\) 8.33250 + 8.33250i 0.312274 + 0.312274i
\(713\) 3.27364 0.122599
\(714\) −5.30243 + 1.53334i −0.198438 + 0.0573837i
\(715\) −20.5860 −0.769873
\(716\) 6.70083 + 6.70083i 0.250422 + 0.250422i
\(717\) −10.4889 + 4.34465i −0.391716 + 0.162254i
\(718\) 9.19063i 0.342991i
\(719\) 4.08488 + 9.86176i 0.152340 + 0.367782i 0.981564 0.191135i \(-0.0612170\pi\)
−0.829223 + 0.558917i \(0.811217\pi\)
\(720\) −3.38257 1.40110i −0.126061 0.0522161i
\(721\) 6.97736 16.8448i 0.259850 0.627334i
\(722\) 7.51991 7.51991i 0.279862 0.279862i
\(723\) −20.5458 + 20.5458i −0.764107 + 0.764107i
\(724\) 1.02899 2.48421i 0.0382422 0.0923249i
\(725\) −32.4301 13.4330i −1.20442 0.498888i
\(726\) 12.0268 + 29.0352i 0.446356 + 1.07760i
\(727\) 53.3525i 1.97874i −0.145432 0.989368i \(-0.546457\pi\)
0.145432 0.989368i \(-0.453543\pi\)
\(728\) 9.04982 3.74856i 0.335408 0.138931i
\(729\) 9.78097 + 9.78097i 0.362258 + 0.362258i
\(730\) −4.63395 −0.171510
\(731\) 3.96082 1.14538i 0.146496 0.0423633i
\(732\) −24.4008 −0.901878
\(733\) −18.5216 18.5216i −0.684110 0.684110i 0.276814 0.960924i \(-0.410721\pi\)
−0.960924 + 0.276814i \(0.910721\pi\)
\(734\) −1.28985 + 0.534272i −0.0476091 + 0.0197203i
\(735\) 10.5730i 0.389991i
\(736\) 2.81606 + 6.79858i 0.103801 + 0.250599i
\(737\) −49.3444 20.4391i −1.81763 0.752885i
\(738\) −3.15341 + 7.61301i −0.116079 + 0.280239i
\(739\) 35.1713 35.1713i 1.29380 1.29380i 0.361377 0.932420i \(-0.382307\pi\)
0.932420 0.361377i \(-0.117693\pi\)
\(740\) 0.198474 0.198474i 0.00729604 0.00729604i
\(741\) 3.66768 8.85456i 0.134735 0.325280i
\(742\) 0.678732 + 0.281140i 0.0249171 + 0.0103210i
\(743\) 4.28554 + 10.3462i 0.157221 + 0.379565i 0.982787 0.184740i \(-0.0591442\pi\)
−0.825566 + 0.564305i \(0.809144\pi\)
\(744\) 12.0451i 0.441593i
\(745\) −1.41009 + 0.584080i −0.0516619 + 0.0213991i
\(746\) 5.43568 + 5.43568i 0.199014 + 0.199014i
\(747\) 4.72393 0.172840
\(748\) −31.2771 + 24.9937i −1.14360 + 0.913861i
\(749\) 6.24410 0.228154
\(750\) 6.84430 + 6.84430i 0.249919 + 0.249919i
\(751\) 27.1203 11.2336i 0.989636 0.409920i 0.171649 0.985158i \(-0.445090\pi\)
0.817986 + 0.575238i \(0.195090\pi\)
\(752\) 15.1794i 0.553537i
\(753\) −16.9606 40.9466i −0.618079 1.49218i
\(754\) 19.8014 + 8.20200i 0.721124 + 0.298699i
\(755\) 3.54299 8.55353i 0.128943 0.311295i
\(756\) 1.80696 1.80696i 0.0657183 0.0657183i
\(757\) 17.2600 17.2600i 0.627324 0.627324i −0.320070 0.947394i \(-0.603706\pi\)
0.947394 + 0.320070i \(0.103706\pi\)
\(758\) 7.63269 18.4269i 0.277232 0.669296i
\(759\) −16.7516 6.93875i −0.608045 0.251861i
\(760\) −0.560606 1.35342i −0.0203353 0.0490938i
\(761\) 18.3350i