Properties

Label 731.2.m.c.87.15
Level 731
Weight 2
Character 731.87
Analytic conductor 5.837
Analytic rank 0
Dimension 128
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{8})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 87.15
Character \(\chi\) = 731.87
Dual form 731.2.m.c.689.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.150441 - 0.150441i) q^{2} +(0.303692 - 0.125793i) q^{3} -1.95474i q^{4} +(0.0508915 + 0.122863i) q^{5} +(-0.0646121 - 0.0267632i) q^{6} +(-0.398942 + 0.963131i) q^{7} +(-0.594953 + 0.594953i) q^{8} +(-2.04492 + 2.04492i) q^{9} +O(q^{10})\) \(q+(-0.150441 - 0.150441i) q^{2} +(0.303692 - 0.125793i) q^{3} -1.95474i q^{4} +(0.0508915 + 0.122863i) q^{5} +(-0.0646121 - 0.0267632i) q^{6} +(-0.398942 + 0.963131i) q^{7} +(-0.594953 + 0.594953i) q^{8} +(-2.04492 + 2.04492i) q^{9} +(0.0108274 - 0.0261397i) q^{10} +(-3.09848 - 1.28343i) q^{11} +(-0.245893 - 0.593638i) q^{12} -2.84947i q^{13} +(0.204911 - 0.0848770i) q^{14} +(0.0309107 + 0.0309107i) q^{15} -3.73046 q^{16} +(3.93446 - 1.23290i) q^{17} +0.615277 q^{18} +(-5.85784 - 5.85784i) q^{19} +(0.240165 - 0.0994794i) q^{20} +0.342680i q^{21} +(0.273057 + 0.659217i) q^{22} +(-3.45185 - 1.42980i) q^{23} +(-0.105841 + 0.255524i) q^{24} +(3.52303 - 3.52303i) q^{25} +(-0.428677 + 0.428677i) q^{26} +(-0.741168 + 1.78934i) q^{27} +(1.88267 + 0.779826i) q^{28} +(-0.414650 - 1.00105i) q^{29} -0.00930046i q^{30} +(-9.11474 + 3.77545i) q^{31} +(1.75112 + 1.75112i) q^{32} -1.10243 q^{33} +(-0.777380 - 0.406425i) q^{34} -0.138636 q^{35} +(3.99727 + 3.99727i) q^{36} +(0.751315 - 0.311205i) q^{37} +1.76252i q^{38} +(-0.358445 - 0.865363i) q^{39} +(-0.103376 - 0.0428197i) q^{40} +(-1.51500 + 3.65754i) q^{41} +(0.0515530 - 0.0515530i) q^{42} +(-0.707107 + 0.707107i) q^{43} +(-2.50877 + 6.05670i) q^{44} +(-0.355313 - 0.147176i) q^{45} +(0.304198 + 0.734399i) q^{46} -6.37430i q^{47} +(-1.13291 + 0.469267i) q^{48} +(4.18128 + 4.18128i) q^{49} -1.06001 q^{50} +(1.03977 - 0.869350i) q^{51} -5.56997 q^{52} +(-0.612552 - 0.612552i) q^{53} +(0.380691 - 0.157687i) q^{54} -0.446004i q^{55} +(-0.335666 - 0.810370i) q^{56} +(-2.51586 - 1.04210i) q^{57} +(-0.0882189 + 0.212979i) q^{58} +(-2.00046 + 2.00046i) q^{59} +(0.0604222 - 0.0604222i) q^{60} +(-3.32494 + 8.02713i) q^{61} +(1.93921 + 0.803246i) q^{62} +(-1.15372 - 2.78533i) q^{63} +6.93404i q^{64} +(0.350095 - 0.145014i) q^{65} +(0.165850 + 0.165850i) q^{66} +2.76281 q^{67} +(-2.40999 - 7.69083i) q^{68} -1.22816 q^{69} +(0.0208565 + 0.0208565i) q^{70} +(13.3659 - 5.53634i) q^{71} -2.43326i q^{72} +(-5.05611 - 12.2065i) q^{73} +(-0.159846 - 0.0662105i) q^{74} +(0.626742 - 1.51309i) q^{75} +(-11.4505 + 11.4505i) q^{76} +(2.47223 - 2.47223i) q^{77} +(-0.0762611 + 0.184110i) q^{78} +(-8.71221 - 3.60872i) q^{79} +(-0.189849 - 0.458336i) q^{80} -8.03920i q^{81} +(0.778161 - 0.322325i) q^{82} +(7.79734 + 7.79734i) q^{83} +0.669848 q^{84} +(0.351708 + 0.420655i) q^{85} +0.212755 q^{86} +(-0.251852 - 0.251852i) q^{87} +(2.60703 - 1.07987i) q^{88} -11.8211i q^{89} +(0.0313124 + 0.0755948i) q^{90} +(2.74442 + 1.13678i) q^{91} +(-2.79489 + 6.74745i) q^{92} +(-2.29315 + 2.29315i) q^{93} +(-0.958954 + 0.958954i) q^{94} +(0.421598 - 1.01783i) q^{95} +(0.752080 + 0.311522i) q^{96} +(-3.00086 - 7.24472i) q^{97} -1.25807i q^{98} +(8.96063 - 3.71162i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} + O(q^{10}) \) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} - 8q^{10} - 4q^{11} + 12q^{12} + 12q^{14} - 12q^{15} - 144q^{16} - 12q^{17} + 64q^{18} - 28q^{19} - 8q^{20} - 12q^{22} + 16q^{23} - 16q^{24} - 20q^{25} + 16q^{26} - 8q^{27} + 20q^{28} + 12q^{31} - 4q^{32} - 104q^{33} + 20q^{34} + 32q^{35} - 96q^{36} - 12q^{37} + 8q^{39} + 216q^{40} + 24q^{41} - 4q^{42} + 24q^{44} - 28q^{45} - 48q^{46} + 28q^{48} - 80q^{50} - 20q^{51} + 56q^{52} - 36q^{53} - 12q^{54} - 8q^{56} + 72q^{57} - 32q^{58} + 48q^{59} - 40q^{60} - 76q^{61} - 44q^{62} + 36q^{65} - 68q^{66} - 48q^{67} + 32q^{68} + 216q^{69} - 196q^{70} + 4q^{71} + 20q^{73} + 88q^{74} + 80q^{75} + 72q^{76} + 28q^{77} - 120q^{78} + 68q^{79} - 68q^{80} + 28q^{82} - 36q^{83} - 152q^{84} + 28q^{85} - 24q^{86} - 56q^{87} + 20q^{88} - 112q^{90} + 96q^{91} - 28q^{92} + 24q^{93} - 36q^{94} - 108q^{95} + 272q^{96} + 8q^{97} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.150441 0.150441i −0.106378 0.106378i 0.651915 0.758292i \(-0.273966\pi\)
−0.758292 + 0.651915i \(0.773966\pi\)
\(3\) 0.303692 0.125793i 0.175337 0.0726269i −0.293288 0.956024i \(-0.594750\pi\)
0.468625 + 0.883397i \(0.344750\pi\)
\(4\) 1.95474i 0.977368i
\(5\) 0.0508915 + 0.122863i 0.0227594 + 0.0549460i 0.934851 0.355041i \(-0.115533\pi\)
−0.912091 + 0.409987i \(0.865533\pi\)
\(6\) −0.0646121 0.0267632i −0.0263778 0.0109260i
\(7\) −0.398942 + 0.963131i −0.150786 + 0.364029i −0.981166 0.193169i \(-0.938124\pi\)
0.830380 + 0.557198i \(0.188124\pi\)
\(8\) −0.594953 + 0.594953i −0.210348 + 0.210348i
\(9\) −2.04492 + 2.04492i −0.681638 + 0.681638i
\(10\) 0.0108274 0.0261397i 0.00342394 0.00826611i
\(11\) −3.09848 1.28343i −0.934226 0.386969i −0.136946 0.990579i \(-0.543729\pi\)
−0.797280 + 0.603609i \(0.793729\pi\)
\(12\) −0.245893 0.593638i −0.0709831 0.171368i
\(13\) 2.84947i 0.790302i −0.918616 0.395151i \(-0.870692\pi\)
0.918616 0.395151i \(-0.129308\pi\)
\(14\) 0.204911 0.0848770i 0.0547648 0.0226843i
\(15\) 0.0309107 + 0.0309107i 0.00798111 + 0.00798111i
\(16\) −3.73046 −0.932615
\(17\) 3.93446 1.23290i 0.954246 0.299021i
\(18\) 0.615277 0.145022
\(19\) −5.85784 5.85784i −1.34388 1.34388i −0.892158 0.451724i \(-0.850809\pi\)
−0.451724 0.892158i \(-0.649191\pi\)
\(20\) 0.240165 0.0994794i 0.0537024 0.0222443i
\(21\) 0.342680i 0.0747788i
\(22\) 0.273057 + 0.659217i 0.0582159 + 0.140546i
\(23\) −3.45185 1.42980i −0.719760 0.298135i −0.00742376 0.999972i \(-0.502363\pi\)
−0.712337 + 0.701838i \(0.752363\pi\)
\(24\) −0.105841 + 0.255524i −0.0216048 + 0.0521586i
\(25\) 3.52303 3.52303i 0.704606 0.704606i
\(26\) −0.428677 + 0.428677i −0.0840704 + 0.0840704i
\(27\) −0.741168 + 1.78934i −0.142638 + 0.344358i
\(28\) 1.88267 + 0.779826i 0.355791 + 0.147373i
\(29\) −0.414650 1.00105i −0.0769985 0.185891i 0.880693 0.473687i \(-0.157077\pi\)
−0.957692 + 0.287797i \(0.907077\pi\)
\(30\) 0.00930046i 0.00169802i
\(31\) −9.11474 + 3.77545i −1.63706 + 0.678091i −0.995996 0.0894005i \(-0.971505\pi\)
−0.641060 + 0.767491i \(0.721505\pi\)
\(32\) 1.75112 + 1.75112i 0.309557 + 0.309557i
\(33\) −1.10243 −0.191908
\(34\) −0.777380 0.406425i −0.133320 0.0697013i
\(35\) −0.138636 −0.0234338
\(36\) 3.99727 + 3.99727i 0.666211 + 0.666211i
\(37\) 0.751315 0.311205i 0.123515 0.0511618i −0.320070 0.947394i \(-0.603706\pi\)
0.443585 + 0.896232i \(0.353706\pi\)
\(38\) 1.76252i 0.285918i
\(39\) −0.358445 0.865363i −0.0573971 0.138569i
\(40\) −0.103376 0.0428197i −0.0163451 0.00677038i
\(41\) −1.51500 + 3.65754i −0.236604 + 0.571212i −0.996927 0.0783325i \(-0.975040\pi\)
0.760324 + 0.649545i \(0.225040\pi\)
\(42\) 0.0515530 0.0515530i 0.00795480 0.00795480i
\(43\) −0.707107 + 0.707107i −0.107833 + 0.107833i
\(44\) −2.50877 + 6.05670i −0.378211 + 0.913082i
\(45\) −0.355313 0.147176i −0.0529670 0.0219396i
\(46\) 0.304198 + 0.734399i 0.0448516 + 0.108281i
\(47\) 6.37430i 0.929787i −0.885367 0.464894i \(-0.846093\pi\)
0.885367 0.464894i \(-0.153907\pi\)
\(48\) −1.13291 + 0.469267i −0.163522 + 0.0677329i
\(49\) 4.18128 + 4.18128i 0.597326 + 0.597326i
\(50\) −1.06001 −0.149909
\(51\) 1.03977 0.869350i 0.145597 0.121733i
\(52\) −5.56997 −0.772415
\(53\) −0.612552 0.612552i −0.0841405 0.0841405i 0.663784 0.747924i \(-0.268949\pi\)
−0.747924 + 0.663784i \(0.768949\pi\)
\(54\) 0.380691 0.157687i 0.0518055 0.0214585i
\(55\) 0.446004i 0.0601392i
\(56\) −0.335666 0.810370i −0.0448553 0.108290i
\(57\) −2.51586 1.04210i −0.333234 0.138030i
\(58\) −0.0882189 + 0.212979i −0.0115837 + 0.0279655i
\(59\) −2.00046 + 2.00046i −0.260438 + 0.260438i −0.825232 0.564794i \(-0.808956\pi\)
0.564794 + 0.825232i \(0.308956\pi\)
\(60\) 0.0604222 0.0604222i 0.00780048 0.00780048i
\(61\) −3.32494 + 8.02713i −0.425715 + 1.02777i 0.554916 + 0.831906i \(0.312750\pi\)
−0.980632 + 0.195862i \(0.937250\pi\)
\(62\) 1.93921 + 0.803246i 0.246280 + 0.102012i
\(63\) −1.15372 2.78533i −0.145355 0.350918i
\(64\) 6.93404i 0.866755i
\(65\) 0.350095 0.145014i 0.0434239 0.0179868i
\(66\) 0.165850 + 0.165850i 0.0204148 + 0.0204148i
\(67\) 2.76281 0.337531 0.168766 0.985656i \(-0.446022\pi\)
0.168766 + 0.985656i \(0.446022\pi\)
\(68\) −2.40999 7.69083i −0.292254 0.932650i
\(69\) −1.22816 −0.147853
\(70\) 0.0208565 + 0.0208565i 0.00249283 + 0.00249283i
\(71\) 13.3659 5.53634i 1.58624 0.657042i 0.596854 0.802350i \(-0.296417\pi\)
0.989387 + 0.145308i \(0.0464172\pi\)
\(72\) 2.43326i 0.286762i
\(73\) −5.05611 12.2065i −0.591773 1.42867i −0.881789 0.471645i \(-0.843660\pi\)
0.290015 0.957022i \(-0.406340\pi\)
\(74\) −0.159846 0.0662105i −0.0185817 0.00769681i
\(75\) 0.626742 1.51309i 0.0723700 0.174717i
\(76\) −11.4505 + 11.4505i −1.31347 + 1.31347i
\(77\) 2.47223 2.47223i 0.281736 0.281736i
\(78\) −0.0762611 + 0.184110i −0.00863486 + 0.0208464i
\(79\) −8.71221 3.60872i −0.980201 0.406012i −0.165701 0.986176i \(-0.552989\pi\)
−0.814500 + 0.580164i \(0.802989\pi\)
\(80\) −0.189849 0.458336i −0.0212257 0.0512435i
\(81\) 8.03920i 0.893244i
\(82\) 0.778161 0.322325i 0.0859335 0.0355948i
\(83\) 7.79734 + 7.79734i 0.855870 + 0.855870i 0.990848 0.134979i \(-0.0430966\pi\)
−0.134979 + 0.990848i \(0.543097\pi\)
\(84\) 0.669848 0.0730864
\(85\) 0.351708 + 0.420655i 0.0381481 + 0.0456265i
\(86\) 0.212755 0.0229420
\(87\) −0.251852 0.251852i −0.0270013 0.0270013i
\(88\) 2.60703 1.07987i 0.277910 0.115114i
\(89\) 11.8211i 1.25304i −0.779406 0.626519i \(-0.784479\pi\)
0.779406 0.626519i \(-0.215521\pi\)
\(90\) 0.0313124 + 0.0755948i 0.00330061 + 0.00796839i
\(91\) 2.74442 + 1.13678i 0.287693 + 0.119166i
\(92\) −2.79489 + 6.74745i −0.291387 + 0.703471i
\(93\) −2.29315 + 2.29315i −0.237788 + 0.237788i
\(94\) −0.958954 + 0.958954i −0.0989085 + 0.0989085i
\(95\) 0.421598 1.01783i 0.0432550 0.104427i
\(96\) 0.752080 + 0.311522i 0.0767589 + 0.0317946i
\(97\) −3.00086 7.24472i −0.304691 0.735590i −0.999860 0.0167433i \(-0.994670\pi\)
0.695168 0.718847i \(-0.255330\pi\)
\(98\) 1.25807i 0.127084i
\(99\) 8.96063 3.71162i 0.900577 0.373031i
\(100\) −6.88659 6.88659i −0.688659 0.688659i
\(101\) 12.0201 1.19605 0.598025 0.801478i \(-0.295952\pi\)
0.598025 + 0.801478i \(0.295952\pi\)
\(102\) −0.287210 0.0256387i −0.0284380 0.00253861i
\(103\) 11.6091 1.14388 0.571938 0.820297i \(-0.306192\pi\)
0.571938 + 0.820297i \(0.306192\pi\)
\(104\) 1.69530 + 1.69530i 0.166238 + 0.166238i
\(105\) −0.0421027 + 0.0174395i −0.00410880 + 0.00170192i
\(106\) 0.184306i 0.0179013i
\(107\) −0.114256 0.275838i −0.0110455 0.0266663i 0.918261 0.395977i \(-0.129594\pi\)
−0.929306 + 0.369310i \(0.879594\pi\)
\(108\) 3.49768 + 1.44879i 0.336565 + 0.139410i
\(109\) 0.209794 0.506487i 0.0200946 0.0485126i −0.913514 0.406808i \(-0.866642\pi\)
0.933608 + 0.358295i \(0.116642\pi\)
\(110\) −0.0670971 + 0.0670971i −0.00639746 + 0.00639746i
\(111\) 0.189021 0.189021i 0.0179411 0.0179411i
\(112\) 1.48824 3.59292i 0.140625 0.339499i
\(113\) 1.68831 + 0.699321i 0.158823 + 0.0657866i 0.460679 0.887567i \(-0.347606\pi\)
−0.301856 + 0.953354i \(0.597606\pi\)
\(114\) 0.221713 + 0.535262i 0.0207653 + 0.0501319i
\(115\) 0.496869i 0.0463333i
\(116\) −1.95679 + 0.810530i −0.181684 + 0.0752558i
\(117\) 5.82693 + 5.82693i 0.538700 + 0.538700i
\(118\) 0.601902 0.0554095
\(119\) −0.382180 + 4.28126i −0.0350343 + 0.392462i
\(120\) −0.0367808 −0.00335762
\(121\) 0.175191 + 0.175191i 0.0159264 + 0.0159264i
\(122\) 1.70781 0.707399i 0.154618 0.0640449i
\(123\) 1.30134i 0.117338i
\(124\) 7.38000 + 17.8169i 0.662744 + 1.60000i
\(125\) 1.22646 + 0.508015i 0.109698 + 0.0454383i
\(126\) −0.245460 + 0.592593i −0.0218673 + 0.0527923i
\(127\) −4.30246 + 4.30246i −0.381782 + 0.381782i −0.871744 0.489962i \(-0.837011\pi\)
0.489962 + 0.871744i \(0.337011\pi\)
\(128\) 4.54540 4.54540i 0.401760 0.401760i
\(129\) −0.125793 + 0.303692i −0.0110755 + 0.0267386i
\(130\) −0.0744845 0.0308525i −0.00653273 0.00270594i
\(131\) 2.66173 + 6.42600i 0.232557 + 0.561442i 0.996477 0.0838691i \(-0.0267278\pi\)
−0.763920 + 0.645311i \(0.776728\pi\)
\(132\) 2.15496i 0.187565i
\(133\) 7.97882 3.30493i 0.691851 0.286574i
\(134\) −0.415639 0.415639i −0.0359058 0.0359058i
\(135\) −0.257563 −0.0221675
\(136\) −1.60730 + 3.07433i −0.137825 + 0.263622i
\(137\) −15.7774 −1.34795 −0.673976 0.738753i \(-0.735415\pi\)
−0.673976 + 0.738753i \(0.735415\pi\)
\(138\) 0.184765 + 0.184765i 0.0157283 + 0.0157283i
\(139\) 6.27653 2.59982i 0.532368 0.220514i −0.100272 0.994960i \(-0.531971\pi\)
0.632640 + 0.774446i \(0.281971\pi\)
\(140\) 0.270997i 0.0229034i
\(141\) −0.801845 1.93582i −0.0675275 0.163026i
\(142\) −2.84367 1.17788i −0.238635 0.0988459i
\(143\) −3.65710 + 8.82903i −0.305822 + 0.738321i
\(144\) 7.62848 7.62848i 0.635706 0.635706i
\(145\) 0.101890 0.101890i 0.00846152 0.00846152i
\(146\) −1.07571 + 2.59700i −0.0890268 + 0.214930i
\(147\) 1.79580 + 0.743844i 0.148115 + 0.0613513i
\(148\) −0.608323 1.46862i −0.0500038 0.120720i
\(149\) 5.69766i 0.466771i −0.972384 0.233385i \(-0.925020\pi\)
0.972384 0.233385i \(-0.0749804\pi\)
\(150\) −0.321918 + 0.133343i −0.0262845 + 0.0108874i
\(151\) −8.42508 8.42508i −0.685624 0.685624i 0.275638 0.961262i \(-0.411111\pi\)
−0.961262 + 0.275638i \(0.911111\pi\)
\(152\) 6.97029 0.565365
\(153\) −5.52447 + 10.5668i −0.446627 + 0.854276i
\(154\) −0.743847 −0.0599409
\(155\) −0.927726 0.927726i −0.0745167 0.0745167i
\(156\) −1.69156 + 0.700665i −0.135433 + 0.0560981i
\(157\) 13.8098i 1.10214i 0.834458 + 0.551072i \(0.185781\pi\)
−0.834458 + 0.551072i \(0.814219\pi\)
\(158\) 0.767774 + 1.85357i 0.0610808 + 0.147462i
\(159\) −0.263082 0.108972i −0.0208638 0.00864206i
\(160\) −0.126031 + 0.304265i −0.00996360 + 0.0240542i
\(161\) 2.75418 2.75418i 0.217060 0.217060i
\(162\) −1.20942 + 1.20942i −0.0950212 + 0.0950212i
\(163\) −2.78063 + 6.71303i −0.217796 + 0.525805i −0.994582 0.103960i \(-0.966849\pi\)
0.776786 + 0.629765i \(0.216849\pi\)
\(164\) 7.14953 + 2.96143i 0.558284 + 0.231249i
\(165\) −0.0561044 0.135448i −0.00436772 0.0105446i
\(166\) 2.34608i 0.182091i
\(167\) −8.55211 + 3.54240i −0.661782 + 0.274119i −0.688188 0.725532i \(-0.741594\pi\)
0.0264063 + 0.999651i \(0.491594\pi\)
\(168\) −0.203878 0.203878i −0.0157296 0.0157296i
\(169\) 4.88050 0.375423
\(170\) 0.0103725 0.116195i 0.000795534 0.00891174i
\(171\) 23.9576 1.83208
\(172\) 1.38221 + 1.38221i 0.105392 + 0.105392i
\(173\) 18.0938 7.49470i 1.37565 0.569811i 0.432333 0.901714i \(-0.357691\pi\)
0.943314 + 0.331903i \(0.107691\pi\)
\(174\) 0.0757775i 0.00574467i
\(175\) 1.98766 + 4.79862i 0.150253 + 0.362742i
\(176\) 11.5587 + 4.78779i 0.871273 + 0.360893i
\(177\) −0.355880 + 0.859169i −0.0267495 + 0.0645791i
\(178\) −1.77838 + 1.77838i −0.133295 + 0.133295i
\(179\) 5.70430 5.70430i 0.426359 0.426359i −0.461027 0.887386i \(-0.652519\pi\)
0.887386 + 0.461027i \(0.152519\pi\)
\(180\) −0.287689 + 0.694543i −0.0214431 + 0.0517682i
\(181\) 5.86498 + 2.42935i 0.435940 + 0.180572i 0.589851 0.807512i \(-0.299187\pi\)
−0.153910 + 0.988085i \(0.549187\pi\)
\(182\) −0.241855 0.583889i −0.0179275 0.0432808i
\(183\) 2.85603i 0.211124i
\(184\) 2.90435 1.20302i 0.214112 0.0886880i
\(185\) 0.0764711 + 0.0764711i 0.00562227 + 0.00562227i
\(186\) 0.689965 0.0505907
\(187\) −13.7732 1.22951i −1.00719 0.0899103i
\(188\) −12.4601 −0.908744
\(189\) −1.42768 1.42768i −0.103849 0.103849i
\(190\) −0.216548 + 0.0896971i −0.0157100 + 0.00650731i
\(191\) 25.7157i 1.86072i −0.366642 0.930362i \(-0.619493\pi\)
0.366642 0.930362i \(-0.380507\pi\)
\(192\) 0.872257 + 2.10581i 0.0629497 + 0.151974i
\(193\) 8.59927 + 3.56193i 0.618989 + 0.256394i 0.670067 0.742301i \(-0.266266\pi\)
−0.0510776 + 0.998695i \(0.516266\pi\)
\(194\) −0.638449 + 1.54135i −0.0458380 + 0.110663i
\(195\) 0.0880793 0.0880793i 0.00630749 0.00630749i
\(196\) 8.17330 8.17330i 0.583807 0.583807i
\(197\) −4.20607 + 10.1543i −0.299670 + 0.723467i 0.700284 + 0.713864i \(0.253057\pi\)
−0.999954 + 0.00960263i \(0.996943\pi\)
\(198\) −1.90642 0.789666i −0.135483 0.0561191i
\(199\) −5.89812 14.2393i −0.418106 1.00940i −0.982896 0.184163i \(-0.941043\pi\)
0.564789 0.825235i \(-0.308957\pi\)
\(200\) 4.19207i 0.296424i
\(201\) 0.839044 0.347543i 0.0591816 0.0245138i
\(202\) −1.80832 1.80832i −0.127233 0.127233i
\(203\) 1.12957 0.0792800
\(204\) −1.69935 2.03248i −0.118978 0.142302i
\(205\) −0.526477 −0.0367708
\(206\) −1.74648 1.74648i −0.121683 0.121683i
\(207\) 9.98257 4.13491i 0.693836 0.287396i
\(208\) 10.6298i 0.737047i
\(209\) 10.6323 + 25.6685i 0.735449 + 1.77553i
\(210\) 0.00895756 + 0.00371034i 0.000618130 + 0.000256038i
\(211\) −3.16315 + 7.63651i −0.217760 + 0.525719i −0.994576 0.104008i \(-0.966833\pi\)
0.776817 + 0.629727i \(0.216833\pi\)
\(212\) −1.19738 + 1.19738i −0.0822362 + 0.0822362i
\(213\) 3.36268 3.36268i 0.230407 0.230407i
\(214\) −0.0243085 + 0.0586860i −0.00166170 + 0.00401169i
\(215\) −0.122863 0.0508915i −0.00837919 0.00347077i
\(216\) −0.623612 1.50553i −0.0424314 0.102438i
\(217\) 10.2849i 0.698183i
\(218\) −0.107758 + 0.0446347i −0.00729827 + 0.00302304i
\(219\) −3.07100 3.07100i −0.207519 0.207519i
\(220\) −0.871820 −0.0587781
\(221\) −3.51311 11.2111i −0.236317 0.754143i
\(222\) −0.0568729 −0.00381706
\(223\) −12.6605 12.6605i −0.847813 0.847813i 0.142047 0.989860i \(-0.454632\pi\)
−0.989860 + 0.142047i \(0.954632\pi\)
\(224\) −2.38515 + 0.987963i −0.159365 + 0.0660110i
\(225\) 14.4086i 0.960573i
\(226\) −0.148784 0.359197i −0.00989698 0.0238934i
\(227\) 22.2475 + 9.21521i 1.47662 + 0.611635i 0.968357 0.249568i \(-0.0802886\pi\)
0.508261 + 0.861203i \(0.330289\pi\)
\(228\) −2.03704 + 4.91784i −0.134906 + 0.325692i
\(229\) −2.20965 + 2.20965i −0.146018 + 0.146018i −0.776337 0.630319i \(-0.782924\pi\)
0.630319 + 0.776337i \(0.282924\pi\)
\(230\) −0.0747494 + 0.0747494i −0.00492883 + 0.00492883i
\(231\) 0.439806 1.06179i 0.0289371 0.0698603i
\(232\) 0.842276 + 0.348882i 0.0552981 + 0.0229052i
\(233\) −1.19841 2.89323i −0.0785107 0.189542i 0.879751 0.475435i \(-0.157709\pi\)
−0.958261 + 0.285894i \(0.907709\pi\)
\(234\) 1.75322i 0.114611i
\(235\) 0.783165 0.324398i 0.0510881 0.0211614i
\(236\) 3.91037 + 3.91037i 0.254544 + 0.254544i
\(237\) −3.09978 −0.201353
\(238\) 0.701570 0.586580i 0.0454760 0.0380223i
\(239\) −0.787860 −0.0509624 −0.0254812 0.999675i \(-0.508112\pi\)
−0.0254812 + 0.999675i \(0.508112\pi\)
\(240\) −0.115311 0.115311i −0.00744330 0.00744330i
\(241\) 0.683409 0.283077i 0.0440223 0.0182346i −0.360564 0.932735i \(-0.617416\pi\)
0.404586 + 0.914500i \(0.367416\pi\)
\(242\) 0.0527116i 0.00338843i
\(243\) −3.23478 7.80946i −0.207511 0.500977i
\(244\) 15.6909 + 6.49939i 1.00451 + 0.416081i
\(245\) −0.300933 + 0.726516i −0.0192259 + 0.0464154i
\(246\) 0.195775 0.195775i 0.0124822 0.0124822i
\(247\) −16.6918 + 16.6918i −1.06207 + 1.06207i
\(248\) 3.17663 7.66906i 0.201716 0.486986i
\(249\) 3.34885 + 1.38714i 0.212225 + 0.0879063i
\(250\) −0.108083 0.260935i −0.00683576 0.0165030i
\(251\) 1.50455i 0.0949662i 0.998872 + 0.0474831i \(0.0151200\pi\)
−0.998872 + 0.0474831i \(0.984880\pi\)
\(252\) −5.44457 + 2.25522i −0.342976 + 0.142065i
\(253\) 8.86042 + 8.86042i 0.557050 + 0.557050i
\(254\) 1.29453 0.0812261
\(255\) 0.159727 + 0.0835072i 0.0100025 + 0.00522942i
\(256\) 12.5005 0.781278
\(257\) 1.38741 + 1.38741i 0.0865441 + 0.0865441i 0.749054 0.662509i \(-0.230509\pi\)
−0.662509 + 0.749054i \(0.730509\pi\)
\(258\) 0.0646121 0.0267632i 0.00402257 0.00166620i
\(259\) 0.847768i 0.0526777i
\(260\) −0.283464 0.684343i −0.0175797 0.0424411i
\(261\) 2.89499 + 1.19914i 0.179195 + 0.0742252i
\(262\) 0.566298 1.36716i 0.0349860 0.0844637i
\(263\) 9.37079 9.37079i 0.577828 0.577828i −0.356476 0.934304i \(-0.616022\pi\)
0.934304 + 0.356476i \(0.116022\pi\)
\(264\) 0.655894 0.655894i 0.0403675 0.0403675i
\(265\) 0.0440863 0.106434i 0.00270820 0.00653817i
\(266\) −1.69753 0.703142i −0.104083 0.0431124i
\(267\) −1.48702 3.58998i −0.0910042 0.219703i
\(268\) 5.40056i 0.329892i
\(269\) −17.7373 + 7.34705i −1.08147 + 0.447958i −0.851023 0.525128i \(-0.824017\pi\)
−0.230442 + 0.973086i \(0.574017\pi\)
\(270\) 0.0387479 + 0.0387479i 0.00235812 + 0.00235812i
\(271\) −17.3772 −1.05559 −0.527796 0.849371i \(-0.676981\pi\)
−0.527796 + 0.849371i \(0.676981\pi\)
\(272\) −14.6773 + 4.59927i −0.889945 + 0.278872i
\(273\) 0.976457 0.0590979
\(274\) 2.37356 + 2.37356i 0.143392 + 0.143392i
\(275\) −15.4376 + 6.39446i −0.930922 + 0.385600i
\(276\) 2.40073i 0.144507i
\(277\) 0.238839 + 0.576609i 0.0143505 + 0.0346451i 0.930892 0.365294i \(-0.119031\pi\)
−0.916542 + 0.399939i \(0.869031\pi\)
\(278\) −1.33536 0.553126i −0.0800898 0.0331743i
\(279\) 10.9184 26.3593i 0.653667 1.57809i
\(280\) 0.0824819 0.0824819i 0.00492924 0.00492924i
\(281\) 18.6500 18.6500i 1.11256 1.11256i 0.119762 0.992803i \(-0.461787\pi\)
0.992803 0.119762i \(-0.0382130\pi\)
\(282\) −0.170597 + 0.411857i −0.0101589 + 0.0245257i
\(283\) −15.0105 6.21755i −0.892281 0.369595i −0.111034 0.993817i \(-0.535416\pi\)
−0.781247 + 0.624222i \(0.785416\pi\)
\(284\) −10.8221 26.1268i −0.642172 1.55034i
\(285\) 0.362140i 0.0214513i
\(286\) 1.87842 0.778068i 0.111073 0.0460081i
\(287\) −2.91829 2.91829i −0.172261 0.172261i
\(288\) −7.16178 −0.422012
\(289\) 13.9599 9.70156i 0.821172 0.570680i
\(290\) −0.0306569 −0.00180023
\(291\) −1.82268 1.82268i −0.106847 0.106847i
\(292\) −23.8605 + 9.88336i −1.39633 + 0.578380i
\(293\) 25.3108i 1.47867i −0.673336 0.739337i \(-0.735139\pi\)
0.673336 0.739337i \(-0.264861\pi\)
\(294\) −0.158257 0.382066i −0.00922972 0.0222825i
\(295\) −0.347589 0.143976i −0.0202374 0.00838262i
\(296\) −0.261845 + 0.632149i −0.0152194 + 0.0367429i
\(297\) 4.59298 4.59298i 0.266512 0.266512i
\(298\) −0.857160 + 0.857160i −0.0496540 + 0.0496540i
\(299\) −4.07419 + 9.83596i −0.235616 + 0.568828i
\(300\) −2.95769 1.22512i −0.170762 0.0707321i
\(301\) −0.398942 0.963131i −0.0229946 0.0555140i
\(302\) 2.53495i 0.145870i
\(303\) 3.65042 1.51206i 0.209711 0.0868653i
\(304\) 21.8525 + 21.8525i 1.25332 + 1.25332i
\(305\) −1.15545 −0.0661608
\(306\) 2.42078 0.758573i 0.138387 0.0433647i
\(307\) −12.4504 −0.710581 −0.355291 0.934756i \(-0.615618\pi\)
−0.355291 + 0.934756i \(0.615618\pi\)
\(308\) −4.83255 4.83255i −0.275360 0.275360i
\(309\) 3.52559 1.46035i 0.200564 0.0830762i
\(310\) 0.279135i 0.0158538i
\(311\) 6.32748 + 15.2759i 0.358799 + 0.866217i 0.995470 + 0.0950810i \(0.0303110\pi\)
−0.636671 + 0.771136i \(0.719689\pi\)
\(312\) 0.728108 + 0.301592i 0.0412210 + 0.0170743i
\(313\) 7.36528 17.7814i 0.416310 1.00506i −0.567097 0.823651i \(-0.691934\pi\)
0.983407 0.181411i \(-0.0580663\pi\)
\(314\) 2.07756 2.07756i 0.117243 0.117243i
\(315\) 0.283499 0.283499i 0.0159734 0.0159734i
\(316\) −7.05409 + 17.0301i −0.396823 + 0.958016i
\(317\) 16.0283 + 6.63912i 0.900237 + 0.372890i 0.784311 0.620368i \(-0.213017\pi\)
0.115926 + 0.993258i \(0.463017\pi\)
\(318\) 0.0231844 + 0.0559722i 0.00130012 + 0.00313876i
\(319\) 3.63391i 0.203460i
\(320\) −0.851937 + 0.352884i −0.0476247 + 0.0197268i
\(321\) −0.0693972 0.0693972i −0.00387337 0.00387337i
\(322\) −0.828680 −0.0461806
\(323\) −30.2696 15.8253i −1.68424 0.880545i
\(324\) −15.7145 −0.873028
\(325\) −10.0388 10.0388i −0.556851 0.556851i
\(326\) 1.42823 0.591593i 0.0791024 0.0327653i
\(327\) 0.180207i 0.00996545i
\(328\) −1.27471 3.07742i −0.0703841 0.169922i
\(329\) 6.13929 + 2.54298i 0.338470 + 0.140199i
\(330\) −0.0119365 + 0.0288173i −0.000657083 + 0.00158634i
\(331\) −9.18058 + 9.18058i −0.504610 + 0.504610i −0.912867 0.408257i \(-0.866137\pi\)
0.408257 + 0.912867i \(0.366137\pi\)
\(332\) 15.2417 15.2417i 0.836499 0.836499i
\(333\) −0.899988 + 2.17276i −0.0493190 + 0.119067i
\(334\) 1.81951 + 0.753664i 0.0995589 + 0.0412387i
\(335\) 0.140604 + 0.339447i 0.00768200 + 0.0185460i
\(336\) 1.27835i 0.0697399i
\(337\) −26.8338 + 11.1149i −1.46173 + 0.605467i −0.964956 0.262414i \(-0.915482\pi\)
−0.496772 + 0.867881i \(0.665482\pi\)
\(338\) −0.734226 0.734226i −0.0399366 0.0399366i
\(339\) 0.600697 0.0326254
\(340\) 0.822270 0.687496i 0.0445938 0.0372847i
\(341\) 33.0873 1.79178
\(342\) −3.60420 3.60420i −0.194893 0.194893i
\(343\) −12.4371 + 5.15163i −0.671542 + 0.278162i
\(344\) 0.841391i 0.0453647i
\(345\) −0.0625029 0.150895i −0.00336504 0.00812393i
\(346\) −3.84955 1.59454i −0.206953 0.0857228i
\(347\) −5.77945 + 13.9528i −0.310257 + 0.749027i 0.689438 + 0.724345i \(0.257858\pi\)
−0.999695 + 0.0246828i \(0.992142\pi\)
\(348\) −0.492303 + 0.492303i −0.0263902 + 0.0263902i
\(349\) −16.9584 + 16.9584i −0.907765 + 0.907765i −0.996092 0.0883268i \(-0.971848\pi\)
0.0883268 + 0.996092i \(0.471848\pi\)
\(350\) 0.422884 1.02093i 0.0226041 0.0545711i
\(351\) 5.09867 + 2.11194i 0.272147 + 0.112727i
\(352\) −3.17836 7.67324i −0.169407 0.408985i
\(353\) 34.7163i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(354\) 0.182793 0.0757153i 0.00971533 0.00402422i
\(355\) 1.36042 + 1.36042i 0.0722037 + 0.0722037i
\(356\) −23.1072 −1.22468
\(357\) 0.422489 + 1.34826i 0.0223605 + 0.0713574i
\(358\) −1.71632 −0.0907102
\(359\) −6.65294 6.65294i −0.351129 0.351129i 0.509401 0.860529i \(-0.329867\pi\)
−0.860529 + 0.509401i \(0.829867\pi\)
\(360\) 0.298957 0.123832i 0.0157564 0.00652653i
\(361\) 49.6287i 2.61204i
\(362\) −0.516858 1.24781i −0.0271654 0.0655832i
\(363\) 0.0752419 + 0.0311662i 0.00394917 + 0.00163580i
\(364\) 2.22209 5.36461i 0.116469 0.281182i
\(365\) 1.24242 1.24242i 0.0650311 0.0650311i
\(366\) 0.429663 0.429663i 0.0224589 0.0224589i
\(367\) −13.2023 + 31.8731i −0.689153 + 1.66376i 0.0573279 + 0.998355i \(0.481742\pi\)
−0.746481 + 0.665407i \(0.768258\pi\)
\(368\) 12.8770 + 5.33382i 0.671259 + 0.278045i
\(369\) −4.38131 10.5774i −0.228082 0.550638i
\(370\) 0.0230087i 0.00119617i
\(371\) 0.834341 0.345595i 0.0433168 0.0179424i
\(372\) 4.48250 + 4.48250i 0.232407 + 0.232407i
\(373\) −13.1404 −0.680382 −0.340191 0.940356i \(-0.610492\pi\)
−0.340191 + 0.940356i \(0.610492\pi\)
\(374\) 1.88708 + 2.25701i 0.0975784 + 0.116707i
\(375\) 0.436370 0.0225341
\(376\) 3.79241 + 3.79241i 0.195579 + 0.195579i
\(377\) −2.85247 + 1.18153i −0.146910 + 0.0608520i
\(378\) 0.429564i 0.0220944i
\(379\) −10.1758 24.5665i −0.522694 1.26189i −0.936224 0.351404i \(-0.885704\pi\)
0.413530 0.910490i \(-0.364296\pi\)
\(380\) −1.98958 0.824112i −0.102063 0.0422761i
\(381\) −0.765402 + 1.84784i −0.0392127 + 0.0946680i
\(382\) −3.86869 + 3.86869i −0.197939 + 0.197939i
\(383\) 5.58884 5.58884i 0.285576 0.285576i −0.549752 0.835328i \(-0.685278\pi\)
0.835328 + 0.549752i \(0.185278\pi\)
\(384\) 0.808621 1.95218i 0.0412648 0.0996220i
\(385\) 0.429560 + 0.177930i 0.0218924 + 0.00906814i
\(386\) −0.757820 1.82954i −0.0385720 0.0931211i
\(387\) 2.89195i 0.147006i
\(388\) −14.1615 + 5.86589i −0.718942 + 0.297796i
\(389\) −3.67423 3.67423i −0.186291 0.186291i 0.607800 0.794090i \(-0.292052\pi\)
−0.794090 + 0.607800i \(0.792052\pi\)
\(390\) −0.0265014 −0.00134195
\(391\) −15.3440 1.36973i −0.775977 0.0692701i
\(392\) −4.97533 −0.251292
\(393\) 1.61670 + 1.61670i 0.0815515 + 0.0815515i
\(394\) 2.16039 0.894863i 0.108839 0.0450825i
\(395\) 1.25406i 0.0630987i
\(396\) −7.25523 17.5157i −0.364589 0.880195i
\(397\) 10.1627 + 4.20952i 0.510050 + 0.211270i 0.622840 0.782349i \(-0.285979\pi\)
−0.112790 + 0.993619i \(0.535979\pi\)
\(398\) −1.25486 + 3.02949i −0.0629002 + 0.151855i
\(399\) 2.00736 2.00736i 0.100494 0.100494i
\(400\) −13.1425 + 13.1425i −0.657126 + 0.657126i
\(401\) −9.04541 + 21.8375i −0.451706 + 1.09051i 0.519967 + 0.854186i \(0.325944\pi\)
−0.971673 + 0.236329i \(0.924056\pi\)
\(402\) −0.178511 0.0739417i −0.00890332 0.00368788i
\(403\) 10.7580 + 25.9722i 0.535896 + 1.29377i
\(404\) 23.4962i 1.16898i
\(405\) 0.987720 0.409127i 0.0490802 0.0203297i
\(406\) −0.169933 0.169933i −0.00843362 0.00843362i
\(407\) −2.72734 −0.135189
\(408\) −0.101394 + 1.13584i −0.00501976 + 0.0562324i
\(409\) 11.8377 0.585339 0.292669 0.956214i \(-0.405457\pi\)
0.292669 + 0.956214i \(0.405457\pi\)
\(410\) 0.0792036 + 0.0792036i 0.00391159 + 0.00391159i
\(411\) −4.79146 + 1.98469i −0.236345 + 0.0978975i
\(412\) 22.6927i 1.11799i
\(413\) −1.12864 2.72478i −0.0555367 0.134077i
\(414\) −2.12384 0.879725i −0.104381 0.0432361i
\(415\) −0.561186 + 1.35482i −0.0275476 + 0.0665057i
\(416\) 4.98977 4.98977i 0.244644 0.244644i
\(417\) 1.57909 1.57909i 0.0773284 0.0773284i
\(418\) 2.26207 5.46112i 0.110641 0.267112i
\(419\) −7.63120 3.16095i −0.372808 0.154422i 0.188409 0.982091i \(-0.439667\pi\)
−0.561218 + 0.827668i \(0.689667\pi\)
\(420\) 0.0340896 + 0.0822995i 0.00166340 + 0.00401581i
\(421\) 7.16292i 0.349099i −0.984648 0.174550i \(-0.944153\pi\)
0.984648 0.174550i \(-0.0558470\pi\)
\(422\) 1.62471 0.672976i 0.0790895 0.0327599i
\(423\) 13.0349 + 13.0349i 0.633779 + 0.633779i
\(424\) 0.728880 0.0353975
\(425\) 9.51768 18.2047i 0.461675 0.883060i
\(426\) −1.01177 −0.0490204
\(427\) −6.40472 6.40472i −0.309946 0.309946i
\(428\) −0.539190 + 0.223340i −0.0260627 + 0.0107955i
\(429\) 3.14135i 0.151666i
\(430\) 0.0108274 + 0.0261397i 0.000522145 + 0.00126057i
\(431\) −28.7685 11.9163i −1.38573 0.573988i −0.439722 0.898134i \(-0.644923\pi\)
−0.946007 + 0.324146i \(0.894923\pi\)
\(432\) 2.76490 6.67505i 0.133026 0.321154i
\(433\) −19.2154 + 19.2154i −0.923434 + 0.923434i −0.997270 0.0738367i \(-0.976476\pi\)
0.0738367 + 0.997270i \(0.476476\pi\)
\(434\) −1.54726 + 1.54726i −0.0742710 + 0.0742710i
\(435\) 0.0181261 0.0437604i 0.000869081 0.00209815i
\(436\) −0.990047 0.410091i −0.0474147 0.0196398i
\(437\) 11.8448 + 28.5960i 0.566615 + 1.36793i
\(438\) 0.924008i 0.0441508i
\(439\) 1.49314 0.618478i 0.0712636 0.0295183i −0.346767 0.937951i \(-0.612721\pi\)
0.418031 + 0.908433i \(0.362721\pi\)
\(440\) 0.265351 + 0.265351i 0.0126501 + 0.0126501i
\(441\) −17.1007 −0.814320
\(442\) −1.15810 + 2.21513i −0.0550851 + 0.105363i
\(443\) 12.8517 0.610604 0.305302 0.952256i \(-0.401243\pi\)
0.305302 + 0.952256i \(0.401243\pi\)
\(444\) −0.369486 0.369486i −0.0175350 0.0175350i
\(445\) 1.45238 0.601595i 0.0688494 0.0285184i
\(446\) 3.80932i 0.180377i
\(447\) −0.716728 1.73034i −0.0339001 0.0818421i
\(448\) −6.67839 2.76628i −0.315524 0.130694i
\(449\) −0.490889 + 1.18511i −0.0231665 + 0.0559288i −0.935039 0.354544i \(-0.884636\pi\)
0.911873 + 0.410473i \(0.134636\pi\)
\(450\) 2.16764 2.16764i 0.102183 0.102183i
\(451\) 9.38841 9.38841i 0.442083 0.442083i
\(452\) 1.36699 3.30020i 0.0642977 0.155228i
\(453\) −3.61845 1.49881i −0.170010 0.0704203i
\(454\) −1.96059 4.73327i −0.0920148 0.222143i
\(455\) 0.395040i 0.0185197i
\(456\) 2.11682 0.876816i 0.0991292 0.0410607i
\(457\) −9.12503 9.12503i −0.426851 0.426851i 0.460703 0.887554i \(-0.347597\pi\)
−0.887554 + 0.460703i \(0.847597\pi\)
\(458\) 0.664844 0.0310661
\(459\) −0.710026 + 7.95386i −0.0331412 + 0.371254i
\(460\) −0.971248 −0.0452847
\(461\) 12.5781 + 12.5781i 0.585822 + 0.585822i 0.936497 0.350675i \(-0.114048\pi\)
−0.350675 + 0.936497i \(0.614048\pi\)
\(462\) −0.225900 + 0.0935710i −0.0105098 + 0.00435332i
\(463\) 9.44043i 0.438734i 0.975642 + 0.219367i \(0.0703992\pi\)
−0.975642 + 0.219367i \(0.929601\pi\)
\(464\) 1.54683 + 3.73439i 0.0718099 + 0.173365i
\(465\) −0.398445 0.165041i −0.0184774 0.00765360i
\(466\) −0.254969 + 0.615549i −0.0118112 + 0.0285148i
\(467\) −29.8659 + 29.8659i −1.38203 + 1.38203i −0.541020 + 0.841010i \(0.681962\pi\)
−0.841010 + 0.541020i \(0.818038\pi\)
\(468\) 11.3901 11.3901i 0.526508 0.526508i
\(469\) −1.10220 + 2.66095i −0.0508949 + 0.122871i
\(470\) −0.166623 0.0690173i −0.00768573 0.00318353i
\(471\) 1.73718 + 4.19393i 0.0800452 + 0.193246i
\(472\) 2.38036i 0.109565i
\(473\) 3.09848 1.28343i 0.142468 0.0590122i
\(474\) 0.466334 + 0.466334i 0.0214194 + 0.0214194i
\(475\) −41.2747 −1.89381
\(476\) 8.36872 + 0.747060i 0.383580 + 0.0342414i
\(477\) 2.50524 0.114707
\(478\) 0.118526 + 0.118526i 0.00542126 + 0.00542126i
\(479\) 18.4299 7.63393i 0.842086 0.348803i 0.0804102 0.996762i \(-0.474377\pi\)
0.761676 + 0.647959i \(0.224377\pi\)
\(480\) 0.108257i 0.00494122i
\(481\) −0.886770 2.14085i −0.0404332 0.0976144i
\(482\) −0.145399 0.0602262i −0.00662274 0.00274323i
\(483\) 0.489964 1.18288i 0.0222942 0.0538229i
\(484\) 0.342451 0.342451i 0.0155660 0.0155660i
\(485\) 0.737390 0.737390i 0.0334832 0.0334832i
\(486\) −0.688217 + 1.66150i −0.0312182 + 0.0753673i
\(487\) −6.60416 2.73553i −0.299263 0.123959i 0.227999 0.973661i \(-0.426782\pi\)
−0.527263 + 0.849702i \(0.676782\pi\)
\(488\) −2.79758 6.75395i −0.126640 0.305737i
\(489\) 2.38848i 0.108011i
\(490\) 0.154570 0.0640251i 0.00698277 0.00289236i
\(491\) −11.8204 11.8204i −0.533448 0.533448i 0.388149 0.921597i \(-0.373115\pi\)
−0.921597 + 0.388149i \(0.873115\pi\)
\(492\) 2.54378 0.114683
\(493\) −2.86562 3.42738i −0.129061 0.154361i
\(494\) 5.02224 0.225961
\(495\) 0.912040 + 0.912040i 0.0409932 + 0.0409932i
\(496\) 34.0022 14.0842i 1.52674 0.632397i
\(497\) 15.0818i 0.676511i
\(498\) −0.295121 0.712485i −0.0132247 0.0319272i
\(499\) 33.9249 + 14.0521i 1.51869 + 0.629060i 0.977328 0.211733i \(-0.0679106\pi\)
0.541357 + 0.840793i \(0.317911\pi\)
\(500\) 0.993035 2.39740i 0.0444099 0.107215i
\(501\) −2.15160 + 2.15160i −0.0961263 + 0.0961263i
\(502\) 0.226345 0.226345i 0.0101023 0.0101023i
\(503\) 13.3339 32.1909i 0.594529 1.43532i −0.284558 0.958659i \(-0.591847\pi\)
0.879087 0.476661i \(-0.158153\pi\)
\(504\) 2.34355 + 0.970729i 0.104390 + 0.0432397i
\(505\) 0.611724 + 1.47683i 0.0272213 + 0.0657181i
\(506\) 2.66594i 0.118515i
\(507\) 1.48217 0.613935i 0.0658254 0.0272658i
\(508\) 8.41017 + 8.41017i 0.373141 + 0.373141i
\(509\) −10.0942 −0.447419 −0.223710 0.974656i \(-0.571817\pi\)
−0.223710 + 0.974656i \(0.571817\pi\)
\(510\) −0.0114665 0.0365923i −0.000507745 0.00162033i
\(511\) 13.7736 0.609308
\(512\) −10.9714 10.9714i −0.484871 0.484871i
\(513\) 14.8233 6.14002i 0.654465 0.271088i
\(514\) 0.417445i 0.0184127i
\(515\) 0.590804 + 1.42633i 0.0260339 + 0.0628515i
\(516\) 0.593638 + 0.245893i 0.0261334 + 0.0108248i
\(517\) −8.18097 + 19.7506i −0.359799 + 0.868631i
\(518\) 0.127539 0.127539i 0.00560373 0.00560373i
\(519\) 4.55216 4.55216i 0.199818 0.199818i
\(520\) −0.122013 + 0.294567i −0.00535064 + 0.0129176i
\(521\) 13.1679 + 5.45434i 0.576898 + 0.238959i 0.652003 0.758217i \(-0.273929\pi\)
−0.0751048 + 0.997176i \(0.523929\pi\)
\(522\) −0.255124 0.615925i −0.0111665 0.0269583i
\(523\) 24.1989i 1.05814i −0.848577 0.529072i \(-0.822540\pi\)
0.848577 0.529072i \(-0.177460\pi\)
\(524\) 12.5611 5.20299i 0.548735 0.227294i
\(525\) 1.20727 + 1.20727i 0.0526896 + 0.0526896i
\(526\) −2.81950 −0.122936
\(527\) −31.2068 + 26.0919i −1.35939 + 1.13658i
\(528\) 4.11257 0.178977
\(529\) −6.39253 6.39253i −0.277936 0.277936i
\(530\) −0.0226443 + 0.00937959i −0.000983607 + 0.000407423i
\(531\) 8.18155i 0.355049i
\(532\) −6.46027 15.5965i −0.280088 0.676193i
\(533\) 10.4221 + 4.31696i 0.451430 + 0.186988i
\(534\) −0.316371 + 0.763788i −0.0136907 + 0.0330523i
\(535\) 0.0280756 0.0280756i 0.00121382 0.00121382i
\(536\) −1.64374 + 1.64374i −0.0709989 + 0.0709989i
\(537\) 1.01479 2.44991i 0.0437913 0.105722i
\(538\) 3.77371 + 1.56312i 0.162696 + 0.0673910i
\(539\) −7.58922 18.3220i −0.326891 0.789184i
\(540\) 0.503467i 0.0216658i
\(541\) 23.0182 9.53444i 0.989629 0.409918i 0.171645 0.985159i \(-0.445092\pi\)
0.817984 + 0.575241i \(0.195092\pi\)
\(542\) 2.61424 + 2.61424i 0.112291 + 0.112291i
\(543\) 2.08674 0.0895508
\(544\) 9.04865 + 4.73076i 0.387958 + 0.202830i
\(545\) 0.0729052 0.00312291
\(546\) −0.146899 0.146899i −0.00628669 0.00628669i
\(547\) 33.7875 13.9952i 1.44465 0.598393i 0.483728 0.875218i \(-0.339282\pi\)
0.960920 + 0.276825i \(0.0892823\pi\)
\(548\) 30.8406i 1.31744i
\(549\) −9.61556 23.2140i −0.410382 0.990750i
\(550\) 3.28443 + 1.36045i 0.140048 + 0.0580100i
\(551\) −3.43506 + 8.29296i −0.146338 + 0.353292i
\(552\) 0.730697 0.730697i 0.0311005 0.0311005i
\(553\) 6.95134 6.95134i 0.295601 0.295601i
\(554\) 0.0508144 0.122677i 0.00215889 0.00521203i
\(555\) 0.0328432 + 0.0136041i 0.00139412 + 0.000577462i
\(556\) −5.08196 12.2689i −0.215523 0.520319i
\(557\) 5.29376i 0.224304i −0.993691 0.112152i \(-0.964226\pi\)
0.993691 0.112152i \(-0.0357743\pi\)
\(558\) −5.60809 + 2.32295i −0.237409 + 0.0983382i
\(559\) 2.01488 + 2.01488i 0.0852204 + 0.0852204i
\(560\) 0.517176 0.0218547
\(561\) −4.33747 + 1.35918i −0.183128 + 0.0573847i
\(562\) −5.61143 −0.236704
\(563\) 4.67853 + 4.67853i 0.197177 + 0.197177i 0.798789 0.601612i \(-0.205475\pi\)
−0.601612 + 0.798789i \(0.705475\pi\)
\(564\) −3.78402 + 1.56739i −0.159336 + 0.0659992i
\(565\) 0.243020i 0.0102239i
\(566\) 1.32282 + 3.19356i 0.0556021 + 0.134235i
\(567\) 7.74281 + 3.20717i 0.325167 + 0.134689i
\(568\) −4.65822 + 11.2459i −0.195455 + 0.471869i
\(569\) −0.410189 + 0.410189i −0.0171960 + 0.0171960i −0.715653 0.698456i \(-0.753871\pi\)
0.698456 + 0.715653i \(0.253871\pi\)
\(570\) −0.0544806 + 0.0544806i −0.00228194 + 0.00228194i
\(571\) 12.6569 30.5565i 0.529676 1.27875i −0.402059 0.915614i \(-0.631705\pi\)
0.931735 0.363138i \(-0.118295\pi\)
\(572\) 17.2584 + 7.14867i 0.721611 + 0.298901i
\(573\) −3.23487 7.80966i −0.135139 0.326253i
\(574\) 0.878061i 0.0366495i
\(575\) −17.1982 + 7.12373i −0.717215 + 0.297080i
\(576\) −14.1795 14.1795i −0.590814 0.590814i
\(577\) −17.9672 −0.747984 −0.373992 0.927432i \(-0.622011\pi\)
−0.373992 + 0.927432i \(0.622011\pi\)
\(578\) −3.55965 0.640632i −0.148062 0.0266468i
\(579\) 3.05960 0.127153
\(580\) −0.199168 0.199168i −0.00827001 0.00827001i
\(581\) −10.6206 + 4.39918i −0.440615 + 0.182509i
\(582\) 0.548409i 0.0227323i
\(583\) 1.11181 + 2.68415i 0.0460465 + 0.111166i
\(584\) 10.2705 + 4.25417i 0.424995 + 0.176039i
\(585\) −0.419373 + 1.01246i −0.0173389 + 0.0418599i
\(586\) −3.80778 + 3.80778i −0.157298 + 0.157298i
\(587\) −1.26028 + 1.26028i −0.0520172 + 0.0520172i −0.732637 0.680620i \(-0.761711\pi\)
0.680620 + 0.732637i \(0.261711\pi\)
\(588\) 1.45402 3.51031i 0.0599627 0.144763i
\(589\) 75.5087 + 31.2767i 3.11128 + 1.28874i
\(590\) 0.0306317 + 0.0739514i 0.00126109 + 0.00304453i
\(591\) 3.61289i 0.148614i
\(592\) −2.80275 + 1.16094i −0.115192 + 0.0477142i
\(593\) −32.5955 32.5955i −1.33854 1.33854i −0.897478 0.441059i \(-0.854603\pi\)
−0.441059 0.897478i \(-0.645397\pi\)
\(594\) −1.38194 −0.0567018
\(595\) −0.545458 + 0.170924i −0.0223616 + 0.00700719i
\(596\) −11.1374 −0.456207
\(597\) −3.58242 3.58242i −0.146619 0.146619i
\(598\) 2.09265 0.866805i 0.0855749 0.0354463i
\(599\) 20.0848i 0.820643i 0.911941 + 0.410321i \(0.134583\pi\)
−0.911941 + 0.410321i \(0.865417\pi\)
\(600\) 0.527335 + 1.27310i 0.0215284 + 0.0519741i
\(601\) −8.66060 3.58734i −0.353273 0.146331i 0.198987 0.980002i \(-0.436235\pi\)
−0.552261 + 0.833671i \(0.686235\pi\)
\(602\) −0.0848770 + 0.204911i −0.00345933 + 0.00835156i
\(603\) −5.64972 + 5.64972i −0.230074 + 0.230074i
\(604\) −16.4688 + 16.4688i −0.670106 + 0.670106i
\(605\) −0.0126087 + 0.0304402i −0.000512618 + 0.00123757i
\(606\) −0.776647 0.321698i −0.0315491 0.0130681i
\(607\) −6.95391 16.7882i −0.282251 0.681413i 0.717637 0.696417i \(-0.245224\pi\)
−0.999887 + 0.0150044i \(0.995224\pi\)
\(608\) 20.5156i 0.832016i
\(609\) 0.343040 0.142092i 0.0139007 0.00575786i
\(610\) 0.173826 + 0.173826i 0.00703803 + 0.00703803i
\(611\) −18.1634 −0.734812
\(612\) 20.6553 + 10.7989i 0.834941 + 0.436518i
\(613\) 1.09456 0.0442087 0.0221044 0.999756i \(-0.492963\pi\)
0.0221044 + 0.999756i \(0.492963\pi\)
\(614\) 1.87304 + 1.87304i 0.0755899 + 0.0755899i
\(615\) −0.159887 + 0.0662274i −0.00644727 + 0.00267055i
\(616\) 2.94172i 0.118525i
\(617\) 13.2425 + 31.9703i 0.533124 + 1.28707i 0.929444 + 0.368962i \(0.120287\pi\)
−0.396321 + 0.918112i \(0.629713\pi\)
\(618\) −0.750087 0.310696i −0.0301729 0.0124980i
\(619\) 10.9143 26.3495i 0.438684 1.05908i −0.537719 0.843124i \(-0.680714\pi\)
0.976404 0.215954i \(-0.0692860\pi\)
\(620\) −1.81346 + 1.81346i −0.0728302 + 0.0728302i
\(621\) 5.11680 5.11680i 0.205330 0.205330i
\(622\) 1.34621 3.25003i 0.0539779 0.130314i
\(623\) 11.3853 + 4.71595i 0.456142 + 0.188940i
\(624\) 1.33716 + 3.22820i 0.0535294 + 0.129231i
\(625\) 24.7350i 0.989401i
\(626\) −3.78308 + 1.56700i −0.151202 + 0.0626300i
\(627\) 6.45787 + 6.45787i 0.257902 + 0.257902i
\(628\) 26.9945 1.07720
\(629\) 2.57233 2.15072i 0.102566 0.0857547i
\(630\) −0.0852995 −0.00339841
\(631\) 9.11639 + 9.11639i 0.362918 + 0.362918i 0.864886 0.501968i \(-0.167391\pi\)
−0.501968 + 0.864886i \(0.667391\pi\)
\(632\) 7.33038 3.03634i 0.291587 0.120779i
\(633\) 2.71705i 0.107993i
\(634\) −1.41251 3.41010i −0.0560979 0.135432i
\(635\) −0.747572 0.309654i −0.0296665 0.0122883i
\(636\) −0.213012 + 0.514256i −0.00844647 + 0.0203916i
\(637\) 11.9144 11.9144i 0.472068 0.472068i
\(638\) 0.546688 0.546688i 0.0216436 0.0216436i
\(639\) −16.0108 + 38.6535i −0.633377 + 1.52911i
\(640\) 0.789784 + 0.327139i 0.0312189 + 0.0129313i
\(641\) 12.8904 + 31.1201i 0.509140 + 1.22917i 0.944380 + 0.328857i \(0.106663\pi\)
−0.435240 + 0.900314i \(0.643337\pi\)
\(642\) 0.0208803i 0.000824081i
\(643\) 22.4989 9.31937i 0.887272 0.367520i 0.107959 0.994155i \(-0.465568\pi\)
0.779313 + 0.626635i \(0.215568\pi\)
\(644\) −5.38369 5.38369i −0.212147 0.212147i
\(645\) −0.0437143 −0.00172125
\(646\) 2.17300 + 6.93455i 0.0854956 + 0.272836i
\(647\) −18.8348 −0.740473 −0.370236 0.928938i \(-0.620723\pi\)
−0.370236 + 0.928938i \(0.620723\pi\)
\(648\) 4.78295 + 4.78295i 0.187892 + 0.187892i
\(649\) 8.76584 3.63093i 0.344089 0.142526i
\(650\) 3.02048i 0.118473i
\(651\) −1.29377 3.12344i −0.0507068 0.122417i
\(652\) 13.1222 + 5.43539i 0.513905 + 0.212866i
\(653\) −16.4018 + 39.5974i −0.641852 + 1.54957i 0.182327 + 0.983238i \(0.441637\pi\)
−0.824179 + 0.566330i \(0.808363\pi\)
\(654\) −0.0271104 + 0.0271104i −0.00106010 + 0.00106010i
\(655\) −0.654057 + 0.654057i −0.0255561 + 0.0255561i
\(656\) 5.65166 13.6443i 0.220660 0.532721i
\(657\) 35.3007 + 14.6220i 1.37721 + 0.570459i
\(658\) −0.541032 1.30617i −0.0210916 0.0509196i
\(659\) 18.8170i 0.733006i 0.930417 + 0.366503i \(0.119445\pi\)
−0.930417 + 0.366503i \(0.880555\pi\)
\(660\) −0.264765 + 0.109669i −0.0103060 + 0.00426887i
\(661\) 14.4767 + 14.4767i 0.563078 + 0.563078i 0.930181 0.367102i \(-0.119650\pi\)
−0.367102 + 0.930181i \(0.619650\pi\)
\(662\) 2.76226 0.107358
\(663\) −2.47719 2.96281i −0.0962061 0.115066i
\(664\) −9.27811 −0.360060
\(665\) 0.812108 + 0.812108i 0.0314922 + 0.0314922i
\(666\) 0.462267 0.191477i 0.0179125 0.00741959i
\(667\) 4.04835i 0.156753i
\(668\) 6.92445 + 16.7171i 0.267915 + 0.646804i
\(669\) −5.43752 2.25230i −0.210227 0.0870788i
\(670\) 0.0299142 0.0722192i 0.00115569 0.00279007i
\(671\) 20.6045 20.6045i 0.795429 0.795429i
\(672\) −0.600073 + 0.600073i −0.0231483 + 0.0231483i
\(673\) −0.499976 + 1.20705i −0.0192727 + 0.0465284i −0.933223 0.359298i \(-0.883016\pi\)
0.913950 + 0.405826i \(0.133016\pi\)
\(674\) 5.70902 + 2.36475i 0.219903 + 0.0910869i
\(675\) 3.69273 + 8.91504i 0.142133 + 0.343140i
\(676\) 9.54008i 0.366926i
\(677\) −11.4191 + 4.72993i −0.438870 + 0.181786i −0.591168 0.806549i \(-0.701333\pi\)
0.152297 + 0.988335i \(0.451333\pi\)
\(678\) −0.0903692 0.0903692i −0.00347061 0.00347061i
\(679\) 8.17479 0.313720
\(680\) −0.459520 0.0410205i −0.0176218 0.00157306i
\(681\) 7.91560 0.303327
\(682\) −4.97768 4.97768i −0.190605 0.190605i
\(683\) 24.5166 10.1551i 0.938102 0.388575i 0.139356 0.990242i \(-0.455497\pi\)
0.798746 + 0.601668i \(0.205497\pi\)
\(684\) 46.8308i 1.79062i
\(685\) −0.802934 1.93845i −0.0306785 0.0740645i
\(686\) 2.64606 + 1.09604i 0.101027 + 0.0418468i
\(687\) −0.393095 + 0.949015i −0.0149975 + 0.0362072i
\(688\) 2.63783 2.63783i 0.100566 0.100566i
\(689\) −1.74545 + 1.74545i −0.0664964 + 0.0664964i
\(690\) −0.0132978 + 0.0321038i −0.000506239 + 0.00122217i
\(691\) −35.3460 14.6408i −1.34462 0.556962i −0.409834 0.912160i \(-0.634413\pi\)
−0.934791 + 0.355198i \(0.884413\pi\)
\(692\) −14.6502 35.3686i −0.556915 1.34451i
\(693\) 10.1110i 0.384085i
\(694\) 2.96854 1.22961i 0.112684 0.0466753i
\(695\) 0.638844 + 0.638844i 0.0242327 + 0.0242327i
\(696\) 0.299680 0.0113593
\(697\) −1.45135 + 16.2583i −0.0549737 + 0.615827i
\(698\) 5.10248 0.193132
\(699\) −0.727897 0.727897i −0.0275316 0.0275316i
\(700\) 9.38004 3.88534i 0.354532 0.146852i
\(701\) 26.3920i 0.996813i 0.866943 + 0.498407i \(0.166081\pi\)
−0.866943 + 0.498407i \(0.833919\pi\)
\(702\) −0.449326 1.08477i −0.0169587 0.0409420i
\(703\) −6.22408 2.57810i −0.234745 0.0972347i
\(704\) 8.89937 21.4850i 0.335407 0.809745i
\(705\) 0.197034 0.197034i 0.00742073 0.00742073i
\(706\) −5.22274 + 5.22274i −0.196560 + 0.196560i
\(707\) −4.79534 + 11.5770i −0.180347 + 0.435397i
\(708\) 1.67945 + 0.695650i 0.0631175 + 0.0261441i
\(709\) 9.52199 + 22.9881i 0.357606 + 0.863337i 0.995636 + 0.0933251i \(0.0297496\pi\)
−0.638030 + 0.770012i \(0.720250\pi\)
\(710\) 0.409326i 0.0153617i
\(711\) 25.1953 10.4362i 0.944896 0.391389i
\(712\) 7.03302 + 7.03302i 0.263573 + 0.263573i
\(713\) 36.8609 1.38045
\(714\) 0.139274 0.266393i 0.00521218 0.00996949i
\(715\) −1.27088 −0.0475281
\(716\) −11.1504 11.1504i −0.416710 0.416710i
\(717\) −0.239267 + 0.0991076i −0.00893559 + 0.00370124i
\(718\) 2.00174i 0.0747044i
\(719\) −2.38620 5.76081i −0.0889904 0.214842i 0.873118 0.487509i \(-0.162094\pi\)
−0.962108 + 0.272667i \(0.912094\pi\)
\(720\) 1.32548 + 0.549033i 0.0493978 + 0.0204612i
\(721\) −4.63135 + 11.1811i −0.172481 + 0.416405i
\(722\) 7.46617 7.46617i 0.277862 0.277862i
\(723\) 0.171937 0.171937i 0.00639440 0.00639440i
\(724\) 4.74874 11.4645i 0.176486 0.426074i
\(725\) −4.98756 2.06591i −0.185233 0.0767261i
\(726\) −0.00663077 0.0160081i −0.000246091 0.000594116i
\(727\) 17.0963i 0.634068i 0.948414 + 0.317034i \(0.102687\pi\)
−0.948414 + 0.317034i \(0.897313\pi\)
\(728\) −2.30913 + 0.956472i −0.0855820 + 0.0354492i
\(729\) 15.0890 + 15.0890i 0.558850 + 0.558850i
\(730\) −0.373821 −0.0138357
\(731\) −1.91029 + 3.65387i −0.0706547 + 0.135143i
\(732\) 5.58278 0.206346
\(733\) −1.67138 1.67138i −0.0617338 0.0617338i 0.675566 0.737300i \(-0.263899\pi\)
−0.737300 + 0.675566i \(0.763899\pi\)
\(734\) 6.78117 2.80885i 0.250298 0.103677i
\(735\) 0.258493i 0.00953465i
\(736\) −3.54084 8.54836i −0.130517 0.315097i
\(737\) −8.56051 3.54588i −0.315330 0.130614i
\(738\) −0.932147 + 2.25040i −0.0343128 + 0.0828384i
\(739\) −30.7155 + 30.7155i −1.12989 + 1.12989i −0.139691 + 0.990195i \(0.544611\pi\)
−0.990195 + 0.139691i \(0.955389\pi\)
\(740\) 0.149481 0.149481i 0.00549502 0.00549502i
\(741\) −2.96945 + 7.16888i −0.109085 + 0.263355i
\(742\) −0.177510 0.0735272i −0.00651661 0.00269927i
\(743\) 14.3830 + 34.7236i 0.527660 + 1.27388i 0.933052 + 0.359741i \(0.117135\pi\)
−0.405392 + 0.914143i \(0.632865\pi\)
\(744\) 2.72863i 0.100036i
\(745\) 0.700032 0.289963i 0.0256472 0.0106234i
\(746\) 1.97685 + 1.97685i 0.0723775 + 0.0723775i
\(747\) −31.8898 −1.16679
\(748\) −2.40336 + 26.9229i −0.0878754 + 0.984399i
\(749\) 0.311250 0.0113728
\(750\) −0.0656479 0.0656479i −0.00239712 0.00239712i
\(751\) −22.6903 + 9.39863i −0.827980 + 0.342961i −0.756103 0.654453i \(-0.772899\pi\)
−0.0718775 + 0.997413i \(0.522899\pi\)
\(752\) 23.7791i 0.867133i
\(753\) 0.189262 + 0.456919i 0.00689710 + 0.0166511i
\(754\) 0.606879 + 0.251377i 0.0221012 + 0.00915462i
\(755\) 0.606366 1.46390i 0.0220679 0.0532766i
\(756\) −2.79075 + 2.79075i −0.101498 + 0.101498i
\(757\) −12.6091 + 12.6091i −0.458284 + 0.458284i −0.898092 0.439808i \(-0.855047\pi\)
0.439808 + 0.898092i \(0.355047\pi\)
\(758\) −2.16495 + 5.22664i −0.0786344 + 0.189840i
\(759\) 3.80542 + 1.57626i 0.138128 + 0.0572145i
\(760\)