Properties

Label 731.2.m.c.87.14
Level 731
Weight 2
Character 731.87
Analytic conductor 5.837
Analytic rank 0
Dimension 128
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{8})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 87.14
Character \(\chi\) = 731.87
Dual form 731.2.m.c.689.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.177484 - 0.177484i) q^{2} +(0.604214 - 0.250274i) q^{3} -1.93700i q^{4} +(1.47313 + 3.55644i) q^{5} +(-0.151658 - 0.0628188i) q^{6} +(-0.253865 + 0.612883i) q^{7} +(-0.698755 + 0.698755i) q^{8} +(-1.81888 + 1.81888i) q^{9} +O(q^{10})\) \(q+(-0.177484 - 0.177484i) q^{2} +(0.604214 - 0.250274i) q^{3} -1.93700i q^{4} +(1.47313 + 3.55644i) q^{5} +(-0.151658 - 0.0628188i) q^{6} +(-0.253865 + 0.612883i) q^{7} +(-0.698755 + 0.698755i) q^{8} +(-1.81888 + 1.81888i) q^{9} +(0.369755 - 0.892669i) q^{10} +(-0.105411 - 0.0436628i) q^{11} +(-0.484780 - 1.17036i) q^{12} +3.75929i q^{13} +(0.153834 - 0.0637201i) q^{14} +(1.78017 + 1.78017i) q^{15} -3.62596 q^{16} +(-1.28043 + 3.91925i) q^{17} +0.645645 q^{18} +(2.22672 + 2.22672i) q^{19} +(6.88882 - 2.85344i) q^{20} +0.433849i q^{21} +(0.0109594 + 0.0264583i) q^{22} +(-1.63252 - 0.676210i) q^{23} +(-0.247318 + 0.597078i) q^{24} +(-6.94264 + 6.94264i) q^{25} +(0.667214 - 0.667214i) q^{26} +(-1.39460 + 3.36686i) q^{27} +(1.18715 + 0.491735i) q^{28} +(-2.58202 - 6.23354i) q^{29} -0.631903i q^{30} +(1.68458 - 0.697775i) q^{31} +(2.04106 + 2.04106i) q^{32} -0.0746187 q^{33} +(0.922860 - 0.468349i) q^{34} -2.55366 q^{35} +(3.52317 + 3.52317i) q^{36} +(2.01307 - 0.833839i) q^{37} -0.790415i q^{38} +(0.940851 + 2.27142i) q^{39} +(-3.51443 - 1.45573i) q^{40} +(3.49689 - 8.44224i) q^{41} +(0.0770012 - 0.0770012i) q^{42} +(-0.707107 + 0.707107i) q^{43} +(-0.0845748 + 0.204182i) q^{44} +(-9.14819 - 3.78931i) q^{45} +(0.169729 + 0.409762i) q^{46} -0.580038i q^{47} +(-2.19086 + 0.907483i) q^{48} +(4.63857 + 4.63857i) q^{49} +2.46442 q^{50} +(0.207232 + 2.68852i) q^{51} +7.28174 q^{52} +(2.58071 + 2.58071i) q^{53} +(0.845083 - 0.350045i) q^{54} -0.439210i q^{55} +(-0.250866 - 0.605644i) q^{56} +(1.90271 + 0.788127i) q^{57} +(-0.648088 + 1.56462i) q^{58} +(9.08685 - 9.08685i) q^{59} +(3.44818 - 3.44818i) q^{60} +(-4.35633 + 10.5171i) q^{61} +(-0.422830 - 0.175142i) q^{62} +(-0.653013 - 1.57651i) q^{63} +6.52741i q^{64} +(-13.3697 + 5.53791i) q^{65} +(0.0132436 + 0.0132436i) q^{66} +8.10735 q^{67} +(7.59158 + 2.48019i) q^{68} -1.15563 q^{69} +(0.453234 + 0.453234i) q^{70} +(10.4370 - 4.32313i) q^{71} -2.54191i q^{72} +(0.675324 + 1.63038i) q^{73} +(-0.505281 - 0.209294i) q^{74} +(-2.45728 + 5.93241i) q^{75} +(4.31316 - 4.31316i) q^{76} +(0.0535204 - 0.0535204i) q^{77} +(0.236154 - 0.570126i) q^{78} +(10.6520 + 4.41221i) q^{79} +(-5.34150 - 12.8955i) q^{80} -5.33353i q^{81} +(-2.11901 + 0.877721i) q^{82} +(-3.05854 - 3.05854i) q^{83} +0.840364 q^{84} +(-15.8248 + 1.21978i) q^{85} +0.251000 q^{86} +(-3.12018 - 3.12018i) q^{87} +(0.104166 - 0.0431471i) q^{88} -8.74618i q^{89} +(0.951117 + 2.29620i) q^{90} +(-2.30400 - 0.954350i) q^{91} +(-1.30982 + 3.16218i) q^{92} +(0.843211 - 0.843211i) q^{93} +(-0.102948 + 0.102948i) q^{94} +(-4.63896 + 11.1994i) q^{95} +(1.74406 + 0.722414i) q^{96} +(2.48228 + 5.99275i) q^{97} -1.64654i q^{98} +(0.271148 - 0.112313i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} + O(q^{10}) \) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} - 8q^{10} - 4q^{11} + 12q^{12} + 12q^{14} - 12q^{15} - 144q^{16} - 12q^{17} + 64q^{18} - 28q^{19} - 8q^{20} - 12q^{22} + 16q^{23} - 16q^{24} - 20q^{25} + 16q^{26} - 8q^{27} + 20q^{28} + 12q^{31} - 4q^{32} - 104q^{33} + 20q^{34} + 32q^{35} - 96q^{36} - 12q^{37} + 8q^{39} + 216q^{40} + 24q^{41} - 4q^{42} + 24q^{44} - 28q^{45} - 48q^{46} + 28q^{48} - 80q^{50} - 20q^{51} + 56q^{52} - 36q^{53} - 12q^{54} - 8q^{56} + 72q^{57} - 32q^{58} + 48q^{59} - 40q^{60} - 76q^{61} - 44q^{62} + 36q^{65} - 68q^{66} - 48q^{67} + 32q^{68} + 216q^{69} - 196q^{70} + 4q^{71} + 20q^{73} + 88q^{74} + 80q^{75} + 72q^{76} + 28q^{77} - 120q^{78} + 68q^{79} - 68q^{80} + 28q^{82} - 36q^{83} - 152q^{84} + 28q^{85} - 24q^{86} - 56q^{87} + 20q^{88} - 112q^{90} + 96q^{91} - 28q^{92} + 24q^{93} - 36q^{94} - 108q^{95} + 272q^{96} + 8q^{97} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.177484 0.177484i −0.125500 0.125500i 0.641567 0.767067i \(-0.278285\pi\)
−0.767067 + 0.641567i \(0.778285\pi\)
\(3\) 0.604214 0.250274i 0.348843 0.144496i −0.201380 0.979513i \(-0.564543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(4\) 1.93700i 0.968499i
\(5\) 1.47313 + 3.55644i 0.658802 + 1.59049i 0.799656 + 0.600459i \(0.205015\pi\)
−0.140854 + 0.990030i \(0.544985\pi\)
\(6\) −0.151658 0.0628188i −0.0619142 0.0256457i
\(7\) −0.253865 + 0.612883i −0.0959518 + 0.231648i −0.964566 0.263840i \(-0.915011\pi\)
0.868615 + 0.495488i \(0.165011\pi\)
\(8\) −0.698755 + 0.698755i −0.247047 + 0.247047i
\(9\) −1.81888 + 1.81888i −0.606294 + 0.606294i
\(10\) 0.369755 0.892669i 0.116927 0.282287i
\(11\) −0.105411 0.0436628i −0.0317827 0.0131648i 0.366735 0.930325i \(-0.380475\pi\)
−0.398518 + 0.917160i \(0.630475\pi\)
\(12\) −0.484780 1.17036i −0.139944 0.337855i
\(13\) 3.75929i 1.04264i 0.853362 + 0.521319i \(0.174560\pi\)
−0.853362 + 0.521319i \(0.825440\pi\)
\(14\) 0.153834 0.0637201i 0.0411139 0.0170299i
\(15\) 1.78017 + 1.78017i 0.459637 + 0.459637i
\(16\) −3.62596 −0.906490
\(17\) −1.28043 + 3.91925i −0.310549 + 0.950557i
\(18\) 0.645645 0.152180
\(19\) 2.22672 + 2.22672i 0.510845 + 0.510845i 0.914785 0.403940i \(-0.132360\pi\)
−0.403940 + 0.914785i \(0.632360\pi\)
\(20\) 6.88882 2.85344i 1.54039 0.638049i
\(21\) 0.433849i 0.0946735i
\(22\) 0.0109594 + 0.0264583i 0.00233655 + 0.00564093i
\(23\) −1.63252 0.676210i −0.340403 0.141000i 0.205932 0.978566i \(-0.433977\pi\)
−0.546335 + 0.837567i \(0.683977\pi\)
\(24\) −0.247318 + 0.597078i −0.0504835 + 0.121878i
\(25\) −6.94264 + 6.94264i −1.38853 + 1.38853i
\(26\) 0.667214 0.667214i 0.130851 0.130851i
\(27\) −1.39460 + 3.36686i −0.268390 + 0.647952i
\(28\) 1.18715 + 0.491735i 0.224351 + 0.0929293i
\(29\) −2.58202 6.23354i −0.479469 1.15754i −0.959859 0.280485i \(-0.909505\pi\)
0.480390 0.877055i \(-0.340495\pi\)
\(30\) 0.631903i 0.115369i
\(31\) 1.68458 0.697775i 0.302559 0.125324i −0.226239 0.974072i \(-0.572643\pi\)
0.528798 + 0.848748i \(0.322643\pi\)
\(32\) 2.04106 + 2.04106i 0.360812 + 0.360812i
\(33\) −0.0746187 −0.0129895
\(34\) 0.922860 0.468349i 0.158269 0.0803211i
\(35\) −2.55366 −0.431647
\(36\) 3.52317 + 3.52317i 0.587195 + 0.587195i
\(37\) 2.01307 0.833839i 0.330946 0.137082i −0.211022 0.977481i \(-0.567679\pi\)
0.541968 + 0.840399i \(0.317679\pi\)
\(38\) 0.790415i 0.128222i
\(39\) 0.940851 + 2.27142i 0.150657 + 0.363718i
\(40\) −3.51443 1.45573i −0.555681 0.230171i
\(41\) 3.49689 8.44224i 0.546123 1.31846i −0.374219 0.927340i \(-0.622089\pi\)
0.920341 0.391116i \(-0.127911\pi\)
\(42\) 0.0770012 0.0770012i 0.0118815 0.0118815i
\(43\) −0.707107 + 0.707107i −0.107833 + 0.107833i
\(44\) −0.0845748 + 0.204182i −0.0127501 + 0.0307815i
\(45\) −9.14819 3.78931i −1.36373 0.564876i
\(46\) 0.169729 + 0.409762i 0.0250252 + 0.0604161i
\(47\) 0.580038i 0.0846072i −0.999105 0.0423036i \(-0.986530\pi\)
0.999105 0.0423036i \(-0.0134697\pi\)
\(48\) −2.19086 + 0.907483i −0.316223 + 0.130984i
\(49\) 4.63857 + 4.63857i 0.662653 + 0.662653i
\(50\) 2.46442 0.348521
\(51\) 0.207232 + 2.68852i 0.0290183 + 0.376469i
\(52\) 7.28174 1.00980
\(53\) 2.58071 + 2.58071i 0.354488 + 0.354488i 0.861776 0.507288i \(-0.169352\pi\)
−0.507288 + 0.861776i \(0.669352\pi\)
\(54\) 0.845083 0.350045i 0.115001 0.0476350i
\(55\) 0.439210i 0.0592231i
\(56\) −0.250866 0.605644i −0.0335234 0.0809326i
\(57\) 1.90271 + 0.788127i 0.252020 + 0.104390i
\(58\) −0.648088 + 1.56462i −0.0850981 + 0.205445i
\(59\) 9.08685 9.08685i 1.18301 1.18301i 0.204045 0.978961i \(-0.434591\pi\)
0.978961 0.204045i \(-0.0654089\pi\)
\(60\) 3.44818 3.44818i 0.445159 0.445159i
\(61\) −4.35633 + 10.5171i −0.557771 + 1.34658i 0.353756 + 0.935338i \(0.384904\pi\)
−0.911527 + 0.411241i \(0.865096\pi\)
\(62\) −0.422830 0.175142i −0.0536994 0.0222430i
\(63\) −0.653013 1.57651i −0.0822719 0.198622i
\(64\) 6.52741i 0.815926i
\(65\) −13.3697 + 5.53791i −1.65831 + 0.686893i
\(66\) 0.0132436 + 0.0132436i 0.00163018 + 0.00163018i
\(67\) 8.10735 0.990470 0.495235 0.868759i \(-0.335082\pi\)
0.495235 + 0.868759i \(0.335082\pi\)
\(68\) 7.59158 + 2.48019i 0.920614 + 0.300767i
\(69\) −1.15563 −0.139121
\(70\) 0.453234 + 0.453234i 0.0541718 + 0.0541718i
\(71\) 10.4370 4.32313i 1.23864 0.513061i 0.335350 0.942094i \(-0.391146\pi\)
0.903289 + 0.429033i \(0.141146\pi\)
\(72\) 2.54191i 0.299566i
\(73\) 0.675324 + 1.63038i 0.0790408 + 0.190821i 0.958460 0.285227i \(-0.0920689\pi\)
−0.879419 + 0.476048i \(0.842069\pi\)
\(74\) −0.505281 0.209294i −0.0587377 0.0243299i
\(75\) −2.45728 + 5.93241i −0.283743 + 0.685015i
\(76\) 4.31316 4.31316i 0.494753 0.494753i
\(77\) 0.0535204 0.0535204i 0.00609922 0.00609922i
\(78\) 0.236154 0.570126i 0.0267392 0.0645541i
\(79\) 10.6520 + 4.41221i 1.19844 + 0.496412i 0.890496 0.454991i \(-0.150357\pi\)
0.307949 + 0.951403i \(0.400357\pi\)
\(80\) −5.34150 12.8955i −0.597198 1.44176i
\(81\) 5.33353i 0.592614i
\(82\) −2.11901 + 0.877721i −0.234005 + 0.0969281i
\(83\) −3.05854 3.05854i −0.335718 0.335718i 0.519035 0.854753i \(-0.326291\pi\)
−0.854753 + 0.519035i \(0.826291\pi\)
\(84\) 0.840364 0.0916912
\(85\) −15.8248 + 1.21978i −1.71644 + 0.132304i
\(86\) 0.251000 0.0270661
\(87\) −3.12018 3.12018i −0.334519 0.334519i
\(88\) 0.104166 0.0431471i 0.0111042 0.00459950i
\(89\) 8.74618i 0.927093i −0.886073 0.463547i \(-0.846577\pi\)
0.886073 0.463547i \(-0.153423\pi\)
\(90\) 0.951117 + 2.29620i 0.100257 + 0.242041i
\(91\) −2.30400 0.954350i −0.241525 0.100043i
\(92\) −1.30982 + 3.16218i −0.136558 + 0.329680i
\(93\) 0.843211 0.843211i 0.0874369 0.0874369i
\(94\) −0.102948 + 0.102948i −0.0106182 + 0.0106182i
\(95\) −4.63896 + 11.1994i −0.475948 + 1.14904i
\(96\) 1.74406 + 0.722414i 0.178003 + 0.0737311i
\(97\) 2.48228 + 5.99275i 0.252037 + 0.608472i 0.998368 0.0571033i \(-0.0181864\pi\)
−0.746331 + 0.665575i \(0.768186\pi\)
\(98\) 1.64654i 0.166326i
\(99\) 0.271148 0.112313i 0.0272514 0.0112879i
\(100\) 13.4479 + 13.4479i 1.34479 + 1.34479i
\(101\) −3.04315 −0.302805 −0.151403 0.988472i \(-0.548379\pi\)
−0.151403 + 0.988472i \(0.548379\pi\)
\(102\) 0.440390 0.513951i 0.0436051 0.0508887i
\(103\) −15.5734 −1.53449 −0.767245 0.641354i \(-0.778373\pi\)
−0.767245 + 0.641354i \(0.778373\pi\)
\(104\) −2.62682 2.62682i −0.257581 0.257581i
\(105\) −1.54296 + 0.639114i −0.150577 + 0.0623711i
\(106\) 0.916070i 0.0889766i
\(107\) 2.51318 + 6.06736i 0.242959 + 0.586554i 0.997574 0.0696133i \(-0.0221765\pi\)
−0.754615 + 0.656167i \(0.772177\pi\)
\(108\) 6.52160 + 2.70133i 0.627541 + 0.259936i
\(109\) −2.85334 + 6.88858i −0.273301 + 0.659806i −0.999620 0.0275508i \(-0.991229\pi\)
0.726320 + 0.687357i \(0.241229\pi\)
\(110\) −0.0779528 + 0.0779528i −0.00743251 + 0.00743251i
\(111\) 1.00764 1.00764i 0.0956405 0.0956405i
\(112\) 0.920503 2.22229i 0.0869794 0.209987i
\(113\) 3.02139 + 1.25150i 0.284228 + 0.117731i 0.520243 0.854018i \(-0.325841\pi\)
−0.236015 + 0.971749i \(0.575841\pi\)
\(114\) −0.197820 0.477580i −0.0185276 0.0447295i
\(115\) 6.80209i 0.634298i
\(116\) −12.0744 + 5.00136i −1.12108 + 0.464365i
\(117\) −6.83770 6.83770i −0.632146 0.632146i
\(118\) −3.22554 −0.296935
\(119\) −2.07699 1.77971i −0.190397 0.163146i
\(120\) −2.48780 −0.227104
\(121\) −7.76897 7.76897i −0.706270 0.706270i
\(122\) 2.63980 1.09344i 0.238996 0.0989955i
\(123\) 5.97610i 0.538847i
\(124\) −1.35159 3.26302i −0.121376 0.293028i
\(125\) −17.1363 7.09808i −1.53272 0.634872i
\(126\) −0.163907 + 0.395705i −0.0146020 + 0.0352522i
\(127\) 5.37305 5.37305i 0.476781 0.476781i −0.427320 0.904101i \(-0.640542\pi\)
0.904101 + 0.427320i \(0.140542\pi\)
\(128\) 5.24063 5.24063i 0.463211 0.463211i
\(129\) −0.250274 + 0.604214i −0.0220354 + 0.0531981i
\(130\) 3.35580 + 1.39002i 0.294323 + 0.121913i
\(131\) −0.0180811 0.0436517i −0.00157976 0.00381387i 0.923088 0.384590i \(-0.125657\pi\)
−0.924667 + 0.380776i \(0.875657\pi\)
\(132\) 0.144536i 0.0125803i
\(133\) −1.93001 + 0.799435i −0.167353 + 0.0693198i
\(134\) −1.43893 1.43893i −0.124304 0.124304i
\(135\) −14.0284 −1.20738
\(136\) −1.84389 3.63330i −0.158112 0.311553i
\(137\) −2.10692 −0.180006 −0.0900032 0.995941i \(-0.528688\pi\)
−0.0900032 + 0.995941i \(0.528688\pi\)
\(138\) 0.205105 + 0.205105i 0.0174597 + 0.0174597i
\(139\) 3.72932 1.54473i 0.316316 0.131023i −0.218876 0.975753i \(-0.570239\pi\)
0.535193 + 0.844730i \(0.320239\pi\)
\(140\) 4.94643i 0.418050i
\(141\) −0.145168 0.350467i −0.0122254 0.0295147i
\(142\) −2.61968 1.08511i −0.219839 0.0910602i
\(143\) 0.164141 0.396272i 0.0137262 0.0331379i
\(144\) 6.59520 6.59520i 0.549600 0.549600i
\(145\) 18.3656 18.3656i 1.52518 1.52518i
\(146\) 0.169507 0.409226i 0.0140285 0.0338677i
\(147\) 3.96360 + 1.64178i 0.326912 + 0.135412i
\(148\) −1.61515 3.89931i −0.132764 0.320521i
\(149\) 13.1304i 1.07568i −0.843046 0.537841i \(-0.819240\pi\)
0.843046 0.537841i \(-0.180760\pi\)
\(150\) 1.48904 0.616779i 0.121579 0.0503598i
\(151\) 4.00928 + 4.00928i 0.326271 + 0.326271i 0.851167 0.524896i \(-0.175896\pi\)
−0.524896 + 0.851167i \(0.675896\pi\)
\(152\) −3.11186 −0.252406
\(153\) −4.79970 9.45760i −0.388033 0.764602i
\(154\) −0.0189981 −0.00153091
\(155\) 4.96319 + 4.96319i 0.398653 + 0.398653i
\(156\) 4.39973 1.82243i 0.352260 0.145911i
\(157\) 21.0367i 1.67891i −0.543431 0.839454i \(-0.682875\pi\)
0.543431 0.839454i \(-0.317125\pi\)
\(158\) −1.10747 2.67366i −0.0881053 0.212705i
\(159\) 2.20519 + 0.913418i 0.174883 + 0.0724388i
\(160\) −4.25217 + 10.2657i −0.336164 + 0.811571i
\(161\) 0.828876 0.828876i 0.0653245 0.0653245i
\(162\) −0.946617 + 0.946617i −0.0743732 + 0.0743732i
\(163\) −7.43235 + 17.9433i −0.582147 + 1.40543i 0.308716 + 0.951154i \(0.400101\pi\)
−0.890863 + 0.454272i \(0.849899\pi\)
\(164\) −16.3526 6.77347i −1.27692 0.528919i
\(165\) −0.109923 0.265377i −0.00855748 0.0206596i
\(166\) 1.08568i 0.0842654i
\(167\) 16.4528 6.81498i 1.27316 0.527359i 0.359235 0.933247i \(-0.383038\pi\)
0.913923 + 0.405888i \(0.133038\pi\)
\(168\) −0.303154 0.303154i −0.0233888 0.0233888i
\(169\) −1.13224 −0.0870957
\(170\) 3.02514 + 2.59216i 0.232018 + 0.198810i
\(171\) −8.10029 −0.619445
\(172\) 1.36966 + 1.36966i 0.104436 + 0.104436i
\(173\) −3.63542 + 1.50584i −0.276396 + 0.114487i −0.516576 0.856241i \(-0.672794\pi\)
0.240180 + 0.970728i \(0.422794\pi\)
\(174\) 1.10757i 0.0839644i
\(175\) −2.49254 6.01752i −0.188418 0.454882i
\(176\) 0.382218 + 0.158320i 0.0288107 + 0.0119338i
\(177\) 3.21620 7.76460i 0.241745 0.583623i
\(178\) −1.55231 + 1.55231i −0.116350 + 0.116350i
\(179\) −10.6978 + 10.6978i −0.799593 + 0.799593i −0.983031 0.183439i \(-0.941277\pi\)
0.183439 + 0.983031i \(0.441277\pi\)
\(180\) −7.33988 + 17.7200i −0.547082 + 1.32077i
\(181\) 9.17661 + 3.80108i 0.682092 + 0.282532i 0.696701 0.717362i \(-0.254650\pi\)
−0.0146092 + 0.999893i \(0.504650\pi\)
\(182\) 0.239542 + 0.578306i 0.0177561 + 0.0428669i
\(183\) 7.44487i 0.550340i
\(184\) 1.61323 0.668223i 0.118929 0.0492620i
\(185\) 5.93100 + 5.93100i 0.436056 + 0.436056i
\(186\) −0.299313 −0.0219467
\(187\) 0.306097 0.357226i 0.0223840 0.0261230i
\(188\) −1.12353 −0.0819420
\(189\) −1.70945 1.70945i −0.124344 0.124344i
\(190\) 2.81107 1.16438i 0.203936 0.0844731i
\(191\) 13.0184i 0.941978i 0.882139 + 0.470989i \(0.156103\pi\)
−0.882139 + 0.470989i \(0.843897\pi\)
\(192\) 1.63364 + 3.94396i 0.117898 + 0.284631i
\(193\) −12.8443 5.32029i −0.924555 0.382963i −0.130945 0.991390i \(-0.541801\pi\)
−0.793610 + 0.608427i \(0.791801\pi\)
\(194\) 0.623053 1.50418i 0.0447326 0.107994i
\(195\) −6.69216 + 6.69216i −0.479236 + 0.479236i
\(196\) 8.98490 8.98490i 0.641779 0.641779i
\(197\) 0.783626 1.89184i 0.0558311 0.134788i −0.893503 0.449058i \(-0.851760\pi\)
0.949334 + 0.314270i \(0.101760\pi\)
\(198\) −0.0680584 0.0281907i −0.00483670 0.00200343i
\(199\) −8.42809 20.3472i −0.597452 1.44238i −0.876170 0.482003i \(-0.839910\pi\)
0.278718 0.960373i \(-0.410090\pi\)
\(200\) 9.70241i 0.686064i
\(201\) 4.89858 2.02906i 0.345519 0.143119i
\(202\) 0.540112 + 0.540112i 0.0380021 + 0.0380021i
\(203\) 4.47592 0.314148
\(204\) 5.20767 0.401408i 0.364610 0.0281042i
\(205\) 35.1757 2.45678
\(206\) 2.76403 + 2.76403i 0.192579 + 0.192579i
\(207\) 4.19930 1.73941i 0.291871 0.120897i
\(208\) 13.6310i 0.945142i
\(209\) −0.137497 0.331947i −0.00951085 0.0229612i
\(210\) 0.387283 + 0.160418i 0.0267251 + 0.0110699i
\(211\) 2.78522 6.72411i 0.191742 0.462907i −0.798546 0.601933i \(-0.794397\pi\)
0.990289 + 0.139026i \(0.0443973\pi\)
\(212\) 4.99883 4.99883i 0.343321 0.343321i
\(213\) 5.22419 5.22419i 0.357956 0.357956i
\(214\) 0.630810 1.52291i 0.0431213 0.104104i
\(215\) −3.55644 1.47313i −0.242547 0.100466i
\(216\) −1.37813 3.32709i −0.0937696 0.226380i
\(217\) 1.20959i 0.0821123i
\(218\) 1.72904 0.716190i 0.117105 0.0485065i
\(219\) 0.816081 + 0.816081i 0.0551457 + 0.0551457i
\(220\) −0.850750 −0.0573575
\(221\) −14.7336 4.81350i −0.991088 0.323791i
\(222\) −0.357679 −0.0240058
\(223\) 9.77468 + 9.77468i 0.654561 + 0.654561i 0.954088 0.299527i \(-0.0968287\pi\)
−0.299527 + 0.954088i \(0.596829\pi\)
\(224\) −1.76908 + 0.732779i −0.118202 + 0.0489608i
\(225\) 25.2557i 1.68371i
\(226\) −0.314127 0.758370i −0.0208954 0.0504460i
\(227\) −10.2430 4.24278i −0.679850 0.281603i 0.0159141 0.999873i \(-0.494934\pi\)
−0.695764 + 0.718270i \(0.744934\pi\)
\(228\) 1.52660 3.68554i 0.101102 0.244081i
\(229\) −9.59172 + 9.59172i −0.633839 + 0.633839i −0.949029 0.315190i \(-0.897932\pi\)
0.315190 + 0.949029i \(0.397932\pi\)
\(230\) −1.20726 + 1.20726i −0.0796045 + 0.0796045i
\(231\) 0.0189430 0.0457326i 0.00124636 0.00300898i
\(232\) 6.15991 + 2.55152i 0.404418 + 0.167515i
\(233\) −0.536021 1.29407i −0.0351159 0.0847773i 0.905349 0.424669i \(-0.139610\pi\)
−0.940465 + 0.339892i \(0.889610\pi\)
\(234\) 2.42717i 0.158669i
\(235\) 2.06287 0.854469i 0.134567 0.0557394i
\(236\) −17.6012 17.6012i −1.14574 1.14574i
\(237\) 7.54036 0.489799
\(238\) 0.0527616 + 0.684503i 0.00342003 + 0.0443697i
\(239\) 14.5730 0.942647 0.471324 0.881960i \(-0.343776\pi\)
0.471324 + 0.881960i \(0.343776\pi\)
\(240\) −6.45482 6.45482i −0.416657 0.416657i
\(241\) −4.59013 + 1.90129i −0.295676 + 0.122473i −0.525590 0.850738i \(-0.676155\pi\)
0.229914 + 0.973211i \(0.426155\pi\)
\(242\) 2.75774i 0.177274i
\(243\) −5.51864 13.3232i −0.354021 0.854681i
\(244\) 20.3716 + 8.43821i 1.30416 + 0.540201i
\(245\) −9.66360 + 23.3300i −0.617385 + 1.49050i
\(246\) −1.06066 + 1.06066i −0.0676254 + 0.0676254i
\(247\) −8.37089 + 8.37089i −0.532627 + 0.532627i
\(248\) −0.689533 + 1.66468i −0.0437854 + 0.105707i
\(249\) −2.61348 1.08254i −0.165623 0.0686032i
\(250\) 1.78162 + 4.30122i 0.112680 + 0.272033i
\(251\) 17.5640i 1.10863i −0.832308 0.554314i \(-0.812981\pi\)
0.832308 0.554314i \(-0.187019\pi\)
\(252\) −3.05370 + 1.26489i −0.192365 + 0.0796803i
\(253\) 0.142560 + 0.142560i 0.00896270 + 0.00896270i
\(254\) −1.90726 −0.119672
\(255\) −9.25630 + 4.69754i −0.579652 + 0.294172i
\(256\) 11.1946 0.699660
\(257\) 7.33243 + 7.33243i 0.457384 + 0.457384i 0.897796 0.440412i \(-0.145167\pi\)
−0.440412 + 0.897796i \(0.645167\pi\)
\(258\) 0.151658 0.0628188i 0.00944182 0.00391093i
\(259\) 1.44546i 0.0898163i
\(260\) 10.7269 + 25.8971i 0.665255 + 1.60607i
\(261\) 16.0345 + 6.64169i 0.992508 + 0.411110i
\(262\) −0.00453838 + 0.0109566i −0.000280382 + 0.000676901i
\(263\) −12.1451 + 12.1451i −0.748897 + 0.748897i −0.974272 0.225375i \(-0.927639\pi\)
0.225375 + 0.974272i \(0.427639\pi\)
\(264\) 0.0521402 0.0521402i 0.00320901 0.00320901i
\(265\) −5.37643 + 12.9799i −0.330272 + 0.797346i
\(266\) 0.484432 + 0.200658i 0.0297025 + 0.0123032i
\(267\) −2.18894 5.28457i −0.133961 0.323410i
\(268\) 15.7039i 0.959270i
\(269\) −28.2066 + 11.6836i −1.71979 + 0.712359i −0.719955 + 0.694021i \(0.755837\pi\)
−0.999832 + 0.0183377i \(0.994163\pi\)
\(270\) 2.48983 + 2.48983i 0.151526 + 0.151526i
\(271\) 9.25373 0.562124 0.281062 0.959690i \(-0.409313\pi\)
0.281062 + 0.959690i \(0.409313\pi\)
\(272\) 4.64278 14.2110i 0.281510 0.861671i
\(273\) −1.63096 −0.0987103
\(274\) 0.373945 + 0.373945i 0.0225908 + 0.0225908i
\(275\) 1.03497 0.428698i 0.0624110 0.0258515i
\(276\) 2.23845i 0.134739i
\(277\) 8.93004 + 21.5590i 0.536554 + 1.29536i 0.927114 + 0.374779i \(0.122281\pi\)
−0.390560 + 0.920578i \(0.627719\pi\)
\(278\) −0.936060 0.387729i −0.0561412 0.0232544i
\(279\) −1.79488 + 4.33322i −0.107456 + 0.259423i
\(280\) 1.78438 1.78438i 0.106637 0.106637i
\(281\) 4.94600 4.94600i 0.295053 0.295053i −0.544019 0.839073i \(-0.683098\pi\)
0.839073 + 0.544019i \(0.183098\pi\)
\(282\) −0.0364373 + 0.0879674i −0.00216981 + 0.00523838i
\(283\) −22.7457 9.42156i −1.35209 0.560054i −0.415216 0.909723i \(-0.636294\pi\)
−0.936873 + 0.349669i \(0.886294\pi\)
\(284\) −8.37389 20.2164i −0.496899 1.19962i
\(285\) 7.92788i 0.469607i
\(286\) −0.0994644 + 0.0411995i −0.00588145 + 0.00243618i
\(287\) 4.28637 + 4.28637i 0.253017 + 0.253017i
\(288\) −7.42490 −0.437516
\(289\) −13.7210 10.0366i −0.807118 0.590390i
\(290\) −6.51920 −0.382821
\(291\) 2.99966 + 2.99966i 0.175843 + 0.175843i
\(292\) 3.15804 1.30810i 0.184810 0.0765509i
\(293\) 24.3177i 1.42065i 0.703872 + 0.710326i \(0.251453\pi\)
−0.703872 + 0.710326i \(0.748547\pi\)
\(294\) −0.412087 0.994866i −0.0240334 0.0580218i
\(295\) 45.7029 + 18.9308i 2.66093 + 1.10219i
\(296\) −0.823990 + 1.98929i −0.0478935 + 0.115625i
\(297\) 0.294013 0.294013i 0.0170604 0.0170604i
\(298\) −2.33043 + 2.33043i −0.134998 + 0.134998i
\(299\) 2.54207 6.13709i 0.147012 0.354917i
\(300\) 11.4911 + 4.75975i 0.663437 + 0.274805i
\(301\) −0.253865 0.612883i −0.0146325 0.0353260i
\(302\) 1.42317i 0.0818941i
\(303\) −1.83872 + 0.761622i −0.105632 + 0.0437540i
\(304\) −8.07401 8.07401i −0.463076 0.463076i
\(305\) −43.8209 −2.50918
\(306\) −0.826703 + 2.53044i −0.0472594 + 0.144656i
\(307\) 27.8152 1.58750 0.793749 0.608246i \(-0.208126\pi\)
0.793749 + 0.608246i \(0.208126\pi\)
\(308\) −0.103669 0.103669i −0.00590709 0.00590709i
\(309\) −9.40966 + 3.89761i −0.535297 + 0.221727i
\(310\) 1.76177i 0.100062i
\(311\) −6.15968 14.8708i −0.349284 0.843245i −0.996705 0.0811130i \(-0.974153\pi\)
0.647421 0.762132i \(-0.275847\pi\)
\(312\) −2.24459 0.929738i −0.127075 0.0526361i
\(313\) 2.34916 5.67137i 0.132782 0.320565i −0.843479 0.537163i \(-0.819496\pi\)
0.976261 + 0.216598i \(0.0694961\pi\)
\(314\) −3.73367 + 3.73367i −0.210703 + 0.210703i
\(315\) 4.64480 4.64480i 0.261705 0.261705i
\(316\) 8.54644 20.6329i 0.480775 1.16069i
\(317\) 19.4129 + 8.04108i 1.09034 + 0.451632i 0.854124 0.520070i \(-0.174094\pi\)
0.236212 + 0.971702i \(0.424094\pi\)
\(318\) −0.229268 0.553503i −0.0128567 0.0310389i
\(319\) 0.769824i 0.0431019i
\(320\) −23.2144 + 9.61570i −1.29772 + 0.537534i
\(321\) 3.03700 + 3.03700i 0.169509 + 0.169509i
\(322\) −0.294224 −0.0163965
\(323\) −11.5782 + 5.87592i −0.644230 + 0.326945i
\(324\) −10.3310 −0.573947
\(325\) −26.0994 26.0994i −1.44773 1.44773i
\(326\) 4.50377 1.86552i 0.249441 0.103322i
\(327\) 4.87630i 0.269660i
\(328\) 3.45559 + 8.34253i 0.190803 + 0.460639i
\(329\) 0.355496 + 0.147251i 0.0195991 + 0.00811821i
\(330\) −0.0275907 + 0.0666098i −0.00151882 + 0.00366675i
\(331\) −10.6599 + 10.6599i −0.585923 + 0.585923i −0.936525 0.350602i \(-0.885977\pi\)
0.350602 + 0.936525i \(0.385977\pi\)
\(332\) −5.92439 + 5.92439i −0.325143 + 0.325143i
\(333\) −2.14487 + 5.17819i −0.117538 + 0.283763i
\(334\) −4.12967 1.71056i −0.225965 0.0935979i
\(335\) 11.9432 + 28.8333i 0.652524 + 1.57533i
\(336\) 1.57312i 0.0858206i
\(337\) 18.8753 7.81842i 1.02821 0.425896i 0.196141 0.980576i \(-0.437159\pi\)
0.832064 + 0.554679i \(0.187159\pi\)
\(338\) 0.200955 + 0.200955i 0.0109305 + 0.0109305i
\(339\) 2.13878 0.116163
\(340\) 2.36271 + 30.6526i 0.128136 + 1.66237i
\(341\) −0.208040 −0.0112660
\(342\) 1.43767 + 1.43767i 0.0777404 + 0.0777404i
\(343\) −8.31065 + 3.44239i −0.448733 + 0.185871i
\(344\) 0.988189i 0.0532796i
\(345\) −1.70238 4.10992i −0.0916533 0.221271i
\(346\) 0.912493 + 0.377967i 0.0490559 + 0.0203196i
\(347\) −9.29912 + 22.4501i −0.499203 + 1.20518i 0.450711 + 0.892670i \(0.351171\pi\)
−0.949914 + 0.312512i \(0.898829\pi\)
\(348\) −6.04379 + 6.04379i −0.323981 + 0.323981i
\(349\) −6.65512 + 6.65512i −0.356240 + 0.356240i −0.862425 0.506185i \(-0.831055\pi\)
0.506185 + 0.862425i \(0.331055\pi\)
\(350\) −0.625628 + 1.51040i −0.0334412 + 0.0807343i
\(351\) −12.6570 5.24269i −0.675580 0.279834i
\(352\) −0.126032 0.304269i −0.00671755 0.0162176i
\(353\) 23.5757i 1.25481i −0.778694 0.627403i \(-0.784118\pi\)
0.778694 0.627403i \(-0.215882\pi\)
\(354\) −1.94892 + 0.807269i −0.103584 + 0.0429058i
\(355\) 30.7499 + 30.7499i 1.63204 + 1.63204i
\(356\) −16.9413 −0.897889
\(357\) −1.70036 0.555512i −0.0899926 0.0294008i
\(358\) 3.79739 0.200698
\(359\) −5.62282 5.62282i −0.296761 0.296761i 0.542983 0.839744i \(-0.317295\pi\)
−0.839744 + 0.542983i \(0.817295\pi\)
\(360\) 9.04014 3.74455i 0.476457 0.197355i
\(361\) 9.08342i 0.478075i
\(362\) −0.954072 2.30333i −0.0501449 0.121060i
\(363\) −6.63849 2.74975i −0.348430 0.144325i
\(364\) −1.84857 + 4.46285i −0.0968916 + 0.233917i
\(365\) −4.80350 + 4.80350i −0.251427 + 0.251427i
\(366\) 1.32135 1.32135i 0.0690679 0.0690679i
\(367\) −2.67501 + 6.45804i −0.139634 + 0.337107i −0.978191 0.207707i \(-0.933400\pi\)
0.838557 + 0.544814i \(0.183400\pi\)
\(368\) 5.91944 + 2.45191i 0.308572 + 0.127815i
\(369\) 8.99501 + 21.7159i 0.468262 + 1.13048i
\(370\) 2.10532i 0.109450i
\(371\) −2.23683 + 0.926523i −0.116130 + 0.0481027i
\(372\) −1.63330 1.63330i −0.0846826 0.0846826i
\(373\) 31.2985 1.62058 0.810288 0.586032i \(-0.199311\pi\)
0.810288 + 0.586032i \(0.199311\pi\)
\(374\) −0.117729 + 0.00907460i −0.00608764 + 0.000469236i
\(375\) −12.1305 −0.626414
\(376\) 0.405304 + 0.405304i 0.0209020 + 0.0209020i
\(377\) 23.4337 9.70655i 1.20690 0.499913i
\(378\) 0.606801i 0.0312105i
\(379\) 2.01414 + 4.86255i 0.103459 + 0.249773i 0.967129 0.254285i \(-0.0818400\pi\)
−0.863670 + 0.504057i \(0.831840\pi\)
\(380\) 21.6933 + 8.98567i 1.11284 + 0.460955i
\(381\) 1.90174 4.59120i 0.0974290 0.235214i
\(382\) 2.31056 2.31056i 0.118218 0.118218i
\(383\) −4.07871 + 4.07871i −0.208413 + 0.208413i −0.803592 0.595180i \(-0.797081\pi\)
0.595180 + 0.803592i \(0.297081\pi\)
\(384\) 1.85487 4.47806i 0.0946561 0.228520i
\(385\) 0.269185 + 0.111500i 0.0137189 + 0.00568256i
\(386\) 1.33540 + 3.22393i 0.0679699 + 0.164094i
\(387\) 2.57229i 0.130757i
\(388\) 11.6079 4.80817i 0.589304 0.244098i
\(389\) 26.9021 + 26.9021i 1.36399 + 1.36399i 0.868764 + 0.495226i \(0.164915\pi\)
0.495226 + 0.868764i \(0.335085\pi\)
\(390\) 2.37551 0.120288
\(391\) 4.74055 5.53239i 0.239740 0.279785i
\(392\) −6.48244 −0.327413
\(393\) −0.0218498 0.0218498i −0.00110218 0.00110218i
\(394\) −0.474853 + 0.196691i −0.0239227 + 0.00990913i
\(395\) 44.3830i 2.23315i
\(396\) −0.217551 0.525214i −0.0109323 0.0263930i
\(397\) 13.8979 + 5.75669i 0.697514 + 0.288920i 0.703127 0.711064i \(-0.251787\pi\)
−0.00561271 + 0.999984i \(0.501787\pi\)
\(398\) −2.11545 + 5.10716i −0.106038 + 0.255999i
\(399\) −0.966060 + 0.966060i −0.0483635 + 0.0483635i
\(400\) 25.1738 25.1738i 1.25869 1.25869i
\(401\) 0.265619 0.641262i 0.0132644 0.0320231i −0.917109 0.398637i \(-0.869483\pi\)
0.930373 + 0.366614i \(0.119483\pi\)
\(402\) −1.22955 0.509294i −0.0613241 0.0254013i
\(403\) 2.62314 + 6.33281i 0.130668 + 0.315460i
\(404\) 5.89459i 0.293267i
\(405\) 18.9684 7.85696i 0.942547 0.390416i
\(406\) −0.794404 0.794404i −0.0394256 0.0394256i
\(407\) −0.248608 −0.0123230
\(408\) −2.02342 1.73381i −0.100174 0.0858366i
\(409\) 26.0506 1.28812 0.644060 0.764975i \(-0.277249\pi\)
0.644060 + 0.764975i \(0.277249\pi\)
\(410\) −6.24313 6.24313i −0.308326 0.308326i
\(411\) −1.27303 + 0.527307i −0.0627940 + 0.0260101i
\(412\) 30.1656i 1.48615i
\(413\) 3.26235 + 7.87600i 0.160530 + 0.387553i
\(414\) −1.05403 0.436592i −0.0518026 0.0214573i
\(415\) 6.37190 15.3831i 0.312784 0.755128i
\(416\) −7.67293 + 7.67293i −0.376196 + 0.376196i
\(417\) 1.86670 1.86670i 0.0914127 0.0914127i
\(418\) −0.0345118 + 0.0833188i −0.00168803 + 0.00407525i
\(419\) 17.7814 + 7.36530i 0.868678 + 0.359818i 0.772095 0.635507i \(-0.219209\pi\)
0.0965829 + 0.995325i \(0.469209\pi\)
\(420\) 1.23796 + 2.98871i 0.0604064 + 0.145834i
\(421\) 26.1036i 1.27221i −0.771601 0.636107i \(-0.780544\pi\)
0.771601 0.636107i \(-0.219456\pi\)
\(422\) −1.68775 + 0.699091i −0.0821586 + 0.0340312i
\(423\) 1.05502 + 1.05502i 0.0512969 + 0.0512969i
\(424\) −3.60657 −0.175150
\(425\) −18.3204 36.0995i −0.888669 1.75108i
\(426\) −1.85442 −0.0898470
\(427\) −5.33985 5.33985i −0.258413 0.258413i
\(428\) 11.7525 4.86803i 0.568077 0.235305i
\(429\) 0.280513i 0.0135433i
\(430\) 0.369755 + 0.892669i 0.0178312 + 0.0430483i
\(431\) 35.7528 + 14.8093i 1.72215 + 0.713339i 0.999761 + 0.0218543i \(0.00695699\pi\)
0.722391 + 0.691485i \(0.243043\pi\)
\(432\) 5.05676 12.2081i 0.243293 0.587362i
\(433\) −7.11630 + 7.11630i −0.341988 + 0.341988i −0.857114 0.515126i \(-0.827745\pi\)
0.515126 + 0.857114i \(0.327745\pi\)
\(434\) 0.214683 0.214683i 0.0103051 0.0103051i
\(435\) 6.50033 15.6932i 0.311667 0.752430i
\(436\) 13.3432 + 5.52692i 0.639022 + 0.264692i
\(437\) −2.12943 5.14089i −0.101864 0.245922i
\(438\) 0.289683i 0.0138416i
\(439\) −15.0238 + 6.22306i −0.717046 + 0.297010i −0.711217 0.702973i \(-0.751856\pi\)
−0.00582955 + 0.999983i \(0.501856\pi\)
\(440\) 0.306900 + 0.306900i 0.0146309 + 0.0146309i
\(441\) −16.8740 −0.803525
\(442\) 1.76066 + 3.46930i 0.0837459 + 0.165018i
\(443\) −7.65206 −0.363560 −0.181780 0.983339i \(-0.558186\pi\)
−0.181780 + 0.983339i \(0.558186\pi\)
\(444\) −1.95179 1.95179i −0.0926278 0.0926278i
\(445\) 31.1053 12.8842i 1.47453 0.610771i
\(446\) 3.46970i 0.164295i
\(447\) −3.28619 7.93356i −0.155431 0.375245i
\(448\) −4.00054 1.65708i −0.189008 0.0782896i
\(449\) 11.9882 28.9420i 0.565757 1.36586i −0.339344 0.940662i \(-0.610205\pi\)
0.905101 0.425197i \(-0.139795\pi\)
\(450\) −4.48249 + 4.48249i −0.211306 + 0.211306i
\(451\) −0.737224 + 0.737224i −0.0347145 + 0.0347145i
\(452\) 2.42415 5.85243i 0.114023 0.275275i
\(453\) 3.42588 + 1.41905i 0.160962 + 0.0666727i
\(454\) 1.06494 + 2.57099i 0.0499801 + 0.120663i
\(455\) 9.59994i 0.450052i
\(456\) −1.88023 + 0.778818i −0.0880500 + 0.0364715i
\(457\) −6.41507 6.41507i −0.300084 0.300084i 0.540963 0.841047i \(-0.318060\pi\)
−0.841047 + 0.540963i \(0.818060\pi\)
\(458\) 3.40476 0.159094
\(459\) −11.4099 9.77679i −0.532567 0.456342i
\(460\) −13.1756 −0.614317
\(461\) 4.56218 + 4.56218i 0.212482 + 0.212482i 0.805321 0.592839i \(-0.201993\pi\)
−0.592839 + 0.805321i \(0.701993\pi\)
\(462\) −0.0114789 + 0.00475471i −0.000534047 + 0.000221209i
\(463\) 27.8576i 1.29465i 0.762213 + 0.647326i \(0.224113\pi\)
−0.762213 + 0.647326i \(0.775887\pi\)
\(464\) 9.36230 + 22.6026i 0.434634 + 1.04930i
\(465\) 4.24099 + 1.75667i 0.196671 + 0.0814638i
\(466\) −0.134541 + 0.324812i −0.00623251 + 0.0150466i
\(467\) 28.1437 28.1437i 1.30233 1.30233i 0.375521 0.926814i \(-0.377464\pi\)
0.926814 0.375521i \(-0.122536\pi\)
\(468\) −13.2446 + 13.2446i −0.612233 + 0.612233i
\(469\) −2.05817 + 4.96886i −0.0950374 + 0.229441i
\(470\) −0.517782 0.214472i −0.0238835 0.00989286i
\(471\) −5.26492 12.7106i −0.242595 0.585676i
\(472\) 12.6990i 0.584517i
\(473\) 0.105411 0.0436628i 0.00484682 0.00200762i
\(474\) −1.33829 1.33829i −0.0614699 0.0614699i
\(475\) −30.9187 −1.41865
\(476\) −3.44730 + 4.02312i −0.158007 + 0.184399i
\(477\) −9.38802 −0.429848
\(478\) −2.58647 2.58647i −0.118302 0.118302i
\(479\) −15.3894 + 6.37449i −0.703159 + 0.291258i −0.705470 0.708739i \(-0.749264\pi\)
0.00231143 + 0.999997i \(0.499264\pi\)
\(480\) 7.26686i 0.331685i
\(481\) 3.13464 + 7.56769i 0.142927 + 0.345057i
\(482\) 1.15212 + 0.477225i 0.0524778 + 0.0217370i
\(483\) 0.293373 0.708264i 0.0133489 0.0322271i
\(484\) −15.0485 + 15.0485i −0.684022 + 0.684022i
\(485\) −17.6562 + 17.6562i −0.801725 + 0.801725i
\(486\) −1.38518 + 3.34412i −0.0628330 + 0.151692i
\(487\) 23.4362 + 9.70758i 1.06199 + 0.439893i 0.844159 0.536093i \(-0.180100\pi\)
0.217836 + 0.975985i \(0.430100\pi\)
\(488\) −4.30488 10.3929i −0.194873 0.470464i
\(489\) 12.7017i 0.574391i
\(490\) 5.85584 2.42557i 0.264540 0.109576i
\(491\) 7.87339 + 7.87339i 0.355321 + 0.355321i 0.862085 0.506764i \(-0.169158\pi\)
−0.506764 + 0.862085i \(0.669158\pi\)
\(492\) −11.5757 −0.521873
\(493\) 27.7369 2.13796i 1.24921 0.0962890i
\(494\) 2.97140 0.133690
\(495\) 0.798872 + 0.798872i 0.0359066 + 0.0359066i
\(496\) −6.10821 + 2.53010i −0.274267 + 0.113605i
\(497\) 7.49412i 0.336157i
\(498\) 0.271718 + 0.655986i 0.0121760 + 0.0293954i
\(499\) −1.37354 0.568940i −0.0614882 0.0254692i 0.351727 0.936102i \(-0.385594\pi\)
−0.413216 + 0.910633i \(0.635594\pi\)
\(500\) −13.7490 + 33.1930i −0.614873 + 1.48443i
\(501\) 8.23542 8.23542i 0.367931 0.367931i
\(502\) −3.11733 + 3.11733i −0.139133 + 0.139133i
\(503\) 1.71526 4.14099i 0.0764795 0.184638i −0.881016 0.473087i \(-0.843140\pi\)
0.957495 + 0.288449i \(0.0931396\pi\)
\(504\) 1.55789 + 0.645300i 0.0693940 + 0.0287439i
\(505\) −4.48295 10.8228i −0.199489 0.481608i
\(506\) 0.0506044i 0.00224964i
\(507\) −0.684118 + 0.283371i −0.0303827 + 0.0125849i
\(508\) −10.4076 10.4076i −0.461762 0.461762i
\(509\) 19.4795 0.863412 0.431706 0.902014i \(-0.357912\pi\)
0.431706 + 0.902014i \(0.357912\pi\)
\(510\) 2.47659 + 0.809107i 0.109665 + 0.0358278i
\(511\) −1.17067 −0.0517875
\(512\) −12.4681 12.4681i −0.551018 0.551018i
\(513\) −10.6024 + 4.39167i −0.468109 + 0.193897i
\(514\) 2.60278i 0.114804i
\(515\) −22.9415 55.3858i −1.01093 2.44059i
\(516\) 1.17036 + 0.484780i 0.0515223 + 0.0213412i
\(517\) −0.0253261 + 0.0611426i −0.00111384 + 0.00268905i
\(518\) 0.256546 0.256546i 0.0112720 0.0112720i
\(519\) −1.81970 + 1.81970i −0.0798761 + 0.0798761i
\(520\) 5.47250 13.2118i 0.239985 0.579375i
\(521\) −11.1504 4.61863i −0.488506 0.202346i 0.124814 0.992180i \(-0.460166\pi\)
−0.613320 + 0.789834i \(0.710166\pi\)
\(522\) −1.66707 4.02466i −0.0729656 0.176154i
\(523\) 29.1524i 1.27475i −0.770555 0.637374i \(-0.780021\pi\)
0.770555 0.637374i \(-0.219979\pi\)
\(524\) −0.0845534 + 0.0350232i −0.00369373 + 0.00152999i
\(525\) −3.01206 3.01206i −0.131457 0.131457i
\(526\) 4.31111 0.187973
\(527\) 0.577772 + 7.49572i 0.0251681 + 0.326519i
\(528\) 0.270565 0.0117748
\(529\) −14.0556 14.0556i −0.611113 0.611113i
\(530\) 3.25795 1.34949i 0.141516 0.0586180i
\(531\) 33.0558i 1.43450i
\(532\) 1.54850 + 3.73842i 0.0671362 + 0.162081i
\(533\) 31.7368 + 13.1458i 1.37467 + 0.569409i
\(534\) −0.549425 + 1.32643i −0.0237759 + 0.0574002i
\(535\) −17.8760 + 17.8760i −0.772846 + 0.772846i
\(536\) −5.66505 + 5.66505i −0.244693 + 0.244693i
\(537\) −3.78639 + 9.14116i −0.163395 + 0.394470i
\(538\) 7.07987 + 2.93258i 0.305235 + 0.126432i
\(539\) −0.286425 0.691491i −0.0123372 0.0297846i
\(540\) 27.1731i 1.16934i
\(541\) −36.6919 + 15.1983i −1.57751 + 0.653425i −0.988016 0.154350i \(-0.950672\pi\)
−0.589491 + 0.807775i \(0.700672\pi\)
\(542\) −1.64239 1.64239i −0.0705467 0.0705467i
\(543\) 6.49595 0.278768
\(544\) −10.6129 + 5.38599i −0.455022 + 0.230922i
\(545\) −28.7022 −1.22947
\(546\) 0.289470 + 0.289470i 0.0123882 + 0.0123882i
\(547\) −25.0608 + 10.3805i −1.07152 + 0.443840i −0.847528 0.530750i \(-0.821910\pi\)
−0.223996 + 0.974590i \(0.571910\pi\)
\(548\) 4.08110i 0.174336i
\(549\) −11.2057 27.0530i −0.478249 1.15460i
\(550\) −0.259778 0.107603i −0.0110770 0.00458822i
\(551\) 8.13093 19.6298i 0.346389 0.836257i
\(552\) 0.807500 0.807500i 0.0343695 0.0343695i
\(553\) −5.40834 + 5.40834i −0.229986 + 0.229986i
\(554\) 2.24144 5.41133i 0.0952299 0.229905i
\(555\) 5.06797 + 2.09922i 0.215123 + 0.0891070i
\(556\) −2.99215 7.22368i −0.126895 0.306352i
\(557\) 19.8456i 0.840887i −0.907319 0.420443i \(-0.861875\pi\)
0.907319 0.420443i \(-0.138125\pi\)
\(558\) 1.08764 0.450515i 0.0460434 0.0190718i
\(559\) −2.65822 2.65822i −0.112431 0.112431i
\(560\) 9.25947 0.391284
\(561\) 0.0955439 0.292449i 0.00403387 0.0123472i
\(562\) −1.75567 −0.0740585
\(563\) −9.14652 9.14652i −0.385480 0.385480i 0.487592 0.873072i \(-0.337875\pi\)
−0.873072 + 0.487592i \(0.837875\pi\)
\(564\) −0.678855 + 0.281191i −0.0285849 + 0.0118403i
\(565\) 12.5890i 0.529624i
\(566\) 2.36482 + 5.70917i 0.0994007 + 0.239974i
\(567\) 3.26883 + 1.35399i 0.137278 + 0.0568624i
\(568\) −4.27206 + 10.3137i −0.179252 + 0.432752i
\(569\) −7.76611 + 7.76611i −0.325572 + 0.325572i −0.850900 0.525328i \(-0.823943\pi\)
0.525328 + 0.850900i \(0.323943\pi\)
\(570\) 1.40707 1.40707i 0.0589358 0.0589358i
\(571\) −6.38200 + 15.4075i −0.267078 + 0.644784i −0.999343 0.0362357i \(-0.988463\pi\)
0.732265 + 0.681020i \(0.238463\pi\)
\(572\) −0.767578 0.317941i −0.0320940 0.0132938i
\(573\) 3.25816 + 7.86590i 0.136112 + 0.328603i
\(574\) 1.52153i 0.0635073i
\(575\) 16.0287 6.63929i 0.668441 0.276877i
\(576\) −11.8726 11.8726i −0.494691 0.494691i
\(577\) 16.6270 0.692191 0.346095 0.938199i \(-0.387507\pi\)
0.346095 + 0.938199i \(0.387507\pi\)
\(578\) 0.653918 + 4.21660i 0.0271994 + 0.175388i
\(579\) −9.09225 −0.377861
\(580\) −35.5741 35.5741i −1.47714 1.47714i
\(581\) 2.65098 1.09807i 0.109981 0.0455557i
\(582\) 1.06478i 0.0441367i
\(583\) −0.159355 0.384717i −0.00659981 0.0159334i
\(584\) −1.61112 0.667348i −0.0666686 0.0276151i
\(585\) 14.2451 34.3907i 0.588962 1.42188i
\(586\) 4.31600 4.31600i 0.178292 0.178292i
\(587\) −4.05767 + 4.05767i −0.167478 + 0.167478i −0.785870 0.618392i \(-0.787784\pi\)
0.618392 + 0.785870i \(0.287784\pi\)
\(588\) 3.18012 7.67749i 0.131146 0.316614i
\(589\) 5.30483 + 2.19733i 0.218582 + 0.0905396i
\(590\) −4.75163 11.4715i −0.195622 0.472272i
\(591\) 1.33920i 0.0550873i
\(592\) −7.29930 + 3.02347i −0.299999 + 0.124264i
\(593\) −24.3343 24.3343i −0.999291 0.999291i 0.000708947 1.00000i \(-0.499774\pi\)
−1.00000 0.000708947i \(0.999774\pi\)
\(594\) −0.104365 −0.00428216
\(595\) 3.26978 10.0084i 0.134048 0.410305i
\(596\) −25.4335 −1.04180
\(597\) −10.1847 10.1847i −0.416834 0.416834i
\(598\) −1.54041 + 0.638060i −0.0629922 + 0.0260922i
\(599\) 48.5421i 1.98338i −0.128665 0.991688i \(-0.541069\pi\)
0.128665 0.991688i \(-0.458931\pi\)
\(600\) −2.42826 5.86234i −0.0991332 0.239329i
\(601\) −35.1729 14.5691i −1.43473 0.594286i −0.476219 0.879327i \(-0.657993\pi\)
−0.958515 + 0.285040i \(0.907993\pi\)
\(602\) −0.0637201 + 0.153834i −0.00259704 + 0.00626981i
\(603\) −14.7463 + 14.7463i −0.600516 + 0.600516i
\(604\) 7.76598 7.76598i 0.315993 0.315993i
\(605\) 16.1852 39.0746i 0.658022 1.58861i
\(606\) 0.461519 + 0.191167i 0.0187479 + 0.00776565i
\(607\) 9.62008 + 23.2249i 0.390467 + 0.942671i 0.989838 + 0.142199i \(0.0454174\pi\)
−0.599371 + 0.800471i \(0.704583\pi\)
\(608\) 9.08975i 0.368638i
\(609\) 2.70441 1.12020i 0.109588 0.0453930i
\(610\) 7.77752 + 7.77752i 0.314903 + 0.314903i
\(611\) 2.18053 0.0882148
\(612\) −18.3194 + 9.29702i −0.740516 + 0.375810i
\(613\) 39.8851 1.61094 0.805471 0.592635i \(-0.201912\pi\)
0.805471 + 0.592635i \(0.201912\pi\)
\(614\) −4.93676 4.93676i −0.199231 0.199231i
\(615\) 21.2537 8.80356i 0.857030 0.354994i
\(616\) 0.0747953i 0.00301359i
\(617\) −4.52770 10.9308i −0.182278 0.440059i 0.806157 0.591702i \(-0.201544\pi\)
−0.988435 + 0.151643i \(0.951544\pi\)
\(618\) 2.36183 + 0.978301i 0.0950067 + 0.0393530i
\(619\) −12.2216 + 29.5055i −0.491226 + 1.18592i 0.462871 + 0.886426i \(0.346819\pi\)
−0.954097 + 0.299499i \(0.903181\pi\)
\(620\) 9.61369 9.61369i 0.386095 0.386095i
\(621\) 4.55340 4.55340i 0.182722 0.182722i
\(622\) −1.54608 + 3.73258i −0.0619923 + 0.149663i
\(623\) 5.36039 + 2.22034i 0.214759 + 0.0889562i
\(624\) −3.41149 8.23607i −0.136569 0.329707i
\(625\) 22.3087i 0.892347i
\(626\) −1.42352 + 0.589640i −0.0568951 + 0.0235667i
\(627\) −0.166155 0.166155i −0.00663560 0.00663560i
\(628\) −40.7480 −1.62602
\(629\) 0.690436 + 8.95738i 0.0275295 + 0.357154i
\(630\) −1.64876 −0.0656881
\(631\) −15.3050 15.3050i −0.609283 0.609283i 0.333475 0.942759i \(-0.391779\pi\)
−0.942759 + 0.333475i \(0.891779\pi\)
\(632\) −10.5262 + 4.36009i −0.418710 + 0.173435i
\(633\) 4.75987i 0.189188i
\(634\) −2.01831 4.87264i −0.0801575 0.193517i
\(635\) 27.0241 + 11.1937i 1.07242 + 0.444210i
\(636\) 1.76929 4.27144i 0.0701569 0.169374i
\(637\) −17.4377 + 17.4377i −0.690907 + 0.690907i
\(638\) 0.136632 0.136632i 0.00540930 0.00540930i
\(639\) −11.1203 + 26.8468i −0.439913 + 1.06204i
\(640\) 26.3581 + 10.9179i 1.04190 + 0.431568i
\(641\) 7.06508 + 17.0566i 0.279054 + 0.673695i 0.999810 0.0194932i \(-0.00620528\pi\)
−0.720756 + 0.693189i \(0.756205\pi\)
\(642\) 1.07804i 0.0425468i
\(643\) 33.5459 13.8951i 1.32292 0.547971i 0.394292 0.918985i \(-0.370990\pi\)
0.928627 + 0.371014i \(0.120990\pi\)
\(644\) −1.60553 1.60553i −0.0632668 0.0632668i
\(645\) −2.51754 −0.0991280
\(646\) 3.09783 + 1.01207i 0.121883 + 0.0398194i
\(647\) 36.5783 1.43804 0.719021 0.694989i \(-0.244591\pi\)
0.719021 + 0.694989i \(0.244591\pi\)
\(648\) 3.72683 + 3.72683i 0.146404 + 0.146404i
\(649\) −1.35461 + 0.561099i −0.0531733 + 0.0220251i
\(650\) 9.26446i 0.363382i
\(651\) 0.302728 + 0.730851i 0.0118649 + 0.0286443i
\(652\) 34.7561 + 14.3965i 1.36115 + 0.563809i
\(653\) 18.0584 43.5969i 0.706680 1.70608i −0.00145316 0.999999i \(-0.500463\pi\)
0.708134 0.706078i \(-0.249537\pi\)
\(654\) 0.865465 0.865465i 0.0338424 0.0338424i
\(655\) 0.128609 0.128609i 0.00502517 0.00502517i
\(656\) −12.6796 + 30.6112i −0.495055 + 1.19517i
\(657\) −4.19380 1.73713i −0.163616 0.0677719i
\(658\) −0.0369601 0.0892296i −0.00144085 0.00347853i
\(659\) 43.2318i 1.68407i −0.539423 0.842035i \(-0.681357\pi\)
0.539423 0.842035i \(-0.318643\pi\)
\(660\) −0.514035 + 0.212920i −0.0200088 + 0.00828791i
\(661\) −28.1662 28.1662i −1.09554 1.09554i −0.994926 0.100611i \(-0.967920\pi\)
−0.100611 0.994926i \(-0.532080\pi\)
\(662\) 3.78394 0.147067
\(663\) −10.1069 + 0.779044i −0.392521 + 0.0302556i
\(664\) 4.27434 0.165876
\(665\) −5.68629 5.68629i −0.220505 0.220505i
\(666\) 1.29973 0.538365i 0.0503634 0.0208612i
\(667\) 11.9223i 0.461635i
\(668\) −13.2006 31.8691i −0.510747 1.23305i
\(669\) 8.35235 + 3.45966i 0.322921 + 0.133758i
\(670\) 2.99774 7.23718i 0.115813 0.279596i
\(671\) 0.918414 0.918414i 0.0354550 0.0354550i
\(672\) −0.885511 + 0.885511i −0.0341593 + 0.0341593i
\(673\) −13.2063 + 31.8827i −0.509064 + 1.22899i 0.435360 + 0.900257i \(0.356621\pi\)
−0.944423 + 0.328732i \(0.893379\pi\)
\(674\) −4.73772 1.96243i −0.182490 0.0755899i
\(675\) −13.6927 33.0571i −0.527032 1.27237i
\(676\) 2.19315i 0.0843521i
\(677\) 10.7636 4.45843i 0.413679 0.171351i −0.166130 0.986104i \(-0.553127\pi\)
0.579809 + 0.814752i \(0.303127\pi\)
\(678\) −0.379600 0.379600i −0.0145785 0.0145785i
\(679\) −4.30302 −0.165135
\(680\) 10.2053 11.9100i 0.391357 0.456727i
\(681\) −7.25081 −0.277852
\(682\) 0.0369239 + 0.0369239i 0.00141389 + 0.00141389i
\(683\) −9.84793 + 4.07914i −0.376820 + 0.156084i −0.563051 0.826422i \(-0.690373\pi\)
0.186231 + 0.982506i \(0.440373\pi\)
\(684\) 15.6902i 0.599932i
\(685\) −3.10376 7.49314i −0.118589 0.286298i
\(686\) 2.08598 + 0.864040i 0.0796430 + 0.0329892i
\(687\) −3.39490 + 8.19601i −0.129523 + 0.312697i
\(688\) 2.56394 2.56394i 0.0977494 0.0977494i
\(689\) −9.70163 + 9.70163i −0.369603 + 0.369603i
\(690\) −0.427299 + 1.03159i −0.0162670 + 0.0392720i
\(691\) 24.3593 + 10.0899i 0.926670 + 0.383839i 0.794414 0.607376i \(-0.207778\pi\)
0.132256 + 0.991216i \(0.457778\pi\)
\(692\) 2.91681 + 7.04181i 0.110881 + 0.267689i
\(693\) 0.194695i 0.00739584i
\(694\) 5.63497 2.33408i 0.213901 0.0886006i
\(695\) 10.9875 + 10.9875i 0.416780 + 0.416780i
\(696\) 4.36049 0.165284
\(697\) 28.6097 + 24.5149i 1.08367 + 0.928567i
\(698\) 2.36236 0.0894165
\(699\) −0.647743 0.647743i −0.0244999 0.0244999i
\(700\) −11.6559 + 4.82804i −0.440553 + 0.182483i
\(701\) 27.5402i 1.04018i 0.854111 + 0.520090i \(0.174102\pi\)
−0.854111 + 0.520090i \(0.825898\pi\)
\(702\) 1.31592 + 3.17691i 0.0496661 + 0.119905i
\(703\) 6.33927 + 2.62581i 0.239090 + 0.0990343i
\(704\) 0.285005 0.688063i 0.0107415 0.0259324i
\(705\) 1.03257 1.03257i 0.0388887 0.0388887i
\(706\) −4.18431 + 4.18431i −0.157479 + 0.157479i
\(707\) 0.772549 1.86510i 0.0290547 0.0701443i
\(708\) −15.0400 6.22978i −0.565239 0.234130i
\(709\) −11.1363 26.8855i −0.418234 1.00971i −0.982859 0.184359i \(-0.940979\pi\)
0.564625 0.825348i \(-0.309021\pi\)
\(710\) 10.9152i 0.409642i
\(711\) −27.4000 + 11.3495i −1.02758 + 0.425638i
\(712\) 6.11143 + 6.11143i 0.229036 + 0.229036i
\(713\) −3.22194 −0.120663
\(714\) 0.203192 + 0.400381i 0.00760428 + 0.0149839i
\(715\) 1.65112 0.0617483
\(716\) 20.7217 + 20.7217i 0.774405 + 0.774405i
\(717\) 8.80520 3.64723i 0.328836 0.136208i
\(718\) 1.99592i 0.0744872i
\(719\) −17.4170 42.0484i −0.649546 1.56814i −0.813430 0.581663i \(-0.802402\pi\)
0.163885 0.986480i \(-0.447598\pi\)
\(720\) 33.1710 + 13.7399i 1.23621 + 0.512055i
\(721\) 3.95353 9.54466i 0.147237 0.355462i
\(722\) −1.61216 + 1.61216i −0.0599985 + 0.0599985i
\(723\) −2.29758 + 2.29758i −0.0854478 + 0.0854478i
\(724\) 7.36268 17.7751i 0.273632 0.660606i
\(725\) 61.2033 + 25.3512i 2.27303 + 0.941521i
\(726\) 0.690189 + 1.66626i 0.0256153 + 0.0618409i
\(727\) 39.4092i 1.46161i −0.682588 0.730803i \(-0.739146\pi\)
0.682588 0.730803i \(-0.260854\pi\)
\(728\) 2.27679 0.943078i 0.0843835 0.0349528i
\(729\) 4.64525 + 4.64525i 0.172046 + 0.172046i
\(730\) 1.70509 0.0631083
\(731\) −1.86593 3.67673i −0.0690138 0.135989i
\(732\) 14.4207 0.533004
\(733\) −10.5713 10.5713i −0.390462 0.390462i 0.484390 0.874852i \(-0.339041\pi\)
−0.874852 + 0.484390i \(0.839041\pi\)
\(734\) 1.62097 0.671428i 0.0598311 0.0247829i
\(735\) 16.5149i 0.609160i
\(736\) −1.95188 4.71225i −0.0719471 0.173696i
\(737\) −0.854607 0.353990i −0.0314798 0.0130394i
\(738\) 2.25775 5.45070i 0.0831090 0.200643i
\(739\) −20.5627 + 20.5627i −0.756412 + 0.756412i −0.975667 0.219256i \(-0.929637\pi\)
0.219256 + 0.975667i \(0.429637\pi\)
\(740\) 11.4883 11.4883i 0.422320 0.422320i
\(741\) −2.96280 + 7.15282i −0.108841 + 0.262766i
\(742\) 0.561444 + 0.232558i 0.0206113 + 0.00853747i
\(743\) −9.75831 23.5586i −0.357998 0.864283i −0.995581 0.0939018i \(-0.970066\pi\)
0.637584 0.770381i \(-0.279934\pi\)
\(744\) 1.17840i 0.0432021i
\(745\) 46.6974 19.3427i 1.71086 0.708662i
\(746\) −5.55499 5.55499i −0.203383 0.203383i
\(747\) 11.1262 0.407088
\(748\) −0.691947 0.592910i −0.0253001 0.0216789i
\(749\) −4.35659 −0.159186
\(750\) 2.15296 + 2.15296i 0.0786151 + 0.0786151i
\(751\) 1.19019 0.492995i 0.0434308 0.0179896i −0.360862 0.932619i \(-0.617518\pi\)
0.404293 + 0.914629i \(0.367518\pi\)
\(752\) 2.10320i 0.0766956i
\(753\) −4.39580 10.6124i −0.160192 0.386737i
\(754\) −5.88186 2.43635i −0.214205 0.0887265i
\(755\) −8.35260 + 20.1650i −0.303982 + 0.733878i
\(756\) −3.31120 + 3.31120i −0.120427 + 0.120427i
\(757\) −6.16340 + 6.16340i −0.224012 + 0.224012i −0.810186 0.586173i \(-0.800634\pi\)
0.586173 + 0.810186i \(0.300634\pi\)
\(758\) 0.505549 1.22050i 0.0183624 0.0443307i
\(759\) 0.121816 + 0.0504579i 0.00442165 + 0.00183151i
\(760\) −4.58417 11.0672i −0.166285 0.401448i