Properties

Label 731.2.m.c.87.12
Level 731
Weight 2
Character 731.87
Analytic conductor 5.837
Analytic rank 0
Dimension 128
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{8})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 87.12
Character \(\chi\) = 731.87
Dual form 731.2.m.c.689.12

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.349181 - 0.349181i) q^{2} +(2.07415 - 0.859139i) q^{3} -1.75615i q^{4} +(0.898278 + 2.16864i) q^{5} +(-1.02425 - 0.424257i) q^{6} +(1.36146 - 3.28687i) q^{7} +(-1.31157 + 1.31157i) q^{8} +(1.44264 - 1.44264i) q^{9} +O(q^{10})\) \(q+(-0.349181 - 0.349181i) q^{2} +(2.07415 - 0.859139i) q^{3} -1.75615i q^{4} +(0.898278 + 2.16864i) q^{5} +(-1.02425 - 0.424257i) q^{6} +(1.36146 - 3.28687i) q^{7} +(-1.31157 + 1.31157i) q^{8} +(1.44264 - 1.44264i) q^{9} +(0.443585 - 1.07091i) q^{10} +(-3.34493 - 1.38551i) q^{11} +(-1.50877 - 3.64250i) q^{12} -1.47061i q^{13} +(-1.62311 + 0.672314i) q^{14} +(3.72632 + 3.72632i) q^{15} -2.59634 q^{16} +(0.519665 - 4.09023i) q^{17} -1.00748 q^{18} +(0.337940 + 0.337940i) q^{19} +(3.80844 - 1.57751i) q^{20} -7.98713i q^{21} +(0.684189 + 1.65178i) q^{22} +(-0.758292 - 0.314095i) q^{23} +(-1.59357 + 3.84722i) q^{24} +(-0.360544 + 0.360544i) q^{25} +(-0.513508 + 0.513508i) q^{26} +(-0.824602 + 1.99077i) q^{27} +(-5.77222 - 2.39093i) q^{28} +(1.73611 + 4.19135i) q^{29} -2.60232i q^{30} +(6.67583 - 2.76522i) q^{31} +(3.52974 + 3.52974i) q^{32} -8.12821 q^{33} +(-1.60969 + 1.24677i) q^{34} +8.35099 q^{35} +(-2.53348 - 2.53348i) q^{36} +(7.12681 - 2.95202i) q^{37} -0.236004i q^{38} +(-1.26346 - 3.05026i) q^{39} +(-4.02249 - 1.66617i) q^{40} +(-0.471612 + 1.13857i) q^{41} +(-2.78895 + 2.78895i) q^{42} +(-0.707107 + 0.707107i) q^{43} +(-2.43316 + 5.87418i) q^{44} +(4.42445 + 1.83267i) q^{45} +(0.155105 + 0.374457i) q^{46} +8.81831i q^{47} +(-5.38518 + 2.23062i) q^{48} +(-4.00016 - 4.00016i) q^{49} +0.251790 q^{50} +(-2.43621 - 8.93019i) q^{51} -2.58260 q^{52} +(3.67283 + 3.67283i) q^{53} +(0.983073 - 0.407202i) q^{54} -8.49850i q^{55} +(2.52531 + 6.09663i) q^{56} +(0.991274 + 0.410599i) q^{57} +(0.857321 - 2.06976i) q^{58} +(-1.34775 + 1.34775i) q^{59} +(6.54396 - 6.54396i) q^{60} +(3.39177 - 8.18847i) q^{61} +(-3.29664 - 1.36551i) q^{62} +(-2.77766 - 6.70587i) q^{63} +2.72764i q^{64} +(3.18922 - 1.32102i) q^{65} +(2.83822 + 2.83822i) q^{66} -5.85404 q^{67} +(-7.18303 - 0.912607i) q^{68} -1.84266 q^{69} +(-2.91601 - 2.91601i) q^{70} +(-8.98787 + 3.72290i) q^{71} +3.78426i q^{72} +(4.48179 + 10.8200i) q^{73} +(-3.51934 - 1.45776i) q^{74} +(-0.438063 + 1.05758i) q^{75} +(0.593471 - 0.593471i) q^{76} +(-9.10800 + 9.10800i) q^{77} +(-0.623916 + 1.50627i) q^{78} +(-1.51547 - 0.627729i) q^{79} +(-2.33223 - 5.63051i) q^{80} +10.9582i q^{81} +(0.562246 - 0.232890i) q^{82} +(2.03100 + 2.03100i) q^{83} -14.0266 q^{84} +(9.33701 - 2.54720i) q^{85} +0.493816 q^{86} +(7.20190 + 7.20190i) q^{87} +(6.20432 - 2.56991i) q^{88} -0.263388i q^{89} +(-0.905001 - 2.18487i) q^{90} +(-4.83370 - 2.00218i) q^{91} +(-0.551596 + 1.33167i) q^{92} +(11.4709 - 11.4709i) q^{93} +(3.07919 - 3.07919i) q^{94} +(-0.429304 + 1.03643i) q^{95} +(10.3537 + 4.28866i) q^{96} +(-3.31421 - 8.00120i) q^{97} +2.79356i q^{98} +(-6.82432 + 2.82672i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} + O(q^{10}) \) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} - 8q^{10} - 4q^{11} + 12q^{12} + 12q^{14} - 12q^{15} - 144q^{16} - 12q^{17} + 64q^{18} - 28q^{19} - 8q^{20} - 12q^{22} + 16q^{23} - 16q^{24} - 20q^{25} + 16q^{26} - 8q^{27} + 20q^{28} + 12q^{31} - 4q^{32} - 104q^{33} + 20q^{34} + 32q^{35} - 96q^{36} - 12q^{37} + 8q^{39} + 216q^{40} + 24q^{41} - 4q^{42} + 24q^{44} - 28q^{45} - 48q^{46} + 28q^{48} - 80q^{50} - 20q^{51} + 56q^{52} - 36q^{53} - 12q^{54} - 8q^{56} + 72q^{57} - 32q^{58} + 48q^{59} - 40q^{60} - 76q^{61} - 44q^{62} + 36q^{65} - 68q^{66} - 48q^{67} + 32q^{68} + 216q^{69} - 196q^{70} + 4q^{71} + 20q^{73} + 88q^{74} + 80q^{75} + 72q^{76} + 28q^{77} - 120q^{78} + 68q^{79} - 68q^{80} + 28q^{82} - 36q^{83} - 152q^{84} + 28q^{85} - 24q^{86} - 56q^{87} + 20q^{88} - 112q^{90} + 96q^{91} - 28q^{92} + 24q^{93} - 36q^{94} - 108q^{95} + 272q^{96} + 8q^{97} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.349181 0.349181i −0.246908 0.246908i 0.572792 0.819701i \(-0.305860\pi\)
−0.819701 + 0.572792i \(0.805860\pi\)
\(3\) 2.07415 0.859139i 1.19751 0.496024i 0.307315 0.951608i \(-0.400569\pi\)
0.890193 + 0.455583i \(0.150569\pi\)
\(4\) 1.75615i 0.878073i
\(5\) 0.898278 + 2.16864i 0.401722 + 0.969844i 0.987248 + 0.159190i \(0.0508881\pi\)
−0.585526 + 0.810654i \(0.699112\pi\)
\(6\) −1.02425 0.424257i −0.418147 0.173202i
\(7\) 1.36146 3.28687i 0.514585 1.24232i −0.426604 0.904439i \(-0.640290\pi\)
0.941189 0.337880i \(-0.109710\pi\)
\(8\) −1.31157 + 1.31157i −0.463711 + 0.463711i
\(9\) 1.44264 1.44264i 0.480880 0.480880i
\(10\) 0.443585 1.07091i 0.140274 0.338651i
\(11\) −3.34493 1.38551i −1.00853 0.417748i −0.183614 0.982998i \(-0.558780\pi\)
−0.824919 + 0.565250i \(0.808780\pi\)
\(12\) −1.50877 3.64250i −0.435545 1.05150i
\(13\) 1.47061i 0.407873i −0.978984 0.203937i \(-0.934626\pi\)
0.978984 0.203937i \(-0.0653737\pi\)
\(14\) −1.62311 + 0.672314i −0.433794 + 0.179683i
\(15\) 3.72632 + 3.72632i 0.962132 + 0.962132i
\(16\) −2.59634 −0.649084
\(17\) 0.519665 4.09023i 0.126037 0.992026i
\(18\) −1.00748 −0.237466
\(19\) 0.337940 + 0.337940i 0.0775287 + 0.0775287i 0.744808 0.667279i \(-0.232541\pi\)
−0.667279 + 0.744808i \(0.732541\pi\)
\(20\) 3.80844 1.57751i 0.851593 0.352741i
\(21\) 7.98713i 1.74293i
\(22\) 0.684189 + 1.65178i 0.145870 + 0.352160i
\(23\) −0.758292 0.314095i −0.158115 0.0654933i 0.302222 0.953237i \(-0.402271\pi\)
−0.460337 + 0.887744i \(0.652271\pi\)
\(24\) −1.59357 + 3.84722i −0.325286 + 0.785311i
\(25\) −0.360544 + 0.360544i −0.0721088 + 0.0721088i
\(26\) −0.513508 + 0.513508i −0.100707 + 0.100707i
\(27\) −0.824602 + 1.99077i −0.158695 + 0.383123i
\(28\) −5.77222 2.39093i −1.09085 0.451843i
\(29\) 1.73611 + 4.19135i 0.322388 + 0.778314i 0.999114 + 0.0420791i \(0.0133982\pi\)
−0.676726 + 0.736235i \(0.736602\pi\)
\(30\) 2.60232i 0.475116i
\(31\) 6.67583 2.76522i 1.19902 0.496648i 0.308335 0.951278i \(-0.400228\pi\)
0.890681 + 0.454630i \(0.150228\pi\)
\(32\) 3.52974 + 3.52974i 0.623976 + 0.623976i
\(33\) −8.12821 −1.41494
\(34\) −1.60969 + 1.24677i −0.276059 + 0.213820i
\(35\) 8.35099 1.41158
\(36\) −2.53348 2.53348i −0.422247 0.422247i
\(37\) 7.12681 2.95202i 1.17164 0.485310i 0.289906 0.957055i \(-0.406376\pi\)
0.881735 + 0.471746i \(0.156376\pi\)
\(38\) 0.236004i 0.0382849i
\(39\) −1.26346 3.05026i −0.202315 0.488432i
\(40\) −4.02249 1.66617i −0.636011 0.263444i
\(41\) −0.471612 + 1.13857i −0.0736535 + 0.177815i −0.956418 0.292000i \(-0.905679\pi\)
0.882765 + 0.469815i \(0.155679\pi\)
\(42\) −2.78895 + 2.78895i −0.430345 + 0.430345i
\(43\) −0.707107 + 0.707107i −0.107833 + 0.107833i
\(44\) −2.43316 + 5.87418i −0.366813 + 0.885565i
\(45\) 4.42445 + 1.83267i 0.659558 + 0.273198i
\(46\) 0.155105 + 0.374457i 0.0228690 + 0.0552106i
\(47\) 8.81831i 1.28628i 0.765747 + 0.643142i \(0.222369\pi\)
−0.765747 + 0.643142i \(0.777631\pi\)
\(48\) −5.38518 + 2.23062i −0.777284 + 0.321962i
\(49\) −4.00016 4.00016i −0.571452 0.571452i
\(50\) 0.251790 0.0356085
\(51\) −2.43621 8.93019i −0.341138 1.25048i
\(52\) −2.58260 −0.358143
\(53\) 3.67283 + 3.67283i 0.504502 + 0.504502i 0.912834 0.408332i \(-0.133889\pi\)
−0.408332 + 0.912834i \(0.633889\pi\)
\(54\) 0.983073 0.407202i 0.133779 0.0554132i
\(55\) 8.49850i 1.14594i
\(56\) 2.52531 + 6.09663i 0.337458 + 0.814697i
\(57\) 0.991274 + 0.410599i 0.131297 + 0.0543852i
\(58\) 0.857321 2.06976i 0.112572 0.271772i
\(59\) −1.34775 + 1.34775i −0.175462 + 0.175462i −0.789374 0.613912i \(-0.789595\pi\)
0.613912 + 0.789374i \(0.289595\pi\)
\(60\) 6.54396 6.54396i 0.844822 0.844822i
\(61\) 3.39177 8.18847i 0.434272 1.04843i −0.543623 0.839330i \(-0.682948\pi\)
0.977895 0.209096i \(-0.0670522\pi\)
\(62\) −3.29664 1.36551i −0.418673 0.173420i
\(63\) −2.77766 6.70587i −0.349952 0.844860i
\(64\) 2.72764i 0.340955i
\(65\) 3.18922 1.32102i 0.395573 0.163852i
\(66\) 2.83822 + 2.83822i 0.349360 + 0.349360i
\(67\) −5.85404 −0.715185 −0.357593 0.933878i \(-0.616402\pi\)
−0.357593 + 0.933878i \(0.616402\pi\)
\(68\) −7.18303 0.912607i −0.871071 0.110670i
\(69\) −1.84266 −0.221830
\(70\) −2.91601 2.91601i −0.348529 0.348529i
\(71\) −8.98787 + 3.72290i −1.06666 + 0.441827i −0.845812 0.533481i \(-0.820884\pi\)
−0.220852 + 0.975307i \(0.570884\pi\)
\(72\) 3.78426i 0.445979i
\(73\) 4.48179 + 10.8200i 0.524554 + 1.26639i 0.935048 + 0.354522i \(0.115356\pi\)
−0.410494 + 0.911863i \(0.634644\pi\)
\(74\) −3.51934 1.45776i −0.409115 0.169461i
\(75\) −0.438063 + 1.05758i −0.0505832 + 0.122119i
\(76\) 0.593471 0.593471i 0.0680758 0.0680758i
\(77\) −9.10800 + 9.10800i −1.03795 + 1.03795i
\(78\) −0.623916 + 1.50627i −0.0706446 + 0.170551i
\(79\) −1.51547 0.627729i −0.170504 0.0706250i 0.295799 0.955250i \(-0.404414\pi\)
−0.466303 + 0.884625i \(0.654414\pi\)
\(80\) −2.33223 5.63051i −0.260752 0.629510i
\(81\) 10.9582i 1.21758i
\(82\) 0.562246 0.232890i 0.0620897 0.0257184i
\(83\) 2.03100 + 2.03100i 0.222931 + 0.222931i 0.809732 0.586800i \(-0.199613\pi\)
−0.586800 + 0.809732i \(0.699613\pi\)
\(84\) −14.0266 −1.53042
\(85\) 9.33701 2.54720i 1.01274 0.276282i
\(86\) 0.493816 0.0532496
\(87\) 7.20190 + 7.20190i 0.772125 + 0.772125i
\(88\) 6.20432 2.56991i 0.661383 0.273954i
\(89\) 0.263388i 0.0279191i −0.999903 0.0139595i \(-0.995556\pi\)
0.999903 0.0139595i \(-0.00444360\pi\)
\(90\) −0.905001 2.18487i −0.0953955 0.230305i
\(91\) −4.83370 2.00218i −0.506709 0.209886i
\(92\) −0.551596 + 1.33167i −0.0575079 + 0.138836i
\(93\) 11.4709 11.4709i 1.18948 1.18948i
\(94\) 3.07919 3.07919i 0.317594 0.317594i
\(95\) −0.429304 + 1.03643i −0.0440457 + 0.106336i
\(96\) 10.3537 + 4.28866i 1.05672 + 0.437709i
\(97\) −3.31421 8.00120i −0.336507 0.812399i −0.998046 0.0624882i \(-0.980096\pi\)
0.661539 0.749911i \(-0.269904\pi\)
\(98\) 2.79356i 0.282192i
\(99\) −6.82432 + 2.82672i −0.685870 + 0.284096i
\(100\) 0.633168 + 0.633168i 0.0633168 + 0.0633168i
\(101\) −0.108559 −0.0108020 −0.00540100 0.999985i \(-0.501719\pi\)
−0.00540100 + 0.999985i \(0.501719\pi\)
\(102\) −2.26757 + 3.96893i −0.224523 + 0.392983i
\(103\) −1.74202 −0.171646 −0.0858229 0.996310i \(-0.527352\pi\)
−0.0858229 + 0.996310i \(0.527352\pi\)
\(104\) 1.92881 + 1.92881i 0.189136 + 0.189136i
\(105\) 17.3212 7.17467i 1.69037 0.700176i
\(106\) 2.56496i 0.249131i
\(107\) −0.338876 0.818119i −0.0327604 0.0790906i 0.906653 0.421878i \(-0.138629\pi\)
−0.939413 + 0.342787i \(0.888629\pi\)
\(108\) 3.49607 + 1.44812i 0.336410 + 0.139346i
\(109\) 0.850779 2.05396i 0.0814898 0.196734i −0.877883 0.478875i \(-0.841045\pi\)
0.959373 + 0.282141i \(0.0910447\pi\)
\(110\) −2.96751 + 2.96751i −0.282941 + 0.282941i
\(111\) 12.2458 12.2458i 1.16232 1.16232i
\(112\) −3.53482 + 8.53382i −0.334009 + 0.806370i
\(113\) 11.1961 + 4.63758i 1.05324 + 0.436267i 0.841048 0.540961i \(-0.181939\pi\)
0.212193 + 0.977228i \(0.431939\pi\)
\(114\) −0.202760 0.489507i −0.0189903 0.0458465i
\(115\) 1.92660i 0.179657i
\(116\) 7.36062 3.04887i 0.683416 0.283080i
\(117\) −2.12156 2.12156i −0.196138 0.196138i
\(118\) 0.941217 0.0866460
\(119\) −12.7365 7.27677i −1.16756 0.667060i
\(120\) −9.77469 −0.892303
\(121\) 1.49070 + 1.49070i 0.135519 + 0.135519i
\(122\) −4.04360 + 1.67491i −0.366090 + 0.151640i
\(123\) 2.76675i 0.249469i
\(124\) −4.85613 11.7237i −0.436093 1.05282i
\(125\) 9.73742 + 4.03337i 0.870942 + 0.360756i
\(126\) −1.37165 + 3.31147i −0.122197 + 0.295009i
\(127\) −6.95141 + 6.95141i −0.616838 + 0.616838i −0.944719 0.327881i \(-0.893665\pi\)
0.327881 + 0.944719i \(0.393665\pi\)
\(128\) 8.01192 8.01192i 0.708160 0.708160i
\(129\) −0.859139 + 2.07415i −0.0756430 + 0.182618i
\(130\) −1.57489 0.652339i −0.138127 0.0572139i
\(131\) −3.68104 8.88682i −0.321614 0.776445i −0.999161 0.0409649i \(-0.986957\pi\)
0.677547 0.735480i \(-0.263043\pi\)
\(132\) 14.2743i 1.24242i
\(133\) 1.57086 0.650670i 0.136211 0.0564202i
\(134\) 2.04412 + 2.04412i 0.176585 + 0.176585i
\(135\) −5.05797 −0.435321
\(136\) 4.68306 + 6.04621i 0.401569 + 0.518459i
\(137\) 16.5355 1.41272 0.706360 0.707852i \(-0.250336\pi\)
0.706360 + 0.707852i \(0.250336\pi\)
\(138\) 0.643421 + 0.643421i 0.0547716 + 0.0547716i
\(139\) −15.2185 + 6.30372i −1.29082 + 0.534675i −0.919229 0.393722i \(-0.871187\pi\)
−0.371590 + 0.928397i \(0.621187\pi\)
\(140\) 14.6656i 1.23947i
\(141\) 7.57616 + 18.2905i 0.638028 + 1.54034i
\(142\) 4.43836 + 1.83843i 0.372459 + 0.154277i
\(143\) −2.03755 + 4.91908i −0.170388 + 0.411354i
\(144\) −3.74558 + 3.74558i −0.312132 + 0.312132i
\(145\) −7.53000 + 7.53000i −0.625332 + 0.625332i
\(146\) 2.21318 5.34309i 0.183164 0.442198i
\(147\) −11.7336 4.86022i −0.967772 0.400864i
\(148\) −5.18418 12.5157i −0.426137 1.02879i
\(149\) 22.6620i 1.85654i −0.371904 0.928271i \(-0.621295\pi\)
0.371904 0.928271i \(-0.378705\pi\)
\(150\) 0.522249 0.216323i 0.0426415 0.0176627i
\(151\) 11.9609 + 11.9609i 0.973365 + 0.973365i 0.999654 0.0262890i \(-0.00836900\pi\)
−0.0262890 + 0.999654i \(0.508369\pi\)
\(152\) −0.886466 −0.0719019
\(153\) −5.15103 6.65041i −0.416436 0.537654i
\(154\) 6.36068 0.512558
\(155\) 11.9935 + 11.9935i 0.963342 + 0.963342i
\(156\) −5.35669 + 2.21882i −0.428879 + 0.177647i
\(157\) 11.5737i 0.923678i 0.886964 + 0.461839i \(0.152810\pi\)
−0.886964 + 0.461839i \(0.847190\pi\)
\(158\) 0.309983 + 0.748365i 0.0246609 + 0.0595367i
\(159\) 10.7735 + 4.46251i 0.854391 + 0.353900i
\(160\) −4.48403 + 10.8254i −0.354494 + 0.855824i
\(161\) −2.06478 + 2.06478i −0.162727 + 0.162727i
\(162\) 3.82639 3.82639i 0.300629 0.300629i
\(163\) −2.47463 + 5.97428i −0.193828 + 0.467942i −0.990676 0.136237i \(-0.956499\pi\)
0.796848 + 0.604179i \(0.206499\pi\)
\(164\) 1.99950 + 0.828220i 0.156135 + 0.0646731i
\(165\) −7.30140 17.6271i −0.568413 1.37227i
\(166\) 1.41837i 0.110087i
\(167\) −12.7225 + 5.26984i −0.984498 + 0.407793i −0.816090 0.577925i \(-0.803863\pi\)
−0.168408 + 0.985717i \(0.553863\pi\)
\(168\) 10.4757 + 10.4757i 0.808219 + 0.808219i
\(169\) 10.8373 0.833639
\(170\) −4.14974 2.37087i −0.318271 0.181838i
\(171\) 0.975050 0.0745639
\(172\) 1.24178 + 1.24178i 0.0946850 + 0.0946850i
\(173\) −3.17700 + 1.31596i −0.241543 + 0.100050i −0.500171 0.865927i \(-0.666730\pi\)
0.258628 + 0.965977i \(0.416730\pi\)
\(174\) 5.02953i 0.381288i
\(175\) 0.694192 + 1.67593i 0.0524760 + 0.126688i
\(176\) 8.68456 + 3.59726i 0.654623 + 0.271154i
\(177\) −1.63752 + 3.95333i −0.123084 + 0.297151i
\(178\) −0.0919700 + 0.0919700i −0.00689344 + 0.00689344i
\(179\) −6.59301 + 6.59301i −0.492785 + 0.492785i −0.909183 0.416398i \(-0.863292\pi\)
0.416398 + 0.909183i \(0.363292\pi\)
\(180\) 3.21843 7.76998i 0.239888 0.579140i
\(181\) −5.72714 2.37226i −0.425695 0.176329i 0.159542 0.987191i \(-0.448998\pi\)
−0.585237 + 0.810863i \(0.698998\pi\)
\(182\) 0.988710 + 2.38696i 0.0732881 + 0.176933i
\(183\) 19.8981i 1.47091i
\(184\) 1.40651 0.582597i 0.103690 0.0429496i
\(185\) 12.8037 + 12.8037i 0.941349 + 0.941349i
\(186\) −8.01087 −0.587385
\(187\) −7.40530 + 12.9615i −0.541529 + 0.947839i
\(188\) 15.4862 1.12945
\(189\) 5.42072 + 5.42072i 0.394299 + 0.394299i
\(190\) 0.511807 0.211997i 0.0371304 0.0153799i
\(191\) 15.6653i 1.13350i 0.823888 + 0.566752i \(0.191800\pi\)
−0.823888 + 0.566752i \(0.808200\pi\)
\(192\) 2.34342 + 5.65752i 0.169122 + 0.408297i
\(193\) 19.6593 + 8.14317i 1.41511 + 0.586158i 0.953627 0.300990i \(-0.0973172\pi\)
0.461484 + 0.887149i \(0.347317\pi\)
\(194\) −1.63661 + 3.95112i −0.117502 + 0.283674i
\(195\) 5.47996 5.47996i 0.392428 0.392428i
\(196\) −7.02487 + 7.02487i −0.501776 + 0.501776i
\(197\) 1.52122 3.67256i 0.108383 0.261659i −0.860378 0.509657i \(-0.829772\pi\)
0.968761 + 0.247997i \(0.0797725\pi\)
\(198\) 3.36996 + 1.39588i 0.239493 + 0.0992010i
\(199\) 7.14298 + 17.2447i 0.506352 + 1.22244i 0.945969 + 0.324257i \(0.105114\pi\)
−0.439616 + 0.898186i \(0.644886\pi\)
\(200\) 0.945760i 0.0668754i
\(201\) −12.1421 + 5.02944i −0.856441 + 0.354749i
\(202\) 0.0379066 + 0.0379066i 0.00266710 + 0.00266710i
\(203\) 16.1401 1.13281
\(204\) −15.6827 + 4.27834i −1.09801 + 0.299544i
\(205\) −2.89279 −0.202041
\(206\) 0.608278 + 0.608278i 0.0423808 + 0.0423808i
\(207\) −1.54707 + 0.640816i −0.107529 + 0.0445398i
\(208\) 3.81820i 0.264744i
\(209\) −0.662163 1.59860i −0.0458028 0.110578i
\(210\) −8.55348 3.54297i −0.590246 0.244488i
\(211\) −6.70858 + 16.1960i −0.461838 + 1.11498i 0.505804 + 0.862648i \(0.331196\pi\)
−0.967642 + 0.252327i \(0.918804\pi\)
\(212\) 6.45003 6.45003i 0.442990 0.442990i
\(213\) −15.4437 + 15.4437i −1.05818 + 1.05818i
\(214\) −0.167343 + 0.404001i −0.0114393 + 0.0276169i
\(215\) −2.16864 0.898278i −0.147900 0.0612621i
\(216\) −1.52951 3.69256i −0.104070 0.251247i
\(217\) 25.7073i 1.74513i
\(218\) −1.01428 + 0.420128i −0.0686957 + 0.0284547i
\(219\) 18.5918 + 18.5918i 1.25632 + 1.25632i
\(220\) −14.9246 −1.00622
\(221\) −6.01512 0.764223i −0.404621 0.0514072i
\(222\) −8.55203 −0.573975
\(223\) −8.51733 8.51733i −0.570362 0.570362i 0.361867 0.932230i \(-0.382139\pi\)
−0.932230 + 0.361867i \(0.882139\pi\)
\(224\) 16.4074 6.79617i 1.09627 0.454088i
\(225\) 1.04027i 0.0693513i
\(226\) −2.29011 5.52882i −0.152336 0.367772i
\(227\) −18.6052 7.70651i −1.23487 0.511499i −0.332761 0.943011i \(-0.607980\pi\)
−0.902107 + 0.431512i \(0.857980\pi\)
\(228\) 0.721071 1.74082i 0.0477541 0.115289i
\(229\) −20.5319 + 20.5319i −1.35679 + 1.35679i −0.478937 + 0.877849i \(0.658978\pi\)
−0.877849 + 0.478937i \(0.841022\pi\)
\(230\) −0.672733 + 0.672733i −0.0443587 + 0.0443587i
\(231\) −11.0663 + 26.7163i −0.728107 + 1.75781i
\(232\) −7.77431 3.22022i −0.510408 0.211418i
\(233\) −3.28507 7.93085i −0.215212 0.519567i 0.778998 0.627027i \(-0.215728\pi\)
−0.994209 + 0.107460i \(0.965728\pi\)
\(234\) 1.48161i 0.0968562i
\(235\) −19.1237 + 7.92130i −1.24749 + 0.516729i
\(236\) 2.36684 + 2.36684i 0.154068 + 0.154068i
\(237\) −3.68261 −0.239212
\(238\) 1.90644 + 6.98826i 0.123576 + 0.452982i
\(239\) 1.89849 0.122803 0.0614015 0.998113i \(-0.480443\pi\)
0.0614015 + 0.998113i \(0.480443\pi\)
\(240\) −9.67479 9.67479i −0.624505 0.624505i
\(241\) 12.3913 5.13264i 0.798194 0.330623i 0.0539610 0.998543i \(-0.482815\pi\)
0.744233 + 0.667920i \(0.232815\pi\)
\(242\) 1.04105i 0.0669213i
\(243\) 6.94080 + 16.7566i 0.445252 + 1.07493i
\(244\) −14.3801 5.95645i −0.920594 0.381323i
\(245\) 5.08164 12.2682i 0.324654 0.783784i
\(246\) 0.966095 0.966095i 0.0615960 0.0615960i
\(247\) 0.496977 0.496977i 0.0316219 0.0316219i
\(248\) −5.12906 + 12.3826i −0.325696 + 0.786299i
\(249\) 5.95750 + 2.46768i 0.377541 + 0.156383i
\(250\) −1.99175 4.80850i −0.125969 0.304116i
\(251\) 25.1842i 1.58961i −0.606862 0.794807i \(-0.707572\pi\)
0.606862 0.794807i \(-0.292428\pi\)
\(252\) −11.7765 + 4.87798i −0.741848 + 0.307284i
\(253\) 2.10125 + 2.10125i 0.132104 + 0.132104i
\(254\) 4.85460 0.304605
\(255\) 17.1779 13.3051i 1.07572 0.833195i
\(256\) −0.139937 −0.00874606
\(257\) 17.3778 + 17.3778i 1.08400 + 1.08400i 0.996132 + 0.0878663i \(0.0280048\pi\)
0.0878663 + 0.996132i \(0.471995\pi\)
\(258\) 1.02425 0.424257i 0.0637668 0.0264131i
\(259\) 27.4440i 1.70528i
\(260\) −2.31990 5.60073i −0.143874 0.347342i
\(261\) 8.55119 + 3.54202i 0.529305 + 0.219245i
\(262\) −1.81776 + 4.38845i −0.112301 + 0.271120i
\(263\) 17.4532 17.4532i 1.07621 1.07621i 0.0793657 0.996846i \(-0.474711\pi\)
0.996846 0.0793657i \(-0.0252895\pi\)
\(264\) 10.6608 10.6608i 0.656124 0.656124i
\(265\) −4.66581 + 11.2643i −0.286618 + 0.691958i
\(266\) −0.775714 0.321311i −0.0475621 0.0197009i
\(267\) −0.226287 0.546305i −0.0138485 0.0334333i
\(268\) 10.2806i 0.627985i
\(269\) 6.23023 2.58065i 0.379864 0.157345i −0.184578 0.982818i \(-0.559092\pi\)
0.564441 + 0.825473i \(0.309092\pi\)
\(270\) 1.76615 + 1.76615i 0.107484 + 0.107484i
\(271\) 5.55343 0.337347 0.168673 0.985672i \(-0.446052\pi\)
0.168673 + 0.985672i \(0.446052\pi\)
\(272\) −1.34922 + 10.6196i −0.0818088 + 0.643908i
\(273\) −11.7459 −0.710897
\(274\) −5.77387 5.77387i −0.348812 0.348812i
\(275\) 1.70553 0.706454i 0.102847 0.0426008i
\(276\) 3.23598i 0.194783i
\(277\) −10.3317 24.9429i −0.620771 1.49867i −0.850800 0.525490i \(-0.823882\pi\)
0.230028 0.973184i \(-0.426118\pi\)
\(278\) 7.51516 + 3.11288i 0.450729 + 0.186698i
\(279\) 5.64160 13.6200i 0.337754 0.815410i
\(280\) −10.9529 + 10.9529i −0.654564 + 0.654564i
\(281\) 3.53607 3.53607i 0.210944 0.210944i −0.593724 0.804669i \(-0.702343\pi\)
0.804669 + 0.593724i \(0.202343\pi\)
\(282\) 3.74123 9.03213i 0.222787 0.537856i
\(283\) −1.04945 0.434697i −0.0623834 0.0258400i 0.351274 0.936273i \(-0.385749\pi\)
−0.413657 + 0.910433i \(0.635749\pi\)
\(284\) 6.53795 + 15.7840i 0.387956 + 0.936609i
\(285\) 2.51854i 0.149186i
\(286\) 2.42912 1.00617i 0.143637 0.0594963i
\(287\) 3.10025 + 3.10025i 0.183002 + 0.183002i
\(288\) 10.1843 0.600114
\(289\) −16.4599 4.25109i −0.968229 0.250064i
\(290\) 5.25866 0.308799
\(291\) −13.7483 13.7483i −0.805939 0.805939i
\(292\) 19.0015 7.87068i 1.11198 0.460597i
\(293\) 4.47479i 0.261420i −0.991421 0.130710i \(-0.958274\pi\)
0.991421 0.130710i \(-0.0417257\pi\)
\(294\) 2.40006 + 5.79425i 0.139974 + 0.337927i
\(295\) −4.13343 1.71212i −0.240658 0.0996837i
\(296\) −5.47555 + 13.2191i −0.318260 + 0.768347i
\(297\) 5.51646 5.51646i 0.320098 0.320098i
\(298\) −7.91313 + 7.91313i −0.458395 + 0.458395i
\(299\) −0.461910 + 1.11515i −0.0267130 + 0.0644908i
\(300\) 1.85726 + 0.769303i 0.107229 + 0.0444157i
\(301\) 1.36146 + 3.28687i 0.0784735 + 0.189452i
\(302\) 8.35305i 0.480664i
\(303\) −0.225167 + 0.0932671i −0.0129355 + 0.00535806i
\(304\) −0.877406 0.877406i −0.0503227 0.0503227i
\(305\) 20.8046 1.19127
\(306\) −0.523554 + 4.12084i −0.0299296 + 0.235573i
\(307\) 17.2838 0.986441 0.493221 0.869904i \(-0.335820\pi\)
0.493221 + 0.869904i \(0.335820\pi\)
\(308\) 15.9950 + 15.9950i 0.911398 + 0.911398i
\(309\) −3.61319 + 1.49663i −0.205547 + 0.0851405i
\(310\) 8.37581i 0.475714i
\(311\) 0.685183 + 1.65418i 0.0388532 + 0.0937999i 0.942115 0.335290i \(-0.108834\pi\)
−0.903262 + 0.429090i \(0.858834\pi\)
\(312\) 5.65776 + 2.34352i 0.320307 + 0.132676i
\(313\) −1.95471 + 4.71908i −0.110486 + 0.266738i −0.969446 0.245306i \(-0.921112\pi\)
0.858959 + 0.512044i \(0.171112\pi\)
\(314\) 4.04130 4.04130i 0.228064 0.228064i
\(315\) 12.0475 12.0475i 0.678798 0.678798i
\(316\) −1.10238 + 2.66139i −0.0620139 + 0.149715i
\(317\) −25.1684 10.4251i −1.41360 0.585533i −0.460357 0.887734i \(-0.652278\pi\)
−0.953244 + 0.302202i \(0.902278\pi\)
\(318\) −2.20366 5.32011i −0.123575 0.298337i
\(319\) 16.4252i 0.919632i
\(320\) −5.91526 + 2.45018i −0.330673 + 0.136969i
\(321\) −1.40576 1.40576i −0.0784617 0.0784617i
\(322\) 1.44196 0.0803573
\(323\) 1.55787 1.20663i 0.0866819 0.0671389i
\(324\) 19.2442 1.06912
\(325\) 0.530219 + 0.530219i 0.0294113 + 0.0294113i
\(326\) 2.95020 1.22201i 0.163396 0.0676810i
\(327\) 4.99115i 0.276011i
\(328\) −0.874768 2.11188i −0.0483010 0.116609i
\(329\) 28.9846 + 12.0058i 1.59797 + 0.661903i
\(330\) −3.60555 + 8.70456i −0.198479 + 0.479171i
\(331\) 10.4156 10.4156i 0.572495 0.572495i −0.360330 0.932825i \(-0.617336\pi\)
0.932825 + 0.360330i \(0.117336\pi\)
\(332\) 3.56673 3.56673i 0.195750 0.195750i
\(333\) 6.02272 14.5401i 0.330043 0.796794i
\(334\) 6.28259 + 2.60233i 0.343768 + 0.142393i
\(335\) −5.25856 12.6953i −0.287306 0.693618i
\(336\) 20.7373i 1.13131i
\(337\) −22.5066 + 9.32255i −1.22601 + 0.507831i −0.899317 0.437298i \(-0.855936\pi\)
−0.326697 + 0.945129i \(0.605936\pi\)
\(338\) −3.78418 3.78418i −0.205832 0.205832i
\(339\) 27.2067 1.47766
\(340\) −4.47325 16.3972i −0.242596 0.889261i
\(341\) −26.1614 −1.41672
\(342\) −0.340469 0.340469i −0.0184104 0.0184104i
\(343\) 4.41399 1.82833i 0.238333 0.0987208i
\(344\) 1.85485i 0.100007i
\(345\) −1.65522 3.99606i −0.0891141 0.215140i
\(346\) 1.56885 + 0.649840i 0.0843421 + 0.0349356i
\(347\) 5.39078 13.0145i 0.289392 0.698654i −0.710596 0.703601i \(-0.751574\pi\)
0.999988 + 0.00494627i \(0.00157445\pi\)
\(348\) 12.6476 12.6476i 0.677982 0.677982i
\(349\) 9.26265 9.26265i 0.495818 0.495818i −0.414315 0.910133i \(-0.635979\pi\)
0.910133 + 0.414315i \(0.135979\pi\)
\(350\) 0.342803 0.827601i 0.0183236 0.0442371i
\(351\) 2.92764 + 1.21267i 0.156266 + 0.0647274i
\(352\) −6.91621 16.6972i −0.368635 0.889965i
\(353\) 3.12184i 0.166159i −0.996543 0.0830794i \(-0.973524\pi\)
0.996543 0.0830794i \(-0.0264755\pi\)
\(354\) 1.95222 0.808636i 0.103759 0.0429785i
\(355\) −16.1472 16.1472i −0.857006 0.857006i
\(356\) −0.462548 −0.0245150
\(357\) −32.6692 4.15063i −1.72904 0.219675i
\(358\) 4.60431 0.243345
\(359\) −20.0998 20.0998i −1.06083 1.06083i −0.998026 0.0627991i \(-0.979997\pi\)
−0.0627991 0.998026i \(-0.520003\pi\)
\(360\) −8.20667 + 3.39932i −0.432530 + 0.179160i
\(361\) 18.7716i 0.987979i
\(362\) 1.17146 + 2.82815i 0.0615706 + 0.148644i
\(363\) 4.37266 + 1.81121i 0.229505 + 0.0950641i
\(364\) −3.51612 + 8.48867i −0.184295 + 0.444927i
\(365\) −19.4387 + 19.4387i −1.01747 + 1.01747i
\(366\) −6.94803 + 6.94803i −0.363179 + 0.363179i
\(367\) 10.8939 26.3003i 0.568658 1.37286i −0.334028 0.942563i \(-0.608408\pi\)
0.902686 0.430299i \(-0.141592\pi\)
\(368\) 1.96878 + 0.815496i 0.102630 + 0.0425107i
\(369\) 0.962183 + 2.32292i 0.0500893 + 0.120926i
\(370\) 8.94163i 0.464853i
\(371\) 17.0725 7.07168i 0.886362 0.367143i
\(372\) −20.1446 20.1446i −1.04445 1.04445i
\(373\) −6.84073 −0.354200 −0.177100 0.984193i \(-0.556672\pi\)
−0.177100 + 0.984193i \(0.556672\pi\)
\(374\) 7.11170 1.94012i 0.367737 0.100321i
\(375\) 23.6621 1.22190
\(376\) −11.5659 11.5659i −0.596464 0.596464i
\(377\) 6.16383 2.55314i 0.317454 0.131494i
\(378\) 3.78562i 0.194711i
\(379\) 5.29952 + 12.7942i 0.272218 + 0.657192i 0.999578 0.0290643i \(-0.00925275\pi\)
−0.727360 + 0.686257i \(0.759253\pi\)
\(380\) 1.82013 + 0.753921i 0.0933705 + 0.0386753i
\(381\) −8.44601 + 20.3905i −0.432702 + 1.04464i
\(382\) 5.47004 5.47004i 0.279871 0.279871i
\(383\) −23.9054 + 23.9054i −1.22151 + 1.22151i −0.254412 + 0.967096i \(0.581882\pi\)
−0.967096 + 0.254412i \(0.918118\pi\)
\(384\) 9.73453 23.5012i 0.496763 1.19929i
\(385\) −27.9334 11.5704i −1.42362 0.589683i
\(386\) −4.02123 9.70811i −0.204675 0.494130i
\(387\) 2.04020i 0.103709i
\(388\) −14.0513 + 5.82023i −0.713345 + 0.295477i
\(389\) −21.0543 21.0543i −1.06749 1.06749i −0.997551 0.0699425i \(-0.977718\pi\)
−0.0699425 0.997551i \(-0.522282\pi\)
\(390\) −3.82699 −0.193787
\(391\) −1.67878 + 2.93836i −0.0848993 + 0.148599i
\(392\) 10.4930 0.529977
\(393\) −15.2700 15.2700i −0.770271 0.770271i
\(394\) −1.81357 + 0.751205i −0.0913663 + 0.0378452i
\(395\) 3.85038i 0.193734i
\(396\) 4.96414 + 11.9845i 0.249457 + 0.602243i
\(397\) −5.61458 2.32564i −0.281788 0.116720i 0.237313 0.971433i \(-0.423733\pi\)
−0.519101 + 0.854713i \(0.673733\pi\)
\(398\) 3.52732 8.51570i 0.176809 0.426854i
\(399\) 2.69917 2.69917i 0.135127 0.135127i
\(400\) 0.936094 0.936094i 0.0468047 0.0468047i
\(401\) −9.02368 + 21.7851i −0.450621 + 1.08790i 0.521466 + 0.853272i \(0.325386\pi\)
−0.972086 + 0.234623i \(0.924614\pi\)
\(402\) 5.99599 + 2.48362i 0.299053 + 0.123872i
\(403\) −4.06656 9.81754i −0.202570 0.489046i
\(404\) 0.190645i 0.00948494i
\(405\) −23.7643 + 9.84350i −1.18086 + 0.489127i
\(406\) −5.63580 5.63580i −0.279700 0.279700i
\(407\) −27.9287 −1.38438
\(408\) 14.9079 + 8.51733i 0.738050 + 0.421671i
\(409\) 4.07509 0.201500 0.100750 0.994912i \(-0.467876\pi\)
0.100750 + 0.994912i \(0.467876\pi\)
\(410\) 1.01011 + 1.01011i 0.0498856 + 0.0498856i
\(411\) 34.2970 14.2063i 1.69175 0.700744i
\(412\) 3.05923i 0.150718i
\(413\) 2.59496 + 6.26479i 0.127690 + 0.308270i
\(414\) 0.763967 + 0.316445i 0.0375469 + 0.0155524i
\(415\) −2.58010 + 6.22890i −0.126652 + 0.305765i
\(416\) 5.19087 5.19087i 0.254503 0.254503i
\(417\) −26.1497 + 26.1497i −1.28056 + 1.28056i
\(418\) −0.326987 + 0.789416i −0.0159935 + 0.0386116i
\(419\) 11.9721 + 4.95901i 0.584876 + 0.242264i 0.655445 0.755243i \(-0.272481\pi\)
−0.0705683 + 0.997507i \(0.522481\pi\)
\(420\) −12.5998 30.4185i −0.614805 1.48427i
\(421\) 39.9136i 1.94527i −0.232341 0.972635i \(-0.574638\pi\)
0.232341 0.972635i \(-0.425362\pi\)
\(422\) 7.99782 3.31281i 0.389328 0.161265i
\(423\) 12.7216 + 12.7216i 0.618548 + 0.618548i
\(424\) −9.63438 −0.467887
\(425\) 1.28734 + 1.66207i 0.0624454 + 0.0806222i
\(426\) 10.7853 0.522548
\(427\) −22.2966 22.2966i −1.07901 1.07901i
\(428\) −1.43674 + 0.595116i −0.0694473 + 0.0287660i
\(429\) 11.9534i 0.577116i
\(430\) 0.443585 + 1.07091i 0.0213915 + 0.0516438i
\(431\) 5.26248 + 2.17979i 0.253485 + 0.104997i 0.505808 0.862646i \(-0.331195\pi\)
−0.252323 + 0.967643i \(0.581195\pi\)
\(432\) 2.14095 5.16870i 0.103006 0.248679i
\(433\) −19.5117 + 19.5117i −0.937674 + 0.937674i −0.998169 0.0604941i \(-0.980732\pi\)
0.0604941 + 0.998169i \(0.480732\pi\)
\(434\) −8.97651 + 8.97651i −0.430886 + 0.430886i
\(435\) −9.14899 + 22.0876i −0.438661 + 1.05902i
\(436\) −3.60706 1.49409i −0.172747 0.0715540i
\(437\) −0.150112 0.362402i −0.00718082 0.0173360i
\(438\) 12.9838i 0.620389i
\(439\) −18.7076 + 7.74894i −0.892865 + 0.369837i −0.781473 0.623940i \(-0.785531\pi\)
−0.111393 + 0.993776i \(0.535531\pi\)
\(440\) 11.1464 + 11.1464i 0.531385 + 0.531385i
\(441\) −11.5416 −0.549599
\(442\) 1.83351 + 2.36722i 0.0872113 + 0.112597i
\(443\) −33.4695 −1.59019 −0.795093 0.606488i \(-0.792578\pi\)
−0.795093 + 0.606488i \(0.792578\pi\)
\(444\) −21.5055 21.5055i −1.02061 1.02061i
\(445\) 0.571193 0.236596i 0.0270771 0.0112157i
\(446\) 5.94818i 0.281654i
\(447\) −19.4698 47.0043i −0.920890 2.22322i
\(448\) 8.96539 + 3.71359i 0.423575 + 0.175450i
\(449\) 12.5594 30.3211i 0.592715 1.43094i −0.288156 0.957583i \(-0.593042\pi\)
0.880871 0.473357i \(-0.156958\pi\)
\(450\) 0.363242 0.363242i 0.0171234 0.0171234i
\(451\) 3.15502 3.15502i 0.148564 0.148564i
\(452\) 8.14426 19.6620i 0.383074 0.924822i
\(453\) 35.0848 + 14.5326i 1.64843 + 0.682800i
\(454\) 3.80560 + 9.18754i 0.178606 + 0.431192i
\(455\) 12.2810i 0.575744i
\(456\) −1.83866 + 0.761598i −0.0861031 + 0.0356651i
\(457\) 6.67770 + 6.67770i 0.312370 + 0.312370i 0.845827 0.533457i \(-0.179108\pi\)
−0.533457 + 0.845827i \(0.679108\pi\)
\(458\) 14.3387 0.670003
\(459\) 7.71416 + 4.40734i 0.360066 + 0.205717i
\(460\) −3.38340 −0.157752
\(461\) 20.7414 + 20.7414i 0.966022 + 0.966022i 0.999441 0.0334197i \(-0.0106398\pi\)
−0.0334197 + 0.999441i \(0.510640\pi\)
\(462\) 13.1930 5.46471i 0.613792 0.254241i
\(463\) 31.9157i 1.48325i 0.670814 + 0.741625i \(0.265945\pi\)
−0.670814 + 0.741625i \(0.734055\pi\)
\(464\) −4.50754 10.8822i −0.209257 0.505192i
\(465\) 35.1804 + 14.5722i 1.63145 + 0.675769i
\(466\) −1.62222 + 3.91638i −0.0751478 + 0.181423i
\(467\) −0.405595 + 0.405595i −0.0187687 + 0.0187687i −0.716429 0.697660i \(-0.754225\pi\)
0.697660 + 0.716429i \(0.254225\pi\)
\(468\) −3.72576 + 3.72576i −0.172223 + 0.172223i
\(469\) −7.97008 + 19.2415i −0.368024 + 0.888488i
\(470\) 9.44360 + 3.91167i 0.435601 + 0.180432i
\(471\) 9.94338 + 24.0054i 0.458167 + 1.10611i
\(472\) 3.53535i 0.162728i
\(473\) 3.34493 1.38551i 0.153800 0.0637060i
\(474\) 1.28590 + 1.28590i 0.0590633 + 0.0590633i
\(475\) −0.243684 −0.0111810
\(476\) −12.7791 + 22.3672i −0.585727 + 1.02520i
\(477\) 10.5971 0.485210
\(478\) −0.662916 0.662916i −0.0303211 0.0303211i
\(479\) −2.83541 + 1.17447i −0.129553 + 0.0536628i −0.446518 0.894774i \(-0.647336\pi\)
0.316965 + 0.948437i \(0.397336\pi\)
\(480\) 26.3059i 1.20069i
\(481\) −4.34127 10.4808i −0.197945 0.477881i
\(482\) −6.11903 2.53458i −0.278714 0.115447i
\(483\) −2.50871 + 6.05657i −0.114150 + 0.275584i
\(484\) 2.61789 2.61789i 0.118995 0.118995i
\(485\) 14.3746 14.3746i 0.652718 0.652718i
\(486\) 3.42748 8.27467i 0.155474 0.375347i
\(487\) −13.1774 5.45824i −0.597124 0.247337i 0.0635884 0.997976i \(-0.479746\pi\)
−0.660712 + 0.750640i \(0.729746\pi\)
\(488\) 6.29122 + 15.1883i 0.284790 + 0.687544i
\(489\) 14.5176i 0.656508i
\(490\) −6.05821 + 2.50939i −0.273682 + 0.113363i
\(491\) −10.7432 10.7432i −0.484832 0.484832i 0.421839 0.906671i \(-0.361385\pi\)
−0.906671 + 0.421839i \(0.861385\pi\)
\(492\) 4.85881 0.219052
\(493\) 18.0458 4.92300i 0.812740 0.221721i
\(494\) −0.347070 −0.0156154
\(495\) −12.2603 12.2603i −0.551058 0.551058i
\(496\) −17.3327 + 7.17945i −0.778262 + 0.322367i
\(497\) 34.6105i 1.55249i
\(498\) −1.21858 2.94191i −0.0546058 0.131830i
\(499\) 14.8775 + 6.16245i 0.666007 + 0.275869i 0.689964 0.723844i \(-0.257626\pi\)
−0.0239569 + 0.999713i \(0.507626\pi\)
\(500\) 7.08319 17.1003i 0.316770 0.764750i
\(501\) −21.8608 + 21.8608i −0.976670 + 0.976670i
\(502\) −8.79385 + 8.79385i −0.392489 + 0.392489i
\(503\) −0.832371 + 2.00952i −0.0371136 + 0.0896001i −0.941349 0.337433i \(-0.890441\pi\)
0.904236 + 0.427033i \(0.140441\pi\)
\(504\) 12.4383 + 5.15213i 0.554048 + 0.229494i
\(505\) −0.0975160 0.235424i −0.00433941 0.0104763i
\(506\) 1.46743i 0.0652352i
\(507\) 22.4782 9.31076i 0.998290 0.413505i
\(508\) 12.2077 + 12.2077i 0.541629 + 0.541629i
\(509\) −37.4180 −1.65852 −0.829262 0.558860i \(-0.811239\pi\)
−0.829262 + 0.558860i \(0.811239\pi\)
\(510\) −10.6441 1.35233i −0.471328 0.0598823i
\(511\) 41.6657 1.84318
\(512\) −15.9750 15.9750i −0.706001 0.706001i
\(513\) −0.951425 + 0.394093i −0.0420064 + 0.0173996i
\(514\) 12.1360i 0.535296i
\(515\) −1.56481 3.77780i −0.0689540 0.166470i
\(516\) 3.64250 + 1.50877i 0.160352 + 0.0664200i
\(517\) 12.2179 29.4966i 0.537342 1.29726i
\(518\) −9.58291 + 9.58291i −0.421049 + 0.421049i
\(519\) −5.45897 + 5.45897i −0.239622 + 0.239622i
\(520\) −2.45028 + 5.91550i −0.107452 + 0.259412i
\(521\) 28.8907 + 11.9669i 1.26573 + 0.524281i 0.911662 0.410941i \(-0.134800\pi\)
0.354064 + 0.935221i \(0.384800\pi\)
\(522\) −1.74911 4.22272i −0.0765563 0.184823i
\(523\) 4.49861i 0.196711i −0.995151 0.0983553i \(-0.968642\pi\)
0.995151 0.0983553i \(-0.0313582\pi\)
\(524\) −15.6065 + 6.46444i −0.681775 + 0.282400i
\(525\) 2.87971 + 2.87971i 0.125681 + 0.125681i
\(526\) −12.1887 −0.531451
\(527\) −7.84118 28.7427i −0.341567 1.25205i
\(528\) 21.1036 0.918415
\(529\) −15.7871 15.7871i −0.686396 0.686396i
\(530\) 5.56247 2.30405i 0.241618 0.100082i
\(531\) 3.88863i 0.168752i
\(532\) −1.14267 2.75865i −0.0495411 0.119603i
\(533\) 1.67440 + 0.693557i 0.0725261 + 0.0300413i
\(534\) −0.111744 + 0.269774i −0.00483564 + 0.0116743i
\(535\) 1.46980 1.46980i 0.0635449 0.0635449i
\(536\) 7.67801 7.67801i 0.331640 0.331640i
\(537\) −8.01055 + 19.3392i −0.345681 + 0.834547i
\(538\) −3.07659 1.27436i −0.132641 0.0549418i
\(539\) 7.83796 + 18.9225i 0.337605 + 0.815051i
\(540\) 8.88253i 0.382243i
\(541\) 35.3707 14.6510i 1.52071 0.629897i 0.542973 0.839750i \(-0.317299\pi\)
0.977733 + 0.209853i \(0.0672986\pi\)
\(542\) −1.93915 1.93915i −0.0832937 0.0832937i
\(543\) −13.9170 −0.597236
\(544\) 16.2717 12.6032i 0.697644 0.540356i
\(545\) 5.21853 0.223537
\(546\) 4.10146 + 4.10146i 0.175526 + 0.175526i
\(547\) −16.5746 + 6.86541i −0.708678 + 0.293544i −0.707757 0.706456i \(-0.750293\pi\)
−0.000920364 1.00000i \(0.500293\pi\)
\(548\) 29.0387i 1.24047i
\(549\) −6.91990 16.7061i −0.295334 0.712999i
\(550\) −0.842219 0.348859i −0.0359123 0.0148754i
\(551\) −0.829722 + 2.00313i −0.0353473 + 0.0853360i
\(552\) 2.41678 2.41678i 0.102865 0.102865i
\(553\) −4.12652 + 4.12652i −0.175478 + 0.175478i
\(554\) −5.10196 + 12.3172i −0.216761 + 0.523308i
\(555\) 37.5570 + 15.5566i 1.59420 + 0.660341i
\(556\) 11.0703 + 26.7260i 0.469483 + 1.13343i
\(557\) 32.1089i 1.36050i −0.732981 0.680250i \(-0.761871\pi\)
0.732981 0.680250i \(-0.238129\pi\)
\(558\) −6.72580 + 2.78592i −0.284726 + 0.117937i
\(559\) 1.03988 + 1.03988i 0.0439821 + 0.0439821i
\(560\) −21.6820 −0.916232
\(561\) −4.22394 + 33.2462i −0.178335 + 1.40366i
\(562\) −2.46946 −0.104168
\(563\) 14.4927 + 14.4927i 0.610796 + 0.610796i 0.943153 0.332358i \(-0.107844\pi\)
−0.332358 + 0.943153i \(0.607844\pi\)
\(564\) 32.1207 13.3048i 1.35253 0.560235i
\(565\) 28.4461i 1.19674i
\(566\) 0.214660 + 0.518236i 0.00902285 + 0.0217831i
\(567\) 36.0181 + 14.9192i 1.51262 + 0.626547i
\(568\) 6.90540 16.6711i 0.289744 0.699504i
\(569\) −25.9741 + 25.9741i −1.08889 + 1.08889i −0.0932500 + 0.995643i \(0.529726\pi\)
−0.995643 + 0.0932500i \(0.970274\pi\)
\(570\) 0.879427 0.879427i 0.0368352 0.0368352i
\(571\) 3.30602 7.98144i 0.138353 0.334013i −0.839483 0.543385i \(-0.817142\pi\)
0.977836 + 0.209373i \(0.0671422\pi\)
\(572\) 8.63861 + 3.57823i 0.361199 + 0.149613i
\(573\) 13.4587 + 32.4922i 0.562246 + 1.35738i
\(574\) 2.16510i 0.0903695i
\(575\) 0.386642 0.160153i 0.0161241 0.00667882i
\(576\) 3.93500 + 3.93500i 0.163958 + 0.163958i
\(577\) −39.9974 −1.66511 −0.832556 0.553940i \(-0.813124\pi\)
−0.832556 + 0.553940i \(0.813124\pi\)
\(578\) 4.26308 + 7.23188i 0.177321 + 0.300807i
\(579\) 47.7725 1.98536
\(580\) 13.2238 + 13.2238i 0.549087 + 0.549087i
\(581\) 9.44076 3.91049i 0.391669 0.162234i
\(582\) 9.60128i 0.397986i
\(583\) −7.19659 17.3741i −0.298052 0.719562i
\(584\) −20.0694 8.31303i −0.830479 0.343996i
\(585\) 2.69514 6.50664i 0.111430 0.269016i
\(586\) −1.56251 + 1.56251i −0.0645468 + 0.0645468i
\(587\) −9.06836 + 9.06836i −0.374291 + 0.374291i −0.869038 0.494746i \(-0.835261\pi\)
0.494746 + 0.869038i \(0.335261\pi\)
\(588\) −8.53526 + 20.6059i −0.351988 + 0.849774i
\(589\) 3.19051 + 1.32155i 0.131463 + 0.0544536i
\(590\) 0.845475 + 2.04116i 0.0348076 + 0.0840331i
\(591\) 8.92437i 0.367099i
\(592\) −18.5036 + 7.66445i −0.760494 + 0.315007i
\(593\) 8.83959 + 8.83959i 0.362998 + 0.362998i 0.864916 0.501917i \(-0.167372\pi\)
−0.501917 + 0.864916i \(0.667372\pi\)
\(594\) −3.85249 −0.158069
\(595\) 4.33972 34.1574i 0.177911 1.40032i
\(596\) −39.7977 −1.63018
\(597\) 29.6312 + 29.6312i 1.21272 + 1.21272i
\(598\) 0.550679 0.228099i 0.0225190 0.00932766i
\(599\) 37.5401i 1.53385i 0.641739 + 0.766923i \(0.278213\pi\)
−0.641739 + 0.766923i \(0.721787\pi\)
\(600\) −0.812540 1.96164i −0.0331718 0.0800838i
\(601\) 42.0424 + 17.4145i 1.71495 + 0.710354i 0.999937 + 0.0112389i \(0.00357754\pi\)
0.715009 + 0.699115i \(0.246422\pi\)
\(602\) 0.672314 1.62311i 0.0274015 0.0661530i
\(603\) −8.44527 + 8.44527i −0.343918 + 0.343918i
\(604\) 21.0051 21.0051i 0.854686 0.854686i
\(605\) −1.89373 + 4.57186i −0.0769910 + 0.185873i
\(606\) 0.111191 + 0.0460568i 0.00451683 + 0.00187093i
\(607\) 10.4460 + 25.2190i 0.423992 + 1.02361i 0.981158 + 0.193206i \(0.0618886\pi\)
−0.557166 + 0.830401i \(0.688111\pi\)
\(608\) 2.38568i 0.0967520i
\(609\) 33.4768 13.8666i 1.35655 0.561902i
\(610\) −7.26456 7.26456i −0.294133 0.294133i
\(611\) 12.9683 0.524641
\(612\) −11.6791 + 9.04596i −0.472099 + 0.365661i
\(613\) 22.9450 0.926740 0.463370 0.886165i \(-0.346640\pi\)
0.463370 + 0.886165i \(0.346640\pi\)
\(614\) −6.03519 6.03519i −0.243560 0.243560i
\(615\) −6.00007 + 2.48531i −0.241946 + 0.100217i
\(616\) 23.8916i 0.962621i
\(617\) −0.372732 0.899854i −0.0150056 0.0362268i 0.916199 0.400723i \(-0.131241\pi\)
−0.931205 + 0.364496i \(0.881241\pi\)
\(618\) 1.78425 + 0.739062i 0.0717732 + 0.0297294i
\(619\) −10.2765 + 24.8096i −0.413046 + 0.997182i 0.571269 + 0.820763i \(0.306451\pi\)
−0.984315 + 0.176419i \(0.943549\pi\)
\(620\) 21.0624 21.0624i 0.845885 0.845885i
\(621\) 1.25058 1.25058i 0.0501840 0.0501840i
\(622\) 0.338355 0.816861i 0.0135668 0.0327531i
\(623\) −0.865721 0.358593i −0.0346844 0.0143667i
\(624\) 3.28036 + 7.91950i 0.131320 + 0.317034i
\(625\) 27.2894i 1.09158i
\(626\) 2.33036 0.965266i 0.0931398 0.0385798i
\(627\) −2.74685 2.74685i −0.109698 0.109698i
\(628\) 20.3250 0.811056
\(629\) −8.37089 30.6843i −0.333769 1.22346i
\(630\) −8.41349 −0.335201
\(631\) −25.7227 25.7227i −1.02401 1.02401i −0.999705 0.0243013i \(-0.992264\pi\)
−0.0243013 0.999705i \(-0.507736\pi\)
\(632\) 2.81097 1.16434i 0.111814 0.0463150i
\(633\) 39.3564i 1.56428i
\(634\) 5.14809 + 12.4286i 0.204457 + 0.493602i
\(635\) −21.3194 8.83078i −0.846034 0.350439i
\(636\) 7.83682 18.9198i 0.310750 0.750217i
\(637\) −5.88267 + 5.88267i −0.233080 + 0.233080i
\(638\) −5.73535 + 5.73535i −0.227065 + 0.227065i
\(639\) −7.59546 + 18.3371i −0.300472 + 0.725403i
\(640\) 24.5719 + 10.1780i 0.971288 + 0.402321i
\(641\) 15.0049 + 36.2250i 0.592657 + 1.43080i 0.880927 + 0.473252i \(0.156920\pi\)
−0.288270 + 0.957549i \(0.593080\pi\)
\(642\) 0.981727i 0.0387457i
\(643\) 24.3498 10.0860i 0.960264 0.397754i 0.153185 0.988198i \(-0.451047\pi\)
0.807079 + 0.590443i \(0.201047\pi\)
\(644\) 3.62605 + 3.62605i 0.142886 + 0.142886i
\(645\) −5.26981 −0.207499
\(646\) −0.965310 0.122643i −0.0379796 0.00482533i
\(647\) −43.2311 −1.69959 −0.849795 0.527113i \(-0.823274\pi\)
−0.849795 + 0.527113i \(0.823274\pi\)
\(648\) −14.3725 14.3725i −0.564604 0.564604i
\(649\) 6.37545 2.64080i 0.250258 0.103660i
\(650\) 0.370285i 0.0145238i
\(651\) −22.0862 53.3207i −0.865625 2.08980i
\(652\) 10.4917 + 4.34581i 0.410887 + 0.170195i
\(653\) 4.98399 12.0324i 0.195039 0.470865i −0.795859 0.605482i \(-0.792980\pi\)
0.990898 + 0.134617i \(0.0429805\pi\)
\(654\) −1.74282 + 1.74282i −0.0681495 + 0.0681495i
\(655\) 15.9657 15.9657i 0.623830 0.623830i
\(656\) 1.22446 2.95612i 0.0478073 0.115417i
\(657\) 22.0750 + 9.14375i 0.861226 + 0.356732i
\(658\) −5.92867 14.3131i −0.231124 0.557982i
\(659\) 30.5072i 1.18839i −0.804321 0.594195i \(-0.797471\pi\)
0.804321 0.594195i \(-0.202529\pi\)
\(660\) −30.9558 + 12.8223i −1.20495 + 0.499108i
\(661\) −10.2695 10.2695i −0.399436 0.399436i 0.478598 0.878034i \(-0.341145\pi\)
−0.878034 + 0.478598i \(0.841145\pi\)
\(662\) −7.27388 −0.282707
\(663\) −13.1328 + 3.58272i −0.510036 + 0.139141i
\(664\) −5.32761 −0.206751
\(665\) 2.82213 + 2.82213i 0.109438 + 0.109438i
\(666\) −7.18015 + 2.97412i −0.278225 + 0.115245i
\(667\) 3.72357i 0.144177i
\(668\) 9.25461 + 22.3426i 0.358071 + 0.864461i
\(669\) −24.9837 10.3486i −0.965927 0.400100i
\(670\) −2.59676 + 6.26914i −0.100322 + 0.242198i
\(671\) −22.6905 + 22.6905i −0.875956 + 0.875956i
\(672\) 28.1925 28.1925i 1.08755 1.08755i
\(673\) −1.89427 + 4.57316i −0.0730186 + 0.176282i −0.956175 0.292797i \(-0.905414\pi\)
0.883156 + 0.469079i \(0.155414\pi\)
\(674\) 11.1141 + 4.60363i 0.428100 + 0.177325i
\(675\) −0.420453 1.01506i −0.0161833 0.0390698i
\(676\) 19.0319i 0.731996i
\(677\) −44.3754 + 18.3809i −1.70548 + 0.706434i −0.999997 0.00228946i \(-0.999271\pi\)
−0.705486 + 0.708724i \(0.749271\pi\)
\(678\) −9.50005 9.50005i −0.364847 0.364847i
\(679\) −30.8111 −1.18242
\(680\) −8.90535 + 15.5870i −0.341504 + 0.597735i
\(681\) −45.2108 −1.73248
\(682\) 9.13507 + 9.13507i 0.349800 + 0.349800i
\(683\) 3.06064 1.26776i 0.117112 0.0485095i −0.323358 0.946277i \(-0.604812\pi\)
0.440470 + 0.897767i \(0.354812\pi\)
\(684\) 1.71233i 0.0654726i
\(685\) 14.8535 + 35.8594i 0.567521 + 1.37012i
\(686\) −2.17970 0.902862i −0.0832214 0.0344714i
\(687\) −24.9464 + 60.2259i −0.951764 + 2.29776i
\(688\) 1.83589 1.83589i 0.0699926 0.0699926i
\(689\) 5.40130 5.40130i 0.205773 0.205773i
\(690\) −0.817375 + 1.97332i −0.0311169 + 0.0751229i
\(691\) 5.18233 + 2.14659i 0.197145 + 0.0816602i 0.479072 0.877776i \(-0.340973\pi\)
−0.281926 + 0.959436i \(0.590973\pi\)
\(692\) 2.31101 + 5.57927i 0.0878514 + 0.212092i
\(693\) 26.2791i 0.998261i
\(694\) −6.42677 + 2.66205i −0.243957 + 0.101050i
\(695\) −27.3410 27.3410i −1.03710 1.03710i
\(696\) −18.8917 −0.716087
\(697\) 4.41194 + 2.52068i 0.167114 + 0.0954774i
\(698\) −6.46868 −0.244843
\(699\) −13.6274 13.6274i −0.515436 0.515436i
\(700\) 2.94317 1.21910i 0.111242 0.0460777i
\(701\) 39.5851i 1.49511i 0.664201 + 0.747554i \(0.268772\pi\)
−0.664201 + 0.747554i \(0.731228\pi\)
\(702\) −0.598835 1.44572i −0.0226016 0.0545650i
\(703\) 3.40604 + 1.41083i 0.128461 + 0.0532104i
\(704\) 3.77918 9.12375i 0.142433 0.343864i
\(705\) −32.8599 + 32.8599i −1.23757 + 1.23757i
\(706\) −1.09009 + 1.09009i −0.0410260 + 0.0410260i
\(707\) −0.147799 + 0.356818i −0.00555855 + 0.0134195i
\(708\) 6.94263 + 2.87573i 0.260920 + 0.108077i
\(709\) −10.0416 24.2425i −0.377118 0.910444i −0.992503 0.122218i \(-0.960999\pi\)
0.615385 0.788227i \(-0.289001\pi\)
\(710\) 11.2766i 0.423203i
\(711\) −3.09186 + 1.28069i −0.115954 + 0.0480297i
\(712\) 0.345453 + 0.345453i 0.0129464 + 0.0129464i
\(713\) −5.93077 −0.222109
\(714\) 9.95813 + 12.8568i 0.372673 + 0.481152i
\(715\) −12.4980 −0.467398
\(716\) 11.5783 + 11.5783i 0.432701 + 0.432701i
\(717\) 3.93774 1.63107i 0.147058 0.0609133i
\(718\) 14.0369i 0.523853i
\(719\) −1.30910 3.16046i −0.0488213 0.117865i 0.897587 0.440837i \(-0.145318\pi\)
−0.946409 + 0.322972i \(0.895318\pi\)
\(720\) −11.4874 4.75822i −0.428109 0.177329i
\(721\) −2.37169 + 5.72577i −0.0883265 + 0.213239i
\(722\) −6.55468 + 6.55468i −0.243940 + 0.243940i
\(723\) 21.2917 21.2917i 0.791847 0.791847i
\(724\) −4.16603 + 10.0577i −0.154829 + 0.373791i
\(725\) −2.13711 0.885220i −0.0793703 0.0328763i
\(726\) −0.894407 2.15929i −0.0331946 0.0801388i
\(727\) 51.2362i 1.90024i −0.311878 0.950122i \(-0.600958\pi\)
0.311878 0.950122i \(-0.399042\pi\)
\(728\) 8.96576 3.71374i 0.332293 0.137640i
\(729\) 5.54664 + 5.54664i 0.205431 + 0.205431i
\(730\) 13.5753 0.502444
\(731\) 2.52477 + 3.25968i 0.0933819 + 0.120564i
\(732\) −34.9439 −1.29156
\(733\) 2.15810 + 2.15810i 0.0797114 + 0.0797114i 0.745838 0.666127i \(-0.232049\pi\)
−0.666127 + 0.745838i \(0.732049\pi\)
\(734\) −12.9875 + 5.37960i −0.479377 + 0.198565i
\(735\) 29.8118i 1.09962i
\(736\) −1.56790 3.78524i −0.0577936 0.139526i
\(737\) 19.5813 + 8.11086i 0.721288 + 0.298767i
\(738\) 0.475142 1.14709i 0.0174902 0.0422251i
\(739\) 3.36503 3.36503i 0.123785 0.123785i −0.642500 0.766285i \(-0.722103\pi\)
0.766285 + 0.642500i \(0.222103\pi\)
\(740\) 22.4852 22.4852i 0.826572 0.826572i
\(741\) 0.603830 1.45778i 0.0221823 0.0535527i
\(742\) −8.43070 3.49211i −0.309501 0.128199i
\(743\) −3.41211 8.23757i −0.125178 0.302207i 0.848850 0.528634i \(-0.177296\pi\)
−0.974028 + 0.226427i \(0.927296\pi\)
\(744\) 30.0900i 1.10315i
\(745\) 49.1456 20.3568i 1.80056 0.745814i
\(746\) 2.38865 + 2.38865i 0.0874548 + 0.0874548i
\(747\) 5.86000 0.214406
\(748\) 22.7623 + 13.0048i 0.832271 + 0.475502i
\(749\) −3.15042 −0.115114
\(750\) −8.26234 8.26234i −0.301698 0.301698i
\(751\) −48.1684 + 19.9520i −1.75769 + 0.728058i −0.760821 + 0.648961i \(0.775204\pi\)
−0.996867 + 0.0790969i \(0.974796\pi\)
\(752\) 22.8953i 0.834907i
\(753\) −21.6368 52.2358i −0.788487 1.90358i
\(754\) −3.04380 1.26078i −0.110849 0.0459151i
\(755\) −15.1946 + 36.6831i −0.552990 + 1.33503i
\(756\) 9.51956 9.51956i 0.346223 0.346223i
\(757\) −29.1718 + 29.1718i −1.06027 + 1.06027i −0.0622039 + 0.998063i \(0.519813\pi\)
−0.998063 + 0.0622039i \(0.980187\pi\)
\(758\) 2.61699 6.31797i 0.0950533 0.229479i
\(759\) 6.16355 + 2.55303i 0.223723 + 0.0926690i
\(760\) −0.796293 1.92242i −0.0288846 0.0697336i
\(761\)