Properties

Label 731.2.m.c.87.10
Level 731
Weight 2
Character 731.87
Analytic conductor 5.837
Analytic rank 0
Dimension 128
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{8})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 87.10
Character \(\chi\) = 731.87
Dual form 731.2.m.c.689.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.692528 - 0.692528i) q^{2} +(0.747939 - 0.309806i) q^{3} -1.04081i q^{4} +(-1.63001 - 3.93520i) q^{5} +(-0.732518 - 0.303419i) q^{6} +(-0.263818 + 0.636914i) q^{7} +(-2.10585 + 2.10585i) q^{8} +(-1.65789 + 1.65789i) q^{9} +O(q^{10})\) \(q+(-0.692528 - 0.692528i) q^{2} +(0.747939 - 0.309806i) q^{3} -1.04081i q^{4} +(-1.63001 - 3.93520i) q^{5} +(-0.732518 - 0.303419i) q^{6} +(-0.263818 + 0.636914i) q^{7} +(-2.10585 + 2.10585i) q^{8} +(-1.65789 + 1.65789i) q^{9} +(-1.59641 + 3.85406i) q^{10} +(-1.48957 - 0.617000i) q^{11} +(-0.322449 - 0.778462i) q^{12} -2.88774i q^{13} +(0.623783 - 0.258379i) q^{14} +(-2.43830 - 2.43830i) q^{15} +0.835097 q^{16} +(2.13370 + 3.52808i) q^{17} +2.29627 q^{18} +(0.262874 + 0.262874i) q^{19} +(-4.09579 + 1.69653i) q^{20} +0.558105i q^{21} +(0.604280 + 1.45886i) q^{22} +(-1.85786 - 0.769551i) q^{23} +(-0.922640 + 2.22745i) q^{24} +(-9.29331 + 9.29331i) q^{25} +(-1.99984 + 1.99984i) q^{26} +(-1.65579 + 3.99744i) q^{27} +(0.662906 + 0.274585i) q^{28} +(-2.34739 - 5.66709i) q^{29} +3.37718i q^{30} +(8.67787 - 3.59449i) q^{31} +(3.63336 + 3.63336i) q^{32} -1.30526 q^{33} +(0.965643 - 3.92094i) q^{34} +2.93641 q^{35} +(1.72555 + 1.72555i) q^{36} +(-0.0896326 + 0.0371270i) q^{37} -0.364095i q^{38} +(-0.894641 - 2.15985i) q^{39} +(11.7195 + 4.85437i) q^{40} +(-0.640398 + 1.54606i) q^{41} +(0.386504 - 0.386504i) q^{42} +(-0.707107 + 0.707107i) q^{43} +(-0.642180 + 1.55036i) q^{44} +(9.22649 + 3.82174i) q^{45} +(0.753685 + 1.81956i) q^{46} -9.07791i q^{47} +(0.624602 - 0.258718i) q^{48} +(4.61369 + 4.61369i) q^{49} +12.8718 q^{50} +(2.68890 + 1.97775i) q^{51} -3.00559 q^{52} +(-4.98110 - 4.98110i) q^{53} +(3.91502 - 1.62166i) q^{54} +6.86747i q^{55} +(-0.785682 - 1.89680i) q^{56} +(0.278053 + 0.115174i) q^{57} +(-2.29899 + 5.55025i) q^{58} +(-7.71463 + 7.71463i) q^{59} +(-2.53780 + 2.53780i) q^{60} +(3.09201 - 7.46478i) q^{61} +(-8.49896 - 3.52038i) q^{62} +(-0.618551 - 1.49331i) q^{63} -6.70261i q^{64} +(-11.3638 + 4.70705i) q^{65} +(0.903928 + 0.903928i) q^{66} -13.4250 q^{67} +(3.67205 - 2.22078i) q^{68} -1.62798 q^{69} +(-2.03355 - 2.03355i) q^{70} +(-8.62058 + 3.57076i) q^{71} -6.98251i q^{72} +(4.79092 + 11.5663i) q^{73} +(0.0877846 + 0.0363616i) q^{74} +(-4.07170 + 9.82995i) q^{75} +(0.273601 - 0.273601i) q^{76} +(0.785953 - 0.785953i) q^{77} +(-0.876196 + 2.11532i) q^{78} +(-8.64265 - 3.57990i) q^{79} +(-1.36122 - 3.28627i) q^{80} -3.53101i q^{81} +(1.51418 - 0.627195i) q^{82} +(-10.0813 - 10.0813i) q^{83} +0.580881 q^{84} +(10.4057 - 14.1473i) q^{85} +0.979383 q^{86} +(-3.51140 - 3.51140i) q^{87} +(4.43612 - 1.83750i) q^{88} -1.65962i q^{89} +(-3.74295 - 9.03627i) q^{90} +(1.83924 + 0.761839i) q^{91} +(-0.800956 + 1.93368i) q^{92} +(5.37692 - 5.37692i) q^{93} +(-6.28671 + 6.28671i) q^{94} +(0.605973 - 1.46295i) q^{95} +(3.84317 + 1.59189i) q^{96} +(4.39668 + 10.6145i) q^{97} -6.39022i q^{98} +(3.49246 - 1.44662i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} + O(q^{10}) \) \( 128q + 4q^{2} + 4q^{3} + 8q^{5} - 12q^{6} + 4q^{7} - 4q^{8} + 8q^{9} - 8q^{10} - 4q^{11} + 12q^{12} + 12q^{14} - 12q^{15} - 144q^{16} - 12q^{17} + 64q^{18} - 28q^{19} - 8q^{20} - 12q^{22} + 16q^{23} - 16q^{24} - 20q^{25} + 16q^{26} - 8q^{27} + 20q^{28} + 12q^{31} - 4q^{32} - 104q^{33} + 20q^{34} + 32q^{35} - 96q^{36} - 12q^{37} + 8q^{39} + 216q^{40} + 24q^{41} - 4q^{42} + 24q^{44} - 28q^{45} - 48q^{46} + 28q^{48} - 80q^{50} - 20q^{51} + 56q^{52} - 36q^{53} - 12q^{54} - 8q^{56} + 72q^{57} - 32q^{58} + 48q^{59} - 40q^{60} - 76q^{61} - 44q^{62} + 36q^{65} - 68q^{66} - 48q^{67} + 32q^{68} + 216q^{69} - 196q^{70} + 4q^{71} + 20q^{73} + 88q^{74} + 80q^{75} + 72q^{76} + 28q^{77} - 120q^{78} + 68q^{79} - 68q^{80} + 28q^{82} - 36q^{83} - 152q^{84} + 28q^{85} - 24q^{86} - 56q^{87} + 20q^{88} - 112q^{90} + 96q^{91} - 28q^{92} + 24q^{93} - 36q^{94} - 108q^{95} + 272q^{96} + 8q^{97} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.692528 0.692528i −0.489691 0.489691i 0.418517 0.908209i \(-0.362550\pi\)
−0.908209 + 0.418517i \(0.862550\pi\)
\(3\) 0.747939 0.309806i 0.431823 0.178867i −0.156175 0.987729i \(-0.549916\pi\)
0.587998 + 0.808863i \(0.299916\pi\)
\(4\) 1.04081i 0.520405i
\(5\) −1.63001 3.93520i −0.728964 1.75987i −0.646021 0.763320i \(-0.723568\pi\)
−0.0829425 0.996554i \(-0.526432\pi\)
\(6\) −0.732518 0.303419i −0.299049 0.123870i
\(7\) −0.263818 + 0.636914i −0.0997140 + 0.240731i −0.965862 0.259056i \(-0.916588\pi\)
0.866148 + 0.499787i \(0.166588\pi\)
\(8\) −2.10585 + 2.10585i −0.744529 + 0.744529i
\(9\) −1.65789 + 1.65789i −0.552629 + 0.552629i
\(10\) −1.59641 + 3.85406i −0.504828 + 1.21876i
\(11\) −1.48957 0.617000i −0.449123 0.186033i 0.146646 0.989189i \(-0.453152\pi\)
−0.595768 + 0.803156i \(0.703152\pi\)
\(12\) −0.322449 0.778462i −0.0930831 0.224723i
\(13\) 2.88774i 0.800915i −0.916315 0.400458i \(-0.868851\pi\)
0.916315 0.400458i \(-0.131149\pi\)
\(14\) 0.623783 0.258379i 0.166713 0.0690548i
\(15\) −2.43830 2.43830i −0.629566 0.629566i
\(16\) 0.835097 0.208774
\(17\) 2.13370 + 3.52808i 0.517499 + 0.855684i
\(18\) 2.29627 0.541236
\(19\) 0.262874 + 0.262874i 0.0603074 + 0.0603074i 0.736617 0.676310i \(-0.236422\pi\)
−0.676310 + 0.736617i \(0.736422\pi\)
\(20\) −4.09579 + 1.69653i −0.915847 + 0.379356i
\(21\) 0.558105i 0.121789i
\(22\) 0.604280 + 1.45886i 0.128833 + 0.311030i
\(23\) −1.85786 0.769551i −0.387391 0.160462i 0.180483 0.983578i \(-0.442234\pi\)
−0.567874 + 0.823116i \(0.692234\pi\)
\(24\) −0.922640 + 2.22745i −0.188333 + 0.454676i
\(25\) −9.29331 + 9.29331i −1.85866 + 1.85866i
\(26\) −1.99984 + 1.99984i −0.392201 + 0.392201i
\(27\) −1.65579 + 3.99744i −0.318658 + 0.769308i
\(28\) 0.662906 + 0.274585i 0.125277 + 0.0518916i
\(29\) −2.34739 5.66709i −0.435899 1.05235i −0.977352 0.211622i \(-0.932125\pi\)
0.541453 0.840731i \(-0.317875\pi\)
\(30\) 3.37718i 0.616586i
\(31\) 8.67787 3.59449i 1.55859 0.645590i 0.573747 0.819032i \(-0.305489\pi\)
0.984844 + 0.173443i \(0.0554891\pi\)
\(32\) 3.63336 + 3.63336i 0.642294 + 0.642294i
\(33\) −1.30526 −0.227216
\(34\) 0.965643 3.92094i 0.165606 0.672436i
\(35\) 2.93641 0.496344
\(36\) 1.72555 + 1.72555i 0.287591 + 0.287591i
\(37\) −0.0896326 + 0.0371270i −0.0147355 + 0.00610365i −0.390039 0.920798i \(-0.627538\pi\)
0.375304 + 0.926902i \(0.377538\pi\)
\(38\) 0.364095i 0.0590640i
\(39\) −0.894641 2.15985i −0.143257 0.345853i
\(40\) 11.7195 + 4.85437i 1.85301 + 0.767543i
\(41\) −0.640398 + 1.54606i −0.100013 + 0.241454i −0.965964 0.258675i \(-0.916714\pi\)
0.865951 + 0.500129i \(0.166714\pi\)
\(42\) 0.386504 0.386504i 0.0596388 0.0596388i
\(43\) −0.707107 + 0.707107i −0.107833 + 0.107833i
\(44\) −0.642180 + 1.55036i −0.0968123 + 0.233725i
\(45\) 9.22649 + 3.82174i 1.37540 + 0.569711i
\(46\) 0.753685 + 1.81956i 0.111125 + 0.268279i
\(47\) 9.07791i 1.32415i −0.749438 0.662074i \(-0.769676\pi\)
0.749438 0.662074i \(-0.230324\pi\)
\(48\) 0.624602 0.258718i 0.0901535 0.0373428i
\(49\) 4.61369 + 4.61369i 0.659098 + 0.659098i
\(50\) 12.8718 1.82034
\(51\) 2.68890 + 1.97775i 0.376521 + 0.276940i
\(52\) −3.00559 −0.416800
\(53\) −4.98110 4.98110i −0.684207 0.684207i 0.276738 0.960945i \(-0.410747\pi\)
−0.960945 + 0.276738i \(0.910747\pi\)
\(54\) 3.91502 1.62166i 0.532767 0.220679i
\(55\) 6.86747i 0.926010i
\(56\) −0.785682 1.89680i −0.104991 0.253471i
\(57\) 0.278053 + 0.115174i 0.0368291 + 0.0152551i
\(58\) −2.29899 + 5.55025i −0.301872 + 0.728784i
\(59\) −7.71463 + 7.71463i −1.00436 + 1.00436i −0.00436818 + 0.999990i \(0.501390\pi\)
−0.999990 + 0.00436818i \(0.998610\pi\)
\(60\) −2.53780 + 2.53780i −0.327629 + 0.327629i
\(61\) 3.09201 7.46478i 0.395892 0.955768i −0.592738 0.805396i \(-0.701953\pi\)
0.988629 0.150372i \(-0.0480471\pi\)
\(62\) −8.49896 3.52038i −1.07937 0.447089i
\(63\) −0.618551 1.49331i −0.0779301 0.188140i
\(64\) 6.70261i 0.837826i
\(65\) −11.3638 + 4.70705i −1.40951 + 0.583838i
\(66\) 0.903928 + 0.903928i 0.111266 + 0.111266i
\(67\) −13.4250 −1.64012 −0.820061 0.572276i \(-0.806061\pi\)
−0.820061 + 0.572276i \(0.806061\pi\)
\(68\) 3.67205 2.22078i 0.445302 0.269309i
\(69\) −1.62798 −0.195986
\(70\) −2.03355 2.03355i −0.243055 0.243055i
\(71\) −8.62058 + 3.57076i −1.02308 + 0.423772i −0.830208 0.557453i \(-0.811779\pi\)
−0.192867 + 0.981225i \(0.561779\pi\)
\(72\) 6.98251i 0.822897i
\(73\) 4.79092 + 11.5663i 0.560734 + 1.35373i 0.909180 + 0.416403i \(0.136710\pi\)
−0.348446 + 0.937329i \(0.613290\pi\)
\(74\) 0.0877846 + 0.0363616i 0.0102048 + 0.00422695i
\(75\) −4.07170 + 9.82995i −0.470159 + 1.13506i
\(76\) 0.273601 0.273601i 0.0313842 0.0313842i
\(77\) 0.785953 0.785953i 0.0895676 0.0895676i
\(78\) −0.876196 + 2.11532i −0.0992096 + 0.239513i
\(79\) −8.64265 3.57990i −0.972374 0.402770i −0.160778 0.986991i \(-0.551400\pi\)
−0.811595 + 0.584220i \(0.801400\pi\)
\(80\) −1.36122 3.28627i −0.152189 0.367416i
\(81\) 3.53101i 0.392334i
\(82\) 1.51418 0.627195i 0.167214 0.0692621i
\(83\) −10.0813 10.0813i −1.10657 1.10657i −0.993598 0.112972i \(-0.963963\pi\)
−0.112972 0.993598i \(-0.536037\pi\)
\(84\) 0.580881 0.0633794
\(85\) 10.4057 14.1473i 1.12866 1.53449i
\(86\) 0.979383 0.105610
\(87\) −3.51140 3.51140i −0.376462 0.376462i
\(88\) 4.43612 1.83750i 0.472891 0.195878i
\(89\) 1.65962i 0.175920i −0.996124 0.0879598i \(-0.971965\pi\)
0.996124 0.0879598i \(-0.0280347\pi\)
\(90\) −3.74295 9.03627i −0.394541 0.952506i
\(91\) 1.83924 + 0.761839i 0.192805 + 0.0798625i
\(92\) −0.800956 + 1.93368i −0.0835054 + 0.201600i
\(93\) 5.37692 5.37692i 0.557561 0.557561i
\(94\) −6.28671 + 6.28671i −0.648424 + 0.648424i
\(95\) 0.605973 1.46295i 0.0621715 0.150095i
\(96\) 3.84317 + 1.59189i 0.392242 + 0.162472i
\(97\) 4.39668 + 10.6145i 0.446415 + 1.07774i 0.973655 + 0.228025i \(0.0732267\pi\)
−0.527241 + 0.849716i \(0.676773\pi\)
\(98\) 6.39022i 0.645510i
\(99\) 3.49246 1.44662i 0.351005 0.145391i
\(100\) 9.67256 + 9.67256i 0.967256 + 0.967256i
\(101\) −10.7021 −1.06490 −0.532449 0.846462i \(-0.678728\pi\)
−0.532449 + 0.846462i \(0.678728\pi\)
\(102\) −0.492490 3.23179i −0.0487638 0.319995i
\(103\) −2.94014 −0.289700 −0.144850 0.989454i \(-0.546270\pi\)
−0.144850 + 0.989454i \(0.546270\pi\)
\(104\) 6.08114 + 6.08114i 0.596305 + 0.596305i
\(105\) 2.19626 0.909719i 0.214333 0.0887795i
\(106\) 6.89911i 0.670101i
\(107\) −0.350667 0.846585i −0.0339003 0.0818425i 0.906023 0.423229i \(-0.139103\pi\)
−0.939923 + 0.341387i \(0.889103\pi\)
\(108\) 4.16057 + 1.72337i 0.400351 + 0.165831i
\(109\) −1.42953 + 3.45119i −0.136924 + 0.330564i −0.977437 0.211228i \(-0.932254\pi\)
0.840513 + 0.541792i \(0.182254\pi\)
\(110\) 4.75592 4.75592i 0.453459 0.453459i
\(111\) −0.0555375 + 0.0555375i −0.00527139 + 0.00527139i
\(112\) −0.220314 + 0.531885i −0.0208177 + 0.0502584i
\(113\) −17.8481 7.39291i −1.67901 0.695467i −0.679728 0.733465i \(-0.737902\pi\)
−0.999278 + 0.0379979i \(0.987902\pi\)
\(114\) −0.112799 0.272321i −0.0105646 0.0255052i
\(115\) 8.56543i 0.798730i
\(116\) −5.89836 + 2.44318i −0.547649 + 0.226844i
\(117\) 4.78755 + 4.78755i 0.442609 + 0.442609i
\(118\) 10.6852 0.983652
\(119\) −2.80999 + 0.428213i −0.257591 + 0.0392542i
\(120\) 10.2694 0.937461
\(121\) −5.94004 5.94004i −0.540004 0.540004i
\(122\) −7.31088 + 3.02827i −0.661896 + 0.274166i
\(123\) 1.35476i 0.122154i
\(124\) −3.74118 9.03201i −0.335968 0.811098i
\(125\) 32.0432 + 13.2727i 2.86603 + 1.18715i
\(126\) −0.605798 + 1.46253i −0.0539688 + 0.130292i
\(127\) −2.23177 + 2.23177i −0.198037 + 0.198037i −0.799158 0.601121i \(-0.794721\pi\)
0.601121 + 0.799158i \(0.294721\pi\)
\(128\) 2.62498 2.62498i 0.232018 0.232018i
\(129\) −0.309806 + 0.747939i −0.0272769 + 0.0658523i
\(130\) 11.1295 + 4.61001i 0.976125 + 0.404324i
\(131\) −4.77920 11.5380i −0.417561 1.00808i −0.983052 0.183327i \(-0.941313\pi\)
0.565491 0.824754i \(-0.308687\pi\)
\(132\) 1.35853i 0.118244i
\(133\) −0.236779 + 0.0980771i −0.0205313 + 0.00850436i
\(134\) 9.29718 + 9.29718i 0.803154 + 0.803154i
\(135\) 18.4297 1.58617
\(136\) −11.9228 2.93634i −1.02237 0.251789i
\(137\) 20.5978 1.75979 0.879894 0.475171i \(-0.157614\pi\)
0.879894 + 0.475171i \(0.157614\pi\)
\(138\) 1.12742 + 1.12742i 0.0959724 + 0.0959724i
\(139\) 17.6200 7.29846i 1.49451 0.619047i 0.522219 0.852812i \(-0.325105\pi\)
0.972293 + 0.233765i \(0.0751045\pi\)
\(140\) 3.05624i 0.258300i
\(141\) −2.81239 6.78972i −0.236846 0.571797i
\(142\) 8.44285 + 3.49714i 0.708508 + 0.293474i
\(143\) −1.78174 + 4.30149i −0.148996 + 0.359709i
\(144\) −1.38450 + 1.38450i −0.115375 + 0.115375i
\(145\) −18.4749 + 18.4749i −1.53425 + 1.53425i
\(146\) 4.69214 11.3278i 0.388324 0.937498i
\(147\) 4.88011 + 2.02141i 0.402504 + 0.166723i
\(148\) 0.0386422 + 0.0932905i 0.00317637 + 0.00766843i
\(149\) 2.72743i 0.223440i −0.993740 0.111720i \(-0.964364\pi\)
0.993740 0.111720i \(-0.0356359\pi\)
\(150\) 9.62728 3.98775i 0.786065 0.325599i
\(151\) −4.19636 4.19636i −0.341495 0.341495i 0.515434 0.856929i \(-0.327631\pi\)
−0.856929 + 0.515434i \(0.827631\pi\)
\(152\) −1.10714 −0.0898012
\(153\) −9.38659 2.31172i −0.758861 0.186891i
\(154\) −1.08859 −0.0877210
\(155\) −28.2901 28.2901i −2.27231 2.27231i
\(156\) −2.24800 + 0.931150i −0.179984 + 0.0745517i
\(157\) 9.13974i 0.729431i −0.931119 0.364715i \(-0.881166\pi\)
0.931119 0.364715i \(-0.118834\pi\)
\(158\) 3.50609 + 8.46446i 0.278930 + 0.673396i
\(159\) −5.26874 2.18238i −0.417838 0.173074i
\(160\) 8.37558 20.2204i 0.662148 1.59857i
\(161\) 0.980276 0.980276i 0.0772566 0.0772566i
\(162\) −2.44532 + 2.44532i −0.192123 + 0.192123i
\(163\) −0.323361 + 0.780663i −0.0253276 + 0.0611462i −0.936037 0.351901i \(-0.885535\pi\)
0.910710 + 0.413047i \(0.135535\pi\)
\(164\) 1.60915 + 0.666533i 0.125654 + 0.0520475i
\(165\) 2.12759 + 5.13645i 0.165632 + 0.399872i
\(166\) 13.9632i 1.08376i
\(167\) 4.78432 1.98173i 0.370222 0.153351i −0.189812 0.981820i \(-0.560788\pi\)
0.560034 + 0.828469i \(0.310788\pi\)
\(168\) −1.17528 1.17528i −0.0906752 0.0906752i
\(169\) 4.66095 0.358535
\(170\) −17.0037 + 2.59118i −1.30412 + 0.198735i
\(171\) −0.871630 −0.0666552
\(172\) 0.735963 + 0.735963i 0.0561167 + 0.0561167i
\(173\) 3.04250 1.26024i 0.231317 0.0958146i −0.264014 0.964519i \(-0.585047\pi\)
0.495331 + 0.868704i \(0.335047\pi\)
\(174\) 4.86349i 0.368700i
\(175\) −3.46729 8.37078i −0.262103 0.632772i
\(176\) −1.24394 0.515255i −0.0937652 0.0388388i
\(177\) −3.38003 + 8.16011i −0.254058 + 0.613351i
\(178\) −1.14934 + 1.14934i −0.0861463 + 0.0861463i
\(179\) 13.3637 13.3637i 0.998852 0.998852i −0.00114703 0.999999i \(-0.500365\pi\)
0.999999 + 0.00114703i \(0.000365110\pi\)
\(180\) 3.97770 9.60302i 0.296480 0.715767i
\(181\) −24.3399 10.0819i −1.80917 0.749381i −0.982387 0.186855i \(-0.940170\pi\)
−0.826780 0.562526i \(-0.809830\pi\)
\(182\) −0.746132 1.80132i −0.0553070 0.133523i
\(183\) 6.54113i 0.483534i
\(184\) 5.53293 2.29181i 0.407893 0.168955i
\(185\) 0.292205 + 0.292205i 0.0214833 + 0.0214833i
\(186\) −7.44734 −0.546065
\(187\) −1.00148 6.57181i −0.0732351 0.480579i
\(188\) −9.44837 −0.689093
\(189\) −2.10920 2.10920i −0.153421 0.153421i
\(190\) −1.43279 + 0.593479i −0.103945 + 0.0430555i
\(191\) 21.1353i 1.52929i 0.644450 + 0.764647i \(0.277087\pi\)
−0.644450 + 0.764647i \(0.722913\pi\)
\(192\) −2.07651 5.01314i −0.149859 0.361792i
\(193\) 12.3987 + 5.13571i 0.892478 + 0.369676i 0.781323 0.624127i \(-0.214545\pi\)
0.111154 + 0.993803i \(0.464545\pi\)
\(194\) 4.30603 10.3957i 0.309155 0.746366i
\(195\) −7.04117 + 7.04117i −0.504229 + 0.504229i
\(196\) 4.80197 4.80197i 0.342998 0.342998i
\(197\) 0.0296641 0.0716155i 0.00211348 0.00510240i −0.922819 0.385233i \(-0.874121\pi\)
0.924933 + 0.380131i \(0.124121\pi\)
\(198\) −3.42045 1.41680i −0.243081 0.100687i
\(199\) −0.260640 0.629240i −0.0184763 0.0446056i 0.914372 0.404875i \(-0.132685\pi\)
−0.932848 + 0.360269i \(0.882685\pi\)
\(200\) 39.1405i 2.76765i
\(201\) −10.0411 + 4.15914i −0.708242 + 0.293363i
\(202\) 7.41150 + 7.41150i 0.521472 + 0.521472i
\(203\) 4.22874 0.296799
\(204\) 2.05846 2.79863i 0.144121 0.195943i
\(205\) 7.12790 0.497834
\(206\) 2.03613 + 2.03613i 0.141864 + 0.141864i
\(207\) 4.35595 1.80430i 0.302760 0.125407i
\(208\) 2.41154i 0.167210i
\(209\) −0.229376 0.553762i −0.0158663 0.0383045i
\(210\) −2.15097 0.890963i −0.148431 0.0614823i
\(211\) 10.1781 24.5720i 0.700686 1.69161i −0.0213700 0.999772i \(-0.506803\pi\)
0.722056 0.691834i \(-0.243197\pi\)
\(212\) −5.18438 + 5.18438i −0.356065 + 0.356065i
\(213\) −5.34142 + 5.34142i −0.365988 + 0.365988i
\(214\) −0.343437 + 0.829131i −0.0234769 + 0.0566782i
\(215\) 3.93520 + 1.63001i 0.268378 + 0.111166i
\(216\) −4.93115 11.9048i −0.335522 0.810022i
\(217\) 6.47535i 0.439575i
\(218\) 3.38003 1.40006i 0.228925 0.0948238i
\(219\) 7.16662 + 7.16662i 0.484276 + 0.484276i
\(220\) 7.14773 0.481900
\(221\) 10.1882 6.16158i 0.685330 0.414472i
\(222\) 0.0769226 0.00516271
\(223\) 5.16211 + 5.16211i 0.345681 + 0.345681i 0.858498 0.512817i \(-0.171398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(224\) −3.27269 + 1.35559i −0.218666 + 0.0905743i
\(225\) 30.8145i 2.05430i
\(226\) 7.24049 + 17.4801i 0.481630 + 1.16276i
\(227\) 8.50390 + 3.52243i 0.564424 + 0.233792i 0.646604 0.762826i \(-0.276188\pi\)
−0.0821807 + 0.996617i \(0.526188\pi\)
\(228\) 0.119874 0.289401i 0.00793883 0.0191660i
\(229\) −3.11637 + 3.11637i −0.205935 + 0.205935i −0.802537 0.596602i \(-0.796517\pi\)
0.596602 + 0.802537i \(0.296517\pi\)
\(230\) 5.93180 5.93180i 0.391131 0.391131i
\(231\) 0.344351 0.831338i 0.0226567 0.0546980i
\(232\) 16.8773 + 6.99079i 1.10805 + 0.458968i
\(233\) −4.18074 10.0932i −0.273889 0.661227i 0.725754 0.687955i \(-0.241491\pi\)
−0.999643 + 0.0267277i \(0.991491\pi\)
\(234\) 6.63103i 0.433484i
\(235\) −35.7234 + 14.7971i −2.33033 + 0.965256i
\(236\) 8.02945 + 8.02945i 0.522673 + 0.522673i
\(237\) −7.57325 −0.491935
\(238\) 2.24255 + 1.64945i 0.145363 + 0.106918i
\(239\) −10.8426 −0.701349 −0.350675 0.936497i \(-0.614048\pi\)
−0.350675 + 0.936497i \(0.614048\pi\)
\(240\) −2.03622 2.03622i −0.131437 0.131437i
\(241\) 8.57272 3.55094i 0.552217 0.228736i −0.0890852 0.996024i \(-0.528394\pi\)
0.641303 + 0.767288i \(0.278394\pi\)
\(242\) 8.22729i 0.528871i
\(243\) −6.06131 14.6333i −0.388833 0.938726i
\(244\) −7.76942 3.21820i −0.497386 0.206024i
\(245\) 10.6354 25.6761i 0.679471 1.64039i
\(246\) 0.938207 0.938207i 0.0598179 0.0598179i
\(247\) 0.759111 0.759111i 0.0483011 0.0483011i
\(248\) −10.7048 + 25.8437i −0.679756 + 1.64108i
\(249\) −10.6635 4.41696i −0.675771 0.279913i
\(250\) −12.9991 31.3826i −0.822134 1.98481i
\(251\) 9.21553i 0.581679i 0.956772 + 0.290840i \(0.0939346\pi\)
−0.956772 + 0.290840i \(0.906065\pi\)
\(252\) −1.55425 + 0.643793i −0.0979088 + 0.0405552i
\(253\) 2.29260 + 2.29260i 0.144135 + 0.144135i
\(254\) 3.09112 0.193954
\(255\) 3.39990 13.8051i 0.212910 0.864509i
\(256\) −17.0410 −1.06506
\(257\) 6.14012 + 6.14012i 0.383010 + 0.383010i 0.872186 0.489175i \(-0.162702\pi\)
−0.489175 + 0.872186i \(0.662702\pi\)
\(258\) 0.732518 0.303419i 0.0456046 0.0188900i
\(259\) 0.0668831i 0.00415591i
\(260\) 4.89914 + 11.8276i 0.303832 + 0.733515i
\(261\) 13.2871 + 5.50370i 0.822452 + 0.340671i
\(262\) −4.68067 + 11.3001i −0.289173 + 0.698125i
\(263\) 4.63811 4.63811i 0.285998 0.285998i −0.549497 0.835496i \(-0.685181\pi\)
0.835496 + 0.549497i \(0.185181\pi\)
\(264\) 2.74867 2.74867i 0.169169 0.169169i
\(265\) −11.4824 + 27.7209i −0.705356 + 1.70288i
\(266\) 0.231897 + 0.0960550i 0.0142185 + 0.00588951i
\(267\) −0.514162 1.24130i −0.0314662 0.0759661i
\(268\) 13.9728i 0.853527i
\(269\) 11.5596 4.78815i 0.704802 0.291939i −0.00134975 0.999999i \(-0.500430\pi\)
0.706152 + 0.708061i \(0.250430\pi\)
\(270\) −12.7631 12.7631i −0.776736 0.776736i
\(271\) −17.4578 −1.06049 −0.530243 0.847846i \(-0.677899\pi\)
−0.530243 + 0.847846i \(0.677899\pi\)
\(272\) 1.78185 + 2.94629i 0.108040 + 0.178645i
\(273\) 1.61166 0.0975423
\(274\) −14.2645 14.2645i −0.861753 0.861753i
\(275\) 19.5770 8.10906i 1.18054 0.488995i
\(276\) 1.69441i 0.101992i
\(277\) 1.97174 + 4.76020i 0.118470 + 0.286012i 0.971980 0.235065i \(-0.0755303\pi\)
−0.853509 + 0.521077i \(0.825530\pi\)
\(278\) −17.2568 7.14798i −1.03499 0.428708i
\(279\) −8.42767 + 20.3462i −0.504551 + 1.21809i
\(280\) −6.18363 + 6.18363i −0.369542 + 0.369542i
\(281\) 12.8591 12.8591i 0.767107 0.767107i −0.210489 0.977596i \(-0.567506\pi\)
0.977596 + 0.210489i \(0.0675056\pi\)
\(282\) −2.75441 + 6.64973i −0.164023 + 0.395986i
\(283\) −2.44584 1.01310i −0.145390 0.0602226i 0.308802 0.951126i \(-0.400072\pi\)
−0.454192 + 0.890904i \(0.650072\pi\)
\(284\) 3.71648 + 8.97238i 0.220533 + 0.532413i
\(285\) 1.28193i 0.0759350i
\(286\) 4.21281 1.74500i 0.249109 0.103184i
\(287\) −0.815757 0.815757i −0.0481526 0.0481526i
\(288\) −12.0474 −0.709901
\(289\) −7.89463 + 15.0557i −0.464390 + 0.885631i
\(290\) 25.5887 1.50262
\(291\) 6.57689 + 6.57689i 0.385544 + 0.385544i
\(292\) 12.0383 4.98643i 0.704489 0.291809i
\(293\) 14.0423i 0.820361i −0.912004 0.410180i \(-0.865466\pi\)
0.912004 0.410180i \(-0.134534\pi\)
\(294\) −1.97973 4.77949i −0.115460 0.278746i
\(295\) 42.9335 + 17.7836i 2.49969 + 1.03540i
\(296\) 0.110569 0.266936i 0.00642667 0.0155154i
\(297\) 4.93284 4.93284i 0.286233 0.286233i
\(298\) −1.88882 + 1.88882i −0.109417 + 0.109417i
\(299\) −2.22226 + 5.36502i −0.128517 + 0.310267i
\(300\) 10.2311 + 4.23786i 0.590693 + 0.244673i
\(301\) −0.263818 0.636914i −0.0152062 0.0367111i
\(302\) 5.81219i 0.334454i
\(303\) −8.00452 + 3.31558i −0.459847 + 0.190475i
\(304\) 0.219525 + 0.219525i 0.0125906 + 0.0125906i
\(305\) −34.4154 −1.97062
\(306\) 4.89955 + 8.10141i 0.280089 + 0.463127i
\(307\) 3.77538 0.215472 0.107736 0.994180i \(-0.465640\pi\)
0.107736 + 0.994180i \(0.465640\pi\)
\(308\) −0.818027 0.818027i −0.0466114 0.0466114i
\(309\) −2.19904 + 0.910873i −0.125099 + 0.0518178i
\(310\) 39.1833i 2.22546i
\(311\) −5.16493 12.4692i −0.292876 0.707066i 0.707124 0.707090i \(-0.249992\pi\)
−1.00000 2.41730e-5i \(0.999992\pi\)
\(312\) 6.43229 + 2.66434i 0.364157 + 0.150839i
\(313\) −0.875256 + 2.11306i −0.0494724 + 0.119437i −0.946684 0.322165i \(-0.895590\pi\)
0.897211 + 0.441602i \(0.145590\pi\)
\(314\) −6.32953 + 6.32953i −0.357196 + 0.357196i
\(315\) −4.86824 + 4.86824i −0.274294 + 0.274294i
\(316\) −3.72599 + 8.99535i −0.209604 + 0.506028i
\(317\) 19.8022 + 8.20234i 1.11220 + 0.460689i 0.861696 0.507426i \(-0.169403\pi\)
0.250507 + 0.968115i \(0.419403\pi\)
\(318\) 2.13739 + 5.16011i 0.119859 + 0.289365i
\(319\) 9.88988i 0.553727i
\(320\) −26.3761 + 10.9253i −1.47447 + 0.610745i
\(321\) −0.524555 0.524555i −0.0292778 0.0292778i
\(322\) −1.35774 −0.0756637
\(323\) −0.366544 + 1.48833i −0.0203951 + 0.0828130i
\(324\) −3.67510 −0.204172
\(325\) 26.8367 + 26.8367i 1.48863 + 1.48863i
\(326\) 0.764568 0.316694i 0.0423455 0.0175401i
\(327\) 3.02416i 0.167236i
\(328\) −1.90718 4.60434i −0.105306 0.254232i
\(329\) 5.78185 + 2.39492i 0.318763 + 0.132036i
\(330\) 2.08372 5.03055i 0.114705 0.276923i
\(331\) 1.42182 1.42182i 0.0781501 0.0781501i −0.666951 0.745101i \(-0.732401\pi\)
0.745101 + 0.666951i \(0.232401\pi\)
\(332\) −10.4927 + 10.4927i −0.575864 + 0.575864i
\(333\) 0.0870484 0.210153i 0.00477022 0.0115163i
\(334\) −4.68568 1.94087i −0.256389 0.106200i
\(335\) 21.8829 + 52.8299i 1.19559 + 2.88641i
\(336\) 0.466072i 0.0254263i
\(337\) −12.2039 + 5.05503i −0.664791 + 0.275365i −0.689453 0.724331i \(-0.742149\pi\)
0.0246623 + 0.999696i \(0.492149\pi\)
\(338\) −3.22784 3.22784i −0.175571 0.175571i
\(339\) −15.6396 −0.849429
\(340\) −14.7247 10.8304i −0.798558 0.587359i
\(341\) −15.1441 −0.820099
\(342\) 0.603629 + 0.603629i 0.0326405 + 0.0326405i
\(343\) −8.61410 + 3.56808i −0.465118 + 0.192658i
\(344\) 2.97812i 0.160569i
\(345\) 2.65362 + 6.40642i 0.142866 + 0.344910i
\(346\) −2.97977 1.23426i −0.160194 0.0663543i
\(347\) −7.37729 + 17.8104i −0.396034 + 0.956110i 0.592563 + 0.805524i \(0.298116\pi\)
−0.988597 + 0.150586i \(0.951884\pi\)
\(348\) −3.65470 + 3.65470i −0.195913 + 0.195913i
\(349\) 25.2608 25.2608i 1.35218 1.35218i 0.468962 0.883218i \(-0.344628\pi\)
0.883218 0.468962i \(-0.155372\pi\)
\(350\) −3.39581 + 8.19820i −0.181513 + 0.438212i
\(351\) 11.5436 + 4.78150i 0.616150 + 0.255218i
\(352\) −3.17037 7.65394i −0.168981 0.407956i
\(353\) 20.0852i 1.06903i −0.845159 0.534515i \(-0.820494\pi\)
0.845159 0.534515i \(-0.179506\pi\)
\(354\) 7.99187 3.31034i 0.424763 0.175943i
\(355\) 28.1033 + 28.1033i 1.49157 + 1.49157i
\(356\) −1.72735 −0.0915494
\(357\) −1.96904 + 1.19083i −0.104213 + 0.0630254i
\(358\) −18.5095 −0.978259
\(359\) −12.6955 12.6955i −0.670040 0.670040i 0.287685 0.957725i \(-0.407114\pi\)
−0.957725 + 0.287685i \(0.907114\pi\)
\(360\) −27.4776 + 11.3816i −1.44820 + 0.599862i
\(361\) 18.8618i 0.992726i
\(362\) 9.87404 + 23.8380i 0.518968 + 1.25290i
\(363\) −6.28305 2.60253i −0.329775 0.136597i
\(364\) 0.792929 1.91430i 0.0415608 0.100337i
\(365\) 37.7064 37.7064i 1.97364 1.97364i
\(366\) −4.52992 + 4.52992i −0.236782 + 0.236782i
\(367\) −3.54924 + 8.56863i −0.185269 + 0.447279i −0.989038 0.147663i \(-0.952825\pi\)
0.803769 + 0.594942i \(0.202825\pi\)
\(368\) −1.55149 0.642650i −0.0808772 0.0335004i
\(369\) −1.50148 3.62490i −0.0781641 0.188705i
\(370\) 0.404720i 0.0210404i
\(371\) 4.48664 1.85843i 0.232935 0.0964848i
\(372\) −5.59635 5.59635i −0.290157 0.290157i
\(373\) −14.5383 −0.752767 −0.376384 0.926464i \(-0.622833\pi\)
−0.376384 + 0.926464i \(0.622833\pi\)
\(374\) −3.85762 + 5.24472i −0.199473 + 0.271198i
\(375\) 28.0783 1.44996
\(376\) 19.1167 + 19.1167i 0.985867 + 0.985867i
\(377\) −16.3651 + 6.77865i −0.842845 + 0.349118i
\(378\) 2.92136i 0.150258i
\(379\) 0.741763 + 1.79078i 0.0381018 + 0.0919859i 0.941785 0.336216i \(-0.109147\pi\)
−0.903683 + 0.428202i \(0.859147\pi\)
\(380\) −1.52265 0.630702i −0.0781103 0.0323543i
\(381\) −0.977809 + 2.36064i −0.0500947 + 0.120939i
\(382\) 14.6368 14.6368i 0.748882 0.748882i
\(383\) −12.3813 + 12.3813i −0.632653 + 0.632653i −0.948733 0.316079i \(-0.897633\pi\)
0.316079 + 0.948733i \(0.397633\pi\)
\(384\) 1.15009 2.77656i 0.0586903 0.141691i
\(385\) −4.37399 1.81177i −0.222919 0.0923362i
\(386\) −5.02982 12.1431i −0.256011 0.618066i
\(387\) 2.34461i 0.119183i
\(388\) 11.0477 4.57610i 0.560861 0.232316i
\(389\) 3.18259 + 3.18259i 0.161364 + 0.161364i 0.783171 0.621807i \(-0.213601\pi\)
−0.621807 + 0.783171i \(0.713601\pi\)
\(390\) 9.75242 0.493833
\(391\) −1.24909 8.19667i −0.0631690 0.414523i
\(392\) −19.4314 −0.981436
\(393\) −7.14910 7.14910i −0.360625 0.360625i
\(394\) −0.0701390 + 0.0290525i −0.00353355 + 0.00146365i
\(395\) 39.8458i 2.00486i
\(396\) −1.50566 3.63498i −0.0756622 0.182665i
\(397\) 18.7361 + 7.76074i 0.940337 + 0.389500i 0.799591 0.600545i \(-0.205050\pi\)
0.140746 + 0.990046i \(0.455050\pi\)
\(398\) −0.255266 + 0.616266i −0.0127953 + 0.0308906i
\(399\) −0.146711 + 0.146711i −0.00734475 + 0.00734475i
\(400\) −7.76081 + 7.76081i −0.388041 + 0.388041i
\(401\) −1.12644 + 2.71947i −0.0562519 + 0.135804i −0.949507 0.313746i \(-0.898416\pi\)
0.893255 + 0.449550i \(0.148416\pi\)
\(402\) 9.83404 + 4.07339i 0.490478 + 0.203162i
\(403\) −10.3800 25.0594i −0.517063 1.24830i
\(404\) 11.1388i 0.554178i
\(405\) −13.8952 + 5.75558i −0.690458 + 0.285997i
\(406\) −2.92852 2.92852i −0.145340 0.145340i
\(407\) 0.156422 0.00775353
\(408\) −9.82725 + 1.49757i −0.486521 + 0.0741407i
\(409\) 7.90911 0.391080 0.195540 0.980696i \(-0.437354\pi\)
0.195540 + 0.980696i \(0.437354\pi\)
\(410\) −4.93627 4.93627i −0.243785 0.243785i
\(411\) 15.4059 6.38133i 0.759916 0.314768i
\(412\) 3.06012i 0.150761i
\(413\) −2.87829 6.94881i −0.141632 0.341929i
\(414\) −4.26615 1.76710i −0.209670 0.0868480i
\(415\) −23.2393 + 56.1047i −1.14077 + 2.75407i
\(416\) 10.4922 10.4922i 0.514423 0.514423i
\(417\) 10.9176 10.9176i 0.534637 0.534637i
\(418\) −0.224647 + 0.542345i −0.0109878 + 0.0265270i
\(419\) 24.3386 + 10.0814i 1.18902 + 0.492508i 0.887435 0.460932i \(-0.152485\pi\)
0.301583 + 0.953440i \(0.402485\pi\)
\(420\) −0.946844 2.28588i −0.0462012 0.111540i
\(421\) 18.0060i 0.877561i −0.898594 0.438780i \(-0.855411\pi\)
0.898594 0.438780i \(-0.144589\pi\)
\(422\) −24.0654 + 9.96821i −1.17148 + 0.485245i
\(423\) 15.0501 + 15.0501i 0.731763 + 0.731763i
\(424\) 20.9789 1.01882
\(425\) −52.6166 12.9583i −2.55228 0.628572i
\(426\) 7.39817 0.358443
\(427\) 3.93870 + 3.93870i 0.190607 + 0.190607i
\(428\) −0.881134 + 0.364978i −0.0425912 + 0.0176419i
\(429\) 3.76925i 0.181981i
\(430\) −1.59641 3.85406i −0.0769855 0.185860i
\(431\) −25.1792 10.4296i −1.21284 0.502375i −0.317714 0.948187i \(-0.602915\pi\)
−0.895127 + 0.445812i \(0.852915\pi\)
\(432\) −1.38275 + 3.33825i −0.0665275 + 0.160612i
\(433\) 28.5460 28.5460i 1.37183 1.37183i 0.514109 0.857725i \(-0.328123\pi\)
0.857725 0.514109i \(-0.171877\pi\)
\(434\) 4.48436 4.48436i 0.215256 0.215256i
\(435\) −8.09444 + 19.5417i −0.388099 + 0.936953i
\(436\) 3.59203 + 1.48787i 0.172027 + 0.0712559i
\(437\) −0.286088 0.690678i −0.0136854 0.0330396i
\(438\) 9.92618i 0.474291i
\(439\) −28.6460 + 11.8656i −1.36720 + 0.566312i −0.941027 0.338331i \(-0.890138\pi\)
−0.426171 + 0.904643i \(0.640138\pi\)
\(440\) −14.4618 14.4618i −0.689441 0.689441i
\(441\) −15.2980 −0.728474
\(442\) −11.3227 2.78853i −0.538564 0.132637i
\(443\) 13.9616 0.663334 0.331667 0.943396i \(-0.392389\pi\)
0.331667 + 0.943396i \(0.392389\pi\)
\(444\) 0.0578040 + 0.0578040i 0.00274326 + 0.00274326i
\(445\) −6.53094 + 2.70521i −0.309596 + 0.128239i
\(446\) 7.14982i 0.338554i
\(447\) −0.844976 2.03995i −0.0399660 0.0964864i
\(448\) 4.26899 + 1.76827i 0.201691 + 0.0835430i
\(449\) 4.34999 10.5018i 0.205289 0.495611i −0.787381 0.616466i \(-0.788564\pi\)
0.992670 + 0.120855i \(0.0385638\pi\)
\(450\) −21.3399 + 21.3399i −1.00597 + 1.00597i
\(451\) 1.90784 1.90784i 0.0898366 0.0898366i
\(452\) −7.69461 + 18.5764i −0.361924 + 0.873762i
\(453\) −4.43868 1.83856i −0.208547 0.0863831i
\(454\) −3.44981 8.32857i −0.161908 0.390879i
\(455\) 8.47959i 0.397529i
\(456\) −0.828076 + 0.343000i −0.0387782 + 0.0160625i
\(457\) 5.11611 + 5.11611i 0.239321 + 0.239321i 0.816569 0.577248i \(-0.195873\pi\)
−0.577248 + 0.816569i \(0.695873\pi\)
\(458\) 4.31635 0.201690
\(459\) −17.6362 + 2.68758i −0.823189 + 0.125445i
\(460\) 8.91498 0.415663
\(461\) −20.1018 20.1018i −0.936235 0.936235i 0.0618503 0.998085i \(-0.480300\pi\)
−0.998085 + 0.0618503i \(0.980300\pi\)
\(462\) −0.814198 + 0.337252i −0.0378799 + 0.0156904i
\(463\) 2.34672i 0.109061i 0.998512 + 0.0545307i \(0.0173663\pi\)
−0.998512 + 0.0545307i \(0.982634\pi\)
\(464\) −1.96030 4.73257i −0.0910045 0.219704i
\(465\) −29.9237 12.3948i −1.38768 0.574795i
\(466\) −4.09454 + 9.88510i −0.189676 + 0.457918i
\(467\) −5.38642 + 5.38642i −0.249254 + 0.249254i −0.820664 0.571410i \(-0.806396\pi\)
0.571410 + 0.820664i \(0.306396\pi\)
\(468\) 4.98293 4.98293i 0.230336 0.230336i
\(469\) 3.54176 8.55056i 0.163543 0.394828i
\(470\) 34.9868 + 14.4920i 1.61382 + 0.668467i
\(471\) −2.83155 6.83597i −0.130471 0.314985i
\(472\) 32.4916i 1.49555i
\(473\) 1.48957 0.617000i 0.0684905 0.0283697i
\(474\) 5.24469 + 5.24469i 0.240896 + 0.240896i
\(475\) −4.88593 −0.224182
\(476\) 0.445688 + 2.92466i 0.0204281 + 0.134052i
\(477\) 16.5162 0.756226
\(478\) 7.50880 + 7.50880i 0.343445 + 0.343445i
\(479\) −5.21518 + 2.16020i −0.238288 + 0.0987020i −0.498632 0.866814i \(-0.666164\pi\)
0.260344 + 0.965516i \(0.416164\pi\)
\(480\) 17.7185i 0.808733i
\(481\) 0.107213 + 0.258836i 0.00488850 + 0.0118019i
\(482\) −8.39597 3.47773i −0.382426 0.158406i
\(483\) 0.429491 1.03688i 0.0195425 0.0471798i
\(484\) −6.18245 + 6.18245i −0.281021 + 0.281021i
\(485\) 34.6036 34.6036i 1.57127 1.57127i
\(486\) −5.93634 + 14.3316i −0.269278 + 0.650094i
\(487\) 32.8164 + 13.5930i 1.48705 + 0.615957i 0.970673 0.240403i \(-0.0772797\pi\)
0.516379 + 0.856360i \(0.327280\pi\)
\(488\) 9.20838 + 22.2310i 0.416844 + 1.00635i
\(489\) 0.684067i 0.0309346i
\(490\) −25.1468 + 10.4161i −1.13602 + 0.470553i
\(491\) −15.0786 15.0786i −0.680485 0.680485i 0.279624 0.960110i \(-0.409790\pi\)
−0.960110 + 0.279624i \(0.909790\pi\)
\(492\) 1.41004 0.0635697
\(493\) 14.9853 20.3736i 0.674905 0.917583i
\(494\) −1.05141 −0.0473053
\(495\) −11.3855 11.3855i −0.511740 0.511740i
\(496\) 7.24686 3.00175i 0.325394 0.134783i
\(497\) 6.43260i 0.288542i
\(498\) 4.32589 + 10.4436i 0.193848 + 0.467990i
\(499\) −6.70625 2.77782i −0.300213 0.124352i 0.227492 0.973780i \(-0.426947\pi\)
−0.527705 + 0.849428i \(0.676947\pi\)
\(500\) 13.8144 33.3509i 0.617798 1.49150i
\(501\) 2.96443 2.96443i 0.132441 0.132441i
\(502\) 6.38202 6.38202i 0.284843 0.284843i
\(503\) 0.717727 1.73275i 0.0320019 0.0772593i −0.907071 0.420978i \(-0.861687\pi\)
0.939073 + 0.343719i \(0.111687\pi\)
\(504\) 4.44726 + 1.84212i 0.198097 + 0.0820544i
\(505\) 17.4445 + 42.1149i 0.776272 + 1.87409i
\(506\) 3.17538i 0.141163i
\(507\) 3.48611 1.44399i 0.154824 0.0641300i
\(508\) 2.32284 + 2.32284i 0.103059 + 0.103059i
\(509\) −18.3652 −0.814023 −0.407011 0.913423i \(-0.633429\pi\)
−0.407011 + 0.913423i \(0.633429\pi\)
\(510\) −11.9150 + 7.20590i −0.527603 + 0.319083i
\(511\) −8.63067 −0.381798
\(512\) 6.55138 + 6.55138i 0.289533 + 0.289533i
\(513\) −1.48609 + 0.615557i −0.0656123 + 0.0271775i
\(514\) 8.50442i 0.375114i
\(515\) 4.79246 + 11.5700i 0.211181 + 0.509836i
\(516\) 0.778462 + 0.322449i 0.0342699 + 0.0141950i
\(517\) −5.60107 + 13.5222i −0.246335 + 0.594705i
\(518\) −0.0463184 + 0.0463184i −0.00203511 + 0.00203511i
\(519\) 1.88517 1.88517i 0.0827499 0.0827499i
\(520\) 14.0181 33.8428i 0.614737 1.48411i
\(521\) 21.4410 + 8.88115i 0.939347 + 0.389090i 0.799217 0.601043i \(-0.205248\pi\)
0.140130 + 0.990133i \(0.455248\pi\)
\(522\) −5.39023 13.0132i −0.235924 0.569571i
\(523\) 18.7527i 0.819996i 0.912086 + 0.409998i \(0.134471\pi\)
−0.912086 + 0.409998i \(0.865529\pi\)
\(524\) −12.0089 + 4.97424i −0.524610 + 0.217301i
\(525\) −5.18665 5.18665i −0.226364 0.226364i
\(526\) −6.42405 −0.280102
\(527\) 31.1976 + 22.9466i 1.35899 + 0.999570i
\(528\) −1.09002 −0.0474369
\(529\) −13.4040 13.4040i −0.582783 0.582783i
\(530\) 27.1494 11.2456i 1.17929 0.488479i
\(531\) 25.5800i 1.11008i
\(532\) 0.102080 + 0.246442i 0.00442571 + 0.0106846i
\(533\) 4.46462 + 1.84930i 0.193384 + 0.0801023i
\(534\) −0.503561 + 1.21570i −0.0217912 + 0.0526087i
\(535\) −2.75989 + 2.75989i −0.119320 + 0.119320i
\(536\) 28.2709 28.2709i 1.22112 1.22112i
\(537\) 5.85509 14.1354i 0.252666 0.609989i
\(538\) −11.3213 4.68943i −0.488095 0.202176i
\(539\) −4.02577 9.71906i −0.173402 0.418630i
\(540\) 19.1818i 0.825453i
\(541\) −40.4473 + 16.7538i −1.73897 + 0.720303i −0.740109 + 0.672487i \(0.765226\pi\)
−0.998856 + 0.0478165i \(0.984774\pi\)
\(542\) 12.0900 + 12.0900i 0.519310 + 0.519310i
\(543\) −21.3282 −0.915279
\(544\) −5.06627 + 20.5713i −0.217214 + 0.881987i
\(545\) 15.9113 0.681564
\(546\) −1.11612 1.11612i −0.0477656 0.0477656i
\(547\) 27.5357 11.4057i 1.17734 0.487671i 0.293729 0.955889i \(-0.405104\pi\)
0.883613 + 0.468218i \(0.155104\pi\)
\(548\) 21.4384i 0.915802i
\(549\) 7.24956 + 17.5020i 0.309404 + 0.746967i
\(550\) −19.1734 7.94188i −0.817556 0.338643i
\(551\) 0.872664 2.10680i 0.0371767 0.0897526i
\(552\) 3.42827 3.42827i 0.145917 0.145917i
\(553\) 4.56018 4.56018i 0.193919 0.193919i
\(554\) 1.93109 4.66205i 0.0820440 0.198072i
\(555\) 0.309078 + 0.128024i 0.0131196 + 0.00543433i
\(556\) −7.59630 18.3391i −0.322155 0.777751i
\(557\) 10.6896i 0.452935i 0.974019 + 0.226467i \(0.0727177\pi\)
−0.974019 + 0.226467i \(0.927282\pi\)
\(558\) 19.9267 8.25392i 0.843565 0.349416i
\(559\) 2.04194 + 2.04194i 0.0863649 + 0.0863649i
\(560\) 2.45219 0.103624
\(561\) −2.78503 4.60505i −0.117584 0.194425i
\(562\) −17.8105 −0.751292
\(563\) −15.0971 15.0971i −0.636265 0.636265i 0.313367 0.949632i \(-0.398543\pi\)
−0.949632 + 0.313367i \(0.898543\pi\)
\(564\) −7.06680 + 2.92717i −0.297566 + 0.123256i
\(565\) 82.2862i 3.46181i
\(566\) 0.992214 + 2.39542i 0.0417059 + 0.100687i
\(567\) 2.24895 + 0.931545i 0.0944469 + 0.0391212i
\(568\) 10.6341 25.6731i 0.446199 1.07722i
\(569\) −12.9046 + 12.9046i −0.540988 + 0.540988i −0.923818 0.382831i \(-0.874949\pi\)
0.382831 + 0.923818i \(0.374949\pi\)
\(570\) −0.887772 + 0.887772i −0.0371847 + 0.0371847i
\(571\) −16.4316 + 39.6693i −0.687639 + 1.66011i 0.0618456 + 0.998086i \(0.480301\pi\)
−0.749485 + 0.662022i \(0.769699\pi\)
\(572\) 4.47704 + 1.85445i 0.187194 + 0.0775384i
\(573\) 6.54784 + 15.8079i 0.273540 + 0.660384i
\(574\) 1.12987i 0.0471599i
\(575\) 24.4173 10.1140i 1.01827 0.421783i
\(576\) 11.1122 + 11.1122i 0.463007 + 0.463007i
\(577\) −11.3658 −0.473162 −0.236581 0.971612i \(-0.576027\pi\)
−0.236581 + 0.971612i \(0.576027\pi\)
\(578\) 15.8938 4.95925i 0.661094 0.206278i
\(579\) 10.8645 0.451515
\(580\) 19.2288 + 19.2288i 0.798433 + 0.798433i
\(581\) 9.08059 3.76130i 0.376726 0.156045i
\(582\) 9.10936i 0.377595i
\(583\) 4.34636 + 10.4930i 0.180008 + 0.434578i
\(584\) −34.4458 14.2679i −1.42538 0.590410i
\(585\) 11.0362 26.6437i 0.456290 1.10158i
\(586\) −9.72470 + 9.72470i −0.401724 + 0.401724i
\(587\) −24.5818 + 24.5818i −1.01460 + 1.01460i −0.0147064 + 0.999892i \(0.504681\pi\)
−0.999892 + 0.0147064i \(0.995319\pi\)
\(588\) 2.10390 5.07926i 0.0867633 0.209465i
\(589\) 3.22608 + 1.33629i 0.132928 + 0.0550607i
\(590\) −17.4170 42.0483i −0.717046 1.73110i
\(591\) 0.0627542i 0.00258136i
\(592\) −0.0748519 + 0.0310047i −0.00307640 + 0.00127428i
\(593\) 29.4201 + 29.4201i 1.20814 + 1.20814i 0.971629 + 0.236510i \(0.0760038\pi\)
0.236510 + 0.971629i \(0.423996\pi\)
\(594\) −6.83227 −0.280331
\(595\) 6.26542 + 10.3599i 0.256857 + 0.424714i
\(596\) −2.83874 −0.116279
\(597\) −0.389885 0.389885i −0.0159569 0.0159569i
\(598\) 5.25441 2.17645i 0.214869 0.0890015i
\(599\) 39.0810i 1.59681i −0.602123 0.798403i \(-0.705678\pi\)
0.602123 0.798403i \(-0.294322\pi\)
\(600\) −12.1260 29.2747i −0.495042 1.19514i
\(601\) −16.1751 6.69993i −0.659795 0.273296i 0.0275575 0.999620i \(-0.491227\pi\)
−0.687352 + 0.726324i \(0.741227\pi\)
\(602\) −0.258379 + 0.623783i −0.0105308 + 0.0254235i
\(603\) 22.2571 22.2571i 0.906379 0.906379i
\(604\) −4.36761 + 4.36761i −0.177715 + 0.177715i
\(605\) −13.6929 + 33.0576i −0.556696 + 1.34398i
\(606\) 7.83948 + 3.24722i 0.318457 + 0.131909i
\(607\) −7.70189 18.5940i −0.312610 0.754707i −0.999607 0.0280467i \(-0.991071\pi\)
0.686997 0.726661i \(-0.258929\pi\)
\(608\) 1.91023i 0.0774701i
\(609\) 3.16284 1.31009i 0.128165 0.0530875i
\(610\) 23.8336 + 23.8336i 0.964996 + 0.964996i
\(611\) −26.2146 −1.06053
\(612\) −2.40606 + 9.76965i −0.0972590 + 0.394915i
\(613\) −5.98927 −0.241904 −0.120952 0.992658i \(-0.538595\pi\)
−0.120952 + 0.992658i \(0.538595\pi\)
\(614\) −2.61456 2.61456i −0.105515 0.105515i
\(615\) 5.33124 2.20827i 0.214976 0.0890460i
\(616\) 3.31019i 0.133371i
\(617\) 7.88282 + 19.0308i 0.317350 + 0.766152i 0.999393 + 0.0348391i \(0.0110919\pi\)
−0.682043 + 0.731312i \(0.738908\pi\)
\(618\) 2.15370 + 0.892093i 0.0866347 + 0.0358853i
\(619\) 5.29195 12.7759i 0.212701 0.513507i −0.781135 0.624362i \(-0.785359\pi\)
0.993837 + 0.110855i \(0.0353590\pi\)
\(620\) −29.4446 + 29.4446i −1.18252 + 1.18252i
\(621\) 6.15247 6.15247i 0.246890 0.246890i
\(622\) −5.05844 + 12.2122i −0.202825 + 0.489663i
\(623\) 1.05704 + 0.437839i 0.0423493 + 0.0175417i
\(624\) −0.747112 1.80369i −0.0299084 0.0722053i
\(625\) 82.0175i 3.28070i
\(626\) 2.06949 0.857211i 0.0827135 0.0342610i
\(627\) −0.343118 0.343118i −0.0137028 0.0137028i
\(628\) −9.51273 −0.379599
\(629\) −0.322236 0.237013i −0.0128484 0.00945031i
\(630\) 6.74278 0.268639
\(631\) 19.1582 + 19.1582i 0.762675 + 0.762675i 0.976805 0.214130i \(-0.0686917\pi\)
−0.214130 + 0.976805i \(0.568692\pi\)
\(632\) 25.7388 10.6614i 1.02383 0.424086i
\(633\) 21.5316i 0.855803i
\(634\) −8.03323 19.3939i −0.319040 0.770231i
\(635\) 12.4202 + 5.14463i 0.492882 + 0.204159i
\(636\) −2.27144 + 5.48375i −0.0900686 + 0.217445i
\(637\) 13.3231 13.3231i 0.527882 0.527882i
\(638\) 6.84902 6.84902i 0.271155 0.271155i
\(639\) 8.37204 20.2119i 0.331193 0.799570i
\(640\) −14.6086 6.05107i −0.577455 0.239190i
\(641\) 7.75280 + 18.7169i 0.306217 + 0.739273i 0.999821 + 0.0189169i \(0.00602178\pi\)
−0.693604 + 0.720356i \(0.743978\pi\)
\(642\) 0.726538i 0.0286742i
\(643\) 34.8785 14.4471i 1.37547 0.569740i 0.432207 0.901775i \(-0.357735\pi\)
0.943267 + 0.332035i \(0.107735\pi\)
\(644\) −1.02028 1.02028i −0.0402047 0.0402047i
\(645\) 3.44828 0.135776
\(646\) 1.28455 0.776870i 0.0505401 0.0305655i
\(647\) 29.5069 1.16003 0.580017 0.814604i \(-0.303046\pi\)
0.580017 + 0.814604i \(0.303046\pi\)
\(648\) 7.43576 + 7.43576i 0.292104 + 0.292104i
\(649\) 16.2514 6.73155i 0.637924 0.264237i
\(650\) 37.1703i 1.45794i
\(651\) 2.00611 + 4.84317i 0.0786255 + 0.189819i
\(652\) 0.812521 + 0.336557i 0.0318208 + 0.0131806i
\(653\) −12.0580 + 29.1106i −0.471866 + 1.13919i 0.491472 + 0.870894i \(0.336459\pi\)
−0.963338 + 0.268292i \(0.913541\pi\)
\(654\) 2.09431 2.09431i 0.0818941 0.0818941i
\(655\) −37.6142 + 37.6142i −1.46971 + 1.46971i
\(656\) −0.534795 + 1.29111i −0.0208802 + 0.0504093i
\(657\) −27.1184 11.2328i −1.05799 0.438234i
\(658\) −2.34554 5.66264i −0.0914388 0.220753i
\(659\) 19.0489i 0.742039i 0.928625 + 0.371019i \(0.120992\pi\)
−0.928625 + 0.371019i \(0.879008\pi\)
\(660\) 5.34607 2.21441i 0.208095 0.0861959i
\(661\) −9.01257 9.01257i −0.350548 0.350548i 0.509765 0.860314i \(-0.329732\pi\)
−0.860314 + 0.509765i \(0.829732\pi\)
\(662\) −1.96930 −0.0765389
\(663\) 5.71123 7.76484i 0.221806 0.301561i
\(664\) 42.4595 1.64775
\(665\) 0.771905 + 0.771905i 0.0299332 + 0.0299332i
\(666\) −0.205821 + 0.0852537i −0.00797538 + 0.00330351i
\(667\) 12.3351i 0.477617i
\(668\) −2.06261 4.97957i −0.0798046 0.192665i
\(669\) 5.46020 + 2.26169i 0.211103 + 0.0874419i
\(670\) 21.4317 51.7407i 0.827979 1.99892i
\(671\) −9.21155 + 9.21155i −0.355608 + 0.355608i
\(672\) −2.02780 + 2.02780i −0.0782241 + 0.0782241i
\(673\) 10.5194 25.3960i 0.405493 0.978946i −0.580816 0.814035i \(-0.697266\pi\)
0.986308 0.164911i \(-0.0527336\pi\)
\(674\) 11.9523 + 4.95081i 0.460386 + 0.190698i
\(675\) −21.7616 52.5372i −0.837606 2.02216i
\(676\) 4.85117i 0.186583i
\(677\) 27.1879 11.2616i 1.04492 0.432819i 0.206843 0.978374i \(-0.433681\pi\)
0.838075 + 0.545555i \(0.183681\pi\)
\(678\) 10.8309 + 10.8309i 0.415958 + 0.415958i
\(679\) −7.92046 −0.303959
\(680\) 7.87930 + 51.7050i 0.302157 + 1.98279i
\(681\) 7.45167 0.285549
\(682\) 10.4877 + 10.4877i 0.401596 + 0.401596i
\(683\) −37.7397 + 15.6323i −1.44407 + 0.598153i −0.960781 0.277308i \(-0.910558\pi\)
−0.483289 + 0.875461i \(0.660558\pi\)
\(684\) 0.907201i 0.0346877i
\(685\) −33.5746 81.0563i −1.28282 3.09700i
\(686\) 8.43650 + 3.49451i 0.322107 + 0.133421i
\(687\) −1.36538 + 3.29632i −0.0520926 + 0.125763i
\(688\) −0.590503 + 0.590503i −0.0225127 + 0.0225127i
\(689\) −14.3841 + 14.3841i −0.547992 + 0.547992i
\(690\) 2.59891 6.27433i 0.0989390 0.238860i
\(691\) −4.18271 1.73254i −0.159118 0.0659088i 0.301703 0.953402i \(-0.402445\pi\)
−0.460821 + 0.887493i \(0.652445\pi\)
\(692\) −1.31167 3.16666i −0.0498624 0.120378i
\(693\) 2.60604i 0.0989954i
\(694\) 17.4432 7.22519i 0.662133 0.274265i
\(695\) −57.4417 57.4417i −2.17889 2.17889i
\(696\) 14.7890 0.560574
\(697\) −6.82103 + 1.03945i −0.258365 + 0.0393721i
\(698\) −34.9876 −1.32430
\(699\) −6.25387 6.25387i −0.236543 0.236543i
\(700\) −8.71239 + 3.60879i −0.329297 + 0.136399i
\(701\) 25.3423i 0.957167i −0.878042 0.478584i \(-0.841150\pi\)
0.878042 0.478584i \(-0.158850\pi\)
\(702\) −4.68292 11.3056i −0.176745 0.426701i
\(703\) −0.0333218 0.0138023i −0.00125676 0.000520565i
\(704\) −4.13551 + 9.98401i −0.155863 + 0.376287i
\(705\) −22.1346 + 22.1346i −0.833639 + 0.833639i
\(706\) −13.9096 + 13.9096i −0.523495 + 0.523495i
\(707\) 2.82341 6.81632i 0.106185 0.256354i
\(708\) 8.49312 + 3.51796i 0.319191 + 0.132213i
\(709\) −9.98505 24.1060i −0.374996 0.905321i −0.992887 0.119058i \(-0.962013\pi\)
0.617891 0.786264i \(-0.287987\pi\)
\(710\) 38.9247i 1.46082i
\(711\) 20.2636 8.39346i 0.759945 0.314779i
\(712\) 3.49491 + 3.49491i 0.130977 + 0.130977i
\(713\) −18.8884 −0.707377
\(714\) 2.18830 + 0.538931i 0.0818950 + 0.0201690i
\(715\) 19.8315 0.741655
\(716\) −13.9091 13.9091i −0.519807 0.519807i
\(717\) −8.10960 + 3.35910i −0.302858 + 0.125448i
\(718\) 17.5839i 0.656226i
\(719\) 10.1076 + 24.4018i 0.376948 + 0.910033i 0.992535 + 0.121964i \(0.0389192\pi\)
−0.615586 + 0.788069i \(0.711081\pi\)
\(720\) 7.70502 + 3.19152i 0.287149 + 0.118941i
\(721\) 0.775662 1.87261i 0.0288872 0.0697398i
\(722\) −13.0623 + 13.0623i −0.486129 + 0.486129i
\(723\) 5.31177 5.31177i 0.197547 0.197547i
\(724\) −10.4933 + 25.3331i −0.389982 + 0.941499i
\(725\) 74.4810 + 30.8511i 2.76616 + 1.14578i
\(726\) 2.54887 + 6.15351i 0.0945974 + 0.228378i
\(727\) 41.5495i 1.54099i 0.637449 + 0.770493i \(0.279990\pi\)
−0.637449 + 0.770493i \(0.720010\pi\)
\(728\) −5.47748 + 2.26885i −0.203009 + 0.0840890i
\(729\) −1.57658 1.57658i −0.0583920 0.0583920i
\(730\) −52.2255 −1.93295
\(731\) −4.00348 0.985971i −0.148074 0.0364675i
\(732\) −6.80807 −0.251633
\(733\) 5.33581 + 5.33581i 0.197083 + 0.197083i 0.798748 0.601666i \(-0.205496\pi\)
−0.601666 + 0.798748i \(0.705496\pi\)
\(734\) 8.39197 3.47607i 0.309753 0.128304i
\(735\) 22.4991i 0.829892i
\(736\) −3.95423 9.54634i −0.145755 0.351883i
\(737\) 19.9975 + 8.28322i 0.736616 + 0.305116i
\(738\) −1.47053 + 3.55016i −0.0541308 + 0.130683i
\(739\) −18.0816 + 18.0816i −0.665144 + 0.665144i −0.956588 0.291444i \(-0.905864\pi\)
0.291444 + 0.956588i \(0.405864\pi\)
\(740\) 0.304129 0.304129i 0.0111800 0.0111800i
\(741\) 0.332591 0.802946i 0.0122180 0.0294970i
\(742\) −4.39414 1.82011i −0.161314 0.0668184i
\(743\) −2.51708 6.07677i −0.0923427 0.222935i 0.870959 0.491355i \(-0.163498\pi\)
−0.963302 + 0.268420i \(0.913498\pi\)
\(744\) 22.6459i 0.830240i
\(745\) −10.7330 + 4.44575i −0.393226 + 0.162880i
\(746\) 10.0682 + 10.0682i 0.368624 + 0.368624i
\(747\) 33.4274 1.22305
\(748\) −6.84000 + 1.04235i −0.250095 + 0.0381119i
\(749\) 0.631715 0.0230823
\(750\) −19.4450 19.4450i −0.710033 0.710033i
\(751\) 32.2536 13.3599i 1.17695 0.487509i 0.293467 0.955969i \(-0.405191\pi\)
0.883485 + 0.468460i \(0.155191\pi\)
\(752\) 7.58093i 0.276448i
\(753\) 2.85503 + 6.89266i 0.104043 + 0.251182i
\(754\) 16.0277 + 6.63889i 0.583694 + 0.241774i
\(755\) −9.67338 + 23.3536i −0.352050 + 0.849925i
\(756\) −2.19527 + 2.19527i −0.0798413 + 0.0798413i
\(757\) 33.4876 33.4876i 1.21713 1.21713i 0.248492 0.968634i \(-0.420065\pi\)
0.968634 0.248492i \(-0.0799351\pi\)
\(758\) 0.726470 1.75385i 0.0263866 0.0637029i
\(759\) 2.42499 + 1.00446i 0.0880215 + 0.0364597i
\(760\) 1.80466 + 4.35683i 0.0654618 + 0.158039i