Properties

Label 731.2.m.c.87.6
Level $731$
Weight $2$
Character 731.87
Analytic conductor $5.837$
Analytic rank $0$
Dimension $128$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [731,2,Mod(87,731)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([7, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("731.87");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 731 = 17 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 731.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 87.6
Character \(\chi\) \(=\) 731.87
Dual form 731.2.m.c.689.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15376 - 1.15376i) q^{2} +(0.645285 - 0.267286i) q^{3} +0.662305i q^{4} +(0.125261 + 0.302406i) q^{5} +(-1.05288 - 0.436119i) q^{6} +(0.205763 - 0.496757i) q^{7} +(-1.54337 + 1.54337i) q^{8} +(-1.77637 + 1.77637i) q^{9} +O(q^{10})\) \(q+(-1.15376 - 1.15376i) q^{2} +(0.645285 - 0.267286i) q^{3} +0.662305i q^{4} +(0.125261 + 0.302406i) q^{5} +(-1.05288 - 0.436119i) q^{6} +(0.205763 - 0.496757i) q^{7} +(-1.54337 + 1.54337i) q^{8} +(-1.77637 + 1.77637i) q^{9} +(0.204383 - 0.493423i) q^{10} +(5.51981 + 2.28638i) q^{11} +(0.177025 + 0.427376i) q^{12} -3.02723i q^{13} +(-0.810537 + 0.335735i) q^{14} +(0.161658 + 0.161658i) q^{15} +4.88596 q^{16} +(0.0210706 - 4.12305i) q^{17} +4.09899 q^{18} +(-1.54151 - 1.54151i) q^{19} +(-0.200285 + 0.0829608i) q^{20} -0.375547i q^{21} +(-3.73059 - 9.00643i) q^{22} +(6.80846 + 2.82016i) q^{23} +(-0.583394 + 1.40844i) q^{24} +(3.45977 - 3.45977i) q^{25} +(-3.49269 + 3.49269i) q^{26} +(-1.47332 + 3.55692i) q^{27} +(0.329004 + 0.136278i) q^{28} +(-3.74945 - 9.05197i) q^{29} -0.373027i q^{30} +(7.55856 - 3.13086i) q^{31} +(-2.55046 - 2.55046i) q^{32} +4.17296 q^{33} +(-4.78131 + 4.73268i) q^{34} +0.175996 q^{35} +(-1.17650 - 1.17650i) q^{36} +(-7.45467 + 3.08782i) q^{37} +3.55706i q^{38} +(-0.809137 - 1.95343i) q^{39} +(-0.660049 - 0.273401i) q^{40} +(2.26733 - 5.47382i) q^{41} +(-0.433290 + 0.433290i) q^{42} +(-0.707107 + 0.707107i) q^{43} +(-1.51428 + 3.65580i) q^{44} +(-0.759694 - 0.314676i) q^{45} +(-4.60153 - 11.1091i) q^{46} +5.04755i q^{47} +(3.15284 - 1.30595i) q^{48} +(4.74532 + 4.74532i) q^{49} -7.98347 q^{50} +(-1.08844 - 2.66618i) q^{51} +2.00495 q^{52} +(4.11065 + 4.11065i) q^{53} +(5.80367 - 2.40396i) q^{54} +1.95562i q^{55} +(0.449111 + 1.08425i) q^{56} +(-1.40674 - 0.582691i) q^{57} +(-6.11781 + 14.7697i) q^{58} +(8.90947 - 8.90947i) q^{59} +(-0.107067 + 0.107067i) q^{60} +(-1.54398 + 3.72750i) q^{61} +(-12.3330 - 5.10848i) q^{62} +(0.516912 + 1.24794i) q^{63} -3.88671i q^{64} +(0.915454 - 0.379193i) q^{65} +(-4.81458 - 4.81458i) q^{66} -9.13376 q^{67} +(2.73072 + 0.0139552i) q^{68} +5.14719 q^{69} +(-0.203057 - 0.203057i) q^{70} +(7.17245 - 2.97093i) q^{71} -5.48320i q^{72} +(-2.55372 - 6.16522i) q^{73} +(12.1635 + 5.03827i) q^{74} +(1.30779 - 3.15729i) q^{75} +(1.02095 - 1.02095i) q^{76} +(2.27155 - 2.27155i) q^{77} +(-1.32023 + 3.18733i) q^{78} +(-10.1769 - 4.21542i) q^{79} +(0.612019 + 1.47754i) q^{80} -4.84747i q^{81} +(-8.93139 + 3.69950i) q^{82} +(3.94233 + 3.94233i) q^{83} +0.248727 q^{84} +(1.24948 - 0.510084i) q^{85} +1.63166 q^{86} +(-4.83893 - 4.83893i) q^{87} +(-12.0479 + 4.99039i) q^{88} +4.71666i q^{89} +(0.513443 + 1.23956i) q^{90} +(-1.50380 - 0.622894i) q^{91} +(-1.86780 + 4.50928i) q^{92} +(4.04059 - 4.04059i) q^{93} +(5.82364 - 5.82364i) q^{94} +(0.273072 - 0.659254i) q^{95} +(-2.32748 - 0.964072i) q^{96} +(-1.78681 - 4.31373i) q^{97} -10.9499i q^{98} +(-13.8667 + 5.74376i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q + 4 q^{2} + 4 q^{3} + 8 q^{5} - 12 q^{6} + 4 q^{7} - 4 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 128 q + 4 q^{2} + 4 q^{3} + 8 q^{5} - 12 q^{6} + 4 q^{7} - 4 q^{8} + 8 q^{9} - 8 q^{10} - 4 q^{11} + 12 q^{12} + 12 q^{14} - 12 q^{15} - 144 q^{16} - 12 q^{17} + 64 q^{18} - 28 q^{19} - 8 q^{20} - 12 q^{22} + 16 q^{23} - 16 q^{24} - 20 q^{25} + 16 q^{26} - 8 q^{27} + 20 q^{28} + 12 q^{31} - 4 q^{32} - 104 q^{33} + 20 q^{34} + 32 q^{35} - 96 q^{36} - 12 q^{37} + 8 q^{39} + 216 q^{40} + 24 q^{41} - 4 q^{42} + 24 q^{44} - 28 q^{45} - 48 q^{46} + 28 q^{48} - 80 q^{50} - 20 q^{51} + 56 q^{52} - 36 q^{53} - 12 q^{54} - 8 q^{56} + 72 q^{57} - 32 q^{58} + 48 q^{59} - 40 q^{60} - 76 q^{61} - 44 q^{62} + 36 q^{65} - 68 q^{66} - 48 q^{67} + 32 q^{68} + 216 q^{69} - 196 q^{70} + 4 q^{71} + 20 q^{73} + 88 q^{74} + 80 q^{75} + 72 q^{76} + 28 q^{77} - 120 q^{78} + 68 q^{79} - 68 q^{80} + 28 q^{82} - 36 q^{83} - 152 q^{84} + 28 q^{85} - 24 q^{86} - 56 q^{87} + 20 q^{88} - 112 q^{90} + 96 q^{91} - 28 q^{92} + 24 q^{93} - 36 q^{94} - 108 q^{95} + 272 q^{96} + 8 q^{97} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15376 1.15376i −0.815829 0.815829i 0.169672 0.985501i \(-0.445729\pi\)
−0.985501 + 0.169672i \(0.945729\pi\)
\(3\) 0.645285 0.267286i 0.372555 0.154318i −0.188546 0.982064i \(-0.560378\pi\)
0.561102 + 0.827747i \(0.310378\pi\)
\(4\) 0.662305i 0.331153i
\(5\) 0.125261 + 0.302406i 0.0560183 + 0.135240i 0.949411 0.314037i \(-0.101682\pi\)
−0.893392 + 0.449277i \(0.851682\pi\)
\(6\) −1.05288 0.436119i −0.429838 0.178045i
\(7\) 0.205763 0.496757i 0.0777712 0.187756i −0.880212 0.474581i \(-0.842600\pi\)
0.957983 + 0.286824i \(0.0925996\pi\)
\(8\) −1.54337 + 1.54337i −0.545665 + 0.545665i
\(9\) −1.77637 + 1.77637i −0.592123 + 0.592123i
\(10\) 0.204383 0.493423i 0.0646314 0.156034i
\(11\) 5.51981 + 2.28638i 1.66428 + 0.689369i 0.998392 0.0566792i \(-0.0180512\pi\)
0.665892 + 0.746048i \(0.268051\pi\)
\(12\) 0.177025 + 0.427376i 0.0511026 + 0.123373i
\(13\) 3.02723i 0.839604i −0.907616 0.419802i \(-0.862100\pi\)
0.907616 0.419802i \(-0.137900\pi\)
\(14\) −0.810537 + 0.335735i −0.216625 + 0.0897290i
\(15\) 0.161658 + 0.161658i 0.0417398 + 0.0417398i
\(16\) 4.88596 1.22149
\(17\) 0.0210706 4.12305i 0.00511038 0.999987i
\(18\) 4.09899 0.966142
\(19\) −1.54151 1.54151i −0.353647 0.353647i 0.507817 0.861465i \(-0.330452\pi\)
−0.861465 + 0.507817i \(0.830452\pi\)
\(20\) −0.200285 + 0.0829608i −0.0447851 + 0.0185506i
\(21\) 0.375547i 0.0819511i
\(22\) −3.73059 9.00643i −0.795364 1.92018i
\(23\) 6.80846 + 2.82016i 1.41966 + 0.588043i 0.954776 0.297327i \(-0.0960951\pi\)
0.464887 + 0.885370i \(0.346095\pi\)
\(24\) −0.583394 + 1.40844i −0.119085 + 0.287496i
\(25\) 3.45977 3.45977i 0.691955 0.691955i
\(26\) −3.49269 + 3.49269i −0.684973 + 0.684973i
\(27\) −1.47332 + 3.55692i −0.283541 + 0.684529i
\(28\) 0.329004 + 0.136278i 0.0621760 + 0.0257541i
\(29\) −3.74945 9.05197i −0.696255 1.68091i −0.731781 0.681540i \(-0.761311\pi\)
0.0355262 0.999369i \(-0.488689\pi\)
\(30\) 0.373027i 0.0681051i
\(31\) 7.55856 3.13086i 1.35756 0.562318i 0.419171 0.907907i \(-0.362321\pi\)
0.938386 + 0.345589i \(0.112321\pi\)
\(32\) −2.55046 2.55046i −0.450862 0.450862i
\(33\) 4.17296 0.726420
\(34\) −4.78131 + 4.73268i −0.819987 + 0.811649i
\(35\) 0.175996 0.0297488
\(36\) −1.17650 1.17650i −0.196083 0.196083i
\(37\) −7.45467 + 3.08782i −1.22554 + 0.507635i −0.899167 0.437606i \(-0.855827\pi\)
−0.326373 + 0.945241i \(0.605827\pi\)
\(38\) 3.55706i 0.577031i
\(39\) −0.809137 1.95343i −0.129566 0.312799i
\(40\) −0.660049 0.273401i −0.104363 0.0432286i
\(41\) 2.26733 5.47382i 0.354097 0.854867i −0.642008 0.766698i \(-0.721899\pi\)
0.996106 0.0881688i \(-0.0281015\pi\)
\(42\) −0.433290 + 0.433290i −0.0668581 + 0.0668581i
\(43\) −0.707107 + 0.707107i −0.107833 + 0.107833i
\(44\) −1.51428 + 3.65580i −0.228286 + 0.551132i
\(45\) −0.759694 0.314676i −0.113249 0.0469091i
\(46\) −4.60153 11.1091i −0.678459 1.63794i
\(47\) 5.04755i 0.736260i 0.929774 + 0.368130i \(0.120002\pi\)
−0.929774 + 0.368130i \(0.879998\pi\)
\(48\) 3.15284 1.30595i 0.455073 0.188497i
\(49\) 4.74532 + 4.74532i 0.677903 + 0.677903i
\(50\) −7.98347 −1.12903
\(51\) −1.08844 2.66618i −0.152412 0.373339i
\(52\) 2.00495 0.278037
\(53\) 4.11065 + 4.11065i 0.564642 + 0.564642i 0.930622 0.365981i \(-0.119266\pi\)
−0.365981 + 0.930622i \(0.619266\pi\)
\(54\) 5.80367 2.40396i 0.789779 0.327137i
\(55\) 1.95562i 0.263695i
\(56\) 0.449111 + 1.08425i 0.0600150 + 0.144889i
\(57\) −1.40674 0.582691i −0.186327 0.0771792i
\(58\) −6.11781 + 14.7697i −0.803308 + 1.93936i
\(59\) 8.90947 8.90947i 1.15991 1.15991i 0.175420 0.984494i \(-0.443872\pi\)
0.984494 0.175420i \(-0.0561283\pi\)
\(60\) −0.107067 + 0.107067i −0.0138223 + 0.0138223i
\(61\) −1.54398 + 3.72750i −0.197686 + 0.477257i −0.991373 0.131070i \(-0.958159\pi\)
0.793687 + 0.608326i \(0.208159\pi\)
\(62\) −12.3330 5.10848i −1.56629 0.648778i
\(63\) 0.516912 + 1.24794i 0.0651247 + 0.157225i
\(64\) 3.88671i 0.485838i
\(65\) 0.915454 0.379193i 0.113548 0.0470332i
\(66\) −4.81458 4.81458i −0.592634 0.592634i
\(67\) −9.13376 −1.11587 −0.557933 0.829886i \(-0.688405\pi\)
−0.557933 + 0.829886i \(0.688405\pi\)
\(68\) 2.73072 + 0.0139552i 0.331148 + 0.00169231i
\(69\) 5.14719 0.619648
\(70\) −0.203057 0.203057i −0.0242699 0.0242699i
\(71\) 7.17245 2.97093i 0.851213 0.352584i 0.0859484 0.996300i \(-0.472608\pi\)
0.765265 + 0.643716i \(0.222608\pi\)
\(72\) 5.48320i 0.646202i
\(73\) −2.55372 6.16522i −0.298890 0.721585i −0.999964 0.00849609i \(-0.997296\pi\)
0.701074 0.713089i \(-0.252704\pi\)
\(74\) 12.1635 + 5.03827i 1.41397 + 0.585687i
\(75\) 1.30779 3.15729i 0.151011 0.364572i
\(76\) 1.02095 1.02095i 0.117111 0.117111i
\(77\) 2.27155 2.27155i 0.258867 0.258867i
\(78\) −1.32023 + 3.18733i −0.149487 + 0.360894i
\(79\) −10.1769 4.21542i −1.14499 0.474272i −0.272142 0.962257i \(-0.587732\pi\)
−0.872852 + 0.487985i \(0.837732\pi\)
\(80\) 0.612019 + 1.47754i 0.0684258 + 0.165195i
\(81\) 4.84747i 0.538608i
\(82\) −8.93139 + 3.69950i −0.986307 + 0.408542i
\(83\) 3.94233 + 3.94233i 0.432727 + 0.432727i 0.889555 0.456828i \(-0.151014\pi\)
−0.456828 + 0.889555i \(0.651014\pi\)
\(84\) 0.248727 0.0271383
\(85\) 1.24948 0.510084i 0.135525 0.0553264i
\(86\) 1.63166 0.175946
\(87\) −4.83893 4.83893i −0.518787 0.518787i
\(88\) −12.0479 + 4.99039i −1.28431 + 0.531977i
\(89\) 4.71666i 0.499965i 0.968250 + 0.249982i \(0.0804248\pi\)
−0.968250 + 0.249982i \(0.919575\pi\)
\(90\) 0.513443 + 1.23956i 0.0541216 + 0.130661i
\(91\) −1.50380 0.622894i −0.157641 0.0652970i
\(92\) −1.86780 + 4.50928i −0.194732 + 0.470125i
\(93\) 4.04059 4.04059i 0.418990 0.418990i
\(94\) 5.82364 5.82364i 0.600662 0.600662i
\(95\) 0.273072 0.659254i 0.0280166 0.0676380i
\(96\) −2.32748 0.964072i −0.237547 0.0983952i
\(97\) −1.78681 4.31373i −0.181423 0.437993i 0.806838 0.590773i \(-0.201177\pi\)
−0.988260 + 0.152780i \(0.951177\pi\)
\(98\) 10.9499i 1.10610i
\(99\) −13.8667 + 5.74376i −1.39365 + 0.577270i
\(100\) 2.29143 + 2.29143i 0.229143 + 0.229143i
\(101\) −9.20709 −0.916140 −0.458070 0.888916i \(-0.651459\pi\)
−0.458070 + 0.888916i \(0.651459\pi\)
\(102\) −1.82033 + 4.33191i −0.180239 + 0.428923i
\(103\) −3.32995 −0.328109 −0.164055 0.986451i \(-0.552457\pi\)
−0.164055 + 0.986451i \(0.552457\pi\)
\(104\) 4.67215 + 4.67215i 0.458142 + 0.458142i
\(105\) 0.113568 0.0470413i 0.0110831 0.00459076i
\(106\) 9.48538i 0.921302i
\(107\) 1.48056 + 3.57439i 0.143131 + 0.345550i 0.979146 0.203157i \(-0.0651203\pi\)
−0.836015 + 0.548707i \(0.815120\pi\)
\(108\) −2.35576 0.975790i −0.226684 0.0938954i
\(109\) 4.93976 11.9256i 0.473143 1.14227i −0.489623 0.871934i \(-0.662866\pi\)
0.962766 0.270335i \(-0.0871343\pi\)
\(110\) 2.25630 2.25630i 0.215130 0.215130i
\(111\) −3.98505 + 3.98505i −0.378245 + 0.378245i
\(112\) 1.00535 2.42713i 0.0949968 0.229343i
\(113\) 8.91910 + 3.69441i 0.839038 + 0.347541i 0.760474 0.649368i \(-0.224967\pi\)
0.0785638 + 0.996909i \(0.474967\pi\)
\(114\) 0.950751 + 2.29532i 0.0890460 + 0.214976i
\(115\) 2.41217i 0.224936i
\(116\) 5.99516 2.48328i 0.556637 0.230567i
\(117\) 5.37749 + 5.37749i 0.497149 + 0.497149i
\(118\) −20.5587 −1.89258
\(119\) −2.04382 0.858840i −0.187356 0.0787297i
\(120\) −0.498996 −0.0455519
\(121\) 17.4626 + 17.4626i 1.58751 + 1.58751i
\(122\) 6.08199 2.51924i 0.550638 0.228082i
\(123\) 4.13820i 0.373129i
\(124\) 2.07358 + 5.00607i 0.186213 + 0.449558i
\(125\) 2.99166 + 1.23919i 0.267582 + 0.110836i
\(126\) 0.843423 2.03620i 0.0751381 0.181399i
\(127\) −11.3470 + 11.3470i −1.00688 + 1.00688i −0.00690833 + 0.999976i \(0.502199\pi\)
−0.999976 + 0.00690833i \(0.997801\pi\)
\(128\) −9.58523 + 9.58523i −0.847223 + 0.847223i
\(129\) −0.267286 + 0.645285i −0.0235332 + 0.0568142i
\(130\) −1.49371 0.618714i −0.131007 0.0542648i
\(131\) −5.21314 12.5856i −0.455474 1.09961i −0.970210 0.242264i \(-0.922110\pi\)
0.514736 0.857349i \(-0.327890\pi\)
\(132\) 2.76378i 0.240556i
\(133\) −1.08294 + 0.448570i −0.0939031 + 0.0388959i
\(134\) 10.5381 + 10.5381i 0.910356 + 0.910356i
\(135\) −1.26018 −0.108459
\(136\) 6.33089 + 6.39593i 0.542869 + 0.548446i
\(137\) 6.15344 0.525724 0.262862 0.964833i \(-0.415334\pi\)
0.262862 + 0.964833i \(0.415334\pi\)
\(138\) −5.93860 5.93860i −0.505527 0.505527i
\(139\) 2.30651 0.955387i 0.195636 0.0810349i −0.282715 0.959204i \(-0.591235\pi\)
0.478350 + 0.878169i \(0.341235\pi\)
\(140\) 0.116563i 0.00985139i
\(141\) 1.34914 + 3.25711i 0.113618 + 0.274298i
\(142\) −11.7030 4.84753i −0.982092 0.406796i
\(143\) 6.92140 16.7097i 0.578797 1.39734i
\(144\) −8.67927 + 8.67927i −0.723273 + 0.723273i
\(145\) 2.26771 2.26771i 0.188323 0.188323i
\(146\) −4.16680 + 10.0595i −0.344846 + 0.832533i
\(147\) 4.33044 + 1.79373i 0.357169 + 0.147944i
\(148\) −2.04508 4.93726i −0.168105 0.405841i
\(149\) 19.3522i 1.58539i 0.609618 + 0.792695i \(0.291323\pi\)
−0.609618 + 0.792695i \(0.708677\pi\)
\(150\) −5.15161 + 2.13387i −0.420628 + 0.174230i
\(151\) 9.07898 + 9.07898i 0.738837 + 0.738837i 0.972353 0.233516i \(-0.0750232\pi\)
−0.233516 + 0.972353i \(0.575023\pi\)
\(152\) 4.75826 0.385946
\(153\) 7.28663 + 7.36149i 0.589089 + 0.595141i
\(154\) −5.24162 −0.422382
\(155\) 1.89358 + 1.89358i 0.152096 + 0.152096i
\(156\) 1.29377 0.535895i 0.103584 0.0429060i
\(157\) 8.36326i 0.667461i 0.942669 + 0.333730i \(0.108308\pi\)
−0.942669 + 0.333730i \(0.891692\pi\)
\(158\) 6.87813 + 16.6053i 0.547194 + 1.32104i
\(159\) 3.75126 + 1.55382i 0.297494 + 0.123226i
\(160\) 0.451802 1.09075i 0.0357181 0.0862311i
\(161\) 2.80186 2.80186i 0.220818 0.220818i
\(162\) −5.59280 + 5.59280i −0.439412 + 0.439412i
\(163\) −5.59774 + 13.5141i −0.438449 + 1.05851i 0.538036 + 0.842922i \(0.319167\pi\)
−0.976485 + 0.215587i \(0.930833\pi\)
\(164\) 3.62534 + 1.50166i 0.283091 + 0.117260i
\(165\) 0.522708 + 1.26193i 0.0406928 + 0.0982411i
\(166\) 9.09698i 0.706063i
\(167\) 21.6244 8.95711i 1.67334 0.693122i 0.674369 0.738394i \(-0.264416\pi\)
0.998975 + 0.0452727i \(0.0144157\pi\)
\(168\) 0.579610 + 0.579610i 0.0447179 + 0.0447179i
\(169\) 3.83585 0.295066
\(170\) −2.03010 0.853076i −0.155702 0.0654280i
\(171\) 5.47659 0.418805
\(172\) −0.468320 0.468320i −0.0357091 0.0357091i
\(173\) −2.83629 + 1.17483i −0.215639 + 0.0893208i −0.487888 0.872906i \(-0.662233\pi\)
0.272249 + 0.962227i \(0.412233\pi\)
\(174\) 11.1659i 0.846483i
\(175\) −1.00677 2.43056i −0.0761048 0.183733i
\(176\) 26.9696 + 11.1712i 2.03291 + 0.842058i
\(177\) 3.36777 8.13052i 0.253137 0.611127i
\(178\) 5.44187 5.44187i 0.407885 0.407885i
\(179\) 11.5287 11.5287i 0.861694 0.861694i −0.129841 0.991535i \(-0.541447\pi\)
0.991535 + 0.129841i \(0.0414467\pi\)
\(180\) 0.208411 0.503149i 0.0155341 0.0375025i
\(181\) 10.9212 + 4.52373i 0.811770 + 0.336246i 0.749660 0.661823i \(-0.230217\pi\)
0.0621100 + 0.998069i \(0.480217\pi\)
\(182\) 1.01635 + 2.45368i 0.0753368 + 0.181879i
\(183\) 2.81798i 0.208311i
\(184\) −14.8606 + 6.15544i −1.09553 + 0.453785i
\(185\) −1.86755 1.86755i −0.137305 0.137305i
\(186\) −9.32371 −0.683647
\(187\) 9.54316 22.7103i 0.697865 1.66074i
\(188\) −3.34302 −0.243814
\(189\) 1.46377 + 1.46377i 0.106473 + 0.106473i
\(190\) −1.07568 + 0.445560i −0.0780377 + 0.0323243i
\(191\) 6.86465i 0.496708i 0.968669 + 0.248354i \(0.0798897\pi\)
−0.968669 + 0.248354i \(0.920110\pi\)
\(192\) −1.03886 2.50803i −0.0749734 0.181002i
\(193\) −16.3854 6.78705i −1.17945 0.488542i −0.295141 0.955454i \(-0.595367\pi\)
−0.884304 + 0.466911i \(0.845367\pi\)
\(194\) −2.91545 + 7.03853i −0.209317 + 0.505337i
\(195\) 0.489376 0.489376i 0.0350449 0.0350449i
\(196\) −3.14285 + 3.14285i −0.224489 + 0.224489i
\(197\) −1.07703 + 2.60018i −0.0767351 + 0.185255i −0.957592 0.288128i \(-0.906967\pi\)
0.880857 + 0.473383i \(0.156967\pi\)
\(198\) 22.6256 + 9.37185i 1.60793 + 0.666028i
\(199\) 7.25981 + 17.5267i 0.514634 + 1.24244i 0.941160 + 0.337962i \(0.109737\pi\)
−0.426526 + 0.904475i \(0.640263\pi\)
\(200\) 10.6794i 0.755151i
\(201\) −5.89388 + 2.44132i −0.415722 + 0.172198i
\(202\) 10.6227 + 10.6227i 0.747413 + 0.747413i
\(203\) −5.26812 −0.369750
\(204\) 1.76582 0.720877i 0.123632 0.0504715i
\(205\) 1.93932 0.135448
\(206\) 3.84194 + 3.84194i 0.267681 + 0.267681i
\(207\) −17.1040 + 7.08470i −1.18881 + 0.492421i
\(208\) 14.7910i 1.02557i
\(209\) −4.98437 12.0333i −0.344776 0.832363i
\(210\) −0.185304 0.0767553i −0.0127872 0.00529662i
\(211\) −2.54310 + 6.13958i −0.175074 + 0.422666i −0.986921 0.161204i \(-0.948462\pi\)
0.811847 + 0.583870i \(0.198462\pi\)
\(212\) −2.72251 + 2.72251i −0.186983 + 0.186983i
\(213\) 3.83419 3.83419i 0.262714 0.262714i
\(214\) 2.41577 5.83219i 0.165139 0.398680i
\(215\) −0.302406 0.125261i −0.0206239 0.00854271i
\(216\) −3.21576 7.76354i −0.218805 0.528242i
\(217\) 4.39898i 0.298622i
\(218\) −19.4585 + 8.06000i −1.31790 + 0.545892i
\(219\) −3.29575 3.29575i −0.222706 0.222706i
\(220\) −1.29521 −0.0873233
\(221\) −12.4814 0.0637857i −0.839593 0.00429069i
\(222\) 9.19556 0.617166
\(223\) −20.2197 20.2197i −1.35401 1.35401i −0.881124 0.472885i \(-0.843213\pi\)
−0.472885 0.881124i \(-0.656787\pi\)
\(224\) −1.79175 + 0.742167i −0.119716 + 0.0495881i
\(225\) 12.2917i 0.819445i
\(226\) −6.02801 14.5529i −0.400977 0.968045i
\(227\) 23.8421 + 9.87573i 1.58246 + 0.655475i 0.988800 0.149243i \(-0.0476838\pi\)
0.593656 + 0.804719i \(0.297684\pi\)
\(228\) 0.385919 0.931691i 0.0255581 0.0617027i
\(229\) −6.57048 + 6.57048i −0.434190 + 0.434190i −0.890051 0.455861i \(-0.849331\pi\)
0.455861 + 0.890051i \(0.349331\pi\)
\(230\) 2.78306 2.78306i 0.183510 0.183510i
\(231\) 0.858643 2.07295i 0.0564946 0.136390i
\(232\) 19.7574 + 8.18377i 1.29713 + 0.537291i
\(233\) 7.46254 + 18.0162i 0.488887 + 1.18028i 0.955281 + 0.295700i \(0.0955530\pi\)
−0.466394 + 0.884577i \(0.654447\pi\)
\(234\) 12.4086i 0.811176i
\(235\) −1.52641 + 0.632259i −0.0995719 + 0.0412440i
\(236\) 5.90078 + 5.90078i 0.384108 + 0.384108i
\(237\) −7.69375 −0.499762
\(238\) 1.36718 + 3.34896i 0.0886208 + 0.217081i
\(239\) −3.87346 −0.250554 −0.125277 0.992122i \(-0.539982\pi\)
−0.125277 + 0.992122i \(0.539982\pi\)
\(240\) 0.789853 + 0.789853i 0.0509848 + 0.0509848i
\(241\) −11.2877 + 4.67553i −0.727106 + 0.301177i −0.715362 0.698754i \(-0.753738\pi\)
−0.0117441 + 0.999931i \(0.503738\pi\)
\(242\) 40.2951i 2.59026i
\(243\) −5.71563 13.7988i −0.366658 0.885191i
\(244\) −2.46874 1.02259i −0.158045 0.0654643i
\(245\) −0.840611 + 2.02942i −0.0537047 + 0.129655i
\(246\) −4.77447 + 4.77447i −0.304409 + 0.304409i
\(247\) −4.66652 + 4.66652i −0.296924 + 0.296924i
\(248\) −6.83359 + 16.4978i −0.433934 + 1.04761i
\(249\) 3.59766 + 1.49020i 0.227992 + 0.0944375i
\(250\) −2.02193 4.88136i −0.127878 0.308725i
\(251\) 1.28167i 0.0808982i 0.999182 + 0.0404491i \(0.0128789\pi\)
−0.999182 + 0.0404491i \(0.987121\pi\)
\(252\) −0.826514 + 0.342353i −0.0520655 + 0.0215662i
\(253\) 31.1334 + 31.1334i 1.95734 + 1.95734i
\(254\) 26.1834 1.64289
\(255\) 0.669929 0.663117i 0.0419526 0.0415260i
\(256\) 14.3446 0.896539
\(257\) −12.3644 12.3644i −0.771271 0.771271i 0.207058 0.978329i \(-0.433611\pi\)
−0.978329 + 0.207058i \(0.933611\pi\)
\(258\) 1.05288 0.436119i 0.0655497 0.0271516i
\(259\) 4.33852i 0.269582i
\(260\) 0.251142 + 0.606310i 0.0155752 + 0.0376017i
\(261\) 22.7400 + 9.41923i 1.40757 + 0.583036i
\(262\) −8.50606 + 20.5354i −0.525506 + 1.26868i
\(263\) −10.8970 + 10.8970i −0.671936 + 0.671936i −0.958162 0.286226i \(-0.907599\pi\)
0.286226 + 0.958162i \(0.407599\pi\)
\(264\) −6.44044 + 6.44044i −0.396382 + 0.396382i
\(265\) −0.728183 + 1.75799i −0.0447319 + 0.107992i
\(266\) 1.76699 + 0.731912i 0.108341 + 0.0448764i
\(267\) 1.26070 + 3.04359i 0.0771533 + 0.186265i
\(268\) 6.04934i 0.369522i
\(269\) −21.9560 + 9.09445i −1.33868 + 0.554499i −0.933118 0.359570i \(-0.882923\pi\)
−0.405560 + 0.914068i \(0.632923\pi\)
\(270\) 1.45394 + 1.45394i 0.0884842 + 0.0884842i
\(271\) −24.7707 −1.50471 −0.752355 0.658757i \(-0.771082\pi\)
−0.752355 + 0.658757i \(0.771082\pi\)
\(272\) 0.102950 20.1451i 0.00624228 1.22147i
\(273\) −1.13687 −0.0688065
\(274\) −7.09957 7.09957i −0.428901 0.428901i
\(275\) 27.0076 11.1869i 1.62862 0.674597i
\(276\) 3.40901i 0.205198i
\(277\) −1.18405 2.85855i −0.0711426 0.171753i 0.884308 0.466903i \(-0.154630\pi\)
−0.955451 + 0.295150i \(0.904630\pi\)
\(278\) −3.76343 1.55886i −0.225716 0.0934945i
\(279\) −7.86523 + 18.9883i −0.470879 + 1.13680i
\(280\) −0.271628 + 0.271628i −0.0162329 + 0.0162329i
\(281\) −11.9689 + 11.9689i −0.714003 + 0.714003i −0.967370 0.253367i \(-0.918462\pi\)
0.253367 + 0.967370i \(0.418462\pi\)
\(282\) 2.20133 5.31448i 0.131087 0.316473i
\(283\) −4.96523 2.05667i −0.295152 0.122256i 0.230193 0.973145i \(-0.426064\pi\)
−0.525346 + 0.850889i \(0.676064\pi\)
\(284\) 1.96766 + 4.75035i 0.116759 + 0.281881i
\(285\) 0.498395i 0.0295224i
\(286\) −27.2646 + 11.2934i −1.61219 + 0.667790i
\(287\) −2.25262 2.25262i −0.132968 0.132968i
\(288\) 9.06112 0.533932
\(289\) −16.9991 0.173751i −0.999948 0.0102206i
\(290\) −5.23277 −0.307279
\(291\) −2.30600 2.30600i −0.135180 0.135180i
\(292\) 4.08326 1.69134i 0.238955 0.0989783i
\(293\) 5.06070i 0.295649i 0.989014 + 0.147825i \(0.0472272\pi\)
−0.989014 + 0.147825i \(0.952773\pi\)
\(294\) −2.92675 7.06579i −0.170691 0.412085i
\(295\) 3.81028 + 1.57827i 0.221843 + 0.0918905i
\(296\) 6.73967 16.2710i 0.391735 0.945733i
\(297\) −16.2649 + 16.2649i −0.943786 + 0.943786i
\(298\) 22.3277 22.3277i 1.29341 1.29341i
\(299\) 8.53728 20.6108i 0.493723 1.19195i
\(300\) 2.09109 + 0.866157i 0.120729 + 0.0500076i
\(301\) 0.205763 + 0.496757i 0.0118600 + 0.0286326i
\(302\) 20.9498i 1.20553i
\(303\) −5.94120 + 2.46093i −0.341313 + 0.141376i
\(304\) −7.53177 7.53177i −0.431977 0.431977i
\(305\) −1.32062 −0.0756183
\(306\) 0.0863684 16.9004i 0.00493735 0.966129i
\(307\) −7.95370 −0.453942 −0.226971 0.973902i \(-0.572882\pi\)
−0.226971 + 0.973902i \(0.572882\pi\)
\(308\) 1.50446 + 1.50446i 0.0857244 + 0.0857244i
\(309\) −2.14876 + 0.890047i −0.122239 + 0.0506330i
\(310\) 4.36946i 0.248169i
\(311\) −4.40264 10.6289i −0.249651 0.602710i 0.748524 0.663108i \(-0.230763\pi\)
−0.998174 + 0.0603978i \(0.980763\pi\)
\(312\) 4.26367 + 1.76607i 0.241383 + 0.0999840i
\(313\) 6.05898 14.6277i 0.342474 0.826804i −0.654991 0.755637i \(-0.727328\pi\)
0.997464 0.0711674i \(-0.0226725\pi\)
\(314\) 9.64916 9.64916i 0.544534 0.544534i
\(315\) −0.312634 + 0.312634i −0.0176150 + 0.0176150i
\(316\) 2.79190 6.74023i 0.157056 0.379168i
\(317\) −12.6327 5.23263i −0.709522 0.293894i −0.00141523 0.999999i \(-0.500450\pi\)
−0.708107 + 0.706105i \(0.750450\pi\)
\(318\) −2.53531 6.12077i −0.142173 0.343236i
\(319\) 58.5378i 3.27749i
\(320\) 1.17536 0.486852i 0.0657048 0.0272158i
\(321\) 1.91077 + 1.91077i 0.106649 + 0.106649i
\(322\) −6.46533 −0.360299
\(323\) −6.38822 + 6.32326i −0.355450 + 0.351835i
\(324\) 3.21051 0.178361
\(325\) −10.4735 10.4735i −0.580968 0.580968i
\(326\) 22.0504 9.13359i 1.22126 0.505863i
\(327\) 9.01576i 0.498573i
\(328\) 4.94881 + 11.9475i 0.273252 + 0.659689i
\(329\) 2.50740 + 1.03860i 0.138238 + 0.0572599i
\(330\) 0.852881 2.05904i 0.0469496 0.113346i
\(331\) 20.4194 20.4194i 1.12235 1.12235i 0.130963 0.991387i \(-0.458193\pi\)
0.991387 0.130963i \(-0.0418070\pi\)
\(332\) −2.61103 + 2.61103i −0.143299 + 0.143299i
\(333\) 7.75713 18.7274i 0.425088 1.02625i
\(334\) −35.2836 14.6149i −1.93063 0.799693i
\(335\) −1.14410 2.76210i −0.0625089 0.150910i
\(336\) 1.83491i 0.100103i
\(337\) −11.3617 + 4.70618i −0.618913 + 0.256362i −0.670034 0.742330i \(-0.733721\pi\)
0.0511211 + 0.998692i \(0.483721\pi\)
\(338\) −4.42564 4.42564i −0.240723 0.240723i
\(339\) 6.74282 0.366220
\(340\) 0.337832 + 0.827534i 0.0183215 + 0.0448793i
\(341\) 48.8801 2.64701
\(342\) −6.31865 6.31865i −0.341673 0.341673i
\(343\) 6.81098 2.82120i 0.367758 0.152330i
\(344\) 2.18266i 0.117681i
\(345\) 0.644740 + 1.55654i 0.0347116 + 0.0838013i
\(346\) 4.62786 + 1.91692i 0.248795 + 0.103054i
\(347\) −2.33375 + 5.63417i −0.125282 + 0.302458i −0.974059 0.226293i \(-0.927339\pi\)
0.848777 + 0.528751i \(0.177339\pi\)
\(348\) 3.20484 3.20484i 0.171798 0.171798i
\(349\) 0.0592157 0.0592157i 0.00316974 0.00316974i −0.705520 0.708690i \(-0.749287\pi\)
0.708690 + 0.705520i \(0.249287\pi\)
\(350\) −1.64271 + 3.96584i −0.0878063 + 0.211983i
\(351\) 10.7676 + 4.46010i 0.574733 + 0.238062i
\(352\) −8.24673 19.9094i −0.439552 1.06117i
\(353\) 8.41416i 0.447841i 0.974607 + 0.223920i \(0.0718855\pi\)
−0.974607 + 0.223920i \(0.928114\pi\)
\(354\) −13.2662 + 5.49505i −0.705092 + 0.292058i
\(355\) 1.79685 + 1.79685i 0.0953670 + 0.0953670i
\(356\) −3.12387 −0.165565
\(357\) −1.54840 0.00791302i −0.0819501 0.000418801i
\(358\) −26.6026 −1.40599
\(359\) −14.6139 14.6139i −0.771290 0.771290i 0.207042 0.978332i \(-0.433616\pi\)
−0.978332 + 0.207042i \(0.933616\pi\)
\(360\) 1.65815 0.686830i 0.0873924 0.0361991i
\(361\) 14.2475i 0.749867i
\(362\) −7.38117 17.8197i −0.387946 0.936584i
\(363\) 15.9358 + 6.60083i 0.836414 + 0.346454i
\(364\) 0.412546 0.995974i 0.0216233 0.0522032i
\(365\) 1.54452 1.54452i 0.0808439 0.0808439i
\(366\) 3.25126 3.25126i 0.169946 0.169946i
\(367\) −7.91202 + 19.1013i −0.413004 + 0.997080i 0.571322 + 0.820726i \(0.306431\pi\)
−0.984327 + 0.176355i \(0.943569\pi\)
\(368\) 33.2659 + 13.7792i 1.73410 + 0.718289i
\(369\) 5.69591 + 13.7511i 0.296517 + 0.715855i
\(370\) 4.30940i 0.224035i
\(371\) 2.88782 1.19617i 0.149928 0.0621022i
\(372\) 2.67610 + 2.67610i 0.138749 + 0.138749i
\(373\) −6.08555 −0.315098 −0.157549 0.987511i \(-0.550359\pi\)
−0.157549 + 0.987511i \(0.550359\pi\)
\(374\) −37.2126 + 15.1916i −1.92422 + 0.785540i
\(375\) 2.26169 0.116793
\(376\) −7.79025 7.79025i −0.401751 0.401751i
\(377\) −27.4024 + 11.3505i −1.41130 + 0.584578i
\(378\) 3.37766i 0.173728i
\(379\) 4.97969 + 12.0220i 0.255789 + 0.617530i 0.998652 0.0519141i \(-0.0165322\pi\)
−0.742862 + 0.669444i \(0.766532\pi\)
\(380\) 0.436627 + 0.180857i 0.0223985 + 0.00927776i
\(381\) −4.28916 + 10.3550i −0.219740 + 0.530500i
\(382\) 7.92012 7.92012i 0.405229 0.405229i
\(383\) −6.02568 + 6.02568i −0.307898 + 0.307898i −0.844094 0.536196i \(-0.819861\pi\)
0.536196 + 0.844094i \(0.319861\pi\)
\(384\) −3.62321 + 8.74720i −0.184896 + 0.446379i
\(385\) 0.971465 + 0.402394i 0.0495105 + 0.0205079i
\(386\) 11.0741 + 26.7353i 0.563658 + 1.36079i
\(387\) 2.51217i 0.127701i
\(388\) 2.85701 1.18341i 0.145042 0.0600786i
\(389\) −3.45704 3.45704i −0.175279 0.175279i 0.614015 0.789294i \(-0.289553\pi\)
−0.789294 + 0.614015i \(0.789553\pi\)
\(390\) −1.12924 −0.0571813
\(391\) 11.7711 28.0122i 0.595291 1.41664i
\(392\) −14.6476 −0.739815
\(393\) −6.72792 6.72792i −0.339379 0.339379i
\(394\) 4.24260 1.75734i 0.213739 0.0885336i
\(395\) 3.60559i 0.181417i
\(396\) −3.80412 9.18396i −0.191164 0.461512i
\(397\) −2.04767 0.848174i −0.102770 0.0425686i 0.330706 0.943734i \(-0.392713\pi\)
−0.433476 + 0.901165i \(0.642713\pi\)
\(398\) 11.8455 28.5976i 0.593762 1.43347i
\(399\) −0.578911 + 0.578911i −0.0289818 + 0.0289818i
\(400\) 16.9043 16.9043i 0.845216 0.845216i
\(401\) −11.0745 + 26.7363i −0.553036 + 1.33515i 0.362152 + 0.932119i \(0.382042\pi\)
−0.915188 + 0.403027i \(0.867958\pi\)
\(402\) 9.61679 + 3.98340i 0.479642 + 0.198674i
\(403\) −9.47784 22.8815i −0.472125 1.13981i
\(404\) 6.09790i 0.303382i
\(405\) 1.46591 0.607198i 0.0728414 0.0301719i
\(406\) 6.07813 + 6.07813i 0.301653 + 0.301653i
\(407\) −48.2083 −2.38960
\(408\) 5.79477 + 2.43504i 0.286884 + 0.120552i
\(409\) 37.0789 1.83343 0.916717 0.399537i \(-0.130829\pi\)
0.916717 + 0.399537i \(0.130829\pi\)
\(410\) −2.23750 2.23750i −0.110502 0.110502i
\(411\) 3.97072 1.64473i 0.195861 0.0811284i
\(412\) 2.20544i 0.108654i
\(413\) −2.59260 6.25908i −0.127573 0.307989i
\(414\) 27.9078 + 11.5598i 1.37160 + 0.568133i
\(415\) −0.698366 + 1.68601i −0.0342815 + 0.0827628i
\(416\) −7.72084 + 7.72084i −0.378545 + 0.378545i
\(417\) 1.23299 1.23299i 0.0603800 0.0603800i
\(418\) −8.13278 + 19.6343i −0.397787 + 0.960344i
\(419\) −21.0814 8.73221i −1.02990 0.426597i −0.197221 0.980359i \(-0.563191\pi\)
−0.832675 + 0.553763i \(0.813191\pi\)
\(420\) 0.0311557 + 0.0752165i 0.00152024 + 0.00367019i
\(421\) 11.2815i 0.549828i 0.961469 + 0.274914i \(0.0886494\pi\)
−0.961469 + 0.274914i \(0.911351\pi\)
\(422\) 10.0177 4.14946i 0.487654 0.201993i
\(423\) −8.96631 8.96631i −0.435957 0.435957i
\(424\) −12.6885 −0.616210
\(425\) −14.1919 14.3377i −0.688410 0.695482i
\(426\) −8.84743 −0.428660
\(427\) 1.53396 + 1.53396i 0.0742337 + 0.0742337i
\(428\) −2.36734 + 0.980584i −0.114430 + 0.0473983i
\(429\) 12.6325i 0.609905i
\(430\) 0.204383 + 0.493423i 0.00985620 + 0.0237950i
\(431\) 30.6132 + 12.6804i 1.47458 + 0.610793i 0.967899 0.251339i \(-0.0808709\pi\)
0.506685 + 0.862132i \(0.330871\pi\)
\(432\) −7.19860 + 17.3790i −0.346343 + 0.836146i
\(433\) 25.5113 25.5113i 1.22599 1.22599i 0.260529 0.965466i \(-0.416103\pi\)
0.965466 0.260529i \(-0.0838968\pi\)
\(434\) −5.07535 + 5.07535i −0.243624 + 0.243624i
\(435\) 0.857193 2.06945i 0.0410993 0.0992224i
\(436\) 7.89841 + 3.27163i 0.378265 + 0.156683i
\(437\) −6.14802 14.8426i −0.294100 0.710020i
\(438\) 7.60499i 0.363381i
\(439\) 34.3548 14.2302i 1.63967 0.679172i 0.643402 0.765529i \(-0.277523\pi\)
0.996264 + 0.0863569i \(0.0275225\pi\)
\(440\) −3.01825 3.01825i −0.143889 0.143889i
\(441\) −16.8589 −0.802804
\(442\) 14.3269 + 14.4741i 0.681463 + 0.688464i
\(443\) 1.24983 0.0593814 0.0296907 0.999559i \(-0.490548\pi\)
0.0296907 + 0.999559i \(0.490548\pi\)
\(444\) −2.63932 2.63932i −0.125257 0.125257i
\(445\) −1.42635 + 0.590812i −0.0676153 + 0.0280072i
\(446\) 46.6571i 2.20928i
\(447\) 5.17256 + 12.4877i 0.244654 + 0.590646i
\(448\) −1.93075 0.799742i −0.0912192 0.0377842i
\(449\) −7.88708 + 19.0411i −0.372214 + 0.898605i 0.621160 + 0.783684i \(0.286662\pi\)
−0.993375 + 0.114921i \(0.963338\pi\)
\(450\) 14.1816 14.1816i 0.668527 0.668527i
\(451\) 25.0304 25.0304i 1.17864 1.17864i
\(452\) −2.44683 + 5.90716i −0.115089 + 0.277850i
\(453\) 8.28521 + 3.43185i 0.389273 + 0.161242i
\(454\) −16.1138 38.9022i −0.756258 1.82577i
\(455\) 0.532782i 0.0249772i
\(456\) 3.07043 1.27182i 0.143786 0.0595582i
\(457\) −3.75562 3.75562i −0.175680 0.175680i 0.613789 0.789470i \(-0.289644\pi\)
−0.789470 + 0.613789i \(0.789644\pi\)
\(458\) 15.1615 0.708449
\(459\) 14.6343 + 6.14954i 0.683071 + 0.287036i
\(460\) −1.59760 −0.0744883
\(461\) −7.16371 7.16371i −0.333647 0.333647i 0.520323 0.853970i \(-0.325812\pi\)
−0.853970 + 0.520323i \(0.825812\pi\)
\(462\) −3.38234 + 1.40101i −0.157361 + 0.0651809i
\(463\) 31.3449i 1.45672i −0.685194 0.728360i \(-0.740283\pi\)
0.685194 0.728360i \(-0.259717\pi\)
\(464\) −18.3197 44.2276i −0.850469 2.05321i
\(465\) 1.72803 + 0.715772i 0.0801353 + 0.0331931i
\(466\) 12.1763 29.3962i 0.564056 1.36175i
\(467\) −19.4068 + 19.4068i −0.898037 + 0.898037i −0.995262 0.0972251i \(-0.969003\pi\)
0.0972251 + 0.995262i \(0.469003\pi\)
\(468\) −3.56154 + 3.56154i −0.164632 + 0.164632i
\(469\) −1.87939 + 4.53726i −0.0867823 + 0.209511i
\(470\) 2.49058 + 1.03163i 0.114882 + 0.0475856i
\(471\) 2.23538 + 5.39669i 0.103001 + 0.248666i
\(472\) 27.5013i 1.26585i
\(473\) −5.51981 + 2.28638i −0.253801 + 0.105128i
\(474\) 8.87670 + 8.87670i 0.407721 + 0.407721i
\(475\) −10.6666 −0.489416
\(476\) 0.568814 1.35363i 0.0260715 0.0620436i
\(477\) −14.6041 −0.668675
\(478\) 4.46903 + 4.46903i 0.204409 + 0.204409i
\(479\) −28.5871 + 11.8412i −1.30618 + 0.541037i −0.923767 0.382954i \(-0.874907\pi\)
−0.382413 + 0.923992i \(0.624907\pi\)
\(480\) 0.824603i 0.0376378i
\(481\) 9.34757 + 22.5670i 0.426212 + 1.02897i
\(482\) 18.4177 + 7.62886i 0.838903 + 0.347485i
\(483\) 1.05910 2.55690i 0.0481908 0.116343i
\(484\) −11.5655 + 11.5655i −0.525706 + 0.525706i
\(485\) 1.08068 1.08068i 0.0490712 0.0490712i
\(486\) −9.32595 + 22.5148i −0.423034 + 1.02129i
\(487\) −18.6601 7.72929i −0.845572 0.350247i −0.0825238 0.996589i \(-0.526298\pi\)
−0.763048 + 0.646342i \(0.776298\pi\)
\(488\) −3.36998 8.13585i −0.152552 0.368293i
\(489\) 10.2167i 0.462014i
\(490\) 3.31131 1.37159i 0.149590 0.0619621i
\(491\) 4.00630 + 4.00630i 0.180802 + 0.180802i 0.791705 0.610903i \(-0.209194\pi\)
−0.610903 + 0.791705i \(0.709194\pi\)
\(492\) 2.74075 0.123562
\(493\) −37.4007 + 15.2684i −1.68444 + 0.687656i
\(494\) 10.7680 0.484477
\(495\) −3.47390 3.47390i −0.156140 0.156140i
\(496\) 36.9308 15.2972i 1.65824 0.686867i
\(497\) 4.17427i 0.187242i
\(498\) −2.43149 5.87015i −0.108958 0.263048i
\(499\) −12.6303 5.23164i −0.565410 0.234201i 0.0816219 0.996663i \(-0.473990\pi\)
−0.647032 + 0.762463i \(0.723990\pi\)
\(500\) −0.820720 + 1.98139i −0.0367037 + 0.0886106i
\(501\) 11.5598 11.5598i 0.516453 0.516453i
\(502\) 1.47873 1.47873i 0.0659991 0.0659991i
\(503\) −11.0296 + 26.6278i −0.491786 + 1.18728i 0.462025 + 0.886867i \(0.347123\pi\)
−0.953811 + 0.300409i \(0.902877\pi\)
\(504\) −2.72382 1.12824i −0.121328 0.0502559i
\(505\) −1.15329 2.78428i −0.0513206 0.123899i
\(506\) 71.8408i 3.19371i
\(507\) 2.47522 1.02527i 0.109928 0.0455338i
\(508\) −7.51518 7.51518i −0.333432 0.333432i
\(509\) 4.01945 0.178159 0.0890795 0.996025i \(-0.471607\pi\)
0.0890795 + 0.996025i \(0.471607\pi\)
\(510\) −1.53801 0.00785991i −0.0681042 0.000348043i
\(511\) −3.58808 −0.158727
\(512\) 2.62027 + 2.62027i 0.115801 + 0.115801i
\(513\) 7.75418 3.21189i 0.342355 0.141808i
\(514\) 28.5310i 1.25845i
\(515\) −0.417111 1.00700i −0.0183801 0.0443735i
\(516\) −0.427376 0.177025i −0.0188142 0.00779308i
\(517\) −11.5406 + 27.8615i −0.507555 + 1.22535i
\(518\) 5.00559 5.00559i 0.219933 0.219933i
\(519\) −1.51620 + 1.51620i −0.0665539 + 0.0665539i
\(520\) −0.827650 + 1.99812i −0.0362949 + 0.0876236i
\(521\) 6.79537 + 2.81474i 0.297711 + 0.123316i 0.526539 0.850151i \(-0.323489\pi\)
−0.228828 + 0.973467i \(0.573489\pi\)
\(522\) −15.3690 37.1040i −0.672681 1.62400i
\(523\) 15.8427i 0.692754i 0.938095 + 0.346377i \(0.112588\pi\)
−0.938095 + 0.346377i \(0.887412\pi\)
\(524\) 8.33553 3.45269i 0.364139 0.150831i
\(525\) −1.29931 1.29931i −0.0567065 0.0567065i
\(526\) 25.1449 1.09637
\(527\) −12.7494 31.2303i −0.555373 1.36041i
\(528\) 20.3889 0.887315
\(529\) 22.1384 + 22.1384i 0.962539 + 0.962539i
\(530\) 2.86844 1.18815i 0.124597 0.0516097i
\(531\) 31.6530i 1.37362i
\(532\) −0.297090 0.717239i −0.0128805 0.0310963i
\(533\) −16.5705 6.86374i −0.717749 0.297301i
\(534\) 2.05702 4.96609i 0.0890161 0.214904i
\(535\) −0.895462 + 0.895462i −0.0387142 + 0.0387142i
\(536\) 14.0968 14.0968i 0.608889 0.608889i
\(537\) 4.35783 10.5207i 0.188054 0.454003i
\(538\) 35.8246 + 14.8390i 1.54451 + 0.639756i
\(539\) 15.3436 + 37.0428i 0.660898 + 1.59555i
\(540\) 0.834626i 0.0359166i
\(541\) −34.0066 + 14.0860i −1.46206 + 0.605605i −0.965032 0.262130i \(-0.915575\pi\)
−0.497027 + 0.867735i \(0.665575\pi\)
\(542\) 28.5793 + 28.5793i 1.22759 + 1.22759i
\(543\) 8.25645 0.354318
\(544\) −10.5694 + 10.4619i −0.453160 + 0.448552i
\(545\) 4.22514 0.180985
\(546\) 1.31167 + 1.31167i 0.0561343 + 0.0561343i
\(547\) −19.8639 + 8.22792i −0.849321 + 0.351800i −0.764522 0.644598i \(-0.777025\pi\)
−0.0847992 + 0.996398i \(0.527025\pi\)
\(548\) 4.07546i 0.174095i
\(549\) −3.87873 9.36408i −0.165540 0.399649i
\(550\) −44.0672 18.2532i −1.87903 0.778321i
\(551\) −8.17390 + 19.7335i −0.348220 + 0.840677i
\(552\) −7.94403 + 7.94403i −0.338120 + 0.338120i
\(553\) −4.18808 + 4.18808i −0.178095 + 0.178095i
\(554\) −1.93196 + 4.66417i −0.0820812 + 0.198162i
\(555\) −1.70428 0.705934i −0.0723425 0.0299652i
\(556\) 0.632758 + 1.52761i 0.0268349 + 0.0647852i
\(557\) 8.88046i 0.376277i −0.982142 0.188139i \(-0.939755\pi\)
0.982142 0.188139i \(-0.0602454\pi\)
\(558\) 30.9825 12.8334i 1.31159 0.543279i
\(559\) 2.14058 + 2.14058i 0.0905368 + 0.0905368i
\(560\) 0.859911 0.0363379
\(561\) 0.0879270 17.2053i 0.00371228 0.726410i
\(562\) 27.6183 1.16501
\(563\) 30.9006 + 30.9006i 1.30230 + 1.30230i 0.926835 + 0.375469i \(0.122518\pi\)
0.375469 + 0.926835i \(0.377482\pi\)
\(564\) −2.15720 + 0.893541i −0.0908344 + 0.0376248i
\(565\) 3.15995i 0.132940i
\(566\) 3.35578 + 8.10156i 0.141054 + 0.340534i
\(567\) −2.40801 0.997432i −0.101127 0.0418882i
\(568\) −6.48452 + 15.6550i −0.272084 + 0.656870i
\(569\) 1.67923 1.67923i 0.0703970 0.0703970i −0.671032 0.741429i \(-0.734149\pi\)
0.741429 + 0.671032i \(0.234149\pi\)
\(570\) −0.575026 + 0.575026i −0.0240852 + 0.0240852i
\(571\) −15.1196 + 36.5020i −0.632736 + 1.52756i 0.203434 + 0.979089i \(0.434790\pi\)
−0.836170 + 0.548471i \(0.815210\pi\)
\(572\) 11.0670 + 4.58408i 0.462732 + 0.191670i
\(573\) 1.83482 + 4.42965i 0.0766508 + 0.185051i
\(574\) 5.19795i 0.216958i
\(575\) 33.3129 13.7986i 1.38924 0.575443i
\(576\) 6.90423 + 6.90423i 0.287676 + 0.287676i
\(577\) 0.0418987 0.00174427 0.000872133 1.00000i \(-0.499722\pi\)
0.000872133 1.00000i \(0.499722\pi\)
\(578\) 19.4124 + 19.8133i 0.807448 + 0.824124i
\(579\) −12.3873 −0.514799
\(580\) 1.50192 + 1.50192i 0.0623637 + 0.0623637i
\(581\) 2.76957 1.14719i 0.114901 0.0475936i
\(582\) 5.32112i 0.220567i
\(583\) 13.2915 + 32.0885i 0.550478 + 1.32897i
\(584\) 13.4566 + 5.57390i 0.556838 + 0.230650i
\(585\) −0.952597 + 2.29977i −0.0393850 + 0.0950839i
\(586\) 5.83882 5.83882i 0.241199 0.241199i
\(587\) 27.2656 27.2656i 1.12537 1.12537i 0.134453 0.990920i \(-0.457072\pi\)
0.990920 0.134453i \(-0.0429278\pi\)
\(588\) −1.18799 + 2.86807i −0.0489921 + 0.118277i
\(589\) −16.4779 6.82536i −0.678959 0.281234i
\(590\) −2.57520 6.21707i −0.106019 0.255953i
\(591\) 1.96573i 0.0808593i
\(592\) −36.4232 + 15.0870i −1.49699 + 0.620072i
\(593\) −20.5224 20.5224i −0.842753 0.842753i 0.146463 0.989216i \(-0.453211\pi\)
−0.989216 + 0.146463i \(0.953211\pi\)
\(594\) 37.5315 1.53994
\(595\) 0.00370835 0.725642i 0.000152028 0.0297484i
\(596\) −12.8170 −0.525006
\(597\) 9.36929 + 9.36929i 0.383460 + 0.383460i
\(598\) −33.6298 + 13.9299i −1.37522 + 0.569636i
\(599\) 6.72419i 0.274743i 0.990520 + 0.137372i \(0.0438654\pi\)
−0.990520 + 0.137372i \(0.956135\pi\)
\(600\) 2.85446 + 6.89129i 0.116533 + 0.281336i
\(601\) 40.1868 + 16.6459i 1.63925 + 0.679002i 0.996222 0.0868376i \(-0.0276761\pi\)
0.643032 + 0.765839i \(0.277676\pi\)
\(602\) 0.335735 0.810537i 0.0136835 0.0330350i
\(603\) 16.2249 16.2249i 0.660730 0.660730i
\(604\) −6.01305 + 6.01305i −0.244668 + 0.244668i
\(605\) −3.09341 + 7.46816i −0.125765 + 0.303624i
\(606\) 9.69400 + 4.01539i 0.393792 + 0.163114i
\(607\) −0.513115 1.23877i −0.0208267 0.0502800i 0.913124 0.407682i \(-0.133663\pi\)
−0.933951 + 0.357402i \(0.883663\pi\)
\(608\) 7.86313i 0.318892i
\(609\) −3.39944 + 1.40809i −0.137752 + 0.0570589i
\(610\) 1.52367 + 1.52367i 0.0616916 + 0.0616916i
\(611\) 15.2801 0.618167
\(612\) −4.87555 + 4.82597i −0.197083 + 0.195078i
\(613\) −8.39331 −0.339003 −0.169501 0.985530i \(-0.554216\pi\)
−0.169501 + 0.985530i \(0.554216\pi\)
\(614\) 9.17663 + 9.17663i 0.370339 + 0.370339i
\(615\) 1.25142 0.518353i 0.0504620 0.0209020i
\(616\) 7.01169i 0.282509i
\(617\) 2.61672 + 6.31733i 0.105345 + 0.254326i 0.967759 0.251878i \(-0.0810482\pi\)
−0.862414 + 0.506204i \(0.831048\pi\)
\(618\) 3.50605 + 1.45225i 0.141034 + 0.0584181i
\(619\) 11.9922 28.9517i 0.482007 1.16367i −0.476648 0.879094i \(-0.658148\pi\)
0.958654 0.284573i \(-0.0918518\pi\)
\(620\) −1.25413 + 1.25413i −0.0503670 + 0.0503670i
\(621\) −20.0621 + 20.0621i −0.805066 + 0.805066i
\(622\) −7.18360 + 17.3427i −0.288036 + 0.695381i
\(623\) 2.34303 + 0.970515i 0.0938716 + 0.0388829i
\(624\) −3.95341 9.54438i −0.158263 0.382081i
\(625\) 23.4044i 0.936175i
\(626\) −23.8673 + 9.88617i −0.953930 + 0.395131i
\(627\) −6.43268 6.43268i −0.256896 0.256896i
\(628\) −5.53903 −0.221031
\(629\) 12.5742 + 30.8010i 0.501366 + 1.22812i
\(630\) 0.721408 0.0287416
\(631\) −9.01190 9.01190i −0.358758 0.358758i 0.504597 0.863355i \(-0.331641\pi\)
−0.863355 + 0.504597i \(0.831641\pi\)
\(632\) 22.2128 9.20084i 0.883577 0.365990i
\(633\) 4.64151i 0.184484i
\(634\) 8.53785 + 20.6122i 0.339082 + 0.818615i
\(635\) −4.85274 2.01007i −0.192575 0.0797672i
\(636\) −1.02911 + 2.48448i −0.0408067 + 0.0985160i
\(637\) 14.3652 14.3652i 0.569170 0.569170i
\(638\) −67.5383 + 67.5383i −2.67387 + 2.67387i
\(639\) −7.46346 + 18.0184i −0.295250 + 0.712796i
\(640\) −4.09928 1.69798i −0.162038 0.0671185i
\(641\) −8.63996 20.8587i −0.341258 0.823870i −0.997589 0.0693968i \(-0.977893\pi\)
0.656331 0.754473i \(-0.272107\pi\)
\(642\) 4.40912i 0.174014i
\(643\) −36.4120 + 15.0823i −1.43595 + 0.594789i −0.958812 0.284040i \(-0.908325\pi\)
−0.477136 + 0.878829i \(0.658325\pi\)
\(644\) 1.85569 + 1.85569i 0.0731244 + 0.0731244i
\(645\) −0.228619 −0.00900184
\(646\) 14.6659 + 0.0749495i 0.577024 + 0.00294885i
\(647\) 14.1537 0.556441 0.278221 0.960517i \(-0.410255\pi\)
0.278221 + 0.960517i \(0.410255\pi\)
\(648\) 7.48146 + 7.48146i 0.293900 + 0.293900i
\(649\) 69.5489 28.8081i 2.73003 1.13082i
\(650\) 24.1678i 0.947941i
\(651\) −1.17578 2.83860i −0.0460826 0.111253i
\(652\) −8.95049 3.70741i −0.350528 0.145193i
\(653\) 0.166231 0.401317i 0.00650512 0.0157047i −0.920594 0.390522i \(-0.872295\pi\)
0.927099 + 0.374817i \(0.122295\pi\)
\(654\) −10.4020 + 10.4020i −0.406750 + 0.406750i
\(655\) 3.15297 3.15297i 0.123197 0.123197i
\(656\) 11.0781 26.7449i 0.432527 1.04421i
\(657\) 15.4881 + 6.41537i 0.604247 + 0.250287i
\(658\) −1.69464 4.09122i −0.0660639 0.159492i
\(659\) 26.0136i 1.01335i −0.862139 0.506673i \(-0.830875\pi\)
0.862139 0.506673i \(-0.169125\pi\)
\(660\) −0.835783 + 0.346192i −0.0325328 + 0.0134755i
\(661\) −3.82032 3.82032i −0.148593 0.148593i 0.628896 0.777489i \(-0.283507\pi\)
−0.777489 + 0.628896i \(0.783507\pi\)
\(662\) −47.1180 −1.83129
\(663\) −8.07114 + 3.29495i −0.313457 + 0.127965i
\(664\) −12.1690 −0.472248
\(665\) −0.271301 0.271301i −0.0105206 0.0105206i
\(666\) −30.5566 + 12.6570i −1.18405 + 0.490448i
\(667\) 72.2040i 2.79575i
\(668\) 5.93234 + 14.3219i 0.229529 + 0.554132i
\(669\) −18.4519 7.64302i −0.713391 0.295496i
\(670\) −1.86678 + 4.50681i −0.0721200 + 0.174113i
\(671\) −17.0449 + 17.0449i −0.658012 + 0.658012i
\(672\) −0.957819 + 0.957819i −0.0369487 + 0.0369487i
\(673\) −9.83632 + 23.7470i −0.379162 + 0.915379i 0.612961 + 0.790113i \(0.289978\pi\)
−0.992123 + 0.125266i \(0.960022\pi\)
\(674\) 18.5385 + 7.67888i 0.714075 + 0.295779i
\(675\) 7.20877 + 17.4035i 0.277466 + 0.669861i
\(676\) 2.54050i 0.0977117i
\(677\) 2.59087 1.07317i 0.0995750 0.0412453i −0.332340 0.943160i \(-0.607838\pi\)
0.431915 + 0.901914i \(0.357838\pi\)
\(678\) −7.77957 7.77957i −0.298773 0.298773i
\(679\) −2.51053 −0.0963454
\(680\) −1.14116 + 2.71566i −0.0437613 + 0.104141i
\(681\) 18.0246 0.690704
\(682\) −56.3957 56.3957i −2.15950 2.15950i
\(683\) 4.03853 1.67281i 0.154530 0.0640084i −0.304078 0.952647i \(-0.598348\pi\)
0.458608 + 0.888639i \(0.348348\pi\)
\(684\) 3.62717i 0.138688i
\(685\) 0.770784 + 1.86084i 0.0294502 + 0.0710990i
\(686\) −11.1132 4.60323i −0.424303 0.175752i
\(687\) −2.48364 + 5.99603i −0.0947567 + 0.228763i
\(688\) −3.45490 + 3.45490i −0.131717 + 0.131717i
\(689\) 12.4439 12.4439i 0.474075 0.474075i
\(690\) 1.05199 2.53974i 0.0400488 0.0966863i
\(691\) −24.4631 10.1329i −0.930620 0.385475i −0.134706 0.990886i \(-0.543009\pi\)
−0.795913 + 0.605410i \(0.793009\pi\)
\(692\) −0.778097 1.87849i −0.0295788 0.0714096i
\(693\) 8.07022i 0.306562i
\(694\) 9.19304 3.80788i 0.348963 0.144545i
\(695\) 0.577830 + 0.577830i 0.0219183 + 0.0219183i
\(696\) 14.9365 0.566168
\(697\) −22.5211 9.46365i −0.853046 0.358461i
\(698\) −0.136641 −0.00517194
\(699\) 9.63092 + 9.63092i 0.364275 + 0.364275i
\(700\) 1.60977 0.666790i 0.0608437 0.0252023i
\(701\) 21.9116i 0.827589i 0.910370 + 0.413795i \(0.135797\pi\)
−0.910370 + 0.413795i \(0.864203\pi\)
\(702\) −7.27735 17.5691i −0.274666 0.663102i
\(703\) 16.2514 + 6.73155i 0.612933 + 0.253885i
\(704\) 8.88648 21.4539i 0.334922 0.808573i
\(705\) −0.815975 + 0.815975i −0.0307314 + 0.0307314i
\(706\) 9.70789 9.70789i 0.365361 0.365361i
\(707\) −1.89448 + 4.57368i −0.0712493 + 0.172011i
\(708\) 5.38488 + 2.23049i 0.202376 + 0.0838270i
\(709\) 8.78340 + 21.2050i 0.329867 + 0.796370i 0.998601 + 0.0528687i \(0.0168365\pi\)
−0.668734 + 0.743502i \(0.733164\pi\)
\(710\) 4.14626i 0.155606i
\(711\) 25.5661 10.5898i 0.958805 0.397150i
\(712\) −7.27956 7.27956i −0.272813 0.272813i
\(713\) 60.2916 2.25794
\(714\) 1.77735 + 1.79561i 0.0665155 + 0.0671989i
\(715\) 5.92011 0.221400
\(716\) 7.63550 + 7.63550i 0.285352 + 0.285352i
\(717\) −2.49949 + 1.03532i −0.0933451 + 0.0386648i
\(718\) 33.7217i 1.25848i
\(719\) 3.77644 + 9.11714i 0.140838 + 0.340012i 0.978522 0.206143i \(-0.0660911\pi\)
−0.837684 + 0.546155i \(0.816091\pi\)
\(720\) −3.71184 1.53749i −0.138332 0.0572990i
\(721\) −0.685181 + 1.65417i −0.0255175 + 0.0616046i
\(722\) −16.4381 + 16.4381i −0.611763 + 0.611763i
\(723\) −6.03410 + 6.03410i −0.224411 + 0.224411i
\(724\) −2.99609 + 7.23320i −0.111349 + 0.268820i
\(725\) −44.2900 18.3455i −1.64489 0.681336i
\(726\) −10.7703 26.0018i −0.399723 0.965017i
\(727\) 15.9121i 0.590148i −0.955474 0.295074i \(-0.904656\pi\)
0.955474 0.295074i \(-0.0953443\pi\)
\(728\) 3.28228 1.35957i 0.121649 0.0503888i
\(729\) 2.90662 + 2.90662i 0.107653 + 0.107653i
\(730\) −3.56400 −0.131910
\(731\) 2.90054 + 2.93034i 0.107280 + 0.108382i
\(732\) −1.86636 −0.0689827
\(733\) −14.2549 14.2549i −0.526516 0.526516i 0.393016 0.919532i \(-0.371432\pi\)
−0.919532 + 0.393016i \(0.871432\pi\)
\(734\) 31.1668 12.9097i 1.15039 0.476506i
\(735\) 1.53423i 0.0565911i
\(736\) −10.1720 24.5574i −0.374945 0.905198i
\(737\) −50.4166 20.8832i −1.85712 0.769244i
\(738\) 9.29377 22.4371i 0.342108 0.825922i
\(739\) −7.81517 + 7.81517i −0.287486 + 0.287486i −0.836085 0.548600i \(-0.815161\pi\)
0.548600 + 0.836085i \(0.315161\pi\)
\(740\) 1.23689 1.23689i 0.0454690 0.0454690i
\(741\) −1.76394 + 4.25853i −0.0648000 + 0.156441i
\(742\) −4.71193 1.95174i −0.172980 0.0716508i
\(743\) −13.1572 31.7643i −0.482691 1.16532i −0.958326 0.285676i \(-0.907782\pi\)
0.475635 0.879643i \(-0.342218\pi\)
\(744\) 12.4723i 0.457256i
\(745\) −5.85221 + 2.42406i −0.214408 + 0.0888109i
\(746\) 7.02124 + 7.02124i 0.257066 + 0.257066i
\(747\) −14.0061 −0.512456
\(748\) 15.0411 + 6.32049i 0.549958 + 0.231100i
\(749\) 2.08025 0.0760107
\(750\) −2.60944 2.60944i −0.0952832 0.0952832i
\(751\) 0.854618 0.353994i 0.0311854 0.0129174i −0.367036 0.930207i \(-0.619627\pi\)
0.398222 + 0.917289i \(0.369627\pi\)
\(752\) 24.6621i 0.899335i
\(753\) 0.342572 + 0.827042i 0.0124840 + 0.0301391i
\(754\) 44.7114 + 18.5201i 1.62829 + 0.674461i
\(755\) −1.60830 + 3.88278i −0.0585320 + 0.141309i
\(756\) −0.969460 + 0.969460i −0.0352589 + 0.0352589i
\(757\) −6.72666 + 6.72666i −0.244485 + 0.244485i −0.818703 0.574218i \(-0.805306\pi\)
0.574218 + 0.818703i \(0.305306\pi\)
\(758\) 8.12515 19.6158i 0.295119 0.712479i
\(759\) 28.4115 + 11.7684i 1.03127 + 0.427166i
\(760\) 0.596023 + 1.43893i 0.0216200 + 0.0521953i
\(761\) 27.4658i 0.995633i 0.867282 + 0.497816i \(0.165865\pi\)
−0.867282 + 0.497816i \(0.834135\pi\)
\(762\) 16.8957 6.99844i 0.612068 0.253527i
\(763\) −4.90772 4.90772i −0.177671 0.177671i
\(764\) −4.54649 −0.164486
\(765\) −1.31343 + 3.12563i −0.0474872 + 0.113007i
\(766\) 13.9043 0.502383
\(767\) −26.9710 26.9710i −0.973868 0.973868i
\(768\) 9.25637 3.83411i 0.334010 0.138352i
\(769\) 45.9487i 1.65695i 0.560025 + 0.828476i \(0.310792\pi\)
−0.560025 + 0.828476i \(0.689208\pi\)
\(770\) −0.656569 1.58510i −0.0236611 0.0571230i
\(771\) −11.2834 4.67374i −0.406362 0.168320i
\(772\) 4.49509 10.8521i 0.161782 0.390576i
\(773\) −24.9327 + 24.9327i −0.896767 + 0.896767i −0.995149 0.0983814i \(-0.968633\pi\)
0.0983814 + 0.995149i \(0.468633\pi\)
\(774\) −2.89843 + 2.89843i −0.104182 + 0.104182i
\(775\) 15.3188 36.9830i 0.550269 1.32847i
\(776\) 9.41541 + 3.89999i 0.337993 + 0.140001i
\(777\) 1.15962 + 2.79958i 0.0416013 + 0.100434i
\(778\) 7.97715i 0.285995i
\(779\) −11.9331 + 4.94284i −0.427547 + 0.177096i
\(780\) 0.324116 + 0.324116i 0.0116052 + 0.0116052i
\(781\) 46.3832 1.65972
\(782\) −45.9002 + 18.7383i −1.64139 + 0.670079i
\(783\) 37.7213 1.34805
\(784\) 23.1854 + 23.1854i 0.828052 + 0.828052i
\(785\) −2.52910 + 1.04759i −0.0902675 + 0.0373900i
\(786\) 15.5248i 0.553750i
\(787\) −6.29764 15.2038i −0.224486 0.541958i 0.771003 0.636832i \(-0.219755\pi\)
−0.995489 + 0.0948734i \(0.969755\pi\)
\(788\) −1.72211 0.713322i −0.0613477 0.0254110i
\(789\) −4.11905 + 9.94426i −0.146642 + 0.354025i
\(790\) −4.15997 + 4.15997i −0.148005 + 0.148005i
\(791\) 3.67045 3.67045i 0.130506 0.130506i
\(792\) 12.5367 30.2662i 0.445471 1.07546i
\(793\) 11.2840 + 4.67399i 0.400707 + 0.165978i
\(794\) 1.38393 + 3.34110i 0.0491138 + 0.118571i
\(795\) 1.32904i 0.0471361i
\(796\) −11.6080 + 4.80821i −0.411436 + 0.170422i
\(797\) −23.9248 23.9248i −0.847460 0.847460i 0.142356 0.989816i \(-0.454532\pi\)
−0.989816 + 0.142356i \(0.954532\pi\)
\(798\) 1.33584 0.0472884
\(799\) 20.8113 + 0.106355i 0.736251 + 0.00376257i
\(800\) −17.6480 −0.623952
\(801\) −8.37852 8.37852i −0.296041 0.296041i
\(802\) 43.6244 18.0698i 1.54043 0.638068i
\(803\) 39.8696i 1.40697i
\(804\) −1.61690 3.90355i −0.0570237 0.137667i
\(805\) 1.19826 + 0.496337i 0.0422333 + 0.0174936i
\(806\) −15.4646 + 37.3348i −0.544717 + 1.31506i
\(807\) −11.7370 + 11.7370i −0.413163 + 0.413163i
\(808\) 14.2100 14.2100i 0.499905 0.499905i
\(809\) 1.55583 3.75610i 0.0546999 0.132057i −0.894167 0.447733i \(-0.852231\pi\)
0.948867 + 0.315676i \(0.102231\pi\)
\(810\) −2.39185 0.990739i −0.0840412 0.0348110i
\(811\) −6.60680 15.9502i −0.231996 0.560088i 0.764416 0.644724i \(-0.223027\pi\)
−0.996412 + 0.0846353i \(0.973027\pi\)
\(812\) 3.48911i 0.122444i
\(813\) −15.9841 + 6.62085i −0.560588 + 0.232203i
\(814\) 55.6206 + 55.6206i 1.94950 + 1.94950i
\(815\) −4.78794 −0.167714
\(816\) −5.31806 13.0268i −0.186169 0.456030i
\(817\) 2.18003 0.0762695
\(818\) −42.7800 42.7800i −1.49577 1.49577i
\(819\) 3.77779 1.56481i 0.132007 0.0546790i
\(820\) 1.28442i 0.0448540i
\(821\) −8.33365 20.1192i −0.290846 0.702165i 0.709149 0.705058i \(-0.249079\pi\)
−0.999996 + 0.00289282i \(0.999079\pi\)
\(822\) −6.47886 2.68363i −0.225976 0.0936024i
\(823\) 6.21370 15.0012i 0.216596 0.522909i −0.777814 0.628494i \(-0.783672\pi\)
0.994410 + 0.105585i \(0.0336716\pi\)
\(824\) 5.13935 5.13935i 0.179038 0.179038i
\(825\) 14.4375 14.4375i 0.502650 0.502650i
\(826\) −4.23023 + 10.2127i −0.147188 + 0.355344i
\(827\) −23.7788 9.84950i −0.826870 0.342501i −0.0712071 0.997462i \(-0.522685\pi\)
−0.755663 + 0.654961i \(0.772685\pi\)
\(828\) −4.69223 11.3281i −0.163066 0.393677i
\(829\) 44.2855i 1.53810i −0.639189 0.769050i \(-0.720730\pi\)
0.639189 0.769050i \(-0.279270\pi\)
\(830\) 2.75098 1.13949i 0.0954880 0.0395524i
\(831\) −1.52810 1.52810i −0.0530091 0.0530091i
\(832\) −11.7660 −0.407912
\(833\) 19.6652 19.4652i 0.681358 0.674429i
\(834\) −2.84515 −0.0985194
\(835\) 5.41737 + 5.41737i 0.187476 + 0.187476i
\(836\) 7.96974 3.30117i 0.275639 0.114173i
\(837\) 31.4979i 1.08873i
\(838\) 14.2480 + 34.3977i 0.492188 + 1.18825i
\(839\) −0.407300 0.168709i −0.0140616 0.00582449i 0.375642 0.926765i \(-0.377422\pi\)
−0.389703 + 0.920941i \(0.627422\pi\)
\(840\) −0.102675 + 0.247880i −0.00354263 + 0.00855266i
\(841\) −47.3737 + 47.3737i −1.63357 + 1.63357i
\(842\) 13.0161 13.0161i 0.448565 0.448565i
\(843\) −4.52422 + 10.9224i −0.155823 + 0.376189i
\(844\) −4.06628 1.68431i −0.139967 0.0579762i
\(845\) 0.480482 + 1.15999i 0.0165291 + 0.0399047i
\(846\) 20.6899i 0.711332i
\(847\) 12.2678 5.08149i 0.421527 0.174602i
\(848\) 20.0845 + 20.0845i 0.689704 + 0.689704i
\(849\) −3.75371 −0.128827
\(850\) −0.168217 + 32.9163i −0.00576979 + 1.12902i
\(851\) −59.4630 −2.03836
\(852\) 2.53940 + 2.53940i 0.0869985 + 0.0869985i
\(853\) 27.8503 11.5360i 0.953575 0.394984i 0.149001 0.988837i \(-0.452394\pi\)
0.804573 + 0.593853i \(0.202394\pi\)
\(854\) 3.53964i 0.121124i
\(855\) 0.686002 + 1.65615i 0.0234608 + 0.0566393i
\(856\) −7.80168 3.23156i −0.266656 0.110453i
\(857\) −4.93842 + 11.9224i −0.168693 + 0.407261i −0.985506 0.169642i \(-0.945739\pi\)
0.816813 + 0.576903i \(0.195739\pi\)
\(858\) −14.5749 + 14.5749i −0.497578 + 0.497578i
\(859\) −18.8093 + 18.8093i −0.641765 + 0.641765i −0.950989 0.309224i \(-0.899931\pi\)
0.309224 + 0.950989i \(0.399931\pi\)
\(860\) 0.0829608 0.200285i 0.00282894 0.00682966i
\(861\) −2.05568 0.851489i −0.0700573 0.0290187i
\(862\) −20.6900 49.9502i −0.704705 1.70131i
\(863\) 19.4174i 0.660977i 0.943810 + 0.330488i \(0.107213\pi\)
−0.943810 + 0.330488i \(0.892787\pi\)
\(864\) 12.8294 5.31412i 0.436466 0.180790i
\(865\) −0.710552 0.710552i −0.0241595 0.0241595i
\(866\) −58.8676 −2.00040
\(867\) −11.0157 + 4.43150i −0.374113 + 0.150502i
\(868\) 2.91347 0.0988895
\(869\) −46.5366 46.5366i −1.57865 1.57865i
\(870\) −3.37663 + 1.39865i −0.114478 + 0.0474185i
\(871\) 27.6500i 0.936886i
\(872\) 10.7818 + 26.0296i 0.365118 + 0.881474i
\(873\) 10.8368 + 4.48875i 0.366770 + 0.151921i
\(874\) −10.0315 + 24.2181i −0.339319 + 0.819189i
\(875\) 1.23115 1.23115i 0.0416204 0.0416204i
\(876\) 2.18279 2.18279i 0.0737498 0.0737498i
\(877\) −4.78972 + 11.5634i −0.161737 + 0.390468i −0.983884 0.178807i \(-0.942776\pi\)
0.822147 + 0.569275i \(0.192776\pi\)
\(878\) −56.0553 23.2189i −1.89177 0.783598i
\(879\) 1.35265 + 3.26560i 0.0456239 + 0.110146i
\(880\) 9.55507i 0.322101i
\(881\) 42.2426 17.4975i 1.42319 0.589504i 0.467529 0.883977i \(-0.345144\pi\)
0.955660 + 0.294473i \(0.0951442\pi\)
\(882\) 19.4510 + 19.4510i 0.654950 + 0.654950i
\(883\) 1.13705 0.0382648 0.0191324 0.999817i \(-0.493910\pi\)
0.0191324 + 0.999817i \(0.493910\pi\)
\(884\) 0.0422456 8.26652i 0.00142087 0.278033i
\(885\) 2.88057 0.0968292
\(886\) −1.44200 1.44200i −0.0484451 0.0484451i
\(887\) −42.9733 + 17.8001i −1.44290 + 0.597670i −0.960500 0.278280i \(-0.910236\pi\)
−0.482402 + 0.875950i \(0.660236\pi\)
\(888\) 12.3009i 0.412790i
\(889\) 3.30190 + 7.97150i 0.110742 + 0.267356i
\(890\) 2.32731 + 0.964002i 0.0780115 + 0.0323134i
\(891\) 11.0832 26.7571i 0.371300 0.896397i
\(892\) 13.3916 13.3916i 0.448384 0.448384i
\(893\) 7.78086 7.78086i 0.260376 0.260376i
\(894\) 8.43984 20.3756i 0.282270 0.681461i
\(895\) 4.93043 + 2.04225i 0.164806 + 0.0682650i
\(896\) 2.78924 + 6.73382i 0.0931819 + 0.224961i
\(897\) 15.5817i 0.520259i
\(898\) 31.0685 12.8690i 1.03677 0.429444i
\(899\) −56.6808 56.6808i −1.89041 1.89041i
\(900\) −8.14084 −0.271361
\(901\) 17.0350 16.8618i 0.567520 0.561749i
\(902\) −57.7580 −1.92313
\(903\) 0.265552 + 0.265552i 0.00883702 + 0.00883702i
\(904\) −19.4673 + 8.06364i −0.647474 + 0.268193i
\(905\) 3.86930i 0.128620i
\(906\) −5.59960 13.5186i −0.186034 0.449126i
\(907\) 37.6298 + 15.5868i 1.24948 + 0.517550i 0.906664 0.421854i \(-0.138621\pi\)
0.342812 + 0.939404i \(0.388621\pi\)
\(908\) −6.54074 + 15.7908i −0.217062 + 0.524035i
\(909\) 16.3552 16.3552i 0.542468 0.542468i
\(910\) −0.614700 + 0.614700i −0.0203771 + 0.0203771i
\(911\) 2.37983 5.74541i 0.0788471 0.190354i −0.879540 0.475824i \(-0.842150\pi\)
0.958388 + 0.285470i \(0.0921498\pi\)
\(912\) −6.87328 2.84700i −0.227597 0.0942737i
\(913\) 12.7473 + 30.7746i 0.421873 + 1.01849i
\(914\) 8.66613i 0.286650i
\(915\) −0.852174 + 0.352982i −0.0281720 + 0.0116692i
\(916\) −4.35166 4.35166i −0.143783 0.143783i
\(917\) −7.32467 −0.241882
\(918\) −9.78936 23.9795i −0.323097 0.791441i
\(919\) −2.13630 −0.0704700 −0.0352350 0.999379i \(-0.511218\pi\)
−0.0352350 + 0.999379i \(0.511218\pi\)
\(920\) −3.72289 3.72289i −0.122740 0.122740i
\(921\) −5.13241 + 2.12591i −0.169119 + 0.0700512i
\(922\) 16.5303i 0.544398i
\(923\) −8.99369 21.7127i −0.296031 0.714682i
\(924\) 1.37292 + 0.568684i 0.0451659 + 0.0187083i
\(925\) −15.1083 + 36.4747i −0.496758 + 1.19928i
\(926\) −36.1643 + 36.1643i −1.18843 + 1.18843i
\(927\) 5.91521 5.91521i 0.194281 0.194281i
\(928\) −13.5239 + 32.6495i −0.443943 + 1.07177i
\(929\) 53.4843 + 22.1539i 1.75476 + 0.726847i 0.997257 + 0.0740207i \(0.0235831\pi\)
0.757508 + 0.652826i \(0.226417\pi\)
\(930\) −1.16789 2.81955i −0.0382968 0.0924565i
\(931\) 14.6299i 0.479477i
\(932\) −11.9322 + 4.94247i −0.390852 + 0.161896i
\(933\) −5.68192 5.68192i −0.186018 0.186018i
\(934\) 44.7813 1.46529
\(935\) 8.06311 + 0.0412061i 0.263692 + 0.00134758i
\(936\) −16.5989 −0.542553
\(937\) 4.31034 + 4.31034i 0.140813 + 0.140813i 0.773999 0.633187i \(-0.218253\pi\)
−0.633187 + 0.773999i \(0.718253\pi\)
\(938\) 7.40325 3.06653i 0.241725 0.100126i
\(939\) 11.0585i 0.360880i
\(940\) −0.418748 1.01095i −0.0136581 0.0329735i
\(941\) 25.9806 + 10.7615i 0.846942 + 0.350815i 0.763587 0.645705i \(-0.223436\pi\)
0.0833554 + 0.996520i \(0.473436\pi\)
\(942\) 3.64738 8.80554i 0.118838 0.286900i
\(943\) 30.8740 30.8740i 1.00540 1.00540i
\(944\) 43.5313 43.5313i 1.41682 1.41682i
\(945\) −0.259299 + 0.626004i −0.00843501 + 0.0203639i
\(946\) 9.00643 + 3.73059i 0.292824 + 0.121292i
\(947\) 3.55105 + 8.57299i 0.115394 + 0.278585i 0.971015 0.239017i \(-0.0768250\pi\)
−0.855622 + 0.517601i \(0.826825\pi\)
\(948\) 5.09561i 0.165498i
\(949\) −18.6636 + 7.73071i −0.605845 + 0.250949i
\(950\) 12.3066 + 12.3066i 0.399280 + 0.399280i
\(951\) −9.55029 −0.309689
\(952\) 4.47988 1.82886i 0.145194 0.0592738i
\(953\) 28.4495 0.921570 0.460785 0.887512i \(-0.347568\pi\)
0.460785 + 0.887512i \(0.347568\pi\)
\(954\) 16.8495 + 16.8495i 0.545524 + 0.545524i
\(955\) −2.07591 + 0.859870i −0.0671749 + 0.0278247i
\(956\) 2.56542i 0.0829715i
\(957\) −15.6463 37.7735i −0.505774 1.22105i
\(958\) 46.6444 + 19.3207i 1.50701 + 0.624225i
\(959\) 1.26615 3.05676i 0.0408862 0.0987081i
\(960\) 0.628316 0.628316i 0.0202788 0.0202788i
\(961\) 25.4092 25.4092i 0.819652 0.819652i
\(962\) 15.2520 36.8217i 0.491745 1.18718i
\(963\) −8.97947 3.71942i −0.289359 0.119857i
\(964\) −3.09663 7.47592i −0.0997356 0.240783i
\(965\) 5.80519i 0.186876i
\(966\) −4.17198 + 1.72809i −0.134231 + 0.0556004i
\(967\) −8.60132 8.60132i −0.276600 0.276600i 0.555150 0.831750i \(-0.312661\pi\)
−0.831750 + 0.555150i \(0.812661\pi\)
\(968\) −53.9025 −1.73249
\(969\) −2.43210 + 5.78778i −0.0781304 + 0.185930i
\(970\) −2.49369 −0.0800674
\(971\) 18.0139 + 18.0139i 0.578094 + 0.578094i 0.934378 0.356284i \(-0.115956\pi\)
−0.356284 + 0.934378i \(0.615956\pi\)
\(972\) 9.13898 3.78549i 0.293133 0.121420i
\(973\) 1.34236i 0.0430340i
\(974\) 12.6115 + 30.4470i 0.404100 + 0.975584i
\(975\) −9.55785 3.95899i −0.306096 0.126789i
\(976\) −7.54382 + 18.2124i −0.241472 + 0.582965i
\(977\) −30.4274 + 30.4274i −0.973459 + 0.973459i −0.999657 0.0261978i \(-0.991660\pi\)
0.0261978 + 0.999657i \(0.491660\pi\)
\(978\) 11.7875 11.7875i 0.376924 0.376924i
\(979\) −10.7841 + 26.0350i −0.344660 + 0.832083i
\(980\) −1.34409 0.556741i −0.0429354 0.0177844i
\(981\) 12.4095 + 29.9592i 0.396205 + 0.956523i
\(982\) 9.24457i 0.295006i
\(983\) −18.4974 + 7.66189i −0.589976 + 0.244376i −0.657641 0.753332i \(-0.728445\pi\)
0.0676640 + 0.997708i \(0.478445\pi\)
\(984\) 6.38678 + 6.38678i 0.203603 + 0.203603i
\(985\) −0.921219 −0.0293525
\(986\) 60.7674 + 25.5353i 1.93523 + 0.813209i
\(987\) 1.89559 0.0603374
\(988\) −3.09066 3.09066i −0.0983270 0.0983270i
\(989\) −6.80846 + 2.82016i −0.216496 + 0.0896758i
\(990\) 8.01606i 0.254767i
\(991\) −10.6713 25.7628i −0.338985 0.818383i −0.997814 0.0660895i \(-0.978948\pi\)
0.658828 0.752293i \(-0.271052\pi\)
\(992\) −27.2629 11.2927i −0.865599 0.358543i
\(993\) 7.71851 18.6341i 0.244939 0.591336i
\(994\) −4.81609 + 4.81609i −0.152757 + 0.152757i
\(995\) −4.39082 + 4.39082i −0.139198 + 0.139198i
\(996\) −0.986967 + 2.38275i −0.0312732 + 0.0755003i
\(997\) 52.1843 + 21.6155i 1.65269 + 0.684568i 0.997485 0.0708790i \(-0.0225804\pi\)
0.655209 + 0.755447i \(0.272580\pi\)
\(998\) 8.53625 + 20.6083i 0.270210 + 0.652345i
\(999\) 31.0650i 0.982853i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 731.2.m.c.87.6 128
17.9 even 8 inner 731.2.m.c.689.6 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
731.2.m.c.87.6 128 1.1 even 1 trivial
731.2.m.c.689.6 yes 128 17.9 even 8 inner