Properties

Label 731.2.j
Level 731
Weight 2
Character orbit j
Rep. character \(\chi_{731}(135,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 128
Newforms 1
Sturm bound 132
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 731 \)
Character field: \(\Q(\zeta_{6})\)
Newforms: \( 1 \)
Sturm bound: \(132\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(731, [\chi])\).

Total New Old
Modular forms 136 136 0
Cusp forms 128 128 0
Eisenstein series 8 8 0

Trace form

\( 128q - 4q^{2} + 116q^{4} - 12q^{8} + 70q^{9} + O(q^{10}) \) \( 128q - 4q^{2} + 116q^{4} - 12q^{8} + 70q^{9} + 4q^{13} - 12q^{15} + 76q^{16} + 2q^{17} - 16q^{18} - 2q^{19} - 20q^{21} + 60q^{25} - 2q^{26} - 28q^{30} - 48q^{32} + 22q^{33} - 18q^{34} - 112q^{35} + 36q^{36} - 40q^{38} + 36q^{42} + 10q^{43} + 36q^{47} + 52q^{49} + 16q^{50} + 10q^{51} + 10q^{52} + 24q^{55} - 12q^{59} - 78q^{60} + 36q^{64} + 14q^{66} + 10q^{67} - q^{68} - 64q^{70} - 68q^{72} - 22q^{76} - 28q^{77} - 20q^{81} - 6q^{83} + 32q^{84} + 6q^{85} - 58q^{86} + 32q^{87} + 36q^{89} + 6q^{93} + 132q^{94} - 48q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(731, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
731.2.j.a \(128\) \(5.837\) None \(-4\) \(0\) \(0\) \(0\)