Properties

Label 731.2.e.a.307.4
Level 731
Weight 2
Character 731.307
Analytic conductor 5.837
Analytic rank 0
Dimension 58
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 731 = 17 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 731.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.83706438776\)
Analytic rank: \(0\)
Dimension: \(58\)
Relative dimension: \(29\) over \(\Q(\zeta_{3})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 307.4
Character \(\chi\) = 731.307
Dual form 731.2.e.a.681.4

$q$-expansion

\(f(q)\) \(=\) \(q-2.13710 q^{2} +(1.01873 - 1.76449i) q^{3} +2.56719 q^{4} +(-1.08625 + 1.88145i) q^{5} +(-2.17712 + 3.77089i) q^{6} +(0.371017 + 0.642620i) q^{7} -1.21215 q^{8} +(-0.575612 - 0.996990i) q^{9} +O(q^{10})\) \(q-2.13710 q^{2} +(1.01873 - 1.76449i) q^{3} +2.56719 q^{4} +(-1.08625 + 1.88145i) q^{5} +(-2.17712 + 3.77089i) q^{6} +(0.371017 + 0.642620i) q^{7} -1.21215 q^{8} +(-0.575612 - 0.996990i) q^{9} +(2.32143 - 4.02084i) q^{10} +0.410861 q^{11} +(2.61527 - 4.52978i) q^{12} +(-1.10701 - 1.91740i) q^{13} +(-0.792900 - 1.37334i) q^{14} +(2.21319 + 3.83336i) q^{15} -2.54390 q^{16} +(0.500000 + 0.866025i) q^{17} +(1.23014 + 2.13067i) q^{18} +(3.07446 - 5.32511i) q^{19} +(-2.78862 + 4.83004i) q^{20} +1.51186 q^{21} -0.878051 q^{22} +(-3.88256 + 6.72479i) q^{23} +(-1.23485 + 2.13883i) q^{24} +(0.140107 + 0.242673i) q^{25} +(2.36579 + 4.09767i) q^{26} +3.76680 q^{27} +(0.952473 + 1.64973i) q^{28} +(4.16854 + 7.22013i) q^{29} +(-4.72981 - 8.19228i) q^{30} +(-3.08845 + 5.34934i) q^{31} +7.86087 q^{32} +(0.418556 - 0.724960i) q^{33} +(-1.06855 - 1.85078i) q^{34} -1.61207 q^{35} +(-1.47771 - 2.55947i) q^{36} +(-3.44814 + 5.97236i) q^{37} +(-6.57042 + 11.3803i) q^{38} -4.51097 q^{39} +(1.31670 - 2.28060i) q^{40} -0.165338 q^{41} -3.23100 q^{42} +(6.55010 + 0.310127i) q^{43} +1.05476 q^{44} +2.50104 q^{45} +(8.29741 - 14.3715i) q^{46} +13.1349 q^{47} +(-2.59154 + 4.48868i) q^{48} +(3.22469 - 5.58533i) q^{49} +(-0.299423 - 0.518616i) q^{50} +2.03746 q^{51} +(-2.84191 - 4.92233i) q^{52} +(3.48198 - 6.03097i) q^{53} -8.05002 q^{54} +(-0.446299 + 0.773013i) q^{55} +(-0.449729 - 0.778953i) q^{56} +(-6.26407 - 10.8497i) q^{57} +(-8.90859 - 15.4301i) q^{58} -5.68695 q^{59} +(5.68170 + 9.84099i) q^{60} +(-5.48907 - 9.50734i) q^{61} +(6.60032 - 11.4321i) q^{62} +(0.427124 - 0.739800i) q^{63} -11.7117 q^{64} +4.80997 q^{65} +(-0.894495 + 1.54931i) q^{66} +(3.52936 - 6.11303i) q^{67} +(1.28360 + 2.22326i) q^{68} +(7.91054 + 13.7015i) q^{69} +3.44516 q^{70} +(6.52348 + 11.2990i) q^{71} +(0.697729 + 1.20850i) q^{72} +(5.22555 + 9.05093i) q^{73} +(7.36902 - 12.7635i) q^{74} +0.570925 q^{75} +(7.89273 - 13.6706i) q^{76} +(0.152436 + 0.264028i) q^{77} +9.64039 q^{78} +(2.63992 + 4.57247i) q^{79} +(2.76332 - 4.78621i) q^{80} +(5.56418 - 9.63744i) q^{81} +0.353345 q^{82} +(-2.28011 + 3.94926i) q^{83} +3.88124 q^{84} -2.17251 q^{85} +(-13.9982 - 0.662772i) q^{86} +16.9864 q^{87} -0.498026 q^{88} +(-3.21878 + 5.57509i) q^{89} -5.34498 q^{90} +(0.821439 - 1.42277i) q^{91} +(-9.96728 + 17.2638i) q^{92} +(6.29257 + 10.8991i) q^{93} -28.0707 q^{94} +(6.67928 + 11.5688i) q^{95} +(8.00809 - 13.8704i) q^{96} +15.9516 q^{97} +(-6.89149 + 11.9364i) q^{98} +(-0.236497 - 0.409624i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 58q - 6q^{2} + 3q^{3} + 54q^{4} - q^{5} + 12q^{6} + 7q^{7} - 12q^{8} - 22q^{9} + O(q^{10}) \) \( 58q - 6q^{2} + 3q^{3} + 54q^{4} - q^{5} + 12q^{6} + 7q^{7} - 12q^{8} - 22q^{9} + 4q^{10} + 16q^{11} + 12q^{12} + 2q^{13} - 11q^{14} + 7q^{15} + 30q^{16} + 29q^{17} + 8q^{18} + 8q^{19} - 33q^{20} - 26q^{21} - 22q^{22} - 5q^{23} + 12q^{24} - 36q^{25} - 12q^{27} + 15q^{28} + 2q^{29} + 11q^{30} + 3q^{31} - 40q^{32} + 17q^{33} - 3q^{34} + 38q^{35} - 7q^{36} + 2q^{37} + q^{38} - 54q^{39} + 5q^{40} + 14q^{41} - 112q^{42} + 31q^{43} - 24q^{44} - 46q^{45} - 13q^{46} - 28q^{47} - 28q^{49} - 13q^{50} + 6q^{51} + 85q^{52} - 10q^{53} + 34q^{54} + 36q^{55} - 54q^{56} - 23q^{57} + 3q^{58} + 12q^{59} + 2q^{60} - q^{61} - q^{62} - 14q^{63} + 28q^{64} + 80q^{65} - 74q^{66} + 11q^{67} + 27q^{68} - 11q^{69} + 2q^{70} + 16q^{71} + 21q^{72} + 14q^{73} + 21q^{74} - 54q^{75} + 44q^{76} + 25q^{77} + 88q^{78} - 4q^{79} - 112q^{80} + 11q^{81} - 176q^{82} - 3q^{83} + 100q^{84} - 2q^{85} + 44q^{86} + 8q^{87} - 106q^{88} + 82q^{89} + 54q^{90} - 15q^{91} + 42q^{92} + 88q^{94} + 29q^{95} + 20q^{96} + 20q^{97} + 44q^{98} - 54q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/731\mathbb{Z}\right)^\times\).

\(n\) \(173\) \(562\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.13710 −1.51116 −0.755579 0.655058i \(-0.772644\pi\)
−0.755579 + 0.655058i \(0.772644\pi\)
\(3\) 1.01873 1.76449i 0.588163 1.01873i −0.406310 0.913735i \(-0.633185\pi\)
0.994473 0.104993i \(-0.0334819\pi\)
\(4\) 2.56719 1.28360
\(5\) −1.08625 + 1.88145i −0.485787 + 0.841408i −0.999867 0.0163344i \(-0.994800\pi\)
0.514079 + 0.857743i \(0.328134\pi\)
\(6\) −2.17712 + 3.77089i −0.888807 + 1.53946i
\(7\) 0.371017 + 0.642620i 0.140231 + 0.242888i 0.927584 0.373616i \(-0.121882\pi\)
−0.787352 + 0.616503i \(0.788549\pi\)
\(8\) −1.21215 −0.428560
\(9\) −0.575612 0.996990i −0.191871 0.332330i
\(10\) 2.32143 4.02084i 0.734101 1.27150i
\(11\) 0.410861 0.123879 0.0619397 0.998080i \(-0.480271\pi\)
0.0619397 + 0.998080i \(0.480271\pi\)
\(12\) 2.61527 4.52978i 0.754964 1.30764i
\(13\) −1.10701 1.91740i −0.307029 0.531791i 0.670682 0.741745i \(-0.266002\pi\)
−0.977711 + 0.209955i \(0.932668\pi\)
\(14\) −0.792900 1.37334i −0.211911 0.367041i
\(15\) 2.21319 + 3.83336i 0.571444 + 0.989770i
\(16\) −2.54390 −0.635975
\(17\) 0.500000 + 0.866025i 0.121268 + 0.210042i
\(18\) 1.23014 + 2.13067i 0.289947 + 0.502203i
\(19\) 3.07446 5.32511i 0.705329 1.22166i −0.261244 0.965273i \(-0.584133\pi\)
0.966573 0.256392i \(-0.0825339\pi\)
\(20\) −2.78862 + 4.83004i −0.623555 + 1.08003i
\(21\) 1.51186 0.329915
\(22\) −0.878051 −0.187201
\(23\) −3.88256 + 6.72479i −0.809569 + 1.40221i 0.103593 + 0.994620i \(0.466966\pi\)
−0.913163 + 0.407595i \(0.866367\pi\)
\(24\) −1.23485 + 2.13883i −0.252063 + 0.436586i
\(25\) 0.140107 + 0.242673i 0.0280215 + 0.0485346i
\(26\) 2.36579 + 4.09767i 0.463970 + 0.803619i
\(27\) 3.76680 0.724921
\(28\) 0.952473 + 1.64973i 0.180000 + 0.311770i
\(29\) 4.16854 + 7.22013i 0.774079 + 1.34074i 0.935311 + 0.353828i \(0.115120\pi\)
−0.161232 + 0.986917i \(0.551547\pi\)
\(30\) −4.72981 8.19228i −0.863542 1.49570i
\(31\) −3.08845 + 5.34934i −0.554701 + 0.960771i 0.443226 + 0.896410i \(0.353834\pi\)
−0.997927 + 0.0643605i \(0.979499\pi\)
\(32\) 7.86087 1.38962
\(33\) 0.418556 0.724960i 0.0728612 0.126199i
\(34\) −1.06855 1.85078i −0.183255 0.317407i
\(35\) −1.61207 −0.272490
\(36\) −1.47771 2.55947i −0.246285 0.426578i
\(37\) −3.44814 + 5.97236i −0.566871 + 0.981849i 0.430002 + 0.902828i \(0.358513\pi\)
−0.996873 + 0.0790215i \(0.974820\pi\)
\(38\) −6.57042 + 11.3803i −1.06586 + 1.84613i
\(39\) −4.51097 −0.722333
\(40\) 1.31670 2.28060i 0.208189 0.360594i
\(41\) −0.165338 −0.0258215 −0.0129108 0.999917i \(-0.504110\pi\)
−0.0129108 + 0.999917i \(0.504110\pi\)
\(42\) −3.23100 −0.498554
\(43\) 6.55010 + 0.310127i 0.998881 + 0.0472939i
\(44\) 1.05476 0.159011
\(45\) 2.50104 0.372833
\(46\) 8.29741 14.3715i 1.22339 2.11897i
\(47\) 13.1349 1.91593 0.957964 0.286888i \(-0.0926207\pi\)
0.957964 + 0.286888i \(0.0926207\pi\)
\(48\) −2.59154 + 4.48868i −0.374057 + 0.647886i
\(49\) 3.22469 5.58533i 0.460670 0.797905i
\(50\) −0.299423 0.518616i −0.0423449 0.0733434i
\(51\) 2.03746 0.285301
\(52\) −2.84191 4.92233i −0.394102 0.682605i
\(53\) 3.48198 6.03097i 0.478287 0.828417i −0.521403 0.853310i \(-0.674591\pi\)
0.999690 + 0.0248935i \(0.00792466\pi\)
\(54\) −8.05002 −1.09547
\(55\) −0.446299 + 0.773013i −0.0601790 + 0.104233i
\(56\) −0.449729 0.778953i −0.0600975 0.104092i
\(57\) −6.26407 10.8497i −0.829696 1.43708i
\(58\) −8.90859 15.4301i −1.16976 2.02608i
\(59\) −5.68695 −0.740378 −0.370189 0.928956i \(-0.620707\pi\)
−0.370189 + 0.928956i \(0.620707\pi\)
\(60\) 5.68170 + 9.84099i 0.733504 + 1.27047i
\(61\) −5.48907 9.50734i −0.702803 1.21729i −0.967479 0.252953i \(-0.918598\pi\)
0.264675 0.964338i \(-0.414735\pi\)
\(62\) 6.60032 11.4321i 0.838241 1.45188i
\(63\) 0.427124 0.739800i 0.0538125 0.0932060i
\(64\) −11.7117 −1.46396
\(65\) 4.80997 0.596604
\(66\) −0.894495 + 1.54931i −0.110105 + 0.190707i
\(67\) 3.52936 6.11303i 0.431180 0.746825i −0.565795 0.824546i \(-0.691431\pi\)
0.996975 + 0.0777204i \(0.0247641\pi\)
\(68\) 1.28360 + 2.22326i 0.155659 + 0.269609i
\(69\) 7.91054 + 13.7015i 0.952317 + 1.64946i
\(70\) 3.44516 0.411776
\(71\) 6.52348 + 11.2990i 0.774195 + 1.34094i 0.935246 + 0.353999i \(0.115178\pi\)
−0.161051 + 0.986946i \(0.551488\pi\)
\(72\) 0.697729 + 1.20850i 0.0822282 + 0.142423i
\(73\) 5.22555 + 9.05093i 0.611605 + 1.05933i 0.990970 + 0.134084i \(0.0428091\pi\)
−0.379365 + 0.925247i \(0.623858\pi\)
\(74\) 7.36902 12.7635i 0.856632 1.48373i
\(75\) 0.570925 0.0659247
\(76\) 7.89273 13.6706i 0.905358 1.56813i
\(77\) 0.152436 + 0.264028i 0.0173717 + 0.0300887i
\(78\) 9.64039 1.09156
\(79\) 2.63992 + 4.57247i 0.297014 + 0.514443i 0.975451 0.220215i \(-0.0706759\pi\)
−0.678437 + 0.734658i \(0.737343\pi\)
\(80\) 2.76332 4.78621i 0.308949 0.535115i
\(81\) 5.56418 9.63744i 0.618242 1.07083i
\(82\) 0.353345 0.0390204
\(83\) −2.28011 + 3.94926i −0.250274 + 0.433488i −0.963601 0.267344i \(-0.913854\pi\)
0.713327 + 0.700831i \(0.247187\pi\)
\(84\) 3.88124 0.423478
\(85\) −2.17251 −0.235641
\(86\) −13.9982 0.662772i −1.50947 0.0714685i
\(87\) 16.9864 1.82114
\(88\) −0.498026 −0.0530898
\(89\) −3.21878 + 5.57509i −0.341190 + 0.590958i −0.984654 0.174518i \(-0.944163\pi\)
0.643464 + 0.765476i \(0.277497\pi\)
\(90\) −5.34498 −0.563410
\(91\) 0.821439 1.42277i 0.0861102 0.149147i
\(92\) −9.96728 + 17.2638i −1.03916 + 1.79988i
\(93\) 6.29257 + 10.8991i 0.652509 + 1.13018i
\(94\) −28.0707 −2.89527
\(95\) 6.67928 + 11.5688i 0.685279 + 1.18694i
\(96\) 8.00809 13.8704i 0.817322 1.41564i
\(97\) 15.9516 1.61964 0.809818 0.586682i \(-0.199566\pi\)
0.809818 + 0.586682i \(0.199566\pi\)
\(98\) −6.89149 + 11.9364i −0.696146 + 1.20576i
\(99\) −0.236497 0.409624i −0.0237688 0.0411688i
\(100\) 0.359683 + 0.622989i 0.0359683 + 0.0622989i
\(101\) −0.379991 0.658164i −0.0378105 0.0654897i 0.846501 0.532387i \(-0.178705\pi\)
−0.884311 + 0.466898i \(0.845372\pi\)
\(102\) −4.35425 −0.431135
\(103\) −1.05560 1.82836i −0.104012 0.180154i 0.809322 0.587365i \(-0.199835\pi\)
−0.913334 + 0.407211i \(0.866501\pi\)
\(104\) 1.34186 + 2.32418i 0.131581 + 0.227904i
\(105\) −1.64226 + 2.84448i −0.160269 + 0.277593i
\(106\) −7.44134 + 12.8888i −0.722767 + 1.25187i
\(107\) 12.1150 1.17120 0.585598 0.810601i \(-0.300860\pi\)
0.585598 + 0.810601i \(0.300860\pi\)
\(108\) 9.67010 0.930506
\(109\) 2.39629 4.15050i 0.229523 0.397546i −0.728144 0.685424i \(-0.759617\pi\)
0.957667 + 0.287879i \(0.0929500\pi\)
\(110\) 0.953786 1.65201i 0.0909399 0.157513i
\(111\) 7.02544 + 12.1684i 0.666825 + 1.15497i
\(112\) −0.943830 1.63476i −0.0891836 0.154470i
\(113\) −4.95989 −0.466587 −0.233294 0.972406i \(-0.574950\pi\)
−0.233294 + 0.972406i \(0.574950\pi\)
\(114\) 13.3869 + 23.1869i 1.25380 + 2.17165i
\(115\) −8.43488 14.6096i −0.786557 1.36236i
\(116\) 10.7015 + 18.5355i 0.993606 + 1.72098i
\(117\) −1.27442 + 2.20736i −0.117820 + 0.204070i
\(118\) 12.1536 1.11883
\(119\) −0.371017 + 0.642620i −0.0340111 + 0.0589089i
\(120\) −2.68273 4.64662i −0.244898 0.424176i
\(121\) −10.8312 −0.984654
\(122\) 11.7307 + 20.3181i 1.06205 + 1.83952i
\(123\) −0.168435 + 0.291738i −0.0151873 + 0.0263051i
\(124\) −7.92864 + 13.7328i −0.712013 + 1.23324i
\(125\) −11.4713 −1.02602
\(126\) −0.912806 + 1.58103i −0.0813192 + 0.140849i
\(127\) −0.982824 −0.0872116 −0.0436058 0.999049i \(-0.513885\pi\)
−0.0436058 + 0.999049i \(0.513885\pi\)
\(128\) 9.30725 0.822653
\(129\) 7.21998 11.2416i 0.635684 0.989771i
\(130\) −10.2794 −0.901563
\(131\) −18.0780 −1.57948 −0.789739 0.613443i \(-0.789784\pi\)
−0.789739 + 0.613443i \(0.789784\pi\)
\(132\) 1.07451 1.86111i 0.0935244 0.161989i
\(133\) 4.56270 0.395636
\(134\) −7.54259 + 13.0642i −0.651581 + 1.12857i
\(135\) −4.09170 + 7.08703i −0.352157 + 0.609954i
\(136\) −0.606076 1.04975i −0.0519706 0.0900157i
\(137\) 9.85940 0.842345 0.421173 0.906980i \(-0.361619\pi\)
0.421173 + 0.906980i \(0.361619\pi\)
\(138\) −16.9056 29.2814i −1.43910 2.49260i
\(139\) −4.38595 + 7.59669i −0.372012 + 0.644343i −0.989875 0.141943i \(-0.954665\pi\)
0.617863 + 0.786286i \(0.287999\pi\)
\(140\) −4.13851 −0.349768
\(141\) 13.3809 23.1765i 1.12688 1.95181i
\(142\) −13.9413 24.1471i −1.16993 2.02638i
\(143\) −0.454828 0.787784i −0.0380346 0.0658778i
\(144\) 1.46430 + 2.53624i 0.122025 + 0.211354i
\(145\) −18.1124 −1.50415
\(146\) −11.1675 19.3427i −0.924231 1.60082i
\(147\) −6.57017 11.3799i −0.541898 0.938595i
\(148\) −8.85205 + 15.3322i −0.727634 + 1.26030i
\(149\) 3.19529 5.53440i 0.261768 0.453396i −0.704944 0.709263i \(-0.749028\pi\)
0.966712 + 0.255867i \(0.0823611\pi\)
\(150\) −1.22012 −0.0996227
\(151\) 18.7850 1.52870 0.764349 0.644803i \(-0.223061\pi\)
0.764349 + 0.644803i \(0.223061\pi\)
\(152\) −3.72671 + 6.45485i −0.302276 + 0.523557i
\(153\) 0.575612 0.996990i 0.0465355 0.0806018i
\(154\) −0.325772 0.564253i −0.0262514 0.0454688i
\(155\) −6.70967 11.6215i −0.538934 0.933460i
\(156\) −11.5805 −0.927185
\(157\) −0.298181 0.516465i −0.0237974 0.0412184i 0.853881 0.520468i \(-0.174242\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(158\) −5.64177 9.77182i −0.448835 0.777405i
\(159\) −7.09438 12.2878i −0.562621 0.974488i
\(160\) −8.53890 + 14.7898i −0.675059 + 1.16924i
\(161\) −5.76198 −0.454107
\(162\) −11.8912 + 20.5962i −0.934261 + 1.61819i
\(163\) 3.54913 + 6.14728i 0.277989 + 0.481492i 0.970885 0.239546i \(-0.0769987\pi\)
−0.692896 + 0.721038i \(0.743665\pi\)
\(164\) −0.424456 −0.0331445
\(165\) 0.909315 + 1.57498i 0.0707901 + 0.122612i
\(166\) 4.87282 8.43996i 0.378204 0.655068i
\(167\) −7.79458 + 13.5006i −0.603163 + 1.04471i 0.389176 + 0.921163i \(0.372760\pi\)
−0.992339 + 0.123545i \(0.960574\pi\)
\(168\) −1.83260 −0.141389
\(169\) 4.04906 7.01317i 0.311466 0.539475i
\(170\) 4.64286 0.356091
\(171\) −7.07878 −0.541328
\(172\) 16.8154 + 0.796156i 1.28216 + 0.0607063i
\(173\) −8.63889 −0.656803 −0.328401 0.944538i \(-0.606510\pi\)
−0.328401 + 0.944538i \(0.606510\pi\)
\(174\) −36.3017 −2.75203
\(175\) −0.103964 + 0.180072i −0.00785897 + 0.0136121i
\(176\) −1.04519 −0.0787842
\(177\) −5.79345 + 10.0346i −0.435463 + 0.754244i
\(178\) 6.87885 11.9145i 0.515592 0.893031i
\(179\) 5.91830 + 10.2508i 0.442354 + 0.766180i 0.997864 0.0653299i \(-0.0208100\pi\)
−0.555509 + 0.831510i \(0.687477\pi\)
\(180\) 6.42066 0.478568
\(181\) −10.5697 18.3072i −0.785637 1.36076i −0.928618 0.371038i \(-0.879002\pi\)
0.142980 0.989726i \(-0.454331\pi\)
\(182\) −1.75550 + 3.04061i −0.130126 + 0.225385i
\(183\) −22.3675 −1.65345
\(184\) 4.70625 8.15146i 0.346949 0.600934i
\(185\) −7.49111 12.9750i −0.550757 0.953940i
\(186\) −13.4478 23.2924i −0.986044 1.70788i
\(187\) 0.205431 + 0.355816i 0.0150226 + 0.0260199i
\(188\) 33.7200 2.45928
\(189\) 1.39755 + 2.42062i 0.101656 + 0.176074i
\(190\) −14.2743 24.7238i −1.03556 1.79365i
\(191\) −5.97986 + 10.3574i −0.432688 + 0.749437i −0.997104 0.0760535i \(-0.975768\pi\)
0.564416 + 0.825490i \(0.309101\pi\)
\(192\) −11.9310 + 20.6651i −0.861046 + 1.49137i
\(193\) 24.9259 1.79421 0.897104 0.441819i \(-0.145667\pi\)
0.897104 + 0.441819i \(0.145667\pi\)
\(194\) −34.0901 −2.44752
\(195\) 4.90005 8.48714i 0.350900 0.607777i
\(196\) 8.27841 14.3386i 0.591315 1.02419i
\(197\) 0.0816140 + 0.141360i 0.00581476 + 0.0100715i 0.868918 0.494956i \(-0.164816\pi\)
−0.863103 + 0.505027i \(0.831482\pi\)
\(198\) 0.505417 + 0.875408i 0.0359184 + 0.0622125i
\(199\) −25.6307 −1.81691 −0.908457 0.417978i \(-0.862739\pi\)
−0.908457 + 0.417978i \(0.862739\pi\)
\(200\) −0.169831 0.294157i −0.0120089 0.0208000i
\(201\) −7.19091 12.4550i −0.507208 0.878510i
\(202\) 0.812078 + 1.40656i 0.0571376 + 0.0989653i
\(203\) −3.09320 + 5.35758i −0.217100 + 0.376028i
\(204\) 5.23054 0.366211
\(205\) 0.179599 0.311075i 0.0125438 0.0217265i
\(206\) 2.25593 + 3.90739i 0.157178 + 0.272241i
\(207\) 8.93939 0.621331
\(208\) 2.81612 + 4.87767i 0.195263 + 0.338206i
\(209\) 1.26317 2.18788i 0.0873756 0.151339i
\(210\) 3.50968 6.07895i 0.242191 0.419487i
\(211\) −2.59938 −0.178949 −0.0894744 0.995989i \(-0.528519\pi\)
−0.0894744 + 0.995989i \(0.528519\pi\)
\(212\) 8.93892 15.4827i 0.613928 1.06335i
\(213\) 26.5826 1.82141
\(214\) −25.8909 −1.76986
\(215\) −7.69856 + 11.9868i −0.525037 + 0.817492i
\(216\) −4.56593 −0.310672
\(217\) −4.58346 −0.311146
\(218\) −5.12111 + 8.87003i −0.346845 + 0.600754i
\(219\) 21.2937 1.43889
\(220\) −1.14574 + 1.98448i −0.0772456 + 0.133793i
\(221\) 1.10701 1.91740i 0.0744656 0.128978i
\(222\) −15.0141 26.0051i −1.00768 1.74535i
\(223\) −16.8234 −1.12658 −0.563289 0.826260i \(-0.690464\pi\)
−0.563289 + 0.826260i \(0.690464\pi\)
\(224\) 2.91652 + 5.05156i 0.194868 + 0.337521i
\(225\) 0.161295 0.279371i 0.0107530 0.0186247i
\(226\) 10.5998 0.705087
\(227\) 6.45726 11.1843i 0.428584 0.742328i −0.568164 0.822915i \(-0.692346\pi\)
0.996748 + 0.0805869i \(0.0256794\pi\)
\(228\) −16.0811 27.8532i −1.06500 1.84463i
\(229\) 1.08251 + 1.87496i 0.0715343 + 0.123901i 0.899574 0.436769i \(-0.143877\pi\)
−0.828040 + 0.560670i \(0.810544\pi\)
\(230\) 18.0262 + 31.2223i 1.18861 + 2.05874i
\(231\) 0.621165 0.0408697
\(232\) −5.05291 8.75189i −0.331740 0.574590i
\(233\) −0.106553 0.184556i −0.00698055 0.0120907i 0.862514 0.506033i \(-0.168889\pi\)
−0.869495 + 0.493942i \(0.835555\pi\)
\(234\) 2.72356 4.71734i 0.178044 0.308382i
\(235\) −14.2679 + 24.7127i −0.930734 + 1.61208i
\(236\) −14.5995 −0.950347
\(237\) 10.7574 0.698770
\(238\) 0.792900 1.37334i 0.0513961 0.0890206i
\(239\) −2.40320 + 4.16247i −0.155450 + 0.269248i −0.933223 0.359298i \(-0.883016\pi\)
0.777773 + 0.628546i \(0.216350\pi\)
\(240\) −5.63014 9.75169i −0.363424 0.629469i
\(241\) −1.96639 3.40589i −0.126667 0.219393i 0.795717 0.605669i \(-0.207094\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(242\) 23.1473 1.48797
\(243\) −5.68657 9.84942i −0.364793 0.631841i
\(244\) −14.0915 24.4072i −0.902116 1.56251i
\(245\) 7.00567 + 12.1342i 0.447576 + 0.775224i
\(246\) 0.359962 0.623473i 0.0229503 0.0397512i
\(247\) −13.6138 −0.866226
\(248\) 3.74366 6.48422i 0.237723 0.411748i
\(249\) 4.64562 + 8.04644i 0.294404 + 0.509923i
\(250\) 24.5153 1.55048
\(251\) −11.0798 19.1908i −0.699352 1.21131i −0.968691 0.248268i \(-0.920139\pi\)
0.269339 0.963045i \(-0.413195\pi\)
\(252\) 1.09651 1.89921i 0.0690736 0.119639i
\(253\) −1.59519 + 2.76295i −0.100289 + 0.173705i
\(254\) 2.10039 0.131790
\(255\) −2.21319 + 3.83336i −0.138596 + 0.240054i
\(256\) 3.53281 0.220800
\(257\) −23.7016 −1.47846 −0.739232 0.673451i \(-0.764811\pi\)
−0.739232 + 0.673451i \(0.764811\pi\)
\(258\) −15.4298 + 24.0245i −0.960619 + 1.49570i
\(259\) −5.11728 −0.317972
\(260\) 12.3481 0.765799
\(261\) 4.79893 8.31199i 0.297046 0.514499i
\(262\) 38.6344 2.38684
\(263\) −7.89050 + 13.6667i −0.486549 + 0.842728i −0.999880 0.0154628i \(-0.995078\pi\)
0.513331 + 0.858190i \(0.328411\pi\)
\(264\) −0.507353 + 0.878761i −0.0312254 + 0.0540840i
\(265\) 7.56462 + 13.1023i 0.464691 + 0.804869i
\(266\) −9.75095 −0.597869
\(267\) 6.55812 + 11.3590i 0.401350 + 0.695159i
\(268\) 9.06055 15.6933i 0.553461 0.958623i
\(269\) 6.51991 0.397526 0.198763 0.980048i \(-0.436308\pi\)
0.198763 + 0.980048i \(0.436308\pi\)
\(270\) 8.74436 15.1457i 0.532165 0.921737i
\(271\) −0.131974 0.228586i −0.00801686 0.0138856i 0.861989 0.506927i \(-0.169219\pi\)
−0.870006 + 0.493041i \(0.835885\pi\)
\(272\) −1.27195 2.20308i −0.0771233 0.133582i
\(273\) −1.67365 2.89884i −0.101294 0.175446i
\(274\) −21.0705 −1.27292
\(275\) 0.0575647 + 0.0997049i 0.00347128 + 0.00601243i
\(276\) 20.3079 + 35.1743i 1.22239 + 2.11724i
\(277\) −5.01768 + 8.69087i −0.301483 + 0.522184i −0.976472 0.215644i \(-0.930815\pi\)
0.674989 + 0.737828i \(0.264148\pi\)
\(278\) 9.37322 16.2349i 0.562168 0.973704i
\(279\) 7.11099 0.425724
\(280\) 1.95408 0.116778
\(281\) 7.61322 13.1865i 0.454167 0.786639i −0.544473 0.838778i \(-0.683270\pi\)
0.998640 + 0.0521387i \(0.0166038\pi\)
\(282\) −28.5964 + 49.5304i −1.70289 + 2.94949i
\(283\) −2.20577 3.82051i −0.131119 0.227106i 0.792989 0.609236i \(-0.208524\pi\)
−0.924108 + 0.382131i \(0.875190\pi\)
\(284\) 16.7470 + 29.0067i 0.993754 + 1.72123i
\(285\) 27.2175 1.61222
\(286\) 0.972012 + 1.68357i 0.0574763 + 0.0995518i
\(287\) −0.0613434 0.106250i −0.00362099 0.00627173i
\(288\) −4.52481 7.83721i −0.266627 0.461812i
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 38.7079 2.27301
\(291\) 16.2503 28.1463i 0.952609 1.64997i
\(292\) 13.4150 + 23.2355i 0.785054 + 1.35975i
\(293\) 13.6415 0.796944 0.398472 0.917181i \(-0.369541\pi\)
0.398472 + 0.917181i \(0.369541\pi\)
\(294\) 14.0411 + 24.3199i 0.818894 + 1.41837i
\(295\) 6.17747 10.6997i 0.359666 0.622960i
\(296\) 4.17967 7.23940i 0.242938 0.420782i
\(297\) 1.54763 0.0898027
\(298\) −6.82865 + 11.8276i −0.395573 + 0.685153i
\(299\) 17.1921 0.994246
\(300\) 1.46568 0.0846208
\(301\) 2.23090 + 4.32429i 0.128587 + 0.249248i
\(302\) −40.1453 −2.31010
\(303\) −1.54843 −0.0889549
\(304\) −7.82111 + 13.5466i −0.448571 + 0.776949i
\(305\) 23.8501 1.36565
\(306\) −1.23014 + 2.13067i −0.0703225 + 0.121802i
\(307\) −15.2379 + 26.3929i −0.869676 + 1.50632i −0.00734717 + 0.999973i \(0.502339\pi\)
−0.862328 + 0.506349i \(0.830995\pi\)
\(308\) 0.391334 + 0.677810i 0.0222983 + 0.0386218i
\(309\) −4.30149 −0.244703
\(310\) 14.3392 + 24.8363i 0.814414 + 1.41061i
\(311\) 15.7693 27.3131i 0.894192 1.54879i 0.0593911 0.998235i \(-0.481084\pi\)
0.834801 0.550552i \(-0.185583\pi\)
\(312\) 5.46798 0.309563
\(313\) −10.3222 + 17.8785i −0.583443 + 1.01055i 0.411624 + 0.911354i \(0.364962\pi\)
−0.995068 + 0.0991999i \(0.968372\pi\)
\(314\) 0.637243 + 1.10374i 0.0359617 + 0.0622875i
\(315\) 0.927929 + 1.60722i 0.0522829 + 0.0905566i
\(316\) 6.77718 + 11.7384i 0.381246 + 0.660338i
\(317\) −26.4447 −1.48528 −0.742641 0.669690i \(-0.766427\pi\)
−0.742641 + 0.669690i \(0.766427\pi\)
\(318\) 15.1614 + 26.2603i 0.850209 + 1.47260i
\(319\) 1.71269 + 2.96647i 0.0958924 + 0.166090i
\(320\) 12.7218 22.0349i 0.711172 1.23179i
\(321\) 12.3418 21.3767i 0.688854 1.19313i
\(322\) 12.3139 0.686228
\(323\) 6.14891 0.342135
\(324\) 14.2843 24.7412i 0.793574 1.37451i
\(325\) 0.310201 0.537283i 0.0172068 0.0298031i
\(326\) −7.58485 13.1373i −0.420086 0.727610i
\(327\) −4.88234 8.45645i −0.269994 0.467643i
\(328\) 0.200415 0.0110661
\(329\) 4.87329 + 8.44078i 0.268673 + 0.465355i
\(330\) −1.94330 3.36589i −0.106975 0.185286i
\(331\) −1.07550 1.86281i −0.0591146 0.102389i 0.834954 0.550320i \(-0.185494\pi\)
−0.894068 + 0.447931i \(0.852161\pi\)
\(332\) −5.85348 + 10.1385i −0.321251 + 0.556424i
\(333\) 7.93917 0.435064
\(334\) 16.6578 28.8522i 0.911474 1.57872i
\(335\) 7.66756 + 13.2806i 0.418923 + 0.725596i
\(336\) −3.84602 −0.209818
\(337\) 8.18412 + 14.1753i 0.445817 + 0.772178i 0.998109 0.0614727i \(-0.0195797\pi\)
−0.552291 + 0.833651i \(0.686246\pi\)
\(338\) −8.65324 + 14.9878i −0.470674 + 0.815231i
\(339\) −5.05278 + 8.75166i −0.274429 + 0.475325i
\(340\) −5.57725 −0.302469
\(341\) −1.26892 + 2.19784i −0.0687160 + 0.119020i
\(342\) 15.1281 0.818031
\(343\) 9.97990 0.538864
\(344\) −7.93972 0.375921i −0.428081 0.0202683i
\(345\) −34.3714 −1.85049
\(346\) 18.4622 0.992532
\(347\) 18.1377 31.4154i 0.973682 1.68647i 0.289464 0.957189i \(-0.406523\pi\)
0.684218 0.729277i \(-0.260144\pi\)
\(348\) 43.6075 2.33761
\(349\) −1.99635 + 3.45777i −0.106862 + 0.185090i −0.914497 0.404592i \(-0.867414\pi\)
0.807635 + 0.589682i \(0.200747\pi\)
\(350\) 0.222182 0.384831i 0.0118761 0.0205701i
\(351\) −4.16988 7.22245i −0.222572 0.385506i
\(352\) 3.22973 0.172145
\(353\) −12.2056 21.1407i −0.649639 1.12521i −0.983209 0.182483i \(-0.941587\pi\)
0.333570 0.942725i \(-0.391747\pi\)
\(354\) 12.3812 21.4449i 0.658053 1.13978i
\(355\) −28.3446 −1.50438
\(356\) −8.26323 + 14.3123i −0.437950 + 0.758552i
\(357\) 0.755930 + 1.30931i 0.0400081 + 0.0692960i
\(358\) −12.6480 21.9070i −0.668467 1.15782i
\(359\) 5.82211 + 10.0842i 0.307279 + 0.532223i 0.977766 0.209698i \(-0.0672481\pi\)
−0.670487 + 0.741921i \(0.733915\pi\)
\(360\) −3.03164 −0.159782
\(361\) −9.40456 16.2892i −0.494977 0.857325i
\(362\) 22.5884 + 39.1243i 1.18722 + 2.05633i
\(363\) −11.0340 + 19.1115i −0.579137 + 1.00309i
\(364\) 2.10879 3.65254i 0.110531 0.191445i
\(365\) −22.7051 −1.18844
\(366\) 47.8015 2.49862
\(367\) 11.0689 19.1720i 0.577794 1.00077i −0.417938 0.908476i \(-0.637247\pi\)
0.995732 0.0922933i \(-0.0294197\pi\)
\(368\) 9.87684 17.1072i 0.514866 0.891774i
\(369\) 0.0951709 + 0.164841i 0.00495440 + 0.00858127i
\(370\) 16.0093 + 27.7288i 0.832281 + 1.44155i
\(371\) 5.16749 0.268283
\(372\) 16.1543 + 27.9800i 0.837559 + 1.45069i
\(373\) 11.6750 + 20.2218i 0.604511 + 1.04704i 0.992129 + 0.125223i \(0.0399646\pi\)
−0.387618 + 0.921820i \(0.626702\pi\)
\(374\) −0.439026 0.760415i −0.0227015 0.0393201i
\(375\) −11.6861 + 20.2410i −0.603469 + 1.04524i
\(376\) −15.9215 −0.821091
\(377\) 9.22924 15.9855i 0.475330 0.823296i
\(378\) −2.98669 5.17311i −0.153619 0.266076i
\(379\) −2.47184 −0.126970 −0.0634848 0.997983i \(-0.520221\pi\)
−0.0634848 + 0.997983i \(0.520221\pi\)
\(380\) 17.1470 + 29.6995i 0.879623 + 1.52355i
\(381\) −1.00123 + 1.73418i −0.0512946 + 0.0888448i
\(382\) 12.7796 22.1348i 0.653859 1.13252i
\(383\) −26.5925 −1.35881 −0.679407 0.733762i \(-0.737763\pi\)
−0.679407 + 0.733762i \(0.737763\pi\)
\(384\) 9.48156 16.4225i 0.483854 0.838059i
\(385\) −0.662338 −0.0337559
\(386\) −53.2692 −2.71133
\(387\) −3.46113 6.70890i −0.175939 0.341032i
\(388\) 40.9508 2.07896
\(389\) 5.77052 0.292577 0.146289 0.989242i \(-0.453267\pi\)
0.146289 + 0.989242i \(0.453267\pi\)
\(390\) −10.4719 + 18.1379i −0.530265 + 0.918447i
\(391\) −7.76511 −0.392699
\(392\) −3.90882 + 6.77027i −0.197425 + 0.341950i
\(393\) −18.4165 + 31.8983i −0.928990 + 1.60906i
\(394\) −0.174417 0.302100i −0.00878701 0.0152196i
\(395\) −11.4705 −0.577142
\(396\) −0.607133 1.05159i −0.0305096 0.0528442i
\(397\) 6.23101 10.7924i 0.312725 0.541656i −0.666226 0.745750i \(-0.732091\pi\)
0.978951 + 0.204094i \(0.0654247\pi\)
\(398\) 54.7754 2.74564
\(399\) 4.64815 8.05083i 0.232699 0.403046i
\(400\) −0.356419 0.617336i −0.0178210 0.0308668i
\(401\) −13.6371 23.6202i −0.681006 1.17954i −0.974674 0.223629i \(-0.928210\pi\)
0.293669 0.955907i \(-0.405124\pi\)
\(402\) 15.3677 + 26.6176i 0.766471 + 1.32757i
\(403\) 13.6758 0.681238
\(404\) −0.975511 1.68963i −0.0485335 0.0840624i
\(405\) 12.0882 + 20.9374i 0.600668 + 1.04039i
\(406\) 6.61048 11.4497i 0.328072 0.568238i
\(407\) −1.41671 + 2.45381i −0.0702236 + 0.121631i
\(408\) −2.46970 −0.122269
\(409\) −25.9143 −1.28138 −0.640689 0.767800i \(-0.721351\pi\)
−0.640689 + 0.767800i \(0.721351\pi\)
\(410\) −0.383822 + 0.664799i −0.0189556 + 0.0328321i
\(411\) 10.0440 17.3968i 0.495436 0.858120i
\(412\) −2.70994 4.69376i −0.133509 0.231245i
\(413\) −2.10996 3.65455i −0.103824 0.179829i
\(414\) −19.1044 −0.938928
\(415\) −4.95355 8.57980i −0.243160 0.421166i
\(416\) −8.70207 15.0724i −0.426654 0.738986i
\(417\) 8.93618 + 15.4779i 0.437607 + 0.757957i
\(418\) −2.69953 + 4.67572i −0.132038 + 0.228697i
\(419\) −1.66860 −0.0815165 −0.0407582 0.999169i \(-0.512977\pi\)
−0.0407582 + 0.999169i \(0.512977\pi\)
\(420\) −4.21601 + 7.30235i −0.205720 + 0.356318i
\(421\) −8.04015 13.9259i −0.391853 0.678709i 0.600841 0.799368i \(-0.294832\pi\)
−0.992694 + 0.120660i \(0.961499\pi\)
\(422\) 5.55514 0.270420
\(423\) −7.56063 13.0954i −0.367611 0.636720i
\(424\) −4.22069 + 7.31044i −0.204975 + 0.355027i
\(425\) −0.140107 + 0.242673i −0.00679620 + 0.0117714i
\(426\) −56.8097 −2.75244
\(427\) 4.07307 7.05477i 0.197110 0.341404i
\(428\) 31.1014 1.50335
\(429\) −1.85338 −0.0894821
\(430\) 16.4526 25.6170i 0.793414 1.23536i
\(431\) −32.4005 −1.56068 −0.780338 0.625358i \(-0.784953\pi\)
−0.780338 + 0.625358i \(0.784953\pi\)
\(432\) −9.58236 −0.461031
\(433\) 2.57693 4.46337i 0.123839 0.214496i −0.797439 0.603399i \(-0.793813\pi\)
0.921279 + 0.388903i \(0.127146\pi\)
\(434\) 9.79532 0.470190
\(435\) −18.4516 + 31.9591i −0.884685 + 1.53232i
\(436\) 6.15175 10.6551i 0.294615 0.510288i
\(437\) 23.8735 + 41.3501i 1.14202 + 1.97804i
\(438\) −45.5067 −2.17439
\(439\) −2.38449 4.13005i −0.113805 0.197117i 0.803496 0.595310i \(-0.202971\pi\)
−0.917302 + 0.398193i \(0.869637\pi\)
\(440\) 0.540982 0.937009i 0.0257903 0.0446702i
\(441\) −7.42469 −0.353557
\(442\) −2.36579 + 4.09767i −0.112529 + 0.194906i
\(443\) 0.580351 + 1.00520i 0.0275733 + 0.0477584i 0.879483 0.475931i \(-0.157889\pi\)
−0.851909 + 0.523689i \(0.824555\pi\)
\(444\) 18.0357 + 31.2387i 0.855935 + 1.48252i
\(445\) −6.99282 12.1119i −0.331491 0.574160i
\(446\) 35.9533 1.70244
\(447\) −6.51026 11.2761i −0.307925 0.533341i
\(448\) −4.34523 7.52615i −0.205293 0.355577i
\(449\) −8.26368 + 14.3131i −0.389987 + 0.675477i −0.992447 0.122672i \(-0.960854\pi\)
0.602460 + 0.798149i \(0.294187\pi\)
\(450\) −0.344703 + 0.597044i −0.0162495 + 0.0281449i
\(451\) −0.0679312 −0.00319875
\(452\) −12.7330 −0.598910
\(453\) 19.1368 33.1458i 0.899123 1.55733i
\(454\) −13.7998 + 23.9020i −0.647657 + 1.12178i
\(455\) 1.78458 + 3.09099i 0.0836625 + 0.144908i
\(456\) 7.59300 + 13.1515i 0.355575 + 0.615874i
\(457\) 29.6796 1.38835 0.694177 0.719804i \(-0.255768\pi\)
0.694177 + 0.719804i \(0.255768\pi\)
\(458\) −2.31343 4.00698i −0.108100 0.187234i
\(459\) 1.88340 + 3.26214i 0.0879095 + 0.152264i
\(460\) −21.6540 37.5058i −1.00962 1.74872i
\(461\) 6.08868 10.5459i 0.283578 0.491172i −0.688685 0.725060i \(-0.741812\pi\)
0.972263 + 0.233889i \(0.0751451\pi\)
\(462\) −1.32749 −0.0617605
\(463\) 16.6281 28.8008i 0.772775 1.33849i −0.163262 0.986583i \(-0.552202\pi\)
0.936037 0.351903i \(-0.114465\pi\)
\(464\) −10.6044 18.3673i −0.492295 0.852680i
\(465\) −27.3413 −1.26792
\(466\) 0.227715 + 0.394415i 0.0105487 + 0.0182709i
\(467\) −12.7800 + 22.1357i −0.591390 + 1.02432i 0.402656 + 0.915352i \(0.368087\pi\)
−0.994046 + 0.108966i \(0.965246\pi\)
\(468\) −3.27168 + 5.66671i −0.151233 + 0.261944i
\(469\) 5.23781 0.241859
\(470\) 30.4919 52.8135i 1.40649 2.43610i
\(471\) −1.21506 −0.0559871
\(472\) 6.89345 0.317297
\(473\) 2.69118 + 0.127419i 0.123741 + 0.00585873i
\(474\) −22.9897 −1.05595
\(475\) 1.72302 0.0790574
\(476\) −0.952473 + 1.64973i −0.0436565 + 0.0756153i
\(477\) −8.01708 −0.367077
\(478\) 5.13589 8.89562i 0.234910 0.406876i
\(479\) 10.5332 18.2441i 0.481275 0.833593i −0.518494 0.855081i \(-0.673507\pi\)
0.999769 + 0.0214883i \(0.00684046\pi\)
\(480\) 17.3976 + 30.1336i 0.794089 + 1.37540i
\(481\) 15.2685 0.696184
\(482\) 4.20238 + 7.27873i 0.191413 + 0.331537i
\(483\) −5.86989 + 10.1669i −0.267089 + 0.462612i
\(484\) −27.8058 −1.26390
\(485\) −17.3274 + 30.0120i −0.786798 + 1.36277i
\(486\) 12.1528 + 21.0492i 0.551260 + 0.954811i
\(487\) −0.194791 0.337388i −0.00882681 0.0152885i 0.861578 0.507625i \(-0.169476\pi\)
−0.870405 + 0.492336i \(0.836143\pi\)
\(488\) 6.65358 + 11.5243i 0.301194 + 0.521683i
\(489\) 14.4624 0.654012
\(490\) −14.9718 25.9319i −0.676357 1.17149i
\(491\) −11.3356 19.6338i −0.511566 0.886059i −0.999910 0.0134076i \(-0.995732\pi\)
0.488344 0.872651i \(-0.337601\pi\)
\(492\) −0.432405 + 0.748948i −0.0194943 + 0.0337652i
\(493\) −4.16854 + 7.22013i −0.187742 + 0.325178i
\(494\) 29.0941 1.30900
\(495\) 1.02758 0.0461863
\(496\) 7.85670 13.6082i 0.352776 0.611026i
\(497\) −4.84064 + 8.38424i −0.217133 + 0.376085i
\(498\) −9.92814 17.1960i −0.444891 0.770573i
\(499\) 15.7165 + 27.2218i 0.703569 + 1.21862i 0.967206 + 0.253995i \(0.0817447\pi\)
−0.263637 + 0.964622i \(0.584922\pi\)
\(500\) −29.4491 −1.31700
\(501\) 15.8811 + 27.5069i 0.709516 + 1.22892i
\(502\) 23.6787 + 41.0127i 1.05683 + 1.83049i
\(503\) −12.6344 21.8833i −0.563338 0.975730i −0.997202 0.0747517i \(-0.976184\pi\)
0.433864 0.900978i \(-0.357150\pi\)
\(504\) −0.517739 + 0.896750i −0.0230619 + 0.0399444i
\(505\) 1.65107 0.0734714
\(506\) 3.40908 5.90471i 0.151552 0.262496i
\(507\) −8.24977 14.2890i −0.366385 0.634598i
\(508\) −2.52310 −0.111945
\(509\) −4.33632 7.51073i −0.192204 0.332907i 0.753776 0.657131i \(-0.228230\pi\)
−0.945980 + 0.324224i \(0.894897\pi\)
\(510\) 4.72981 8.19228i 0.209440 0.362760i
\(511\) −3.87754 + 6.71609i −0.171532 + 0.297102i
\(512\) −26.1645 −1.15632
\(513\) 11.5809 20.0586i 0.511307 0.885610i
\(514\) 50.6526 2.23419
\(515\) 4.58662 0.202110
\(516\) 18.5351 28.8595i 0.815962 1.27047i
\(517\) 5.39664 0.237344
\(518\) 10.9361 0.480506
\(519\) −8.80068 + 15.2432i −0.386307 + 0.669103i
\(520\) −5.83042 −0.255681
\(521\) −2.94764 + 5.10546i −0.129138 + 0.223674i −0.923343 0.383976i \(-0.874554\pi\)
0.794205 + 0.607650i \(0.207888\pi\)
\(522\) −10.2558 + 17.7635i −0.448884 + 0.777489i
\(523\) 8.27920 + 14.3400i 0.362024 + 0.627044i 0.988294 0.152562i \(-0.0487525\pi\)
−0.626270 + 0.779606i \(0.715419\pi\)
\(524\) −46.4096 −2.02741
\(525\) 0.211823 + 0.366888i 0.00924471 + 0.0160123i
\(526\) 16.8628 29.2072i 0.735252 1.27349i
\(527\) −6.17689 −0.269070
\(528\) −1.06476 + 1.84423i −0.0463379 + 0.0802596i
\(529\) −18.6485 32.3002i −0.810805 1.40435i
\(530\) −16.1664 28.0009i −0.702222 1.21628i
\(531\) 3.27348 + 5.66983i 0.142057 + 0.246050i
\(532\) 11.7133 0.507838
\(533\) 0.183031 + 0.317020i 0.00792797 + 0.0137316i
\(534\) −14.0154 24.2753i −0.606504 1.05050i
\(535\) −13.1599 + 22.7936i −0.568953 + 0.985455i
\(536\) −4.27812 + 7.40992i −0.184787 + 0.320060i
\(537\) 24.1165 1.04071
\(538\) −13.9337 −0.600724
\(539\) 1.32490 2.29480i 0.0570675 0.0988439i
\(540\) −10.5042 + 18.1938i −0.452028 + 0.782936i
\(541\) −18.4545 31.9642i −0.793422 1.37425i −0.923836 0.382788i \(-0.874964\pi\)
0.130415 0.991460i \(-0.458369\pi\)
\(542\) 0.282042 + 0.488511i 0.0121147 + 0.0209834i
\(543\) −43.0705 −1.84833
\(544\) 3.93044 + 6.80772i 0.168516 + 0.291878i
\(545\) 5.20596 + 9.01698i 0.222999 + 0.386245i
\(546\) 3.57675 + 6.19511i 0.153071 + 0.265126i
\(547\) 5.07432 8.78898i 0.216962 0.375790i −0.736916 0.675985i \(-0.763718\pi\)
0.953878 + 0.300195i \(0.0970518\pi\)
\(548\) 25.3110 1.08123
\(549\) −6.31915 + 10.9451i −0.269695 + 0.467125i
\(550\) −0.123021 0.213079i −0.00524565 0.00908573i
\(551\) 51.2640 2.18392
\(552\) −9.58877 16.6082i −0.408125 0.706894i
\(553\) −1.95891 + 3.39293i −0.0833012 + 0.144282i
\(554\) 10.7233 18.5733i 0.455588 0.789102i
\(555\) −30.5256 −1.29574
\(556\) −11.2596 + 19.5022i −0.477513 + 0.827077i
\(557\) 16.3145 0.691266 0.345633 0.938370i \(-0.387664\pi\)
0.345633 + 0.938370i \(0.387664\pi\)
\(558\) −15.1969 −0.643336
\(559\) −6.65639 12.9025i −0.281535 0.545716i
\(560\) 4.10095 0.173297
\(561\) 0.837111 0.0353429
\(562\) −16.2702 + 28.1808i −0.686317 + 1.18874i
\(563\) −25.4673 −1.07332 −0.536659 0.843799i \(-0.680314\pi\)
−0.536659 + 0.843799i \(0.680314\pi\)
\(564\) 34.3515 59.4985i 1.44646 2.50534i
\(565\) 5.38770 9.33176i 0.226662 0.392590i
\(566\) 4.71395 + 8.16480i 0.198142 + 0.343192i
\(567\) 8.25762 0.346787
\(568\) −7.90745 13.6961i −0.331789 0.574676i
\(569\) −6.59504 + 11.4229i −0.276478 + 0.478874i −0.970507 0.241073i \(-0.922501\pi\)
0.694029 + 0.719947i \(0.255834\pi\)
\(570\) −58.1664 −2.43632
\(571\) 0.847414 1.46776i 0.0354632 0.0614240i −0.847749 0.530397i \(-0.822043\pi\)
0.883212 + 0.468973i \(0.155376\pi\)
\(572\) −1.16763 2.02240i −0.0488211 0.0845606i
\(573\) 12.1837 + 21.1028i 0.508981 + 0.881582i
\(574\) 0.131097 + 0.227067i 0.00547188 + 0.00947757i
\(575\) −2.17590 −0.0907413
\(576\) 6.74138 + 11.6764i 0.280891 + 0.486517i
\(577\) 18.2496 + 31.6093i 0.759741 + 1.31591i 0.942982 + 0.332843i \(0.108008\pi\)
−0.183241 + 0.983068i \(0.558659\pi\)
\(578\) 1.06855 1.85078i 0.0444458 0.0769824i
\(579\) 25.3927 43.9815i 1.05529 1.82781i
\(580\) −46.4980 −1.93072
\(581\) −3.38383 −0.140385
\(582\) −34.7285 + 60.1515i −1.43954 + 2.49336i
\(583\) 1.43061 2.47789i 0.0592498 0.102624i
\(584\) −6.33416 10.9711i −0.262110 0.453987i
\(585\) −2.76868 4.79549i −0.114471 0.198269i
\(586\) −29.1532 −1.20431
\(587\) −7.84570 13.5892i −0.323827 0.560884i 0.657447 0.753500i \(-0.271636\pi\)
−0.981274 + 0.192616i \(0.938303\pi\)
\(588\) −16.8669 29.2143i −0.695579 1.20478i
\(589\) 18.9906 + 32.8926i 0.782493 + 1.35532i
\(590\) −13.2019 + 22.8663i −0.543512 + 0.941391i
\(591\) 0.332570 0.0136801
\(592\) 8.77173 15.1931i 0.360516 0.624432i
\(593\) 18.3971 + 31.8647i 0.755479 + 1.30853i 0.945136 + 0.326677i \(0.105929\pi\)
−0.189657 + 0.981850i \(0.560738\pi\)
\(594\) −3.30744 −0.135706
\(595\) −0.806037 1.39610i −0.0330443 0.0572344i
\(596\) 8.20293 14.2079i 0.336005 0.581978i
\(597\) −26.1107 + 45.2251i −1.06864 + 1.85094i
\(598\) −36.7413 −1.50246
\(599\) −6.99670 + 12.1186i −0.285877 + 0.495154i −0.972822 0.231556i \(-0.925618\pi\)
0.686944 + 0.726710i \(0.258952\pi\)
\(600\) −0.692048 −0.0282527
\(601\) 16.7169 0.681898 0.340949 0.940082i \(-0.389252\pi\)
0.340949 + 0.940082i \(0.389252\pi\)
\(602\) −4.76767 9.24144i −0.194316 0.376653i
\(603\) −8.12617 −0.330923
\(604\) 48.2246 1.96223
\(605\) 11.7654 20.3783i 0.478332 0.828496i
\(606\) 3.30915 0.134425
\(607\) 5.43512 9.41390i 0.220605 0.382098i −0.734387 0.678731i \(-0.762530\pi\)
0.954992 + 0.296632i \(0.0958636\pi\)
\(608\) 24.1679 41.8600i 0.980138 1.69765i
\(609\) 6.30226 + 10.9158i 0.255380 + 0.442332i
\(610\) −50.9700 −2.06371
\(611\) −14.5405 25.1849i −0.588246 1.01887i
\(612\) 1.47771 2.55947i 0.0597328 0.103460i
\(613\) −1.76650 −0.0713481 −0.0356741 0.999363i \(-0.511358\pi\)
−0.0356741 + 0.999363i \(0.511358\pi\)
\(614\) 32.5650 56.4043i 1.31422 2.27629i
\(615\) −0.365926 0.633802i −0.0147556 0.0255574i
\(616\) −0.184776 0.320042i −0.00744484 0.0128948i
\(617\) −3.83331 6.63949i −0.154323 0.267296i 0.778489 0.627658i \(-0.215986\pi\)
−0.932812 + 0.360362i \(0.882653\pi\)
\(618\) 9.19272 0.369785
\(619\) 4.82485 + 8.35689i 0.193927 + 0.335892i 0.946548 0.322562i \(-0.104544\pi\)
−0.752621 + 0.658454i \(0.771211\pi\)
\(620\) −17.2250 29.8346i −0.691774 1.19819i
\(621\) −14.6248 + 25.3309i −0.586873 + 1.01649i
\(622\) −33.7005 + 58.3709i −1.35127 + 2.34046i
\(623\) −4.77689 −0.191382
\(624\) 11.4755 0.459386
\(625\) 11.7602 20.3693i 0.470408 0.814771i
\(626\) 22.0595 38.2082i 0.881675 1.52711i
\(627\) −2.57366 4.45771i −0.102782 0.178024i
\(628\) −0.765489 1.32587i −0.0305463 0.0529078i
\(629\) −6.89628 −0.274973
\(630\) −1.98308 3.43479i −0.0790077 0.136845i
\(631\) 3.35652 + 5.81366i 0.133621 + 0.231438i 0.925070 0.379797i \(-0.124006\pi\)
−0.791449 + 0.611235i \(0.790673\pi\)
\(632\) −3.19998 5.54253i −0.127288 0.220470i
\(633\) −2.64806 + 4.58658i −0.105251 + 0.182300i
\(634\) 56.5149 2.24449
\(635\) 1.06760 1.84913i 0.0423663 0.0733805i
\(636\) −18.2126 31.5452i −0.722179 1.25085i
\(637\) −14.2791 −0.565757
\(638\) −3.66019 6.33964i −0.144908 0.250989i
\(639\) 7.50999 13.0077i 0.297091 0.514576i
\(640\) −10.1100 + 17.5111i −0.399634 + 0.692187i
\(641\) −34.7821 −1.37381 −0.686906 0.726747i \(-0.741031\pi\)
−0.686906 + 0.726747i \(0.741031\pi\)
\(642\) −26.3757 + 45.6841i −1.04097 + 1.80301i
\(643\) −29.5284 −1.16449 −0.582243 0.813015i \(-0.697825\pi\)
−0.582243 + 0.813015i \(0.697825\pi\)
\(644\) −14.7921 −0.582891
\(645\) 13.3078 + 25.7953i 0.523994 + 1.01569i
\(646\) −13.1408 −0.517019
\(647\) −23.7946 −0.935463 −0.467731 0.883871i \(-0.654929\pi\)
−0.467731 + 0.883871i \(0.654929\pi\)
\(648\) −6.74463 + 11.6820i −0.264954 + 0.458914i
\(649\) −2.33655 −0.0917175
\(650\) −0.662929 + 1.14823i −0.0260022 + 0.0450372i
\(651\) −4.66930 + 8.08746i −0.183004 + 0.316973i
\(652\) 9.11131 + 15.7813i 0.356826 + 0.618042i
\(653\) 38.0134 1.48758 0.743790 0.668414i \(-0.233026\pi\)
0.743790 + 0.668414i \(0.233026\pi\)
\(654\) 10.4340 + 18.0723i 0.408003 + 0.706682i
\(655\) 19.6372 34.0127i 0.767290 1.32899i
\(656\) 0.420605 0.0164219
\(657\) 6.01579 10.4196i 0.234698 0.406509i
\(658\) −10.4147 18.0388i −0.406007 0.703225i
\(659\) −12.1586 21.0593i −0.473632 0.820355i 0.525912 0.850539i \(-0.323724\pi\)
−0.999544 + 0.0301840i \(0.990391\pi\)
\(660\) 2.33439 + 4.04328i 0.0908660 + 0.157384i
\(661\) 18.2380 0.709377 0.354688 0.934985i \(-0.384587\pi\)
0.354688 + 0.934985i \(0.384587\pi\)
\(662\) 2.29844 + 3.98102i 0.0893315 + 0.154727i
\(663\) −2.25548 3.90661i −0.0875957 0.151720i
\(664\) 2.76384 4.78710i 0.107258 0.185776i
\(665\) −4.95625 + 8.58447i −0.192195 + 0.332892i
\(666\) −16.9668 −0.657450
\(667\) −64.7384 −2.50668
\(668\) −20.0102 + 34.6587i −0.774218 + 1.34099i
\(669\) −17.1385 + 29.6847i −0.662611 + 1.14768i
\(670\) −16.3863 28.3820i −0.633059 1.09649i
\(671\) −2.25524 3.90620i −0.0870628 0.150797i
\(672\) 11.8845 0.458456
\(673\) −19.9056 34.4774i −0.767303 1.32901i −0.939020 0.343861i \(-0.888265\pi\)
0.171717 0.985146i \(-0.445068\pi\)
\(674\) −17.4903 30.2941i −0.673700 1.16688i
\(675\) 0.527756 + 0.914100i 0.0203133 + 0.0351837i
\(676\) 10.3947 18.0042i 0.399797 0.692468i
\(677\) 0.379845 0.0145986 0.00729931 0.999973i \(-0.497677\pi\)
0.00729931 + 0.999973i \(0.497677\pi\)
\(678\) 10.7983 18.7032i 0.414706 0.718291i
\(679\) 5.91830 + 10.2508i 0.227123 + 0.393389i
\(680\) 2.63341 0.100987
\(681\) −13.1564 22.7875i −0.504154 0.873220i
\(682\) 2.71181 4.69700i 0.103841 0.179857i
\(683\) 18.0737 31.3045i 0.691569 1.19783i −0.279754 0.960072i \(-0.590253\pi\)
0.971324 0.237761i \(-0.0764137\pi\)
\(684\) −18.1726 −0.694847
\(685\) −10.7098 + 18.5499i −0.409201 + 0.708756i
\(686\) −21.3280 −0.814308
\(687\) 4.41114 0.168295
\(688\) −16.6628 0.788931i −0.635264 0.0300777i
\(689\) −15.4183 −0.587392
\(690\) 73.4551 2.79639
\(691\) 16.1502 27.9730i 0.614383 1.06414i −0.376109 0.926575i \(-0.622738\pi\)
0.990492 0.137568i \(-0.0439284\pi\)
\(692\) −22.1777 −0.843070
\(693\) 0.175489 0.303955i 0.00666626 0.0115463i
\(694\) −38.7620 + 67.1378i −1.47139 + 2.54852i
\(695\) −9.52851 16.5039i −0.361437 0.626027i
\(696\) −20.5901 −0.780467
\(697\) −0.0826692 0.143187i −0.00313132 0.00542361i
\(698\) 4.26639 7.38960i 0.161485 0.279701i
\(699\) −0.434196 −0.0164228
\(700\) −0.266897 + 0.462279i −0.0100878 + 0.0174725i
\(701\) 22.7636 + 39.4277i 0.859769 + 1.48916i 0.872149 + 0.489240i \(0.162726\pi\)
−0.0123799 + 0.999923i \(0.503941\pi\)
\(702\) 8.91146 + 15.4351i 0.336341 + 0.582560i
\(703\) 21.2023 + 36.7235i 0.799661 + 1.38505i
\(704\) −4.81187 −0.181354
\(705\) 29.0702 + 50.3510i 1.09485 + 1.89633i
\(706\) 26.0846 + 45.1799i 0.981707 + 1.70037i
\(707\) 0.281966 0.488380i 0.0106044 0.0183674i
\(708\) −14.8729 + 25.7607i −0.558959 + 0.968145i
\(709\) 25.3863 0.953401 0.476700 0.879066i \(-0.341833\pi\)
0.476700 + 0.879066i \(0.341833\pi\)
\(710\) 60.5753 2.27335
\(711\) 3.03914 5.26394i 0.113977 0.197413i
\(712\) 3.90165 6.75785i 0.146220 0.253261i
\(713\) −23.9821 41.5383i −0.898138 1.55562i
\(714\) −1.61550 2.79813i −0.0604585 0.104717i
\(715\) 1.97623 0.0739069
\(716\) 15.1934 + 26.3158i 0.567805 + 0.983467i
\(717\) 4.89642 + 8.48085i 0.182860 + 0.316723i
\(718\) −12.4424 21.5509i −0.464347 0.804273i
\(719\) 21.3640 37.0036i 0.796743 1.38000i −0.124983 0.992159i \(-0.539888\pi\)
0.921726 0.387841i \(-0.126779\pi\)
\(720\) −6.36240 −0.237113
\(721\) 0.783294 1.35671i 0.0291714 0.0505264i
\(722\) 20.0985 + 34.8116i 0.747988 + 1.29555i
\(723\) −8.01288 −0.298002
\(724\) −27.1344 46.9982i −1.00844 1.74667i
\(725\) −1.16809 + 2.02319i −0.0433817 + 0.0751392i
\(726\) 23.5808 40.8432i 0.875167 1.51583i
\(727\) 18.7465 0.695269 0.347635 0.937630i \(-0.386985\pi\)
0.347635 + 0.937630i \(0.386985\pi\)
\(728\) −0.995709 + 1.72462i −0.0369034 + 0.0639186i
\(729\) 10.2128 0.378252
\(730\) 48.5231 1.79592
\(731\) 3.00647 + 5.82762i 0.111198 + 0.215542i
\(732\) −57.4216 −2.12236
\(733\) 35.7943 1.32209 0.661046 0.750346i \(-0.270113\pi\)
0.661046 + 0.750346i \(0.270113\pi\)
\(734\) −23.6554 + 40.9724i −0.873138 + 1.51232i
\(735\) 28.5475 1.05299
\(736\) −30.5203 + 52.8627i −1.12499 + 1.94854i
\(737\) 1.45008 2.51161i 0.0534143 0.0925162i
\(738\) −0.203390 0.352281i −0.00748687 0.0129676i
\(739\) 22.7446 0.836673 0.418336 0.908292i \(-0.362613\pi\)
0.418336 + 0.908292i \(0.362613\pi\)
\(740\) −19.2311 33.3093i −0.706951 1.22447i
\(741\) −13.8688 + 24.0214i −0.509482 + 0.882449i
\(742\) −11.0434 −0.405418
\(743\) −6.19025 + 10.7218i −0.227098 + 0.393346i −0.956947 0.290263i \(-0.906257\pi\)
0.729849 + 0.683609i \(0.239590\pi\)
\(744\) −7.62755 13.2113i −0.279640 0.484350i
\(745\) 6.94179 + 12.0235i 0.254327 + 0.440508i
\(746\) −24.9507 43.2159i −0.913511 1.58225i
\(747\) 5.24983 0.192081
\(748\) 0.527380 + 0.913449i 0.0192829 + 0.0333990i
\(749\) 4.49485 + 7.78531i 0.164238 + 0.284469i
\(750\) 24.9744 43.2570i 0.911937 1.57952i
\(751\) −15.1276 + 26.2017i −0.552013 + 0.956114i 0.446117 + 0.894975i \(0.352807\pi\)
−0.998129 + 0.0611390i \(0.980527\pi\)
\(752\) −33.4140 −1.21848
\(753\) −45.1493 −1.64533
\(754\) −19.7238 + 34.1626i −0.718299 + 1.24413i
\(755\) −20.4052 + 35.3429i −0.742622 + 1.28626i
\(756\) 3.58777 + 6.21420i 0.130486 + 0.226008i
\(757\) −27.1446 47.0159i −0.986589 1.70882i −0.634650 0.772799i \(-0.718856\pi\)
−0.351939 0.936023i \(-0.614477\pi\)
\(758\) 5.28256 0.191871
\(759\) 3.25013 + 5.62939i 0.117972 + 0.204334i
\(760\) −8.09630 14.0232i −0.293684 0.508675i
\(761\) 12.9279 + 22.3918i 0.468636 + 0.811701i 0.999357 0.0358451i \(-0.0114123\pi\)
−0.530721 + 0.847546i \(0.678079\pi\)
\(762\) 2.13973 3.70612i 0.0775142 0.134259i
\(763\) 3.55626 0.128745
\(764\) −15.3515 + 26.5895i −0.555397 + 0.961975i
\(765\) 1.25052 + 2.16597i 0.0452127 + 0.0783107i
\(766\) 56.8308 2.05338
\(767\) 6.29551 + 10.9041i 0.227318 + 0.393726i