# Properties

 Label 729.2.k.a.4.6 Level $729$ Weight $2$ Character 729.4 Analytic conductor $5.821$ Analytic rank $0$ Dimension $12960$ CM no Inner twists $2$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [729,2,Mod(4,729)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(729, base_ring=CyclotomicField(486))

chi = DirichletCharacter(H, H._module([2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("729.4");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$729 = 3^{6}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 729.k (of order $$243$$, degree $$162$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$5.82109430735$$ Analytic rank: $$0$$ Dimension: $$12960$$ Relative dimension: $$80$$ over $$\Q(\zeta_{243})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{243}]$

## Embedding invariants

 Embedding label 4.6 Character $$\chi$$ $$=$$ 729.4 Dual form 729.2.k.a.547.6

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-2.48775 - 0.0321643i) q^{2} +(0.111243 + 1.72847i) q^{3} +(4.18852 + 0.108326i) q^{4} +(2.61631 + 0.801736i) q^{5} +(-0.221150 - 4.30359i) q^{6} +(0.558840 - 1.39354i) q^{7} +(-5.44433 - 0.211265i) q^{8} +(-2.97525 + 0.384562i) q^{9} +O(q^{10})$$ $$q+(-2.48775 - 0.0321643i) q^{2} +(0.111243 + 1.72847i) q^{3} +(4.18852 + 0.108326i) q^{4} +(2.61631 + 0.801736i) q^{5} +(-0.221150 - 4.30359i) q^{6} +(0.558840 - 1.39354i) q^{7} +(-5.44433 - 0.211265i) q^{8} +(-2.97525 + 0.384562i) q^{9} +(-6.48293 - 2.07867i) q^{10} +(3.15263 + 1.79310i) q^{11} +(0.278706 + 7.25180i) q^{12} +(-1.89074 - 4.23194i) q^{13} +(-1.43508 + 3.44880i) q^{14} +(-1.09473 + 4.61141i) q^{15} +(5.16867 + 0.267528i) q^{16} +(7.11213 + 3.23286i) q^{17} +(7.41404 - 0.860996i) q^{18} +(3.02456 + 4.40991i) q^{19} +(10.8716 + 3.64150i) q^{20} +(2.47087 + 0.810919i) q^{21} +(-7.78527 - 4.56218i) q^{22} +(0.788145 - 2.40449i) q^{23} +(-0.240479 - 9.43388i) q^{24} +(2.06072 + 1.39386i) q^{25} +(4.56757 + 10.5888i) q^{26} +(-0.995682 - 5.09986i) q^{27} +(2.49167 - 5.77634i) q^{28} +(-3.87709 + 2.47880i) q^{29} +(2.87174 - 11.4368i) q^{30} +(-2.21573 - 8.16359i) q^{31} +(-1.97566 - 0.127888i) q^{32} +(-2.74862 + 5.64871i) q^{33} +(-17.5892 - 8.27129i) q^{34} +(2.57935 - 3.19789i) q^{35} +(-12.5036 + 1.28845i) q^{36} +(6.29290 + 1.23588i) q^{37} +(-7.38250 - 11.0680i) q^{38} +(7.10447 - 3.73887i) q^{39} +(-14.0747 - 4.91764i) q^{40} +(0.249606 - 0.0945212i) q^{41} +(-6.12081 - 2.09684i) q^{42} +(4.02908 - 1.76895i) q^{43} +(13.0106 + 7.85194i) q^{44} +(-8.09249 - 1.37923i) q^{45} +(-2.03804 + 5.95641i) q^{46} +(-0.976517 + 3.59786i) q^{47} +(0.112563 + 8.96368i) q^{48} +(3.43080 + 3.27897i) q^{49} +(-5.08173 - 3.53384i) q^{50} +(-4.79674 + 12.6528i) q^{51} +(-7.46098 - 17.9304i) q^{52} +(6.17116 - 6.54105i) q^{53} +(2.31297 + 12.7192i) q^{54} +(6.81066 + 7.21888i) q^{55} +(-3.33691 + 7.46883i) q^{56} +(-7.28597 + 5.71845i) q^{57} +(9.72496 - 6.04192i) q^{58} +(-10.3181 + 1.75067i) q^{59} +(-5.08485 + 19.1964i) q^{60} +(1.98810 - 3.65881i) q^{61} +(5.24960 + 20.3802i) q^{62} +(-1.12679 + 4.36104i) q^{63} +(-5.40923 - 0.420439i) q^{64} +(-1.55386 - 12.5879i) q^{65} +(7.01955 - 13.9641i) q^{66} +(-8.85457 + 4.59122i) q^{67} +(29.4391 + 14.3113i) q^{68} +(4.24377 + 1.09481i) q^{69} +(-6.51963 + 7.87259i) q^{70} +(7.83335 + 6.07131i) q^{71} +(16.2795 - 1.46512i) q^{72} +(5.11723 - 1.64077i) q^{73} +(-15.6154 - 3.27698i) q^{74} +(-2.18000 + 3.71697i) q^{75} +(12.1907 + 18.7987i) q^{76} +(4.26057 - 3.39126i) q^{77} +(-17.7944 + 9.07286i) q^{78} +(-2.22272 + 11.7177i) q^{79} +(13.3084 + 4.84385i) q^{80} +(8.70422 - 2.28834i) q^{81} +(-0.623997 + 0.227116i) q^{82} +(0.547989 + 3.36136i) q^{83} +(10.2614 + 3.66421i) q^{84} +(16.0156 + 14.1602i) q^{85} +(-10.0802 + 4.27111i) q^{86} +(-4.71584 - 6.42571i) q^{87} +(-16.7851 - 10.4283i) q^{88} +(-10.5517 - 4.31083i) q^{89} +(20.0877 + 3.69147i) q^{90} +(-6.95400 + 0.269847i) q^{91} +(3.56163 - 9.98587i) q^{92} +(13.8641 - 4.73798i) q^{93} +(2.54505 - 8.91915i) q^{94} +(4.37760 + 13.9626i) q^{95} +(0.00127322 - 3.42910i) q^{96} +(3.67167 - 15.9508i) q^{97} +(-8.42950 - 8.26760i) q^{98} +(-10.0694 - 4.12254i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12960 q - 162 q^{2} - 162 q^{3} - 162 q^{4} - 162 q^{5} - 162 q^{6} - 162 q^{7} - 162 q^{8} - 162 q^{9}+O(q^{10})$$ 12960 * q - 162 * q^2 - 162 * q^3 - 162 * q^4 - 162 * q^5 - 162 * q^6 - 162 * q^7 - 162 * q^8 - 162 * q^9 $$12960 q - 162 q^{2} - 162 q^{3} - 162 q^{4} - 162 q^{5} - 162 q^{6} - 162 q^{7} - 162 q^{8} - 162 q^{9} - 162 q^{10} - 162 q^{11} - 162 q^{12} - 162 q^{13} - 162 q^{14} - 162 q^{15} - 162 q^{16} - 162 q^{17} - 162 q^{18} - 162 q^{19} - 162 q^{20} - 162 q^{21} - 162 q^{22} - 162 q^{23} - 162 q^{24} - 162 q^{25} - 162 q^{26} - 162 q^{27} - 162 q^{28} - 162 q^{29} - 162 q^{30} - 162 q^{31} - 162 q^{32} - 162 q^{33} - 162 q^{34} - 162 q^{35} - 162 q^{36} - 162 q^{37} - 162 q^{38} - 162 q^{39} - 162 q^{40} - 162 q^{41} - 162 q^{42} - 162 q^{43} - 162 q^{44} - 162 q^{45} - 162 q^{46} - 162 q^{47} - 162 q^{48} - 162 q^{49} - 162 q^{50} - 162 q^{51} - 162 q^{52} - 162 q^{53} - 162 q^{54} - 162 q^{55} - 162 q^{56} - 162 q^{57} - 162 q^{58} - 162 q^{59} - 162 q^{60} - 162 q^{61} - 162 q^{62} - 162 q^{63} - 162 q^{64} - 162 q^{65} - 162 q^{66} - 162 q^{67} - 162 q^{68} - 162 q^{69} - 162 q^{70} - 162 q^{71} - 162 q^{72} - 162 q^{73} - 162 q^{74} - 162 q^{75} - 162 q^{76} - 162 q^{77} - 162 q^{78} - 162 q^{79} - 162 q^{80} - 162 q^{81} - 162 q^{82} - 162 q^{83} - 162 q^{84} - 162 q^{85} - 162 q^{86} - 162 q^{87} - 162 q^{88} - 162 q^{89} - 162 q^{90} - 162 q^{91} - 162 q^{92} - 162 q^{93} - 162 q^{94} - 162 q^{95} - 162 q^{96} - 162 q^{97} - 162 q^{98} - 162 q^{99}+O(q^{100})$$ 12960 * q - 162 * q^2 - 162 * q^3 - 162 * q^4 - 162 * q^5 - 162 * q^6 - 162 * q^7 - 162 * q^8 - 162 * q^9 - 162 * q^10 - 162 * q^11 - 162 * q^12 - 162 * q^13 - 162 * q^14 - 162 * q^15 - 162 * q^16 - 162 * q^17 - 162 * q^18 - 162 * q^19 - 162 * q^20 - 162 * q^21 - 162 * q^22 - 162 * q^23 - 162 * q^24 - 162 * q^25 - 162 * q^26 - 162 * q^27 - 162 * q^28 - 162 * q^29 - 162 * q^30 - 162 * q^31 - 162 * q^32 - 162 * q^33 - 162 * q^34 - 162 * q^35 - 162 * q^36 - 162 * q^37 - 162 * q^38 - 162 * q^39 - 162 * q^40 - 162 * q^41 - 162 * q^42 - 162 * q^43 - 162 * q^44 - 162 * q^45 - 162 * q^46 - 162 * q^47 - 162 * q^48 - 162 * q^49 - 162 * q^50 - 162 * q^51 - 162 * q^52 - 162 * q^53 - 162 * q^54 - 162 * q^55 - 162 * q^56 - 162 * q^57 - 162 * q^58 - 162 * q^59 - 162 * q^60 - 162 * q^61 - 162 * q^62 - 162 * q^63 - 162 * q^64 - 162 * q^65 - 162 * q^66 - 162 * q^67 - 162 * q^68 - 162 * q^69 - 162 * q^70 - 162 * q^71 - 162 * q^72 - 162 * q^73 - 162 * q^74 - 162 * q^75 - 162 * q^76 - 162 * q^77 - 162 * q^78 - 162 * q^79 - 162 * q^80 - 162 * q^81 - 162 * q^82 - 162 * q^83 - 162 * q^84 - 162 * q^85 - 162 * q^86 - 162 * q^87 - 162 * q^88 - 162 * q^89 - 162 * q^90 - 162 * q^91 - 162 * q^92 - 162 * q^93 - 162 * q^94 - 162 * q^95 - 162 * q^96 - 162 * q^97 - 162 * q^98 - 162 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/729\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{1}{243}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.48775 0.0321643i −1.75910 0.0227436i −0.873402 0.487000i $$-0.838091\pi$$
−0.885701 + 0.464256i $$0.846322\pi$$
$$3$$ 0.111243 + 1.72847i 0.0642263 + 0.997935i
$$4$$ 4.18852 + 0.108326i 2.09426 + 0.0541628i
$$5$$ 2.61631 + 0.801736i 1.17005 + 0.358547i 0.816766 0.576969i $$-0.195765\pi$$
0.353283 + 0.935516i $$0.385065\pi$$
$$6$$ −0.221150 4.30359i −0.0902840 1.75693i
$$7$$ 0.558840 1.39354i 0.211222 0.526709i −0.784392 0.620265i $$-0.787025\pi$$
0.995614 + 0.0935559i $$0.0298234\pi$$
$$8$$ −5.44433 0.211265i −1.92486 0.0746933i
$$9$$ −2.97525 + 0.384562i −0.991750 + 0.128187i
$$10$$ −6.48293 2.07867i −2.05008 0.657332i
$$11$$ 3.15263 + 1.79310i 0.950553 + 0.540640i 0.889221 0.457478i $$-0.151247\pi$$
0.0613320 + 0.998117i $$0.480465\pi$$
$$12$$ 0.278706 + 7.25180i 0.0804556 + 2.09341i
$$13$$ −1.89074 4.23194i −0.524397 1.17373i −0.961622 0.274377i $$-0.911528\pi$$
0.437225 0.899352i $$-0.355961\pi$$
$$14$$ −1.43508 + 3.44880i −0.383540 + 0.921732i
$$15$$ −1.09473 + 4.61141i −0.282659 + 1.19066i
$$16$$ 5.16867 + 0.267528i 1.29217 + 0.0668821i
$$17$$ 7.11213 + 3.23286i 1.72494 + 0.784083i 0.994921 + 0.100661i $$0.0320958\pi$$
0.730023 + 0.683422i $$0.239509\pi$$
$$18$$ 7.41404 0.860996i 1.74751 0.202939i
$$19$$ 3.02456 + 4.40991i 0.693881 + 1.01170i 0.998249 + 0.0591493i $$0.0188388\pi$$
−0.304368 + 0.952555i $$0.598445\pi$$
$$20$$ 10.8716 + 3.64150i 2.43097 + 0.814264i
$$21$$ 2.47087 + 0.810919i 0.539188 + 0.176957i
$$22$$ −7.78527 4.56218i −1.65982 0.972660i
$$23$$ 0.788145 2.40449i 0.164340 0.501371i −0.834422 0.551126i $$-0.814198\pi$$
0.998761 + 0.0497558i $$0.0158443\pi$$
$$24$$ −0.240479 9.43388i −0.0490875 1.92568i
$$25$$ 2.06072 + 1.39386i 0.412145 + 0.278771i
$$26$$ 4.56757 + 10.5888i 0.895773 + 2.07664i
$$27$$ −0.995682 5.09986i −0.191619 0.981469i
$$28$$ 2.49167 5.77634i 0.470881 1.09163i
$$29$$ −3.87709 + 2.47880i −0.719958 + 0.460301i −0.846998 0.531596i $$-0.821592\pi$$
0.127040 + 0.991898i $$0.459452\pi$$
$$30$$ 2.87174 11.4368i 0.524306 2.08807i
$$31$$ −2.21573 8.16359i −0.397957 1.46622i −0.826621 0.562759i $$-0.809740\pi$$
0.428664 0.903464i $$-0.358985\pi$$
$$32$$ −1.97566 0.127888i −0.349250 0.0226077i
$$33$$ −2.74862 + 5.64871i −0.478473 + 0.983314i
$$34$$ −17.5892 8.27129i −3.01652 1.41851i
$$35$$ 2.57935 3.19789i 0.435990 0.540543i
$$36$$ −12.5036 + 1.28845i −2.08393 + 0.214742i
$$37$$ 6.29290 + 1.23588i 1.03455 + 0.203178i 0.681034 0.732252i $$-0.261531\pi$$
0.353512 + 0.935430i $$0.384987\pi$$
$$38$$ −7.38250 11.0680i −1.19760 1.79547i
$$39$$ 7.10447 3.73887i 1.13763 0.598699i
$$40$$ −14.0747 4.91764i −2.22540 0.777548i
$$41$$ 0.249606 0.0945212i 0.0389819 0.0147617i −0.334572 0.942370i $$-0.608592\pi$$
0.373554 + 0.927608i $$0.378139\pi$$
$$42$$ −6.12081 2.09684i −0.944462 0.323549i
$$43$$ 4.02908 1.76895i 0.614429 0.269763i −0.0714895 0.997441i $$-0.522775\pi$$
0.685918 + 0.727679i $$0.259401\pi$$
$$44$$ 13.0106 + 7.85194i 1.96142 + 1.18372i
$$45$$ −8.09249 1.37923i −1.20636 0.205604i
$$46$$ −2.03804 + 5.95641i −0.300493 + 0.878225i
$$47$$ −0.976517 + 3.59786i −0.142440 + 0.524801i 0.857507 + 0.514472i $$0.172012\pi$$
−0.999947 + 0.0103290i $$0.996712\pi$$
$$48$$ 0.112563 + 8.96368i 0.0162471 + 1.29380i
$$49$$ 3.43080 + 3.27897i 0.490115 + 0.468424i
$$50$$ −5.08173 3.53384i −0.718665 0.499761i
$$51$$ −4.79674 + 12.6528i −0.671678 + 1.77174i
$$52$$ −7.46098 17.9304i −1.03465 2.48650i
$$53$$ 6.17116 6.54105i 0.847674 0.898482i −0.148225 0.988954i $$-0.547356\pi$$
0.995899 + 0.0904714i $$0.0288374\pi$$
$$54$$ 2.31297 + 12.7192i 0.314756 + 1.73086i
$$55$$ 6.81066 + 7.21888i 0.918349 + 0.973393i
$$56$$ −3.33691 + 7.46883i −0.445914 + 0.998064i
$$57$$ −7.28597 + 5.71845i −0.965050 + 0.757427i
$$58$$ 9.72496 6.04192i 1.27695 0.793343i
$$59$$ −10.3181 + 1.75067i −1.34331 + 0.227918i −0.794109 0.607775i $$-0.792062\pi$$
−0.549197 + 0.835693i $$0.685066\pi$$
$$60$$ −5.08485 + 19.1964i −0.656451 + 2.47824i
$$61$$ 1.98810 3.65881i 0.254551 0.468463i −0.719592 0.694397i $$-0.755671\pi$$
0.974143 + 0.225934i $$0.0725435\pi$$
$$62$$ 5.24960 + 20.3802i 0.666700 + 2.58829i
$$63$$ −1.12679 + 4.36104i −0.141962 + 0.549440i
$$64$$ −5.40923 0.420439i −0.676154 0.0525548i
$$65$$ −1.55386 12.5879i −0.192733 1.56134i
$$66$$ 7.01955 13.9641i 0.864047 1.71887i
$$67$$ −8.85457 + 4.59122i −1.08176 + 0.560907i −0.905893 0.423507i $$-0.860799\pi$$
−0.175865 + 0.984414i $$0.556272\pi$$
$$68$$ 29.4391 + 14.3113i 3.57001 + 1.73550i
$$69$$ 4.24377 + 1.09481i 0.510890 + 0.131799i
$$70$$ −6.51963 + 7.87259i −0.779245 + 0.940954i
$$71$$ 7.83335 + 6.07131i 0.929648 + 0.720532i 0.960291 0.278999i $$-0.0900026\pi$$
−0.0306435 + 0.999530i $$0.509756\pi$$
$$72$$ 16.2795 1.46512i 1.91855 0.172666i
$$73$$ 5.11723 1.64077i 0.598926 0.192038i 0.00962821 0.999954i $$-0.496935\pi$$
0.589298 + 0.807916i $$0.299404\pi$$
$$74$$ −15.6154 3.27698i −1.81525 0.380941i
$$75$$ −2.18000 + 3.71697i −0.251725 + 0.429198i
$$76$$ 12.1907 + 18.7987i 1.39837 + 2.15635i
$$77$$ 4.26057 3.39126i 0.485537 0.386470i
$$78$$ −17.7944 + 9.07286i −2.01482 + 1.02730i
$$79$$ −2.22272 + 11.7177i −0.250075 + 1.31835i 0.603494 + 0.797367i $$0.293775\pi$$
−0.853570 + 0.520979i $$0.825567\pi$$
$$80$$ 13.3084 + 4.84385i 1.48792 + 0.541559i
$$81$$ 8.70422 2.28834i 0.967136 0.254260i
$$82$$ −0.623997 + 0.227116i −0.0689090 + 0.0250808i
$$83$$ 0.547989 + 3.36136i 0.0601496 + 0.368957i 0.999651 + 0.0264120i $$0.00840818\pi$$
−0.939502 + 0.342545i $$0.888711\pi$$
$$84$$ 10.2614 + 3.66421i 1.11961 + 0.399798i
$$85$$ 16.0156 + 14.1602i 1.73714 + 1.53589i
$$86$$ −10.0802 + 4.27111i −1.08698 + 0.460566i
$$87$$ −4.71584 6.42571i −0.505591 0.688908i
$$88$$ −16.7851 10.4283i −1.78930 1.11166i
$$89$$ −10.5517 4.31083i −1.11847 0.456947i −0.257848 0.966185i $$-0.583013\pi$$
−0.860625 + 0.509239i $$0.829927\pi$$
$$90$$ 20.0877 + 3.69147i 2.11743 + 0.389115i
$$91$$ −6.95400 + 0.269847i −0.728978 + 0.0282877i
$$92$$ 3.56163 9.98587i 0.371326 1.04110i
$$93$$ 13.8641 4.73798i 1.43764 0.491306i
$$94$$ 2.54505 8.91915i 0.262502 0.919940i
$$95$$ 4.37760 + 13.9626i 0.449132 + 1.43253i
$$96$$ 0.00127322 3.42910i 0.000129947 0.349981i
$$97$$ 3.67167 15.9508i 0.372801 1.61956i −0.355762 0.934577i $$-0.615779\pi$$
0.728563 0.684978i $$-0.240188\pi$$
$$98$$ −8.42950 8.26760i −0.851508 0.835153i
$$99$$ −10.0694 4.12254i −1.01201 0.414331i
$$100$$ 8.48039 + 6.06142i 0.848039 + 0.606142i
$$101$$ −1.62088 + 10.8216i −0.161284 + 1.07679i 0.748929 + 0.662651i $$0.230569\pi$$
−0.910212 + 0.414142i $$0.864082\pi$$
$$102$$ 12.3400 31.3226i 1.22185 3.10140i
$$103$$ 1.05782 + 2.96586i 0.104231 + 0.292235i 0.982596 0.185754i $$-0.0594728\pi$$
−0.878366 + 0.477989i $$0.841366\pi$$
$$104$$ 9.39975 + 23.4395i 0.921721 + 2.29843i
$$105$$ 5.81441 + 4.10260i 0.567429 + 0.400373i
$$106$$ −15.5627 + 16.0740i −1.51158 + 1.56124i
$$107$$ 0.699037 + 12.0020i 0.0675785 + 1.16028i 0.846229 + 0.532820i $$0.178868\pi$$
−0.778650 + 0.627458i $$0.784095\pi$$
$$108$$ −3.61799 21.4687i −0.348141 2.06583i
$$109$$ −0.663935 + 11.3993i −0.0635934 + 1.09186i 0.804015 + 0.594609i $$0.202693\pi$$
−0.867608 + 0.497248i $$0.834344\pi$$
$$110$$ −16.7110 18.1778i −1.59333 1.73318i
$$111$$ −1.43615 + 11.0146i −0.136314 + 1.04546i
$$112$$ 3.26127 7.05325i 0.308161 0.666470i
$$113$$ −8.83426 + 6.48853i −0.831057 + 0.610389i −0.922750 0.385398i $$-0.874064\pi$$
0.0916936 + 0.995787i $$0.470772\pi$$
$$114$$ 18.3096 13.9917i 1.71485 1.31044i
$$115$$ 3.98980 5.65900i 0.372050 0.527705i
$$116$$ −16.5078 + 9.96251i −1.53271 + 0.924996i
$$117$$ 7.25287 + 11.8640i 0.670528 + 1.09682i
$$118$$ 25.7252 4.02335i 2.36820 0.370379i
$$119$$ 8.47966 8.10439i 0.777330 0.742928i
$$120$$ 6.93431 24.8748i 0.633013 2.27074i
$$121$$ 1.10116 + 1.85157i 0.100106 + 0.168325i
$$122$$ −5.06358 + 9.03825i −0.458435 + 0.818285i
$$123$$ 0.191144 + 0.420923i 0.0172349 + 0.0379534i
$$124$$ −8.39631 34.4334i −0.754011 3.09221i
$$125$$ −4.31572 5.35065i −0.386010 0.478577i
$$126$$ 2.94343 10.8129i 0.262221 0.963292i
$$127$$ 0.0432237 + 2.22860i 0.00383549 + 0.197757i 0.996828 + 0.0795820i $$0.0253586\pi$$
−0.992993 + 0.118175i $$0.962296\pi$$
$$128$$ 17.3867 + 1.57778i 1.53678 + 0.139457i
$$129$$ 3.50580 + 6.76738i 0.308668 + 0.595834i
$$130$$ 3.46074 + 31.3656i 0.303527 + 2.75094i
$$131$$ −1.73426 + 0.157377i −0.151523 + 0.0137501i −0.165874 0.986147i $$-0.553045\pi$$
0.0143519 + 0.999897i $$0.495431\pi$$
$$132$$ −12.1245 + 23.3620i −1.05531 + 2.03340i
$$133$$ 7.83564 1.75041i 0.679437 0.151780i
$$134$$ 22.1756 11.1370i 1.91568 0.962091i
$$135$$ 1.48373 14.1411i 0.127699 1.21707i
$$136$$ −38.0378 19.1033i −3.26171 1.63809i
$$137$$ −16.4109 4.11424i −1.40208 0.351503i −0.532973 0.846132i $$-0.678925\pi$$
−0.869104 + 0.494629i $$0.835304\pi$$
$$138$$ −10.5222 2.86010i −0.895711 0.243468i
$$139$$ 0.0997342 + 0.0142798i 0.00845934 + 0.00121120i 0.145962 0.989290i $$-0.453372\pi$$
−0.137502 + 0.990501i $$0.543907\pi$$
$$140$$ 11.1501 13.1150i 0.942353 1.10842i
$$141$$ −6.32744 1.28765i −0.532866 0.108440i
$$142$$ −19.2921 15.3558i −1.61896 1.28863i
$$143$$ 1.62749 16.7320i 0.136097 1.39920i
$$144$$ −15.4810 + 1.19171i −1.29008 + 0.0993093i
$$145$$ −12.1310 + 3.37690i −1.00743 + 0.280436i
$$146$$ −12.7831 + 3.91724i −1.05794 + 0.324193i
$$147$$ −5.28596 + 6.29482i −0.435979 + 0.519188i
$$148$$ 26.2241 + 5.85821i 2.15560 + 0.481542i
$$149$$ −11.8790 + 2.97810i −0.973169 + 0.243975i −0.696950 0.717120i $$-0.745460\pi$$
−0.276219 + 0.961095i $$0.589082\pi$$
$$150$$ 5.54285 9.17675i 0.452572 0.749279i
$$151$$ −2.38027 2.79974i −0.193703 0.227839i 0.656457 0.754364i $$-0.272055\pi$$
−0.850160 + 0.526525i $$0.823495\pi$$
$$152$$ −15.5350 24.6480i −1.26006 1.99922i
$$153$$ −22.4036 6.88351i −1.81122 0.556499i
$$154$$ −10.7083 + 8.29956i −0.862900 + 0.668798i
$$155$$ 0.748002 23.1349i 0.0600809 1.85824i
$$156$$ 30.1622 14.8907i 2.41491 1.19221i
$$157$$ 1.70034 13.7746i 0.135702 1.09933i −0.758502 0.651671i $$-0.774068\pi$$
0.894204 0.447659i $$-0.147742\pi$$
$$158$$ 5.90645 29.0792i 0.469892 2.31342i
$$159$$ 11.9925 + 9.93905i 0.951070 + 0.788218i
$$160$$ −5.06640 1.91855i −0.400534 0.151675i
$$161$$ −2.91031 2.44204i −0.229364 0.192460i
$$162$$ −21.7275 + 5.41284i −1.70707 + 0.425273i
$$163$$ −2.49348 + 2.09228i −0.195304 + 0.163880i −0.735196 0.677855i $$-0.762910\pi$$
0.539891 + 0.841735i $$0.318465\pi$$
$$164$$ 1.05572 0.368865i 0.0824378 0.0288035i
$$165$$ −11.7200 + 12.5751i −0.912401 + 0.978970i
$$166$$ −1.25514 8.37983i −0.0974180 0.650401i
$$167$$ −0.850600 + 1.66673i −0.0658214 + 0.128976i −0.921286 0.388886i $$-0.872860\pi$$
0.855465 + 0.517861i $$0.173272\pi$$
$$168$$ −13.2809 4.93692i −1.02464 0.380891i
$$169$$ −5.66072 + 6.31965i −0.435440 + 0.486127i
$$170$$ −39.3874 35.7421i −3.02087 2.74130i
$$171$$ −10.6947 11.9575i −0.817845 0.914410i
$$172$$ 17.0675 6.97284i 1.30138 0.531674i
$$173$$ 12.7487 + 2.16306i 0.969264 + 0.164454i 0.630306 0.776347i $$-0.282930\pi$$
0.338958 + 0.940801i $$0.389925\pi$$
$$174$$ 11.5251 + 16.1372i 0.873719 + 1.22336i
$$175$$ 3.09401 2.09276i 0.233885 0.158198i
$$176$$ 15.8152 + 10.1114i 1.19212 + 0.762172i
$$177$$ −4.17381 17.6399i −0.313723 1.32589i
$$178$$ 26.1112 + 11.0636i 1.95712 + 0.829254i
$$179$$ 6.68557 + 13.9817i 0.499703 + 1.04504i 0.985296 + 0.170855i $$0.0546531\pi$$
−0.485593 + 0.874185i $$0.661396\pi$$
$$180$$ −33.7462 6.65356i −2.51529 0.495927i
$$181$$ −22.2797 6.20198i −1.65604 0.460990i −0.690947 0.722905i $$-0.742806\pi$$
−0.965091 + 0.261915i $$0.915646\pi$$
$$182$$ 17.3085 0.447641i 1.28299 0.0331813i
$$183$$ 6.54533 + 3.02937i 0.483845 + 0.223938i
$$184$$ −4.79890 + 12.9243i −0.353780 + 0.952793i
$$185$$ 15.4733 + 8.27870i 1.13762 + 0.608662i
$$186$$ −34.6427 + 11.3410i −2.54013 + 0.831560i
$$187$$ 16.6251 + 22.9447i 1.21574 + 1.67789i
$$188$$ −4.47990 + 14.9639i −0.326730 + 1.09136i
$$189$$ −7.66330 1.46248i −0.557423 0.106380i
$$190$$ −10.4413 34.8762i −0.757488 2.53019i
$$191$$ 1.62908 2.13018i 0.117876 0.154134i −0.731651 0.681680i $$-0.761250\pi$$
0.849527 + 0.527546i $$0.176888\pi$$
$$192$$ 0.124978 9.39649i 0.00901948 0.678133i
$$193$$ −6.51760 + 3.06489i −0.469147 + 0.220616i −0.645573 0.763698i $$-0.723382\pi$$
0.176427 + 0.984314i $$0.443546\pi$$
$$194$$ −9.64722 + 39.5634i −0.692630 + 2.84049i
$$195$$ 21.5851 4.08614i 1.54574 0.292614i
$$196$$ 14.0148 + 14.1057i 1.00106 + 1.00755i
$$197$$ 19.1587 3.76265i 1.36500 0.268078i 0.544040 0.839059i $$-0.316894\pi$$
0.820963 + 0.570982i $$0.193437\pi$$
$$198$$ 24.9176 + 10.5797i 1.77081 + 0.751867i
$$199$$ −14.3812 + 7.93522i −1.01946 + 0.562512i −0.902530 0.430628i $$-0.858292\pi$$
−0.116927 + 0.993140i $$0.537304\pi$$
$$200$$ −10.9248 8.02396i −0.772499 0.567380i
$$201$$ −8.92083 14.7942i −0.629227 1.04350i
$$202$$ 4.38041 26.8694i 0.308205 1.89052i
$$203$$ 1.28763 + 6.78814i 0.0903741 + 0.476434i
$$204$$ −21.4619 + 52.4768i −1.50263 + 3.67411i
$$205$$ 0.728828 0.0471785i 0.0509035 0.00329509i
$$206$$ −2.53621 7.41234i −0.176706 0.516442i
$$207$$ −1.42025 + 7.45705i −0.0987144 + 0.518300i
$$208$$ −8.64045 22.3793i −0.599108 1.55173i
$$209$$ 1.62790 + 19.3262i 0.112604 + 1.33682i
$$210$$ −14.3328 10.3932i −0.989059 0.717202i
$$211$$ 9.99009 14.9774i 0.687746 1.03109i −0.309045 0.951047i $$-0.600009\pi$$
0.996792 0.0800405i $$-0.0255050\pi$$
$$212$$ 26.5566 26.7288i 1.82391 1.83574i
$$213$$ −9.62269 + 14.2151i −0.659336 + 0.974006i
$$214$$ −1.35299 29.8804i −0.0924886 2.04258i
$$215$$ 11.9595 1.39787i 0.815634 0.0953340i
$$216$$ 4.34340 + 27.9757i 0.295531 + 1.90350i
$$217$$ −12.6145 1.47443i −0.856331 0.100091i
$$218$$ 2.01835 28.3373i 0.136700 1.91924i
$$219$$ 3.40529 + 8.66248i 0.230108 + 0.585356i
$$220$$ 27.7446 + 30.9742i 1.87054 + 2.08828i
$$221$$ 0.234075 36.2106i 0.0157456 2.43579i
$$222$$ 3.92706 27.3553i 0.263567 1.83597i
$$223$$ 2.84055 2.51147i 0.190217 0.168181i −0.561910 0.827198i $$-0.689933\pi$$
0.752127 + 0.659018i $$0.229028\pi$$
$$224$$ −1.28230 + 2.68169i −0.0856769 + 0.179178i
$$225$$ −6.66719 3.35459i −0.444479 0.223639i
$$226$$ 22.1861 15.8577i 1.47580 1.05484i
$$227$$ 0.217562 + 0.426309i 0.0144401 + 0.0282951i 0.897821 0.440361i $$-0.145150\pi$$
−0.883380 + 0.468657i $$0.844738\pi$$
$$228$$ −31.1369 + 23.1626i −2.06209 + 1.53398i
$$229$$ 12.8980 + 16.8654i 0.852326 + 1.11450i 0.992241 + 0.124333i $$0.0396792\pi$$
−0.139915 + 0.990164i $$0.544683\pi$$
$$230$$ −10.1076 + 13.9498i −0.666477 + 0.919825i
$$231$$ 6.33567 + 6.98704i 0.416856 + 0.459713i
$$232$$ 21.6318 12.6763i 1.42020 0.832240i
$$233$$ −5.91311 27.2979i −0.387381 1.78835i −0.588195 0.808719i $$-0.700161\pi$$
0.200815 0.979629i $$-0.435641\pi$$
$$234$$ −17.6617 29.7478i −1.15458 1.94468i
$$235$$ −5.43940 + 8.63020i −0.354827 + 0.562972i
$$236$$ −43.4073 + 6.21500i −2.82558 + 0.404562i
$$237$$ −20.5010 2.53839i −1.33169 0.164886i
$$238$$ −21.3559 + 19.8889i −1.38430 + 1.28921i
$$239$$ −5.62667 10.3550i −0.363959 0.669812i 0.630354 0.776308i $$-0.282910\pi$$
−0.994313 + 0.106495i $$0.966037\pi$$
$$240$$ −6.89200 + 23.5420i −0.444877 + 1.51963i
$$241$$ 5.84391 9.82634i 0.376439 0.632970i −0.610879 0.791724i $$-0.709184\pi$$
0.987318 + 0.158754i $$0.0507476\pi$$
$$242$$ −2.67986 4.64166i −0.172268 0.298377i
$$243$$ 4.92362 + 14.7905i 0.315850 + 0.948809i
$$244$$ 8.72356 15.1096i 0.558469 0.967296i
$$245$$ 6.34717 + 11.3294i 0.405506 + 0.723809i
$$246$$ −0.461980 1.05330i −0.0294548 0.0671558i
$$247$$ 12.9438 21.1378i 0.823597 1.34496i
$$248$$ 10.3385 + 44.9133i 0.656494 + 2.85200i
$$249$$ −5.74906 + 1.32111i −0.364332 + 0.0837222i
$$250$$ 10.5643 + 13.4499i 0.668146 + 0.850646i
$$251$$ −1.06489 2.02164i −0.0672151 0.127605i 0.848851 0.528633i $$-0.177295\pi$$
−0.916066 + 0.401028i $$0.868653\pi$$
$$252$$ −5.19198 + 18.1443i −0.327064 + 1.14298i
$$253$$ 6.79621 6.16724i 0.427274 0.387731i
$$254$$ −0.0358482 5.54559i −0.00224932 0.347961i
$$255$$ −22.6939 + 29.2578i −1.42115 + 1.83220i
$$256$$ −32.4098 3.36405i −2.02561 0.210253i
$$257$$ −18.5969 + 2.41776i −1.16004 + 0.150816i −0.684591 0.728927i $$-0.740019\pi$$
−0.475450 + 0.879743i $$0.657715\pi$$
$$258$$ −8.50387 16.9483i −0.529428 1.05515i
$$259$$ 5.23898 8.07875i 0.325534 0.501989i
$$260$$ −5.14480 52.8931i −0.319067 3.28029i
$$261$$ 10.5821 8.86603i 0.655014 0.548794i
$$262$$ 4.31945 0.335734i 0.266857 0.0207417i
$$263$$ −0.540396 2.66053i −0.0333223 0.164055i 0.959889 0.280380i $$-0.0904606\pi$$
−0.993211 + 0.116325i $$0.962889\pi$$
$$264$$ 16.1577 30.1727i 0.994440 1.85700i
$$265$$ 21.3899 12.1658i 1.31397 0.747337i
$$266$$ −19.5494 + 4.10255i −1.19865 + 0.251544i
$$267$$ 6.27736 18.7178i 0.384168 1.14551i
$$268$$ −37.5849 + 18.2713i −2.29586 + 1.11609i
$$269$$ 12.1270 16.2893i 0.739394 0.993178i −0.260224 0.965548i $$-0.583797\pi$$
0.999618 0.0276300i $$-0.00879603\pi$$
$$270$$ −4.14599 + 35.1317i −0.252317 + 2.13805i
$$271$$ 7.27398 + 9.77066i 0.441863 + 0.593525i 0.966139 0.258024i $$-0.0830712\pi$$
−0.524276 + 0.851549i $$0.675664\pi$$
$$272$$ 35.8954 + 18.6123i 2.17648 + 1.12854i
$$273$$ −1.24001 11.9898i −0.0750488 0.725656i
$$274$$ 40.6938 + 10.7630i 2.45840 + 0.650219i
$$275$$ 3.99737 + 8.08939i 0.241051 + 0.487809i
$$276$$ 17.6565 + 5.04533i 1.06280 + 0.303693i
$$277$$ 10.4055 7.23602i 0.625207 0.434770i −0.215317 0.976544i $$-0.569078\pi$$
0.840524 + 0.541774i $$0.182247\pi$$
$$278$$ −0.247654 0.0387324i −0.0148533 0.00232301i
$$279$$ 9.73176 + 23.4366i 0.582625 + 1.40311i
$$280$$ −14.7184 + 16.8654i −0.879594 + 1.00790i
$$281$$ 7.40619 14.9877i 0.441816 0.894093i −0.556195 0.831052i $$-0.687739\pi$$
0.998011 0.0630407i $$-0.0200798\pi$$
$$282$$ 15.6996 + 3.40686i 0.934900 + 0.202876i
$$283$$ 6.66617 5.74206i 0.396263 0.341330i −0.431796 0.901971i $$-0.642120\pi$$
0.828059 + 0.560641i $$0.189445\pi$$
$$284$$ 32.1525 + 26.2783i 1.90790 + 1.55933i
$$285$$ −23.6470 + 9.11981i −1.40073 + 0.540211i
$$286$$ −4.58695 + 41.5727i −0.271232 + 2.45824i
$$287$$ 0.00777077 0.400659i 0.000458694 0.0236501i
$$288$$ 5.92726 0.379264i 0.349267 0.0223483i
$$289$$ 28.9531 + 33.1766i 1.70312 + 1.95156i
$$290$$ 30.2875 8.01069i 1.77854 0.470404i
$$291$$ 27.9789 + 4.57197i 1.64015 + 0.268013i
$$292$$ 21.6114 6.31809i 1.26471 0.369738i
$$293$$ −0.371089 + 4.40552i −0.0216792 + 0.257373i 0.977287 + 0.211919i $$0.0679714\pi$$
−0.998966 + 0.0454540i $$0.985527\pi$$
$$294$$ 13.3526 15.4899i 0.778740 0.903389i
$$295$$ −28.3990 3.69212i −1.65345 0.214963i
$$296$$ −33.9995 8.05803i −1.97618 0.468363i
$$297$$ 6.00555 17.8633i 0.348477 1.03654i
$$298$$ 29.6478 7.02667i 1.71745 0.407044i
$$299$$ −11.6658 + 1.21088i −0.674652 + 0.0700271i
$$300$$ −9.53363 + 15.3324i −0.550424 + 0.885219i
$$301$$ −0.213497 6.60325i −0.0123058 0.380605i
$$302$$ 5.83145 + 7.04160i 0.335562 + 0.405198i
$$303$$ −18.8852 1.59782i −1.08493 0.0917922i
$$304$$ 14.4532 + 23.6026i 0.828947 + 1.35370i
$$305$$ 8.13490 7.97865i 0.465803 0.456856i
$$306$$ 55.5131 + 17.8450i 3.17347 + 1.02013i
$$307$$ −5.26906 + 7.68248i −0.300721 + 0.438462i −0.945362 0.326024i $$-0.894291\pi$$
0.644640 + 0.764486i $$0.277007\pi$$
$$308$$ 18.2129 13.7428i 1.03777 0.783071i
$$309$$ −5.00874 + 2.15836i −0.284937 + 0.122785i
$$310$$ −2.60496 + 57.5297i −0.147952 + 3.26747i
$$311$$ −1.10131 15.4621i −0.0624495 0.876778i −0.927198 0.374572i $$-0.877790\pi$$
0.864748 0.502206i $$-0.167478\pi$$
$$312$$ −39.4689 + 18.8547i −2.23449 + 1.06744i
$$313$$ −5.86553 15.7969i −0.331539 0.892896i −0.990099 0.140368i $$-0.955172\pi$$
0.658560 0.752528i $$-0.271166\pi$$
$$314$$ −4.67307 + 34.2129i −0.263717 + 1.93075i
$$315$$ −6.44442 + 10.5065i −0.363102 + 0.591971i
$$316$$ −10.5792 + 48.8391i −0.595128 + 2.74741i
$$317$$ −8.83894 26.9660i −0.496444 1.51456i −0.822251 0.569125i $$-0.807282\pi$$
0.325807 0.945436i $$-0.394364\pi$$
$$318$$ −29.5147 25.1116i −1.65510 1.40819i
$$319$$ −16.6678 + 0.862717i −0.933216 + 0.0483029i
$$320$$ −13.8151 5.43677i −0.772290 0.303925i
$$321$$ −20.6674 + 2.54341i −1.15354 + 0.141959i
$$322$$ 7.16156 + 6.16878i 0.399098 + 0.343773i
$$323$$ 7.25442 + 41.1418i 0.403647 + 2.28919i
$$324$$ 36.7057 8.64185i 2.03921 0.480103i
$$325$$ 2.00242 11.3563i 0.111074 0.629933i
$$326$$ 6.27044 5.12485i 0.347287 0.283839i
$$327$$ −19.7773 + 0.120502i −1.09369 + 0.00666379i
$$328$$ −1.37891 + 0.461871i −0.0761374 + 0.0255026i
$$329$$ 4.46805 + 3.37144i 0.246331 + 0.185874i
$$330$$ 29.5609 30.9067i 1.62727 1.70136i
$$331$$ −10.9396 + 5.85301i −0.601294 + 0.321711i −0.744129 0.668036i $$-0.767135\pi$$
0.142835 + 0.989746i $$0.454378\pi$$
$$332$$ 1.93114 + 14.1385i 0.105985 + 0.775949i
$$333$$ −19.1982 1.25706i −1.05206 0.0688863i
$$334$$ 2.16969 4.11905i 0.118720 0.225384i
$$335$$ −26.8472 + 4.91304i −1.46682 + 0.268428i
$$336$$ 12.5542 + 4.85240i 0.684886 + 0.264720i
$$337$$ −2.34328 2.42027i −0.127647 0.131840i 0.651587 0.758574i $$-0.274103\pi$$
−0.779234 + 0.626733i $$0.784392\pi$$
$$338$$ 14.2857 15.5396i 0.777040 0.845244i
$$339$$ −12.1980 14.5480i −0.662505 0.790138i
$$340$$ 65.5479 + 61.0452i 3.55483 + 3.31064i
$$341$$ 7.65275 29.7098i 0.414419 1.60887i
$$342$$ 26.2211 + 30.0911i 1.41788 + 1.62714i
$$343$$ 16.0545 7.29767i 0.866862 0.394037i
$$344$$ −22.3093 + 8.77955i −1.20284 + 0.473362i
$$345$$ 10.2253 + 6.26674i 0.550511 + 0.337390i
$$346$$ −31.6459 5.79120i −1.70129 0.311337i
$$347$$ −16.7803 + 21.3637i −0.900812 + 1.14686i 0.0877642 + 0.996141i $$0.472028\pi$$
−0.988576 + 0.150721i $$0.951841\pi$$
$$348$$ −19.0563 27.4251i −1.02153 1.47014i
$$349$$ −1.07918 3.78199i −0.0577671 0.202445i 0.927391 0.374093i $$-0.122046\pi$$
−0.985158 + 0.171647i $$0.945091\pi$$
$$350$$ −7.76443 + 5.10674i −0.415026 + 0.272967i
$$351$$ −19.6997 + 13.8562i −1.05149 + 0.739588i
$$352$$ −5.99920 3.94574i −0.319758 0.210308i
$$353$$ −2.79119 + 8.90266i −0.148560 + 0.473841i −0.998601 0.0528756i $$-0.983161\pi$$
0.850041 + 0.526716i $$0.176577\pi$$
$$354$$ 9.81601 + 44.0178i 0.521715 + 2.33952i
$$355$$ 15.6269 + 22.1647i 0.829389 + 1.17638i
$$356$$ −43.7289 19.1990i −2.31762 1.01754i
$$357$$ 14.9515 + 13.7553i 0.791320 + 0.728009i
$$358$$ −16.1823 34.9979i −0.855261 1.84970i
$$359$$ −14.7369 8.13147i −0.777783 0.429163i 0.0439507 0.999034i $$-0.486006\pi$$
−0.821734 + 0.569871i $$0.806993\pi$$
$$360$$ 43.7668 + 9.21864i 2.30671 + 0.485865i
$$361$$ −3.45602 + 8.95131i −0.181896 + 0.471121i
$$362$$ 55.2268 + 16.1456i 2.90266 + 0.848593i
$$363$$ −3.07789 + 2.10931i −0.161548 + 0.110710i
$$364$$ −29.1562 + 0.376963i −1.52820 + 0.0197582i
$$365$$ 14.7037 0.190106i 0.769628 0.00995058i
$$366$$ −16.1857 7.74683i −0.846039 0.404933i
$$367$$ −4.49014 1.31269i −0.234383 0.0685220i 0.161314 0.986903i $$-0.448427\pi$$
−0.395697 + 0.918381i $$0.629497\pi$$
$$368$$ 4.71693 12.2172i 0.245887 0.636864i
$$369$$ −0.706291 + 0.377213i −0.0367681 + 0.0196369i
$$370$$ −38.2274 21.0930i −1.98735 1.09657i
$$371$$ −5.66653 12.2552i −0.294192 0.636257i
$$372$$ 58.5832 18.3433i 3.03740 0.951055i
$$373$$ −6.36238 2.79338i −0.329432 0.144636i 0.230733 0.973017i $$-0.425888\pi$$
−0.560165 + 0.828381i $$0.689262\pi$$
$$374$$ −40.6209 57.6155i −2.10046 2.97922i
$$375$$ 8.76838 8.05484i 0.452797 0.415950i
$$376$$ 6.07658 19.3816i 0.313376 0.999530i
$$377$$ 17.8207 + 11.7209i 0.917813 + 0.603655i
$$378$$ 19.0173 + 3.88478i 0.978145 + 0.199811i
$$379$$ 16.8267 11.0671i 0.864332 0.568480i −0.0381190 0.999273i $$-0.512137\pi$$
0.902451 + 0.430793i $$0.141766\pi$$
$$380$$ 16.8231 + 58.9568i 0.863009 + 3.02442i
$$381$$ −3.84728 + 0.322628i −0.197102 + 0.0165287i
$$382$$ −4.12125 + 5.24694i −0.210862 + 0.268457i
$$383$$ 24.2650 + 4.44049i 1.23988 + 0.226899i 0.759703 0.650271i $$-0.225345\pi$$
0.480181 + 0.877169i $$0.340571\pi$$
$$384$$ −0.793001 + 30.2279i −0.0404676 + 1.54256i
$$385$$ 13.8659 5.45674i 0.706670 0.278101i
$$386$$ 16.3127 7.41504i 0.830295 0.377415i
$$387$$ −11.3072 + 6.81251i −0.574779 + 0.346299i
$$388$$ 17.1067 66.4124i 0.868462 3.37158i
$$389$$ 10.5779 + 9.85125i 0.536320 + 0.499478i 0.902279 0.431152i $$-0.141893\pi$$
−0.365959 + 0.930631i $$0.619259\pi$$
$$390$$ −53.8296 + 9.47101i −2.72577 + 0.479583i
$$391$$ 13.3788 14.5531i 0.676593 0.735980i
$$392$$ −17.9857 18.5766i −0.908414 0.938259i
$$393$$ −0.464947 2.98011i −0.0234535 0.150327i
$$394$$ −47.7831 + 8.74430i −2.40728 + 0.440531i
$$395$$ −15.2098 + 28.8751i −0.765289 + 1.45287i
$$396$$ −41.7294 18.3581i −2.09698 0.922529i
$$397$$ −4.90272 35.8943i −0.246061 1.80148i −0.535766 0.844367i $$-0.679977\pi$$
0.289705 0.957116i $$-0.406443\pi$$
$$398$$ 36.0320 19.2782i 1.80612 0.966331i
$$399$$ 3.89720 + 13.3490i 0.195104 + 0.668285i
$$400$$ 10.2783 + 7.75568i 0.513916 + 0.387784i
$$401$$ −11.2872 + 3.78069i −0.563655 + 0.188799i −0.585086 0.810971i $$-0.698939\pi$$
0.0214308 + 0.999770i $$0.493178\pi$$
$$402$$ 21.7169 + 37.0910i 1.08314 + 1.84993i
$$403$$ −30.3584 + 24.8121i −1.51226 + 1.23598i
$$404$$ −7.96135 + 45.1511i −0.396092 + 2.24635i
$$405$$ 24.6076 + 0.991490i 1.22276 + 0.0492676i
$$406$$ −2.98497 16.9286i −0.148142 0.840152i
$$407$$ 17.6231 + 15.1801i 0.873545 + 0.752448i
$$408$$ 28.7881 67.8724i 1.42522 3.36018i
$$409$$ 5.48829 + 2.15984i 0.271378 + 0.106797i 0.497975 0.867191i $$-0.334077\pi$$
−0.226597 + 0.973989i $$0.572760\pi$$
$$410$$ −1.81466 + 0.0939259i −0.0896195 + 0.00463867i
$$411$$ 5.28576 28.8235i 0.260727 1.42176i
$$412$$ 4.10944 + 12.5372i 0.202458 + 0.617662i
$$413$$ −3.32655 + 15.3571i −0.163689 + 0.755673i
$$414$$ 3.77308 18.5056i 0.185437 0.909499i
$$415$$ −1.26121 + 9.23369i −0.0619104 + 0.453264i
$$416$$ 3.19424 + 8.60267i 0.156611 + 0.421781i
$$417$$ −0.0135875 + 0.173977i −0.000665383 + 0.00851967i
$$418$$ −3.42818 48.1309i −0.167678 2.35416i
$$419$$ −0.390376 + 8.62134i −0.0190711 + 0.421180i 0.966992 + 0.254807i $$0.0820121\pi$$
−0.986063 + 0.166373i $$0.946795\pi$$
$$420$$ 23.9094 + 17.8137i 1.16666 + 0.869218i
$$421$$ 23.6030 17.8101i 1.15034 0.868011i 0.157509 0.987518i $$-0.449654\pi$$
0.992833 + 0.119506i $$0.0381311\pi$$
$$422$$ −25.3346 + 36.9387i −1.23327 + 1.79815i
$$423$$ 1.52178 11.0801i 0.0739916 0.538731i
$$424$$ −34.9797 + 34.3079i −1.69876 + 1.66614i
$$425$$ 10.1500 + 16.5753i 0.492347 + 0.804020i
$$426$$ 24.3960 35.0542i 1.18199 1.69838i
$$427$$ −3.98767 4.81520i −0.192977 0.233024i
$$428$$ 1.62781 + 50.3464i 0.0786830 + 2.43358i
$$429$$ 29.1019 + 0.951745i 1.40505 + 0.0459507i
$$430$$ −29.7973 + 3.09288i −1.43695 + 0.149152i
$$431$$ 21.7773 5.16132i 1.04898 0.248612i 0.330242 0.943896i $$-0.392870\pi$$
0.718735 + 0.695284i $$0.244722\pi$$
$$432$$ −3.78200 26.6259i −0.181961 1.28104i
$$433$$ −31.8098 7.53906i −1.52868 0.362304i −0.621625 0.783315i $$-0.713527\pi$$
−0.907056 + 0.421011i $$0.861675\pi$$
$$434$$ 31.3344 + 4.07374i 1.50410 + 0.195546i
$$435$$ −7.18638 20.5925i −0.344561 0.987335i
$$436$$ −4.01574 + 47.6744i −0.192319 + 2.28319i
$$437$$ 12.9874 3.79687i 0.621271 0.181629i
$$438$$ −8.19288 21.6596i −0.391471 1.03493i
$$439$$ −9.10215 + 2.40741i −0.434422 + 0.114899i −0.466369 0.884590i $$-0.654438\pi$$
0.0319472 + 0.999490i $$0.489829\pi$$
$$440$$ −35.5543 40.7408i −1.69499 1.94224i
$$441$$ −11.4685 8.43640i −0.546117 0.401733i
$$442$$ −1.74701 + 90.0752i −0.0830967 + 4.28444i
$$443$$ 2.44453 22.1554i 0.116143 1.05263i −0.785115 0.619350i $$-0.787396\pi$$
0.901258 0.433283i $$-0.142645\pi$$
$$444$$ −7.20852 + 45.9793i −0.342101 + 2.18208i
$$445$$ −24.1503 19.7381i −1.14483 0.935676i
$$446$$ −7.14735 + 6.15654i −0.338437 + 0.291521i
$$447$$ −6.46903 20.2013i −0.305974 0.955490i
$$448$$ −3.60880 + 7.30303i −0.170500 + 0.345036i
$$449$$ −16.4564 + 18.8570i −0.776626 + 0.889915i −0.996325 0.0856528i $$-0.972702\pi$$
0.219699 + 0.975568i $$0.429493\pi$$
$$450$$ 16.4784 + 8.55982i 0.776799 + 0.403514i
$$451$$ 0.956401 + 0.149578i 0.0450352 + 0.00704337i
$$452$$ −37.7053 + 26.2203i −1.77351 + 1.23330i
$$453$$ 4.57448 4.42568i 0.214928 0.207937i
$$454$$ −0.527529 1.06755i −0.0247581 0.0501024i
$$455$$ −18.4102 4.86927i −0.863082 0.228275i
$$456$$ 40.8753 29.5938i 1.91416 1.38586i
$$457$$ −28.7820 14.9239i −1.34636 0.698109i −0.373098 0.927792i $$-0.621704\pi$$
−0.973266 + 0.229682i $$0.926231\pi$$
$$458$$ −31.5446 42.3717i −1.47398 1.97990i
$$459$$ 9.40572 39.4898i 0.439021 1.84323i
$$460$$ 17.3244 23.2706i 0.807752 1.08500i
$$461$$ 17.4419 8.47911i 0.812352 0.394911i 0.0160958 0.999870i $$-0.494876\pi$$
0.796257 + 0.604959i $$0.206810\pi$$
$$462$$ −15.5368 17.5858i −0.722838 0.818164i
$$463$$ 16.5754 3.47843i 0.770323 0.161657i 0.196353 0.980533i $$-0.437090\pi$$
0.573969 + 0.818877i $$0.305403\pi$$
$$464$$ −20.7026 + 11.7749i −0.961093 + 0.546635i
$$465$$ 40.0713 1.28070i 1.85826 0.0593910i
$$466$$ 13.8323 + 68.1006i 0.640769 + 3.15470i
$$467$$ 15.1979 1.18127i 0.703275 0.0546629i 0.279125 0.960255i $$-0.409956\pi$$
0.424150 + 0.905592i $$0.360573\pi$$
$$468$$ 29.0936 + 50.4781i 1.34485 + 2.33335i
$$469$$ 1.44977 + 14.9050i 0.0669443 + 0.688247i
$$470$$ 13.8094 21.2948i 0.636982 0.982256i
$$471$$ 23.9981 + 1.40667i 1.10578 + 0.0648161i
$$472$$ 56.5451 7.35136i 2.60270 0.338374i
$$473$$ 15.8741 + 1.64769i 0.729892 + 0.0757608i
$$474$$ 50.9198 + 6.97428i 2.33882 + 0.320339i
$$475$$ 0.0859969 + 13.3034i 0.00394581 + 0.610402i
$$476$$ 36.3952 33.0268i 1.66817 1.51378i
$$477$$ −15.8453 + 21.8345i −0.725507 + 0.999731i
$$478$$ 13.6647 + 25.9417i 0.625007 + 1.18655i
$$479$$ 8.05058 + 10.2495i 0.367840 + 0.468313i 0.934667 0.355524i $$-0.115698\pi$$
−0.566827 + 0.823837i $$0.691829\pi$$
$$480$$ 2.75256 8.97057i 0.125637 0.409449i
$$481$$ −6.66805 28.9679i −0.304037 1.32082i
$$482$$ −14.8542 + 24.2575i −0.676591 + 1.10490i
$$483$$ 3.89725 5.30205i 0.177331 0.241252i
$$484$$ 4.41167 + 7.87462i 0.200531 + 0.357937i
$$485$$ 22.3945 38.7884i 1.01688 1.76129i
$$486$$ −11.7730 36.9533i −0.534034 1.67624i
$$487$$ −18.0518 31.2666i −0.818003 1.41682i −0.907151 0.420804i $$-0.861748\pi$$
0.0891484 0.996018i $$-0.471585\pi$$
$$488$$ −11.5969 + 19.4998i −0.524965 + 0.882712i
$$489$$ −3.89383 4.07716i −0.176085 0.184376i
$$490$$ −15.4258 28.3888i −0.696865 1.28248i
$$491$$ −31.6417 + 29.4681i −1.42797 + 1.32988i −0.564544 + 0.825403i $$0.690948\pi$$
−0.863426 + 0.504475i $$0.831686\pi$$
$$492$$ 0.755016 + 1.78375i 0.0340387 + 0.0804177i
$$493$$ −35.5880 + 5.09544i −1.60280 + 0.229487i
$$494$$ −32.8809 + 52.1691i −1.47938 + 2.34720i
$$495$$ −23.0395 18.8588i −1.03555 0.847642i
$$496$$ −9.26840 42.7877i −0.416163 1.92122i
$$497$$ 12.8382 7.52321i 0.575872 0.337462i
$$498$$ 14.3447 3.10168i 0.642801 0.138990i
$$499$$ 23.1730 31.9818i 1.03737 1.43170i 0.140140 0.990132i $$-0.455245\pi$$
0.897227 0.441570i $$-0.145578\pi$$
$$500$$ −17.4969 22.8788i −0.782484 1.02317i
$$501$$ −2.97553 1.28483i −0.132937 0.0574019i
$$502$$ 2.58414 + 5.06357i 0.115336 + 0.225998i
$$503$$ −32.1944 + 23.0112i −1.43548 + 1.02602i −0.443958 + 0.896048i $$0.646426\pi$$
−0.991518 + 0.129969i $$0.958512\pi$$
$$504$$ 7.05592 23.5049i 0.314296 1.04699i
$$505$$ −12.9168 + 27.0132i −0.574791 + 1.20207i
$$506$$ −17.1056 + 15.1239i −0.760438 + 0.672341i
$$507$$ −11.5531 9.08139i −0.513090 0.403319i
$$508$$ −0.0603713 + 9.33923i −0.00267855 + 0.414361i
$$509$$ 0.0139096 + 0.0155288i 0.000616534 + 0.000688301i 0.745181 0.666863i $$-0.232363\pi$$
−0.744564 + 0.667551i $$0.767343\pi$$
$$510$$ 57.3978 72.0561i 2.54162 3.19070i
$$511$$ 0.573228 8.04800i 0.0253581 0.356023i
$$512$$ 45.8390 + 5.35781i 2.02582 + 0.236784i
$$513$$ 19.4785 19.8157i 0.859995 0.874885i
$$514$$ 46.3421 5.41662i 2.04406 0.238917i
$$515$$ 0.389759 + 8.60771i 0.0171748 + 0.379301i
$$516$$ 13.9510 + 28.7251i 0.614159 + 1.26455i
$$517$$ −9.52991 + 9.59171i −0.419125 + 0.421843i
$$518$$ −13.2931 + 19.9294i −0.584066 + 0.875647i
$$519$$ −2.32059 + 22.2764i −0.101863 + 0.977825i
$$520$$ 5.80036 + 68.8611i 0.254363 + 3.01976i
$$521$$ −2.63608 6.82761i −0.115489 0.299123i 0.863072 0.505080i $$-0.168537\pi$$
−0.978561 + 0.205957i $$0.933969\pi$$
$$522$$ −26.6107 + 21.7161i −1.16472 + 0.950487i
$$523$$ 4.24256 + 12.3993i 0.185514 + 0.542185i 0.999237 0.0390682i $$-0.0124390\pi$$
−0.813722 + 0.581254i $$0.802562\pi$$
$$524$$ −7.28101 + 0.471314i −0.318072 + 0.0205895i
$$525$$ 3.96147 + 5.11511i 0.172893 + 0.223242i
$$526$$ 1.25879 + 6.63611i 0.0548861 + 0.289348i
$$527$$ 10.6332 65.2236i 0.463188 2.84119i
$$528$$ −15.7179 + 28.4610i −0.684034 + 1.23861i
$$529$$ 13.3768 + 9.82493i 0.581602 + 0.427171i
$$530$$ −53.6039 + 29.5774i −2.32840 + 1.28476i
$$531$$ 30.0258 9.17664i 1.30301 0.398232i
$$532$$ 33.0094 6.48283i 1.43114 0.281066i
$$533$$ −0.871948 0.877603i −0.0377683 0.0380132i
$$534$$ −16.2185 + 46.3633i −0.701844 + 2.00634i
$$535$$ −7.79354 + 31.9614i −0.336944 + 1.38181i
$$536$$ 49.1771 23.1255i 2.12413 0.998868i
$$537$$ −23.4233 + 13.1112i −1.01079 + 0.565790i
$$538$$ −30.6927 + 40.1337i −1.32326 + 1.73029i
$$539$$ 4.93652 + 16.4891i 0.212631 + 0.710238i
$$540$$ 7.74648 59.0695i 0.333355 2.54195i
$$541$$ 9.77214 32.6412i 0.420137 1.40336i −0.442152 0.896940i $$-0.645785\pi$$
0.862289 0.506416i $$-0.169030\pi$$
$$542$$ −17.7816 24.5409i −0.763784 1.05412i
$$543$$ 8.24150 39.1999i 0.353677 1.68223i
$$544$$ −13.6377 7.29658i −0.584711 0.312838i
$$545$$ −10.8763 + 29.2918i −0.465890 + 1.25472i
$$546$$ 2.69919 + 29.8675i 0.115515 + 1.27821i
$$547$$ −29.1031 + 0.752679i −1.24436 + 0.0321822i −0.642416 0.766356i $$-0.722068\pi$$
−0.601944 + 0.798538i $$0.705607\pi$$
$$548$$ −68.2917 19.0103i −2.91728 0.812080i
$$549$$ −4.50807 + 11.6504i −0.192400 + 0.497228i
$$550$$ −9.68427 20.2529i −0.412939 0.863588i
$$551$$ −22.6578 9.60038i −0.965255 0.408990i
$$552$$ −22.8732 6.85704i −0.973548 0.291855i
$$553$$ 15.0870 + 9.64578i 0.641564 + 0.410180i
$$554$$ −26.1191 + 17.6667i −1.10969 + 0.750586i
$$555$$ −12.5882 + 27.6662i −0.534340 + 1.17436i
$$556$$ 0.416192 + 0.0706150i 0.0176505 + 0.00299474i
$$557$$ −27.4825 + 11.2278i −1.16447 + 0.475738i −0.876264 0.481831i $$-0.839972\pi$$
−0.288205 + 0.957569i $$0.593058\pi$$
$$558$$ −23.4563 58.6174i −0.992986 2.48147i
$$559$$ −15.1040 13.7062i −0.638833 0.579710i
$$560$$ 14.1873 15.8388i 0.599525 0.669312i
$$561$$ −37.8100 + 31.2884i −1.59634 + 1.32100i
$$562$$ −18.9068 + 37.0475i −0.797535 + 1.56275i
$$563$$ −4.05462 27.0702i −0.170882 1.14087i −0.893314 0.449433i $$-0.851626\pi$$
0.722432 0.691442i $$-0.243024\pi$$
$$564$$ −26.3631 6.07876i −1.11009 0.255962i
$$565$$ −28.3152 + 9.89325i −1.19123 + 0.416212i
$$566$$ −16.7684 + 14.0704i −0.704830 + 0.591423i
$$567$$ 1.67538 13.4085i 0.0703593 0.563105i
$$568$$ −41.3647 34.7091i −1.73562 1.45636i
$$569$$ 12.1893 + 4.61585i 0.511001 + 0.193507i 0.596168 0.802860i $$-0.296689\pi$$
−0.0851661 + 0.996367i $$0.527142\pi$$
$$570$$ 59.1211 21.9272i 2.47631 0.918429i
$$571$$ −3.51546 + 17.3077i −0.147118 + 0.724304i 0.837059 + 0.547113i $$0.184273\pi$$
−0.984176 + 0.177191i $$0.943299\pi$$
$$572$$ 8.62926 69.9061i 0.360807 2.92292i
$$573$$ 3.86318 + 2.57885i 0.161387 + 0.107733i
$$574$$ −0.0322186 + 0.996488i −0.00134478 + 0.0415926i
$$575$$ 4.97566 3.85643i 0.207499 0.160824i
$$576$$ 16.2555 0.829275i 0.677313 0.0345531i
$$577$$ 4.02035 + 6.37872i 0.167369 + 0.265550i 0.919187 0.393822i $$-0.128847\pi$$
−0.751817 + 0.659371i $$0.770823\pi$$
$$578$$ −70.9609 83.4662i −2.95159 3.47174i
$$579$$ −6.02262 10.9246i −0.250292 0.454009i
$$580$$ −51.1768 + 12.8301i −2.12500 + 0.532741i
$$581$$ 4.99043 + 1.11482i 0.207038 + 0.0462503i
$$582$$ −69.4575 12.2738i −2.87911 0.508766i
$$583$$ 31.1841 9.55599i 1.29151 0.395769i
$$584$$ −28.2065 + 7.85182i −1.16719 + 0.324910i
$$585$$ 9.46398 + 36.8547i 0.391287 + 1.52375i
$$586$$ 1.06488 10.9479i 0.0439896 0.452253i
$$587$$ 1.65572 + 1.31790i 0.0683390 + 0.0543954i 0.656343 0.754463i $$-0.272102\pi$$
−0.588004 + 0.808858i $$0.700086\pi$$
$$588$$ −22.8223 + 25.7934i −0.941174 + 1.06370i
$$589$$ 29.2991 34.4624i 1.20725 1.42000i
$$590$$ 70.5307 + 10.0985i 2.90370 + 0.415748i
$$591$$ 8.63493 + 32.6968i 0.355193 + 1.34497i
$$592$$ 32.1953 + 8.07141i 1.32322 + 0.331733i
$$593$$ −17.5324 8.80508i −0.719968 0.361581i 0.0507904 0.998709i $$-0.483826\pi$$
−0.770758 + 0.637128i $$0.780122\pi$$
$$594$$ −15.5148 + 44.2463i −0.636582 + 1.81545i
$$595$$ 28.6830 14.4051i 1.17589 0.590553i
$$596$$ −50.0782 + 11.1870i −2.05128 + 0.458238i
$$597$$ −15.3156 23.9748i −0.626827 0.981224i
$$598$$ 29.0606 2.63714i 1.18838 0.107841i
$$599$$ −0.113249 1.02640i −0.00462721 0.0419376i 0.991433 0.130614i $$-0.0416950\pi$$
−0.996060 + 0.0886768i $$0.971736\pi$$
$$600$$ 12.6539 19.7758i 0.516594 0.807344i
$$601$$ −15.9322 1.44579i −0.649888 0.0589750i −0.239515 0.970893i $$-0.576988\pi$$
−0.410373 + 0.911918i $$0.634602\pi$$
$$602$$ 0.318739 + 16.4341i 0.0129908 + 0.669803i
$$603$$ 24.5789 17.0652i 1.00093 0.694947i
$$604$$ −9.66651 11.9846i −0.393325 0.487646i
$$605$$ 1.39651 + 5.72712i 0.0567764 + 0.232841i
$$606$$ 46.9303 + 4.58240i 1.90641 + 0.186147i
$$607$$ −8.61138 + 15.3709i −0.349525 + 0.623886i −0.989504 0.144507i $$-0.953840\pi$$
0.639978 + 0.768393i $$0.278943\pi$$
$$608$$ −5.41152 9.09929i −0.219466 0.369025i
$$609$$ −11.5899 + 2.98078i −0.469646 + 0.120787i
$$610$$ −20.4942 + 19.5872i −0.829786 + 0.793063i
$$611$$ 17.0723 2.67005i 0.690669 0.108019i
$$612$$ −93.0922 31.2586i −3.76303 1.26355i
$$613$$ 19.0637 11.5050i 0.769976 0.464683i −0.0765263 0.997068i $$-0.524383\pi$$
0.846503 + 0.532384i $$0.178704\pi$$
$$614$$ 13.3552 18.9426i 0.538972 0.764461i
$$615$$ 0.162624 + 1.25451i 0.00655763 + 0.0505868i
$$616$$ −23.9124 + 17.5630i −0.963458 + 0.707634i
$$617$$ −1.90277 + 4.11519i −0.0766028 + 0.165671i −0.942183 0.335100i $$-0.891230\pi$$
0.865580 + 0.500771i $$0.166950\pi$$
$$618$$ 12.5299 5.20834i 0.504027 0.209510i
$$619$$ 14.5058 + 15.7790i 0.583035 + 0.634211i 0.955906 0.293673i $$-0.0948775\pi$$
−0.372871 + 0.927883i $$0.621627\pi$$
$$620$$ 5.63912 96.8200i 0.226473 3.88838i
$$621$$ −13.0473 1.62533i −0.523570 0.0652221i
$$622$$ 2.24245 + 38.5013i 0.0899140 + 1.54376i
$$623$$ −11.9040 + 12.2951i −0.476924 + 0.492593i
$$624$$ 37.7209 17.4244i 1.51005 0.697532i
$$625$$ −11.6314 29.0045i −0.465258 1.16018i
$$626$$ 14.0839 + 39.4874i 0.562904 + 1.57824i
$$627$$ −33.2237 + 4.96368i −1.32683 + 0.198230i
$$628$$ 8.61406 57.5109i 0.343738 2.29493i
$$629$$ 40.7605 + 29.1338i 1.62523 + 1.16164i
$$630$$ 16.3700 25.9301i 0.652198 1.03308i
$$631$$ 15.8128 + 15.5091i 0.629497 + 0.617406i 0.943244 0.332100i $$-0.107757\pi$$
−0.313747 + 0.949507i $$0.601584\pi$$
$$632$$ 14.5767 63.3255i 0.579831 2.51895i
$$633$$ 26.9994 + 15.6015i 1.07313 + 0.620103i
$$634$$ 21.1217 + 67.3689i 0.838850 + 2.67556i
$$635$$ −1.67366 + 5.86537i −0.0664173 + 0.232760i
$$636$$ 49.1543 + 42.9290i 1.94910 + 1.70225i
$$637$$ 7.38965 20.7186i 0.292788 0.820902i
$$638$$ 41.4929 1.61012i 1.64272 0.0637451i
$$639$$ −25.6410 15.0512i −1.01434 0.595418i
$$640$$ 44.2239 + 18.0675i 1.74810 + 0.714179i
$$641$$ −5.62184 3.49273i −0.222049 0.137955i 0.412173 0.911106i $$-0.364770\pi$$
−0.634222 + 0.773151i $$0.718679\pi$$
$$642$$ 51.4971 5.66261i 2.03243 0.223485i
$$643$$ −44.9260 + 19.0357i −1.77171 + 0.750695i −0.779458 + 0.626455i $$0.784505\pi$$
−0.992252 + 0.124240i $$0.960351\pi$$
$$644$$ −11.9253 10.5438i −0.469924 0.415483i
$$645$$ 3.74660 + 20.5163i 0.147522 + 0.807827i
$$646$$ −16.7239 102.584i −0.657991 4.03611i
$$647$$ −17.6475 + 6.42316i −0.693795 + 0.252521i −0.664759 0.747058i $$-0.731466\pi$$
−0.0290355 + 0.999578i $$0.509244\pi$$
$$648$$ −47.8721 + 10.6196i −1.88059 + 0.417176i
$$649$$ −35.6683 12.9822i −1.40010 0.509596i
$$650$$ −5.34678 + 28.1871i −0.209718 + 1.10559i
$$651$$ 1.14523 21.9679i 0.0448851 0.860991i
$$652$$ −10.6706 + 8.49343i −0.417894 + 0.332628i
$$653$$ 21.5578 + 33.2432i 0.843624 + 1.30091i 0.951783 + 0.306773i $$0.0992492\pi$$
−0.108159 + 0.994134i $$0.534496\pi$$
$$654$$ 49.2048 + 0.336344i 1.92406 + 0.0131521i
$$655$$ −4.66352 0.978666i −0.182219 0.0382396i
$$656$$ 1.31542 0.421772i 0.0513585 0.0164674i
$$657$$ −14.5941 + 6.84960i −0.569368 + 0.267228i
$$658$$ −11.0069 8.53101i −0.429095 0.332573i
$$659$$ 14.3471 17.3244i 0.558883 0.674863i −0.412890 0.910781i $$-0.635480\pi$$
0.971773 + 0.235918i $$0.0758097\pi$$
$$660$$ −50.4517 + 51.4015i −1.96383 + 2.00080i
$$661$$ −12.1853 5.92368i −0.473953 0.230404i 0.184781 0.982780i $$-0.440842\pi$$
−0.658735 + 0.752375i $$0.728908\pi$$
$$662$$ 27.4032 14.2090i 1.06506 0.552247i
$$663$$ 62.6151 3.62359i 2.43177 0.140729i
$$664$$ −2.27330 18.4161i −0.0882210 0.714683i
$$665$$ 21.9038 + 1.70250i 0.849394 + 0.0660201i
$$666$$ 47.7199 + 3.74474i 1.84911 + 0.145106i
$$667$$ 2.90453 + 11.2761i 0.112464 + 0.436612i
$$668$$ −3.74330 + 6.88900i −0.144833 + 0.266543i
$$669$$ 4.65701 + 4.63044i 0.180050 + 0.179023i
$$670$$ 66.9472 11.3589i 2.58639 0.438832i
$$671$$ 12.8284 7.97001i 0.495234 0.307679i
$$672$$ −4.77788 1.91809i −0.184311 0.0739921i
$$673$$ 14.1057 31.5721i 0.543736 1.21701i −0.408810 0.912620i $$-0.634056\pi$$
0.952546 0.304395i $$-0.0984542\pi$$
$$674$$ 5.75165 + 6.09639i 0.221545 + 0.234824i
$$675$$ 5.05665 11.8972i 0.194630 0.457925i
$$676$$ −24.3946 + 25.8568i −0.938254 + 0.994492i
$$677$$ 1.70544 + 4.09855i 0.0655454 + 0.157520i 0.952667 0.304016i $$-0.0983275\pi$$
−0.887122 + 0.461536i $$0.847299\pi$$
$$678$$ 29.8776 + 36.5840i 1.14744 + 1.40500i
$$679$$ −20.1762 14.0305i −0.774291 0.538443i
$$680$$ −84.2027 80.4763i −3.22903 3.08613i
$$681$$ −0.712662 + 0.423475i −0.0273093 + 0.0162276i
$$682$$ −19.9937 + 73.6643i −0.765598 + 2.82075i
$$683$$ 4.21089 12.3068i 0.161125 0.470906i −0.835821 0.549003i $$-0.815008\pi$$
0.996946 + 0.0780965i $$0.0248842\pi$$
$$684$$ −43.4997 51.2426i −1.66325 1.95931i
$$685$$ −39.6375 23.9213i −1.51447 0.913987i
$$686$$ −40.1743 + 17.6384i −1.53386 + 0.673436i
$$687$$ −27.7166 + 24.1701i −1.05745 + 0.922146i
$$688$$ 21.2982 8.06524i 0.811988 0.307485i
$$689$$ −39.3494 13.7486i −1.49909 0.523778i
$$690$$ −25.2363 15.9189i −0.960731 0.606024i
$$691$$ −0.762640 1.14337i −0.0290122 0.0434959i 0.817128 0.576456i $$-0.195565\pi$$
−0.846140 + 0.532961i $$0.821079\pi$$
$$692$$ 53.1638 + 10.4410i 2.02098 + 0.396908i
$$693$$ −11.3721 + 11.7283i −0.431991 + 0.445522i
$$694$$ 42.4322 52.6077i 1.61071 1.99696i
$$695$$ 0.249487 + 0.117321i 0.00946357 + 0.00445023i
$$696$$ 24.3171 + 35.9800i 0.921736 + 1.36382i
$$697$$ 2.08080 + 0.134695i 0.0788161 + 0.00510192i
$$698$$ 2.56308 + 9.44335i 0.0970139 + 0.357436i
$$699$$ 46.5260 13.2574i 1.75978 0.501440i
$$700$$ 13.1860 8.43041i 0.498385 0.318640i
$$701$$ −5.92472 + 13.7350i −0.223773 + 0.518765i −0.992705 0.120566i $$-0.961529\pi$$
0.768932 + 0.639331i $$0.220788\pi$$
$$702$$ 49.4536 33.8371i 1.86651 1.27710i
$$703$$ 13.5831 + 31.4892i 0.512296 + 1.18764i
$$704$$ −16.2994 11.0248i −0.614307 0.415512i
$$705$$ −15.5222 8.44182i −0.584599 0.317937i
$$706$$ 7.23012 22.0578i 0.272109 0.830156i
$$707$$ 14.1746 + 8.30633i 0.533090 + 0.312392i
$$708$$ −15.5712 74.3371i −0.585203 2.79376i
$$709$$ 10.5920 + 3.54783i 0.397790 + 0.133242i 0.509440 0.860506i $$-0.329852\pi$$
−0.111651 + 0.993748i $$0.535614\pi$$
$$710$$ −38.1628 55.6428i −1.43223 2.08824i
$$711$$ 2.10695 35.7179i 0.0790167 1.33953i
$$712$$ 56.5359 + 25.6987i 2.11877 + 0.963101i
$$713$$ −21.3756 1.10639i −0.800521 0.0414347i
$$714$$ −36.7532 34.7007i −1.37545 1.29864i
$$715$$ 17.6727 42.4713i 0.660920 1.58834i
$$716$$ 26.4881 + 59.2868i 0.989906 + 2.21565i
$$717$$ 17.2725 10.8775i 0.645054 0.406227i
$$718$$ 36.4001 + 20.7031i 1.35844 + 0.772631i
$$719$$ −48.8498 15.6630i −1.82179 0.584133i −0.999895 0.0144924i $$-0.995387\pi$$
−0.821894 0.569641i $$-0.807082\pi$$
$$720$$ −41.4585 9.29376i −1.54507 0.346358i
$$721$$ 4.72421 + 0.183321i 0.175939 + 0.00682722i
$$722$$ 8.88561 22.1574i 0.330688 0.824614i
$$723$$ 17.6347 + 9.00794i 0.655841 + 0.335009i
$$724$$ −92.6472 28.3906i −3.44321 1.05513i
$$725$$ −11.4447 0.295989i −0.425046 0.0109927i
$$726$$ 7.72487 5.14842i 0.286697 0.191076i
$$727$$ 20.8176 + 0.269153i 0.772083 + 0.00998232i 0.397967 0.917400i $$-0.369716\pi$$
0.374116 + 0.927382i $$0.377946\pi$$
$$728$$ 37.9169 1.40529
$$729$$ −25.0172 + 10.1557i −0.926564 + 0.376137i
$$730$$ −36.5853 −1.35408
$$731$$ 34.3741 + 0.444426i 1.27137 + 0.0164377i
$$732$$ 27.0871 + 13.3976i 1.00117 + 0.495190i
$$733$$ 6.90895 + 0.178683i 0.255188 + 0.00659980i 0.153236 0.988190i $$-0.451030\pi$$
0.101952 + 0.994789i $$0.467491\pi$$
$$734$$ 11.1281 + 3.41007i 0.410746 + 0.125868i
$$735$$ −18.8765 + 12.2312i −0.696270 + 0.451156i
$$736$$ −1.86461 + 4.64965i −0.0687305 + 0.171389i
$$737$$ −36.1477 1.40269i −1.33152 0.0516689i
$$738$$ 1.76921 0.915694i 0.0651254 0.0337072i
$$739$$ −24.8271 7.96050i −0.913281 0.292832i −0.188711 0.982033i $$-0.560431\pi$$
−0.724570 + 0.689201i $$0.757962\pi$$
$$740$$ 63.9135 + 36.3516i 2.34951 + 1.33631i
$$741$$ 37.9760 + 20.0217i 1.39508 + 0.735514i
$$742$$ 13.7027 + 30.6700i 0.503042 + 1.12593i
$$743$$ 0.136790 0.328737i 0.00501835 0.0120602i −0.920731 0.390198i $$-0.872407\pi$$
0.925749 + 0.378138i $$0.123435\pi$$
$$744$$ −76.4815 + 22.8661i −2.80395 + 0.838312i
$$745$$ −33.4669 1.73223i −1.22613 0.0634641i
$$746$$ 15.7381 + 7.15386i 0.576214 + 0.261922i
$$747$$ −2.92306 9.79014i −0.106949 0.358202i
$$748$$ 67.1489 + 97.9055i 2.45521 + 3.57978i
$$749$$ 17.1159 + 5.73307i 0.625403 + 0.209482i
$$750$$ −22.0726 + 19.7564i −0.805977 + 0.721401i
$$751$$ −14.1150 8.27142i −0.515064 0.301828i 0.225007 0.974357i $$-0.427760\pi$$
−0.740071 + 0.672529i $$0.765208\pi$$
$$752$$ −6.00983 + 18.3349i −0.219156 + 0.668605i
$$753$$ 3.37589 2.06552i 0.123024 0.0752719i
$$754$$ −43.9564 29.7317i −1.60080 1.08277i
$$755$$ −3.98287 9.23332i −0.144951 0.336035i
$$756$$ −31.9395 6.95578i −1.16163 0.252979i
$$757$$ −10.4549 + 24.2371i −0.379989 + 0.880913i 0.615685 + 0.787993i $$0.288880\pi$$
−0.995674 + 0.0929206i $$0.970380\pi$$
$$758$$ −42.2166 + 26.9910i −1.53338 + 0.980356i
$$759$$ 11.4159 + 11.0610i 0.414373 + 0.401490i
$$760$$ −20.8833 76.9418i −0.757515 2.79097i
$$761$$ 41.3713 + 2.67805i 1.49971 + 0.0970791i 0.792476 0.609903i $$-0.208792\pi$$
0.707231 + 0.706982i $$0.249944\pi$$
$$762$$ 9.58143 0.678872i 0.347099 0.0245929i
$$763$$ 15.5144 + 7.29562i 0.561659 + 0.264119i
$$764$$ 7.05418 8.74581i 0.255211 0.316412i
$$765$$ −53.0960 35.9711i −1.91969 1.30054i
$$766$$ −60.2224 11.8273i −2.17592 0.427337i
$$767$$ 26.9176 + 40.3556i 0.971939 + 1.45716i
$$768$$ 2.20930 56.3937i 0.0797213