# Properties

 Label 729.2.k.a.4.4 Level $729$ Weight $2$ Character 729.4 Analytic conductor $5.821$ Analytic rank $0$ Dimension $12960$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [729,2,Mod(4,729)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(729, base_ring=CyclotomicField(486))

chi = DirichletCharacter(H, H._module([2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("729.4");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$729 = 3^{6}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 729.k (of order $$243$$, degree $$162$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$5.82109430735$$ Analytic rank: $$0$$ Dimension: $$12960$$ Relative dimension: $$80$$ over $$\Q(\zeta_{243})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{243}]$

## Embedding invariants

 Embedding label 4.4 Character $$\chi$$ $$=$$ 729.4 Dual form 729.2.k.a.547.4

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-2.61310 - 0.0337849i) q^{2} +(1.70554 - 0.301886i) q^{3} +(4.82780 + 0.124859i) q^{4} +(-2.59518 - 0.795260i) q^{5} +(-4.46694 + 0.731236i) q^{6} +(0.853432 - 2.12814i) q^{7} +(-7.38859 - 0.286711i) q^{8} +(2.81773 - 1.02976i) q^{9} +O(q^{10})$$ $$q+(-2.61310 - 0.0337849i) q^{2} +(1.70554 - 0.301886i) q^{3} +(4.82780 + 0.124859i) q^{4} +(-2.59518 - 0.795260i) q^{5} +(-4.46694 + 0.731236i) q^{6} +(0.853432 - 2.12814i) q^{7} +(-7.38859 - 0.286711i) q^{8} +(2.81773 - 1.02976i) q^{9} +(6.75458 + 2.16577i) q^{10} +(0.0568816 + 0.0323522i) q^{11} +(8.27170 - 1.24449i) q^{12} +(1.14846 + 2.57054i) q^{13} +(-2.30200 + 5.53221i) q^{14} +(-4.66625 - 0.572899i) q^{15} +(9.65149 + 0.499557i) q^{16} +(4.95951 + 2.25437i) q^{17} +(-7.39779 + 2.59566i) q^{18} +(-0.279974 - 0.408212i) q^{19} +(-12.4297 - 4.16339i) q^{20} +(0.813104 - 3.88727i) q^{21} +(-0.147544 - 0.0864611i) q^{22} +(1.39790 - 4.26474i) q^{23} +(-12.6881 + 1.74152i) q^{24} +(1.96093 + 1.32636i) q^{25} +(-2.91420 - 6.75588i) q^{26} +(4.49488 - 2.60693i) q^{27} +(4.38591 - 10.1677i) q^{28} +(0.714812 - 0.457011i) q^{29} +(12.1740 + 1.65469i) q^{30} +(-2.27510 - 8.38233i) q^{31} +(-10.4460 - 0.676190i) q^{32} +(0.106781 + 0.0380062i) q^{33} +(-12.8835 - 6.05845i) q^{34} +(-3.90723 + 4.84421i) q^{35} +(13.7320 - 4.61965i) q^{36} +(-0.284650 - 0.0559034i) q^{37} +(0.717807 + 1.07616i) q^{38} +(2.73476 + 4.03746i) q^{39} +(18.9467 + 6.61991i) q^{40} +(2.93475 - 1.11134i) q^{41} +(-2.25605 + 10.1303i) q^{42} +(-9.06758 + 3.98109i) q^{43} +(0.270574 + 0.163292i) q^{44} +(-8.13143 + 0.431576i) q^{45} +(-3.79693 + 11.0969i) q^{46} +(3.26040 - 12.0125i) q^{47} +(16.6118 - 2.06164i) q^{48} +(1.25981 + 1.20405i) q^{49} +(-5.07929 - 3.53215i) q^{50} +(9.13920 + 2.34771i) q^{51} +(5.22360 + 12.5535i) q^{52} +(-5.68289 + 6.02352i) q^{53} +(-11.8336 + 6.66029i) q^{54} +(-0.121889 - 0.129195i) q^{55} +(-6.91582 + 15.4793i) q^{56} +(-0.600740 - 0.611701i) q^{57} +(-1.88331 + 1.17006i) q^{58} +(-0.184081 + 0.0312329i) q^{59} +(-22.4562 - 3.34846i) q^{60} +(5.12610 - 9.43383i) q^{61} +(5.66186 + 21.9807i) q^{62} +(0.213267 - 6.87536i) q^{63} +(8.00283 + 0.622029i) q^{64} +(-0.936217 - 7.58434i) q^{65} +(-0.277744 - 0.102921i) q^{66} +(-11.6383 + 6.03462i) q^{67} +(23.6620 + 11.5029i) q^{68} +(1.09671 - 7.69569i) q^{69} +(10.3736 - 12.5264i) q^{70} +(-0.561978 - 0.435566i) q^{71} +(-21.1143 + 6.80058i) q^{72} +(12.0193 - 3.85384i) q^{73} +(0.741929 + 0.155698i) q^{74} +(3.74485 + 1.67017i) q^{75} +(-1.30069 - 2.00572i) q^{76} +(0.117395 - 0.0934419i) q^{77} +(-7.00979 - 10.6427i) q^{78} +(3.14172 - 16.5625i) q^{79} +(-24.6500 - 8.97188i) q^{80} +(6.87920 - 5.80316i) q^{81} +(-7.70633 + 2.80488i) q^{82} +(-1.95457 - 11.9893i) q^{83} +(4.41086 - 18.6654i) q^{84} +(-11.0780 - 9.79459i) q^{85} +(23.8290 - 10.0966i) q^{86} +(1.08117 - 0.995243i) q^{87} +(-0.410999 - 0.255346i) q^{88} +(3.32409 + 1.35804i) q^{89} +(21.2628 - 0.853030i) q^{90} +(6.45062 - 0.250314i) q^{91} +(7.28127 - 20.4148i) q^{92} +(-6.41078 - 13.6096i) q^{93} +(-8.92559 + 31.2798i) q^{94} +(0.401947 + 1.28203i) q^{95} +(-18.0202 + 2.00023i) q^{96} +(-1.10415 + 4.79675i) q^{97} +(-3.25132 - 3.18887i) q^{98} +(0.193592 + 0.0325854i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12960 q - 162 q^{2} - 162 q^{3} - 162 q^{4} - 162 q^{5} - 162 q^{6} - 162 q^{7} - 162 q^{8} - 162 q^{9}+O(q^{10})$$ 12960 * q - 162 * q^2 - 162 * q^3 - 162 * q^4 - 162 * q^5 - 162 * q^6 - 162 * q^7 - 162 * q^8 - 162 * q^9 $$12960 q - 162 q^{2} - 162 q^{3} - 162 q^{4} - 162 q^{5} - 162 q^{6} - 162 q^{7} - 162 q^{8} - 162 q^{9} - 162 q^{10} - 162 q^{11} - 162 q^{12} - 162 q^{13} - 162 q^{14} - 162 q^{15} - 162 q^{16} - 162 q^{17} - 162 q^{18} - 162 q^{19} - 162 q^{20} - 162 q^{21} - 162 q^{22} - 162 q^{23} - 162 q^{24} - 162 q^{25} - 162 q^{26} - 162 q^{27} - 162 q^{28} - 162 q^{29} - 162 q^{30} - 162 q^{31} - 162 q^{32} - 162 q^{33} - 162 q^{34} - 162 q^{35} - 162 q^{36} - 162 q^{37} - 162 q^{38} - 162 q^{39} - 162 q^{40} - 162 q^{41} - 162 q^{42} - 162 q^{43} - 162 q^{44} - 162 q^{45} - 162 q^{46} - 162 q^{47} - 162 q^{48} - 162 q^{49} - 162 q^{50} - 162 q^{51} - 162 q^{52} - 162 q^{53} - 162 q^{54} - 162 q^{55} - 162 q^{56} - 162 q^{57} - 162 q^{58} - 162 q^{59} - 162 q^{60} - 162 q^{61} - 162 q^{62} - 162 q^{63} - 162 q^{64} - 162 q^{65} - 162 q^{66} - 162 q^{67} - 162 q^{68} - 162 q^{69} - 162 q^{70} - 162 q^{71} - 162 q^{72} - 162 q^{73} - 162 q^{74} - 162 q^{75} - 162 q^{76} - 162 q^{77} - 162 q^{78} - 162 q^{79} - 162 q^{80} - 162 q^{81} - 162 q^{82} - 162 q^{83} - 162 q^{84} - 162 q^{85} - 162 q^{86} - 162 q^{87} - 162 q^{88} - 162 q^{89} - 162 q^{90} - 162 q^{91} - 162 q^{92} - 162 q^{93} - 162 q^{94} - 162 q^{95} - 162 q^{96} - 162 q^{97} - 162 q^{98} - 162 q^{99}+O(q^{100})$$ 12960 * q - 162 * q^2 - 162 * q^3 - 162 * q^4 - 162 * q^5 - 162 * q^6 - 162 * q^7 - 162 * q^8 - 162 * q^9 - 162 * q^10 - 162 * q^11 - 162 * q^12 - 162 * q^13 - 162 * q^14 - 162 * q^15 - 162 * q^16 - 162 * q^17 - 162 * q^18 - 162 * q^19 - 162 * q^20 - 162 * q^21 - 162 * q^22 - 162 * q^23 - 162 * q^24 - 162 * q^25 - 162 * q^26 - 162 * q^27 - 162 * q^28 - 162 * q^29 - 162 * q^30 - 162 * q^31 - 162 * q^32 - 162 * q^33 - 162 * q^34 - 162 * q^35 - 162 * q^36 - 162 * q^37 - 162 * q^38 - 162 * q^39 - 162 * q^40 - 162 * q^41 - 162 * q^42 - 162 * q^43 - 162 * q^44 - 162 * q^45 - 162 * q^46 - 162 * q^47 - 162 * q^48 - 162 * q^49 - 162 * q^50 - 162 * q^51 - 162 * q^52 - 162 * q^53 - 162 * q^54 - 162 * q^55 - 162 * q^56 - 162 * q^57 - 162 * q^58 - 162 * q^59 - 162 * q^60 - 162 * q^61 - 162 * q^62 - 162 * q^63 - 162 * q^64 - 162 * q^65 - 162 * q^66 - 162 * q^67 - 162 * q^68 - 162 * q^69 - 162 * q^70 - 162 * q^71 - 162 * q^72 - 162 * q^73 - 162 * q^74 - 162 * q^75 - 162 * q^76 - 162 * q^77 - 162 * q^78 - 162 * q^79 - 162 * q^80 - 162 * q^81 - 162 * q^82 - 162 * q^83 - 162 * q^84 - 162 * q^85 - 162 * q^86 - 162 * q^87 - 162 * q^88 - 162 * q^89 - 162 * q^90 - 162 * q^91 - 162 * q^92 - 162 * q^93 - 162 * q^94 - 162 * q^95 - 162 * q^96 - 162 * q^97 - 162 * q^98 - 162 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/729\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{1}{243}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.61310 0.0337849i −1.84774 0.0238896i −0.918924 0.394435i $$-0.870940\pi$$
−0.928814 + 0.370545i $$0.879171\pi$$
$$3$$ 1.70554 0.301886i 0.984694 0.174294i
$$4$$ 4.82780 + 0.124859i 2.41390 + 0.0624295i
$$5$$ −2.59518 0.795260i −1.16060 0.355651i −0.347445 0.937700i $$-0.612951\pi$$
−0.813153 + 0.582050i $$0.802251\pi$$
$$6$$ −4.46694 + 0.731236i −1.82362 + 0.298526i
$$7$$ 0.853432 2.12814i 0.322567 0.804363i −0.675204 0.737631i $$-0.735944\pi$$
0.997771 0.0667318i $$-0.0212572\pi$$
$$8$$ −7.38859 0.286711i −2.61226 0.101368i
$$9$$ 2.81773 1.02976i 0.939243 0.343253i
$$10$$ 6.75458 + 2.16577i 2.13598 + 0.684876i
$$11$$ 0.0568816 + 0.0323522i 0.0171505 + 0.00975455i 0.502943 0.864320i $$-0.332251\pi$$
−0.485792 + 0.874074i $$0.661469\pi$$
$$12$$ 8.27170 1.24449i 2.38783 0.359255i
$$13$$ 1.14846 + 2.57054i 0.318527 + 0.712941i 0.999818 0.0190716i $$-0.00607105\pi$$
−0.681291 + 0.732012i $$0.738581\pi$$
$$14$$ −2.30200 + 5.53221i −0.615235 + 1.47855i
$$15$$ −4.66625 0.572899i −1.20482 0.147922i
$$16$$ 9.65149 + 0.499557i 2.41287 + 0.124889i
$$17$$ 4.95951 + 2.25437i 1.20286 + 0.546766i 0.912075 0.410024i $$-0.134480\pi$$
0.290782 + 0.956789i $$0.406084\pi$$
$$18$$ −7.39779 + 2.59566i −1.74368 + 0.611803i
$$19$$ −0.279974 0.408212i −0.0642304 0.0936502i 0.791229 0.611519i $$-0.209441\pi$$
−0.855460 + 0.517869i $$0.826725\pi$$
$$20$$ −12.4297 4.16339i −2.77936 0.930961i
$$21$$ 0.813104 3.88727i 0.177434 0.848272i
$$22$$ −0.147544 0.0864611i −0.0314565 0.0184336i
$$23$$ 1.39790 4.26474i 0.291482 0.889259i −0.694073 0.719905i $$-0.744186\pi$$
0.985555 0.169355i $$-0.0541684\pi$$
$$24$$ −12.6881 + 1.74152i −2.58994 + 0.355486i
$$25$$ 1.96093 + 1.32636i 0.392186 + 0.265271i
$$26$$ −2.91420 6.75588i −0.571522 1.32494i
$$27$$ 4.49488 2.60693i 0.865040 0.501703i
$$28$$ 4.38591 10.1677i 0.828860 1.92151i
$$29$$ 0.714812 0.457011i 0.132737 0.0848648i −0.470619 0.882336i $$-0.655969\pi$$
0.603357 + 0.797471i $$0.293830\pi$$
$$30$$ 12.1740 + 1.65469i 2.22266 + 0.302103i
$$31$$ −2.27510 8.38233i −0.408620 1.50551i −0.808253 0.588835i $$-0.799587\pi$$
0.399633 0.916675i $$-0.369138\pi$$
$$32$$ −10.4460 0.676190i −1.84661 0.119535i
$$33$$ 0.106781 + 0.0380062i 0.0185881 + 0.00661602i
$$34$$ −12.8835 6.05845i −2.20950 1.03902i
$$35$$ −3.90723 + 4.84421i −0.660443 + 0.818821i
$$36$$ 13.7320 4.61965i 2.28867 0.769941i
$$37$$ −0.284650 0.0559034i −0.0467961 0.00919046i 0.169259 0.985572i $$-0.445862\pi$$
−0.216056 + 0.976381i $$0.569319\pi$$
$$38$$ 0.717807 + 1.07616i 0.116444 + 0.174575i
$$39$$ 2.73476 + 4.03746i 0.437913 + 0.646511i
$$40$$ 18.9467 + 6.61991i 2.99573 + 1.04670i
$$41$$ 2.93475 1.11134i 0.458331 0.173561i −0.114177 0.993460i $$-0.536423\pi$$
0.572508 + 0.819899i $$0.305970\pi$$
$$42$$ −2.25605 + 10.1303i −0.348116 + 1.56315i
$$43$$ −9.06758 + 3.98109i −1.38279 + 0.607111i −0.954957 0.296745i $$-0.904099\pi$$
−0.427837 + 0.903856i $$0.640724\pi$$
$$44$$ 0.270574 + 0.163292i 0.0407905 + 0.0246172i
$$45$$ −8.13143 + 0.431576i −1.21216 + 0.0643356i
$$46$$ −3.79693 + 11.0969i −0.559827 + 1.63616i
$$47$$ 3.26040 12.0125i 0.475578 1.75221i −0.166967 0.985962i $$-0.553397\pi$$
0.642545 0.766248i $$-0.277878\pi$$
$$48$$ 16.6118 2.06164i 2.39771 0.297572i
$$49$$ 1.25981 + 1.20405i 0.179972 + 0.172008i
$$50$$ −5.07929 3.53215i −0.718320 0.499521i
$$51$$ 9.13920 + 2.34771i 1.27974 + 0.328746i
$$52$$ 5.22360 + 12.5535i 0.724383 + 1.74085i
$$53$$ −5.68289 + 6.02352i −0.780606 + 0.827394i −0.988573 0.150742i $$-0.951834\pi$$
0.207967 + 0.978136i $$0.433315\pi$$
$$54$$ −11.8336 + 6.66029i −1.61035 + 0.906351i
$$55$$ −0.121889 0.129195i −0.0164356 0.0174207i
$$56$$ −6.91582 + 15.4793i −0.924165 + 2.06851i
$$57$$ −0.600740 0.611701i −0.0795699 0.0810217i
$$58$$ −1.88331 + 1.17006i −0.247291 + 0.153637i
$$59$$ −0.184081 + 0.0312329i −0.0239653 + 0.00406617i −0.179249 0.983804i $$-0.557367\pi$$
0.155284 + 0.987870i $$0.450371\pi$$
$$60$$ −22.4562 3.34846i −2.89908 0.432285i
$$61$$ 5.12610 9.43383i 0.656330 1.20788i −0.310040 0.950723i $$-0.600343\pi$$
0.966370 0.257155i $$-0.0827850\pi$$
$$62$$ 5.66186 + 21.9807i 0.719057 + 2.79155i
$$63$$ 0.213267 6.87536i 0.0268691 0.866214i
$$64$$ 8.00283 + 0.622029i 1.00035 + 0.0777536i
$$65$$ −0.936217 7.58434i −0.116123 0.940722i
$$66$$ −0.277744 0.102921i −0.0341879 0.0126687i
$$67$$ −11.6383 + 6.03462i −1.42184 + 0.737246i −0.986614 0.163074i $$-0.947859\pi$$
−0.435228 + 0.900320i $$0.643332\pi$$
$$68$$ 23.6620 + 11.5029i 2.86944 + 1.39493i
$$69$$ 1.09671 7.69569i 0.132028 0.926452i
$$70$$ 10.3736 12.5264i 1.23989 1.49719i
$$71$$ −0.561978 0.435566i −0.0666945 0.0516921i 0.578708 0.815535i $$-0.303557\pi$$
−0.645402 + 0.763843i $$0.723310\pi$$
$$72$$ −21.1143 + 6.80058i −2.48834 + 0.801456i
$$73$$ 12.0193 3.85384i 1.40675 0.451057i 0.497560 0.867430i $$-0.334230\pi$$
0.909194 + 0.416372i $$0.136699\pi$$
$$74$$ 0.741929 + 0.155698i 0.0862475 + 0.0180995i
$$75$$ 3.74485 + 1.67017i 0.432418 + 0.192855i
$$76$$ −1.30069 2.00572i −0.149199 0.230072i
$$77$$ 0.117395 0.0934419i 0.0133784 0.0106487i
$$78$$ −7.00979 10.6427i −0.793703 1.20504i
$$79$$ 3.14172 16.5625i 0.353471 1.86343i −0.134996 0.990846i $$-0.543102\pi$$
0.488467 0.872582i $$-0.337556\pi$$
$$80$$ −24.6500 8.97188i −2.75596 1.00309i
$$81$$ 6.87920 5.80316i 0.764355 0.644795i
$$82$$ −7.70633 + 2.80488i −0.851022 + 0.309747i
$$83$$ −1.95457 11.9893i −0.214542 1.31600i −0.842899 0.538072i $$-0.819153\pi$$
0.628357 0.777925i $$-0.283728\pi$$
$$84$$ 4.41086 18.6654i 0.481265 2.03657i
$$85$$ −11.0780 9.79459i −1.20158 1.06237i
$$86$$ 23.8290 10.0966i 2.56954 1.08875i
$$87$$ 1.08117 0.995243i 0.115914 0.106701i
$$88$$ −0.410999 0.255346i −0.0438127 0.0272199i
$$89$$ 3.32409 + 1.35804i 0.352353 + 0.143952i 0.547464 0.836829i $$-0.315593\pi$$
−0.195111 + 0.980781i $$0.562507\pi$$
$$90$$ 21.2628 0.853030i 2.24129 0.0899172i
$$91$$ 6.45062 0.250314i 0.676209 0.0262400i
$$92$$ 7.28127 20.4148i 0.759125 2.12839i
$$93$$ −6.41078 13.6096i −0.664767 1.41125i
$$94$$ −8.92559 + 31.2798i −0.920604 + 3.22626i
$$95$$ 0.401947 + 1.28203i 0.0412389 + 0.131534i
$$96$$ −18.0202 + 2.00023i −1.83918 + 0.204148i
$$97$$ −1.10415 + 4.79675i −0.112110 + 0.487036i 0.887544 + 0.460723i $$0.152410\pi$$
−0.999654 + 0.0263133i $$0.991623\pi$$
$$98$$ −3.25132 3.18887i −0.328433 0.322125i
$$99$$ 0.193592 + 0.0325854i 0.0194567 + 0.00327496i
$$100$$ 9.30137 + 6.64822i 0.930137 + 0.664822i
$$101$$ 0.762544 5.09105i 0.0758760 0.506578i −0.918044 0.396477i $$-0.870232\pi$$
0.993920 0.110101i $$-0.0351173\pi$$
$$102$$ −23.8023 6.44357i −2.35678 0.638009i
$$103$$ 2.70533 + 7.58502i 0.266564 + 0.747375i 0.997864 + 0.0653194i $$0.0208066\pi$$
−0.731301 + 0.682055i $$0.761086\pi$$
$$104$$ −7.74853 19.3220i −0.759806 1.89468i
$$105$$ −5.20154 + 9.44153i −0.507618 + 0.921399i
$$106$$ 15.0535 15.5480i 1.46212 1.51016i
$$107$$ 0.0673438 + 1.15625i 0.00651037 + 0.111779i 0.999998 0.00216429i $$-0.000688916\pi$$
−0.993487 + 0.113943i $$0.963652\pi$$
$$108$$ 22.0259 12.0245i 2.11944 1.15706i
$$109$$ 0.419787 7.20746i 0.0402083 0.690349i −0.916632 0.399733i $$-0.869103\pi$$
0.956840 0.290616i $$-0.0938602\pi$$
$$110$$ 0.314144 + 0.341718i 0.0299525 + 0.0325815i
$$111$$ −0.502358 0.00941359i −0.0476817 0.000893499i
$$112$$ 9.30002 20.1134i 0.878769 1.90054i
$$113$$ 2.14795 1.57762i 0.202063 0.148410i −0.486260 0.873814i $$-0.661639\pi$$
0.688323 + 0.725404i $$0.258347\pi$$
$$114$$ 1.54912 + 1.61873i 0.145089 + 0.151608i
$$115$$ −7.01937 + 9.95605i −0.654560 + 0.928407i
$$116$$ 3.50803 2.11711i 0.325713 0.196569i
$$117$$ 5.88310 + 6.06046i 0.543893 + 0.560290i
$$118$$ 0.482076 0.0753953i 0.0443787 0.00694070i
$$119$$ 9.03023 8.63059i 0.827800 0.791165i
$$120$$ 34.3128 + 5.57078i 3.13231 + 0.508540i
$$121$$ −5.62051 9.45070i −0.510955 0.859154i
$$122$$ −13.7137 + 24.4783i −1.24158 + 2.21616i
$$123$$ 4.66984 2.78139i 0.421065 0.250789i
$$124$$ −9.93712 40.7523i −0.892380 3.65966i
$$125$$ 4.48616 + 5.56197i 0.401255 + 0.497478i
$$126$$ −0.789571 + 17.9588i −0.0703405 + 1.59989i
$$127$$ 0.236438 + 12.1907i 0.0209805 + 1.08175i 0.851370 + 0.524566i $$0.175773\pi$$
−0.830389 + 0.557184i $$0.811882\pi$$
$$128$$ −0.0411157 0.00373110i −0.00363415 0.000329786i
$$129$$ −14.2633 + 9.52729i −1.25581 + 0.838831i
$$130$$ 2.19019 + 19.8502i 0.192092 + 1.74098i
$$131$$ −16.0429 + 1.45584i −1.40167 + 0.127197i −0.765047 0.643975i $$-0.777284\pi$$
−0.636627 + 0.771172i $$0.719671\pi$$
$$132$$ 0.510770 + 0.196819i 0.0444568 + 0.0171309i
$$133$$ −1.10767 + 0.247444i −0.0960473 + 0.0214561i
$$134$$ 30.6158 15.3758i 2.64480 1.32827i
$$135$$ −13.7382 + 3.19084i −1.18239 + 0.274623i
$$136$$ −35.9974 18.0786i −3.08675 1.55023i
$$137$$ −13.3356 3.34326i −1.13934 0.285634i −0.372850 0.927892i $$-0.621619\pi$$
−0.766489 + 0.642258i $$0.777998\pi$$
$$138$$ −3.12580 + 20.0725i −0.266086 + 1.70869i
$$139$$ 17.4087 + 2.49255i 1.47658 + 0.211415i 0.832707 0.553713i $$-0.186790\pi$$
0.643878 + 0.765129i $$0.277325\pi$$
$$140$$ −19.4682 + 22.8990i −1.64536 + 1.93532i
$$141$$ 1.93432 21.4721i 0.162899 1.80828i
$$142$$ 1.45379 + 1.15716i 0.121999 + 0.0971068i
$$143$$ −0.0178362 + 0.183372i −0.00149154 + 0.0153343i
$$144$$ 27.7097 8.53108i 2.30914 0.710923i
$$145$$ −2.21851 + 0.617563i −0.184237 + 0.0512858i
$$146$$ −31.5378 + 9.66437i −2.61009 + 0.799829i
$$147$$ 2.51214 + 1.67324i 0.207198 + 0.138007i
$$148$$ −1.36725 0.305432i −0.112387 0.0251063i
$$149$$ 13.6094 3.41190i 1.11493 0.279514i 0.358459 0.933545i $$-0.383302\pi$$
0.756467 + 0.654031i $$0.226924\pi$$
$$150$$ −9.72924 4.49085i −0.794389 0.366676i
$$151$$ 5.28502 + 6.21638i 0.430088 + 0.505882i 0.933704 0.358046i $$-0.116557\pi$$
−0.503616 + 0.863928i $$0.667997\pi$$
$$152$$ 1.95157 + 3.09638i 0.158293 + 0.251150i
$$153$$ 16.2960 + 1.24512i 1.31745 + 0.100662i
$$154$$ −0.309921 + 0.240207i −0.0249741 + 0.0193564i
$$155$$ −0.761840 + 23.5629i −0.0611925 + 1.89262i
$$156$$ 12.6988 + 19.8335i 1.01672 + 1.58795i
$$157$$ −0.964664 + 7.81479i −0.0769885 + 0.623688i 0.903708 + 0.428150i $$0.140835\pi$$
−0.980696 + 0.195538i $$0.937355\pi$$
$$158$$ −8.76918 + 43.1733i −0.697638 + 3.43468i
$$159$$ −7.87398 + 11.9889i −0.624448 + 0.950784i
$$160$$ 26.5714 + 10.0621i 2.10066 + 0.795479i
$$161$$ −7.88296 6.61459i −0.621265 0.521303i
$$162$$ −18.1721 + 14.9318i −1.42773 + 1.17315i
$$163$$ −16.7326 + 14.0403i −1.31060 + 1.09972i −0.322388 + 0.946607i $$0.604486\pi$$
−0.988209 + 0.153114i $$0.951070\pi$$
$$164$$ 14.3072 4.99888i 1.11720 0.390347i
$$165$$ −0.246890 0.183551i −0.0192203 0.0142894i
$$166$$ 4.70242 + 31.3952i 0.364979 + 2.43674i
$$167$$ −5.52638 + 10.8288i −0.427644 + 0.837959i 0.572197 + 0.820116i $$0.306091\pi$$
−0.999841 + 0.0178424i $$0.994320\pi$$
$$168$$ −7.12221 + 28.4883i −0.549491 + 2.19792i
$$169$$ 3.38496 3.77899i 0.260382 0.290691i
$$170$$ 28.6169 + 25.9685i 2.19482 + 1.99169i
$$171$$ −1.20925 0.861925i −0.0924736 0.0659130i
$$172$$ −44.2736 + 18.0877i −3.37583 + 1.37918i
$$173$$ 10.7941 + 1.83143i 0.820662 + 0.139241i 0.562433 0.826843i $$-0.309865\pi$$
0.258228 + 0.966084i $$0.416861\pi$$
$$174$$ −2.85884 + 2.56414i −0.216728 + 0.194387i
$$175$$ 4.49620 3.04119i 0.339881 0.229892i
$$176$$ 0.532831 + 0.340663i 0.0401636 + 0.0256784i
$$177$$ −0.304528 + 0.108840i −0.0228897 + 0.00818094i
$$178$$ −8.64030 3.66100i −0.647618 0.274403i
$$179$$ 0.373499 + 0.781107i 0.0279166 + 0.0583827i 0.915653 0.401969i $$-0.131674\pi$$
−0.887737 + 0.460352i $$0.847723\pi$$
$$180$$ −39.3108 + 1.06828i −2.93005 + 0.0796250i
$$181$$ 13.2544 + 3.68961i 0.985191 + 0.274247i 0.723060 0.690786i $$-0.242735\pi$$
0.262131 + 0.965032i $$0.415575\pi$$
$$182$$ −16.8646 + 0.436159i −1.25008 + 0.0323303i
$$183$$ 5.89482 17.6373i 0.435758 1.30378i
$$184$$ −11.5512 + 31.1096i −0.851569 + 2.29343i
$$185$$ 0.694259 + 0.371450i 0.0510429 + 0.0273095i
$$186$$ 16.2922 + 35.7797i 1.19460 + 2.62350i
$$187$$ 0.209171 + 0.288683i 0.0152961 + 0.0211106i
$$188$$ 17.2404 57.5871i 1.25739 4.19997i
$$189$$ −1.71184 11.7906i −0.124518 0.857639i
$$190$$ −1.00701 3.36365i −0.0730563 0.244025i
$$191$$ −1.49447 + 1.95417i −0.108136 + 0.141399i −0.845252 0.534368i $$-0.820550\pi$$
0.737115 + 0.675767i $$0.236187\pi$$
$$192$$ 13.8369 1.35505i 0.998594 0.0977922i
$$193$$ 22.7530 10.6996i 1.63780 0.770173i 0.637799 0.770202i $$-0.279845\pi$$
1.00000 2.97435e-5i $$9.46764e-6\pi$$
$$194$$ 3.04731 12.4971i 0.218784 0.897237i
$$195$$ −3.88636 12.6528i −0.278308 0.906083i
$$196$$ 5.93176 + 5.97023i 0.423697 + 0.426445i
$$197$$ −6.73049 + 1.32182i −0.479527 + 0.0941761i −0.426635 0.904424i $$-0.640301\pi$$
−0.0528927 + 0.998600i $$0.516844\pi$$
$$198$$ −0.504774 0.0916893i −0.0358727 0.00651607i
$$199$$ −14.6121 + 8.06261i −1.03582 + 0.571543i −0.907440 0.420182i $$-0.861966\pi$$
−0.128383 + 0.991725i $$0.540979\pi$$
$$200$$ −14.1082 10.3621i −0.997602 0.732713i
$$201$$ −18.0278 + 13.8057i −1.27158 + 0.973780i
$$202$$ −2.16460 + 13.2776i −0.152301 + 0.934211i
$$203$$ −0.362542 1.91125i −0.0254455 0.134143i
$$204$$ 43.8291 + 12.4754i 3.06865 + 0.873453i
$$205$$ −8.50000 + 0.550222i −0.593666 + 0.0384292i
$$206$$ −6.81302 19.9118i −0.474685 1.38732i
$$207$$ −0.452746 13.4564i −0.0314680 0.935283i
$$208$$ 9.80026 + 25.3833i 0.679526 + 1.76002i
$$209$$ −0.00271882 0.0322775i −0.000188065 0.00223268i
$$210$$ 13.9111 24.4959i 0.959957 1.69038i
$$211$$ 10.4361 15.6461i 0.718453 1.07712i −0.274838 0.961490i $$-0.588624\pi$$
0.993292 0.115634i $$-0.0368900\pi$$
$$212$$ −28.1880 + 28.3708i −1.93596 + 1.94851i
$$213$$ −1.08997 0.573221i −0.0746833 0.0392765i
$$214$$ −0.136912 3.02366i −0.00935911 0.206693i
$$215$$ 26.6980 3.12055i 1.82079 0.212819i
$$216$$ −33.9582 + 17.9728i −2.31057 + 1.22289i
$$217$$ −19.7804 2.31200i −1.34278 0.156949i
$$218$$ −1.34045 + 18.8196i −0.0907865 + 1.27462i
$$219$$ 19.3360 10.2013i 1.30660 0.689342i
$$220$$ −0.572327 0.638948i −0.0385863 0.0430779i
$$221$$ −0.0991471 + 15.3377i −0.00666935 + 1.03173i
$$222$$ 1.31239 + 0.0415708i 0.0880820 + 0.00279005i
$$223$$ 4.48213 3.96287i 0.300146 0.265374i −0.498879 0.866672i $$-0.666255\pi$$
0.799025 + 0.601298i $$0.205350\pi$$
$$224$$ −10.3540 + 21.6535i −0.691803 + 1.44678i
$$225$$ 6.89120 + 1.71803i 0.459413 + 0.114535i
$$226$$ −5.66611 + 4.04989i −0.376904 + 0.269395i
$$227$$ −1.31184 2.57052i −0.0870699 0.170611i 0.843084 0.537783i $$-0.180738\pi$$
−0.930153 + 0.367171i $$0.880326\pi$$
$$228$$ −2.82387 3.02818i −0.187016 0.200546i
$$229$$ 2.48363 + 3.24759i 0.164123 + 0.214606i 0.869117 0.494607i $$-0.164688\pi$$
−0.704994 + 0.709214i $$0.749050\pi$$
$$230$$ 18.6787 25.7790i 1.23163 1.69982i
$$231$$ 0.172012 0.194809i 0.0113176 0.0128175i
$$232$$ −5.41248 + 3.17172i −0.355347 + 0.208234i
$$233$$ 3.89450 + 17.9790i 0.255137 + 1.17785i 0.907538 + 0.419971i $$0.137960\pi$$
−0.652400 + 0.757875i $$0.726238\pi$$
$$234$$ −15.1684 16.0353i −0.991586 1.04826i
$$235$$ −18.0144 + 28.5818i −1.17513 + 1.86447i
$$236$$ −0.892605 + 0.127802i −0.0581036 + 0.00831919i
$$237$$ 0.358330 29.1965i 0.0232760 1.89651i
$$238$$ −23.8884 + 22.2475i −1.54846 + 1.44209i
$$239$$ 9.44193 + 17.3765i 0.610748 + 1.12399i 0.980807 + 0.194982i $$0.0624650\pi$$
−0.370059 + 0.929008i $$0.620663\pi$$
$$240$$ −44.7501 7.86039i −2.88861 0.507386i
$$241$$ −14.1365 + 23.7700i −0.910611 + 1.53116i −0.0646573 + 0.997908i $$0.520595\pi$$
−0.845954 + 0.533256i $$0.820968\pi$$
$$242$$ 14.3676 + 24.8855i 0.923587 + 1.59970i
$$243$$ 9.98085 11.9742i 0.640272 0.768148i
$$244$$ 25.9257 44.9046i 1.65972 2.87472i
$$245$$ −2.31189 4.12661i −0.147701 0.263639i
$$246$$ −12.2967 + 7.11026i −0.784009 + 0.453334i
$$247$$ 0.727786 1.18850i 0.0463079 0.0756225i
$$248$$ 14.4065 + 62.5859i 0.914812 + 3.97421i
$$249$$ −6.95300 19.8582i −0.440629 1.25846i
$$250$$ −11.5349 14.6855i −0.729529 0.928794i
$$251$$ 12.6813 + 24.0749i 0.800439 + 1.51960i 0.853552 + 0.521008i $$0.174444\pi$$
−0.0531129 + 0.998589i $$0.516914\pi$$
$$252$$ 1.88806 33.1662i 0.118937 2.08928i
$$253$$ 0.217488 0.197360i 0.0136734 0.0124079i
$$254$$ −0.205974 31.8635i −0.0129240 1.99929i
$$255$$ −21.8508 13.3608i −1.36835 0.836684i
$$256$$ −15.8608 1.64631i −0.991302 0.102894i
$$257$$ 0.947785 0.123220i 0.0591212 0.00768628i −0.0993059 0.995057i $$-0.531662\pi$$
0.158427 + 0.987371i $$0.449358\pi$$
$$258$$ 37.5932 24.4138i 2.34045 1.51994i
$$259$$ −0.361900 + 0.558066i −0.0224873 + 0.0346765i
$$260$$ −3.57290 36.7326i −0.221582 2.27806i
$$261$$ 1.54354 2.02382i 0.0955425 0.125271i
$$262$$ 41.9708 3.26223i 2.59296 0.201541i
$$263$$ −2.19479 10.8056i −0.135336 0.666302i −0.989291 0.145955i $$-0.953375\pi$$
0.853955 0.520347i $$-0.174197\pi$$
$$264$$ −0.778061 0.311427i −0.0478863 0.0191670i
$$265$$ 19.5384 11.1127i 1.20023 0.682648i
$$266$$ 2.90281 0.609171i 0.177983 0.0373507i
$$267$$ 6.07935 + 1.31270i 0.372050 + 0.0803357i
$$268$$ −56.9408 + 27.6808i −3.47821 + 1.69087i
$$269$$ 10.3638 13.9210i 0.631892 0.848778i −0.364712 0.931120i $$-0.618833\pi$$
0.996604 + 0.0823423i $$0.0262401\pi$$
$$270$$ 36.0070 7.87382i 2.19132 0.479185i
$$271$$ −10.7046 14.3788i −0.650261 0.873452i 0.347679 0.937614i $$-0.386970\pi$$
−0.997940 + 0.0641619i $$0.979563\pi$$
$$272$$ 46.7405 + 24.2356i 2.83406 + 1.46950i
$$273$$ 10.9262 2.37427i 0.661285 0.143698i
$$274$$ 34.7343 + 9.18680i 2.09838 + 0.554995i
$$275$$ 0.0686304 + 0.138886i 0.00413857 + 0.00837512i
$$276$$ 6.25555 37.0163i 0.376540 2.22812i
$$277$$ −1.17146 + 0.814635i −0.0703862 + 0.0489467i −0.605594 0.795774i $$-0.707065\pi$$
0.535208 + 0.844720i $$0.320233\pi$$
$$278$$ −45.4063 7.10142i −2.72329 0.425915i
$$279$$ −15.0424 21.2763i −0.900564 1.27378i
$$280$$ 30.2578 34.6716i 1.80825 2.07203i
$$281$$ −9.91285 + 20.0604i −0.591351 + 1.19670i 0.371943 + 0.928255i $$0.378692\pi$$
−0.963294 + 0.268447i $$0.913490\pi$$
$$282$$ −5.78000 + 56.0434i −0.344194 + 3.33734i
$$283$$ −22.0215 + 18.9687i −1.30904 + 1.12757i −0.325763 + 0.945451i $$0.605621\pi$$
−0.983276 + 0.182121i $$0.941704\pi$$
$$284$$ −2.65873 2.17299i −0.157767 0.128943i
$$285$$ 1.07256 + 2.06522i 0.0635332 + 0.122333i
$$286$$ 0.0528029 0.478566i 0.00312230 0.0282982i
$$287$$ 0.139528 7.19402i 0.00823607 0.424650i
$$288$$ −30.1303 + 8.85152i −1.77544 + 0.521581i
$$289$$ 8.33665 + 9.55274i 0.490391 + 0.561926i
$$290$$ 5.81803 1.53880i 0.341647 0.0903615i
$$291$$ −0.435101 + 8.51437i −0.0255061 + 0.499121i
$$292$$ 58.5080 17.1048i 3.42392 1.00098i
$$293$$ −0.266315 + 3.16165i −0.0155583 + 0.184706i 0.984403 + 0.175927i $$0.0562923\pi$$
−0.999961 + 0.00877866i $$0.997206\pi$$
$$294$$ −6.50793 4.45722i −0.379550 0.259950i
$$295$$ 0.502560 + 0.0653372i 0.0292602 + 0.00380408i
$$296$$ 2.08713 + 0.494659i 0.121312 + 0.0287515i
$$297$$ 0.340016 0.00286707i 0.0197297 0.000166364i
$$298$$ −35.6780 + 8.45584i −2.06677 + 0.489833i
$$299$$ 12.5681 1.30454i 0.726834 0.0754434i
$$300$$ 17.8709 + 8.53085i 1.03177 + 0.492529i
$$301$$ 0.733769 + 22.6947i 0.0422938 + 1.30810i
$$302$$ −13.6002 16.4226i −0.782606 0.945012i
$$303$$ −0.236368 8.91318i −0.0135790 0.512049i
$$304$$ −2.49824 4.07971i −0.143284 0.233988i
$$305$$ −20.8055 + 20.4059i −1.19132 + 1.16844i
$$306$$ −42.5410 3.80418i −2.43191 0.217471i
$$307$$ 0.764443 1.11459i 0.0436291 0.0636127i −0.802247 0.596992i $$-0.796362\pi$$
0.845876 + 0.533380i $$0.179078\pi$$
$$308$$ 0.578425 0.436461i 0.0329588 0.0248697i
$$309$$ 6.90385 + 12.1199i 0.392747 + 0.689474i
$$310$$ 2.78683 61.5464i 0.158282 3.49560i
$$311$$ 0.567028 + 7.96096i 0.0321532 + 0.451425i 0.987677 + 0.156509i $$0.0500240\pi$$
−0.955523 + 0.294916i $$0.904708\pi$$
$$312$$ −19.0485 30.6152i −1.07841 1.73324i
$$313$$ −3.80318 10.2426i −0.214968 0.578949i 0.784166 0.620551i $$-0.213091\pi$$
−0.999134 + 0.0416025i $$0.986754\pi$$
$$314$$ 2.78478 20.3882i 0.157154 1.15057i
$$315$$ −6.02116 + 17.6732i −0.339254 + 0.995770i
$$316$$ 17.2356 79.5682i 0.969576 4.47606i
$$317$$ 5.43585 + 16.5838i 0.305308 + 0.931438i 0.980959 + 0.194217i $$0.0622165\pi$$
−0.675651 + 0.737222i $$0.736137\pi$$
$$318$$ 20.9805 31.0622i 1.17653 1.74188i
$$319$$ 0.0554450 0.00286981i 0.00310432 0.000160679i
$$320$$ −20.2741 7.97860i −1.13335 0.446017i
$$321$$ 0.463913 + 1.95170i 0.0258931 + 0.108933i
$$322$$ 20.3755 + 17.5509i 1.13548 + 0.978073i
$$323$$ −0.468270 2.65569i −0.0260553 0.147767i
$$324$$ 33.9360 27.1576i 1.88533 1.50875i
$$325$$ −1.15740 + 6.56393i −0.0642009 + 0.364101i
$$326$$ 44.1982 36.1234i 2.44791 2.00069i
$$327$$ −1.45987 12.4193i −0.0807310 0.686791i
$$328$$ −22.0023 + 7.36978i −1.21487 + 0.406928i
$$329$$ −22.7819 17.1905i −1.25601 0.947742i
$$330$$ 0.638945 + 0.487977i 0.0351728 + 0.0268623i
$$331$$ −13.9898 + 7.48496i −0.768948 + 0.411411i −0.809016 0.587786i $$-0.800000\pi$$
0.0400683 + 0.999197i $$0.487242\pi$$
$$332$$ −7.93931 58.1260i −0.435726 3.19008i
$$333$$ −0.859633 + 0.135600i −0.0471076 + 0.00743082i
$$334$$ 14.8068 28.1100i 0.810192 1.53811i
$$335$$ 35.0025 6.40545i 1.91239 0.349967i
$$336$$ 9.78958 37.1118i 0.534065 2.02461i
$$337$$ 18.1762 + 18.7733i 0.990118 + 1.02265i 0.999742 + 0.0226945i $$0.00722451\pi$$
−0.00962431 + 0.999954i $$0.503064\pi$$
$$338$$ −8.97290 + 9.76049i −0.488062 + 0.530901i
$$339$$ 3.18716 3.33912i 0.173103 0.181356i
$$340$$ −52.2593 48.6695i −2.83416 2.63947i
$$341$$ 0.141775 0.550405i 0.00767756 0.0298061i
$$342$$ 3.13076 + 2.29315i 0.169292 + 0.123999i
$$343$$ 18.2491 8.29523i 0.985358 0.447900i
$$344$$ 68.1381 26.8149i 3.67376 1.44576i
$$345$$ −8.96621 + 19.0995i −0.482725 + 1.02828i
$$346$$ −28.1442 5.15038i −1.51304 0.276886i
$$347$$ −4.18541 + 5.32862i −0.224685 + 0.286055i −0.885643 0.464367i $$-0.846282\pi$$
0.660958 + 0.750423i $$0.270150\pi$$
$$348$$ 5.34396 4.66984i 0.286466 0.250330i
$$349$$ −0.631974 2.21476i −0.0338288 0.118553i 0.942874 0.333149i $$-0.108111\pi$$
−0.976703 + 0.214596i $$0.931157\pi$$
$$350$$ −11.8517 + 7.79501i −0.633502 + 0.416661i
$$351$$ 11.8634 + 8.56032i 0.633223 + 0.456916i
$$352$$ −0.572309 0.376413i −0.0305042 0.0200629i
$$353$$ −7.92696 + 25.2835i −0.421909 + 1.34571i 0.465632 + 0.884978i $$0.345827\pi$$
−0.887542 + 0.460727i $$0.847589\pi$$
$$354$$ 0.799439 0.274122i 0.0424897 0.0145694i
$$355$$ 1.11204 + 1.57729i 0.0590211 + 0.0837137i
$$356$$ 15.8785 + 6.97140i 0.841559 + 0.369483i
$$357$$ 12.7960 17.4459i 0.677234 0.923336i
$$358$$ −0.949600 2.05373i −0.0501879 0.108543i
$$359$$ 3.81298 + 2.10391i 0.201241 + 0.111040i 0.580532 0.814237i $$-0.302844\pi$$
−0.379291 + 0.925277i $$0.623832\pi$$
$$360$$ 60.2035 0.857369i 3.17300 0.0451873i
$$361$$ 6.75513 17.4962i 0.355533 0.920853i
$$362$$ −34.5103 10.0891i −1.81382 0.530272i
$$363$$ −12.4390 14.4218i −0.652880 0.756947i
$$364$$ 31.1736 0.403046i 1.63394 0.0211253i
$$365$$ −34.2570 + 0.442912i −1.79309 + 0.0231831i
$$366$$ −15.9996 + 45.8887i −0.836313 + 2.39864i
$$367$$ −11.9997 3.50813i −0.626381 0.183123i −0.0479446 0.998850i $$-0.515267\pi$$
−0.578437 + 0.815727i $$0.696337\pi$$
$$368$$ 15.6223 40.4628i 0.814368 2.10927i
$$369$$ 7.12493 6.15353i 0.370909 0.320340i
$$370$$ −1.80162 0.994089i −0.0936615 0.0516802i
$$371$$ 7.96895 + 17.2347i 0.413727 + 0.894780i
$$372$$ −29.2507 66.5047i −1.51658 3.44811i
$$373$$ −4.57552 2.00887i −0.236912 0.104015i 0.280173 0.959950i $$-0.409608\pi$$
−0.517084 + 0.855934i $$0.672983\pi$$
$$374$$ −0.536831 0.761424i −0.0277589 0.0393723i
$$375$$ 9.33041 + 8.13185i 0.481820 + 0.419927i
$$376$$ −27.5339 + 87.8210i −1.41995 + 4.52902i
$$377$$ 1.99570 + 1.31259i 0.102784 + 0.0676021i
$$378$$ 4.07486 + 30.8678i 0.209588 + 1.58767i
$$379$$ −8.24164 + 5.42061i −0.423345 + 0.278438i −0.743253 0.669010i $$-0.766718\pi$$
0.319908 + 0.947448i $$0.396348\pi$$
$$380$$ 1.78045 + 6.23958i 0.0913349 + 0.320084i
$$381$$ 4.08346 + 20.7204i 0.209202 + 1.06154i
$$382$$ 3.97122 5.05593i 0.203186 0.258684i
$$383$$ −26.7259 4.89083i −1.36563 0.249910i −0.553238 0.833023i $$-0.686608\pi$$
−0.812391 + 0.583113i $$0.801834\pi$$
$$384$$ −0.0712508 + 0.00604872i −0.00363600 + 0.000308673i
$$385$$ −0.378971 + 0.149139i −0.0193141 + 0.00760083i
$$386$$ −59.8174 + 27.1903i −3.04462 + 1.38395i
$$387$$ −21.4504 + 20.5551i −1.09039 + 1.04487i
$$388$$ −5.92954 + 23.0199i −0.301027 + 1.16866i
$$389$$ 10.1786 + 9.47938i 0.516074 + 0.480624i 0.895789 0.444480i $$-0.146612\pi$$
−0.379715 + 0.925104i $$0.623978\pi$$
$$390$$ 9.72797 + 33.1942i 0.492595 + 1.68085i
$$391$$ 16.5472 17.9996i 0.836828 0.910280i
$$392$$ −8.96298 9.25746i −0.452699 0.467572i
$$393$$ −26.9223 + 7.32611i −1.35805 + 0.369553i
$$394$$ 17.6321 3.22667i 0.888291 0.162557i
$$395$$ −21.3248 + 40.4842i −1.07297 + 2.03698i
$$396$$ 0.930555 + 0.181488i 0.0467621 + 0.00912009i
$$397$$ 3.37538 + 24.7122i 0.169406 + 1.24027i 0.857438 + 0.514588i $$0.172055\pi$$
−0.688032 + 0.725680i $$0.741525\pi$$
$$398$$ 38.4552 20.5747i 1.92758 1.03132i
$$399$$ −1.81448 + 0.756415i −0.0908375 + 0.0378681i
$$400$$ 18.2633 + 13.7809i 0.913166 + 0.689046i
$$401$$ −1.10524 + 0.370206i −0.0551931 + 0.0184872i −0.345073 0.938576i $$-0.612146\pi$$
0.289880 + 0.957063i $$0.406385\pi$$
$$402$$ 47.5747 35.4666i 2.37281 1.76891i
$$403$$ 18.9343 15.4751i 0.943183 0.770867i
$$404$$ 4.31707 24.4833i 0.214782 1.21809i
$$405$$ −22.4677 + 9.58947i −1.11643 + 0.476504i
$$406$$ 0.882786 + 5.00653i 0.0438120 + 0.248470i
$$407$$ −0.0143828 0.0123889i −0.000712927 0.000614096i
$$408$$ −66.8527 19.9666i −3.30970 0.988494i
$$409$$ 5.19197 + 2.04323i 0.256727 + 0.101031i 0.491063 0.871124i $$-0.336609\pi$$
−0.234336 + 0.972156i $$0.575292\pi$$
$$410$$ 22.2299 1.15061i 1.09786 0.0568246i
$$411$$ −23.7537 1.67622i −1.17168 0.0826820i
$$412$$ 12.1137 + 36.9568i 0.596800 + 1.82073i
$$413$$ −0.0906323 + 0.418405i −0.00445972 + 0.0205884i
$$414$$ 0.728445 + 35.1781i 0.0358011 + 1.72891i
$$415$$ −4.46215 + 32.6687i −0.219038 + 1.60365i
$$416$$ −10.2587 27.6285i −0.502973 1.35460i
$$417$$ 30.4437 1.00430i 1.49083 0.0491808i
$$418$$ 0.00601405 + 0.0844361i 0.000294157 + 0.00412990i
$$419$$ 1.13214 25.0031i 0.0553089 1.22148i −0.762883 0.646536i $$-0.776217\pi$$
0.818192 0.574945i $$-0.194976\pi$$
$$420$$ −26.2908 + 44.9323i −1.28286 + 2.19247i
$$421$$ −24.9054 + 18.7928i −1.21382 + 0.915907i −0.998164 0.0605627i $$-0.980710\pi$$
−0.215653 + 0.976470i $$0.569188\pi$$
$$422$$ −27.7992 + 40.5323i −1.35325 + 1.97308i
$$423$$ −3.18308 37.2055i −0.154767 1.80899i
$$424$$ 43.7156 42.8759i 2.12302 2.08224i
$$425$$ 6.73515 + 10.9987i 0.326703 + 0.533517i
$$426$$ 2.82882 + 1.53471i 0.137057 + 0.0743567i
$$427$$ −15.7018 18.9602i −0.759862 0.917549i
$$428$$ 0.180754 + 5.59054i 0.00873709 + 0.270229i
$$429$$ 0.0249372 + 0.318133i 0.00120398 + 0.0153596i
$$430$$ −69.8698 + 7.25230i −3.36942 + 0.349737i
$$431$$ 34.6109 8.20294i 1.66715 0.395122i 0.714607 0.699526i $$-0.246605\pi$$
0.952543 + 0.304404i $$0.0984573\pi$$
$$432$$ 44.6846 22.9153i 2.14989 1.10251i
$$433$$ −6.42017 1.52161i −0.308534 0.0731238i 0.0734323 0.997300i $$-0.476605\pi$$
−0.381966 + 0.924176i $$0.624753\pi$$
$$434$$ 51.6101 + 6.70977i 2.47736 + 0.322079i
$$435$$ −3.59732 + 1.72301i −0.172478 + 0.0826122i
$$436$$ 2.92656 34.7437i 0.140157 1.66392i
$$437$$ −2.13229 + 0.623376i −0.102001 + 0.0298201i
$$438$$ −50.8714 + 26.0038i −2.43073 + 1.24251i
$$439$$ −19.0576 + 5.04050i −0.909568 + 0.240570i −0.680420 0.732822i $$-0.738203\pi$$
−0.229147 + 0.973392i $$0.573594\pi$$
$$440$$ 0.863550 + 0.989518i 0.0411681 + 0.0471734i
$$441$$ 4.78968 + 2.09540i 0.228080 + 0.0997810i
$$442$$ 0.777264 40.0755i 0.0369707 1.90620i
$$443$$ 1.78656 16.1921i 0.0848821 0.769309i −0.874081 0.485779i $$-0.838536\pi$$
0.958964 0.283529i $$-0.0915053\pi$$
$$444$$ −2.42411 0.108171i −0.115043 0.00513356i
$$445$$ −7.54661 6.16787i −0.357744 0.292385i
$$446$$ −11.8461 + 10.2039i −0.560930 + 0.483171i
$$447$$ 22.1814 9.92763i 1.04914 0.469561i
$$448$$ 8.15363 16.5003i 0.385223 0.779566i
$$449$$ −11.9300 + 13.6703i −0.563012 + 0.645140i −0.962398 0.271643i $$-0.912433\pi$$
0.399387 + 0.916783i $$0.369223\pi$$
$$450$$ −17.9493 4.72220i −0.846139 0.222606i
$$451$$ 0.202888 + 0.0317310i 0.00955361 + 0.00149416i
$$452$$ 10.5669 7.34822i 0.497024 0.345631i
$$453$$ 10.8904 + 9.00681i 0.511678 + 0.423177i
$$454$$ 3.34112 + 6.76134i 0.156806 + 0.317325i
$$455$$ −16.9396 4.48031i −0.794139 0.210040i
$$456$$ 4.26324 + 4.69184i 0.199644 + 0.219716i
$$457$$ 31.3414 + 16.2510i 1.46609 + 0.760190i 0.992694 0.120660i $$-0.0385010\pi$$
0.473397 + 0.880849i $$0.343028\pi$$
$$458$$ −6.38025 8.57016i −0.298129 0.400457i
$$459$$ 28.1694 2.79594i 1.31483 0.130503i
$$460$$ −35.1312 + 47.1894i −1.63800 + 2.20022i
$$461$$ −10.4404 + 5.07542i −0.486258 + 0.236386i −0.664059 0.747681i $$-0.731167\pi$$
0.177801 + 0.984066i $$0.443102\pi$$
$$462$$ −0.456067 + 0.503243i −0.0212181 + 0.0234130i
$$463$$ 20.4572 4.29305i 0.950726 0.199515i 0.295836 0.955239i $$-0.404402\pi$$
0.654891 + 0.755724i $$0.272715\pi$$
$$464$$ 7.12731 4.05375i 0.330877 0.188191i
$$465$$ 5.81397 + 40.4175i 0.269616 + 1.87432i
$$466$$ −9.56929 47.1125i −0.443289 2.18244i
$$467$$ 21.8618 1.69923i 1.01164 0.0786310i 0.439043 0.898466i $$-0.355318\pi$$
0.572600 + 0.819835i $$0.305935\pi$$
$$468$$ 27.6457 + 29.9932i 1.27792 + 1.38644i
$$469$$ 2.91006 + 29.9181i 0.134374 + 1.38149i
$$470$$ 48.0390 74.0784i 2.21587 3.41698i
$$471$$ 0.713905 + 13.6196i 0.0328950 + 0.627560i
$$472$$ 1.36905 0.177989i 0.0630157 0.00819260i
$$473$$ −0.644576 0.0669053i −0.0296376 0.00307631i
$$474$$ −1.92275 + 76.2811i −0.0883149 + 3.50370i
$$475$$ −0.00757496 1.17182i −0.000347563 0.0537668i
$$476$$ 44.6737 40.5393i 2.04762 1.85811i
$$477$$ −9.81010 + 22.8246i −0.449173 + 1.04507i
$$478$$ −24.0856 45.7254i −1.10165 2.09143i
$$479$$ −11.5040 14.6463i −0.525633 0.669206i 0.448866 0.893599i $$-0.351828\pi$$
−0.974499 + 0.224394i $$0.927960\pi$$
$$480$$ 48.3562 + 9.13977i 2.20715 + 0.417171i
$$481$$ −0.183208 0.795908i −0.00835357 0.0362903i
$$482$$ 37.7431 61.6358i 1.71915 2.80743i
$$483$$ −15.4416 8.90169i −0.702615 0.405041i
$$484$$ −25.9547 46.3279i −1.17976 2.10581i
$$485$$ 6.68013 11.5703i 0.303329 0.525381i
$$486$$ −26.4855 + 30.9527i −1.20141 + 1.40404i
$$487$$ 17.7269 + 30.7038i 0.803281 + 1.39132i 0.917446 + 0.397861i $$0.130247\pi$$
−0.114165 + 0.993462i $$0.536419\pi$$
$$488$$ −40.5794 + 68.2330i −1.83694 + 3.08876i
$$489$$ −24.2995 + 28.9976i −1.09886 + 1.31132i
$$490$$ 5.90177 + 10.8613i 0.266615 + 0.490665i
$$491$$ 12.9701 12.0792i 0.585333 0.545125i −0.331983 0.943285i $$-0.607718\pi$$
0.917316 + 0.398161i $$0.130351\pi$$
$$492$$ 22.8923 12.8449i 1.03207 0.579093i
$$493$$ 4.57539 0.655098i 0.206065 0.0295041i
$$494$$ −1.94193 + 3.08108i −0.0873715 + 0.138624i
$$495$$ −0.476491 0.238521i −0.0214167 0.0107207i
$$496$$ −17.7707 82.0385i −0.797926 3.68364i
$$497$$ −1.40656 + 0.824244i −0.0630926 + 0.0369724i
$$498$$ 17.4980 + 52.1262i 0.784102 + 2.33583i
$$499$$ 15.8759 21.9109i 0.710705 0.980865i −0.289018 0.957324i $$-0.593329\pi$$
0.999723 0.0235416i $$-0.00749423\pi$$
$$500$$ 20.9638 + 27.4122i 0.937531 + 1.22591i
$$501$$ −6.15638 + 20.1373i −0.275047 + 0.899668i
$$502$$ −32.3242 63.3386i −1.44270 2.82694i
$$503$$ 7.10285 5.07681i 0.316700 0.226364i −0.412021 0.911174i $$-0.635177\pi$$
0.728721 + 0.684811i $$0.240115\pi$$
$$504$$ −3.54698 + 50.7381i −0.157995 + 2.26005i
$$505$$ −6.02764 + 12.6057i −0.268227 + 0.560948i
$$506$$ −0.574986 + 0.508373i −0.0255612 + 0.0226000i
$$507$$ 4.63236 7.46708i 0.205730 0.331625i
$$508$$ −0.380641 + 58.8838i −0.0168882 + 2.61255i
$$509$$ −27.9553 31.2094i −1.23910 1.38333i −0.896012 0.444029i $$-0.853549\pi$$
−0.343085 0.939304i $$-0.611472\pi$$
$$510$$ 56.6468 + 35.6512i 2.50836 + 1.57866i
$$511$$ 2.05614 28.8678i 0.0909583 1.27704i
$$512$$ 41.4723 + 4.84741i 1.83283 + 0.214227i
$$513$$ −2.32263 1.10499i −0.102546 0.0487865i
$$514$$ −2.48082 + 0.289966i −0.109424 + 0.0127898i
$$515$$ −0.988734 21.8359i −0.0435688 0.962205i
$$516$$ −70.0499 + 44.2149i −3.08377 + 1.94645i
$$517$$ 0.574089 0.577812i 0.0252484 0.0254122i
$$518$$ 0.964533 1.44605i 0.0423791 0.0635359i
$$519$$ 18.9627 0.135019i 0.832369 0.00592666i
$$520$$ 4.74281 + 56.3060i 0.207986 + 2.46918i
$$521$$ −4.19192 10.8574i −0.183652 0.475669i 0.810231 0.586110i $$-0.199342\pi$$
−0.993883 + 0.110441i $$0.964774\pi$$
$$522$$ −4.10178 + 5.23628i −0.179530 + 0.229186i
$$523$$ −1.17951 3.44725i −0.0515764 0.150738i 0.917353 0.398074i $$-0.130321\pi$$
−0.968930 + 0.247336i $$0.920445\pi$$
$$524$$ −77.6336 + 5.02538i −3.39144 + 0.219535i
$$525$$ 6.75035 6.54421i 0.294609 0.285613i
$$526$$ 5.37012 + 28.3102i 0.234149 + 1.23438i
$$527$$ 7.61351 46.7011i 0.331650 2.03433i
$$528$$ 1.01161 + 0.420159i 0.0440245 + 0.0182851i
$$529$$ 2.30336 + 1.69176i 0.100146 + 0.0735546i
$$530$$ −51.4311 + 28.3785i −2.23402 + 1.23268i
$$531$$ −0.486527 + 0.277564i −0.0211135 + 0.0120453i
$$532$$ −5.37851 + 1.05631i −0.233188 + 0.0457966i
$$533$$ 6.22719 + 6.26758i 0.269730 + 0.271479i
$$534$$ −15.8416 3.63559i −0.685532 0.157327i
$$535$$ 0.744748 3.05422i 0.0321983 0.132046i
$$536$$ 87.7207 41.2505i 3.78896 1.78175i
$$537$$ 0.872823 + 1.21946i 0.0376651 + 0.0526234i
$$538$$ −27.5519 + 36.0268i −1.18785 + 1.55322i
$$539$$ 0.0327061 + 0.109246i 0.00140875 + 0.00470556i
$$540$$ −66.7236 + 13.6894i −2.87133 + 0.589097i
$$541$$ 0.301515 1.00713i 0.0129632 0.0432999i −0.951263 0.308380i $$-0.900213\pi$$
0.964226 + 0.265080i $$0.0853984\pi$$
$$542$$ 27.4865 + 37.9349i 1.18065 + 1.62944i
$$543$$ 23.7197 + 2.29146i 1.01791 + 0.0983359i
$$544$$ −50.2826 26.9027i −2.15585 1.15344i
$$545$$ −6.82122 + 18.3708i −0.292189 + 0.786918i
$$546$$ −28.6315 + 5.83506i −1.22531 + 0.249718i
$$547$$ −35.9208 + 0.929002i −1.53586 + 0.0397213i −0.784484 0.620149i $$-0.787072\pi$$
−0.751380 + 0.659870i $$0.770611\pi$$
$$548$$ −63.9642 17.8057i −2.73242 0.760620i
$$549$$ 4.72940 31.8606i 0.201846 1.35978i
$$550$$ −0.174646 0.365240i −0.00744692 0.0155739i
$$551$$ −0.386686 0.163843i −0.0164734 0.00697997i
$$552$$ −10.3095 + 56.5458i −0.438804 + 2.40675i
$$553$$ −32.5662 20.8210i −1.38485 0.885399i
$$554$$ 3.08866 2.08914i 0.131225 0.0887591i
$$555$$ 1.29622 + 0.423935i 0.0550215 + 0.0179950i
$$556$$ 83.7344 + 14.2072i 3.55113 + 0.602518i
$$557$$ 5.56383 2.27308i 0.235747 0.0963133i −0.257248 0.966345i $$-0.582816\pi$$
0.492995 + 0.870032i $$0.335902\pi$$
$$558$$ 38.5884 + 56.1053i 1.63358 + 2.37513i
$$559$$ −20.6474 18.7365i −0.873291 0.792469i
$$560$$ −40.1306 + 44.8019i −1.69583 + 1.89323i
$$561$$ 0.443899 + 0.429215i 0.0187414 + 0.0181215i
$$562$$ 26.5810 52.0848i 1.12125 2.19707i
$$563$$ 3.22939 + 21.5606i 0.136102 + 0.908673i 0.946479 + 0.322764i $$0.104612\pi$$
−0.810377 + 0.585909i $$0.800738\pi$$
$$564$$ 12.0195 103.422i 0.506112 4.35484i
$$565$$ −6.82894 + 2.38601i −0.287295 + 0.100380i
$$566$$ 58.1850 48.8230i 2.44570 2.05219i
$$567$$ −6.47903 19.5925i −0.272094 0.822808i
$$568$$ 4.02734 + 3.37934i 0.168983 + 0.141794i
$$569$$ 25.6201 + 9.70184i 1.07405 + 0.406722i 0.826954 0.562269i $$-0.190072\pi$$
0.247095 + 0.968991i $$0.420524\pi$$
$$570$$ −2.73294 5.43284i −0.114470 0.227557i
$$571$$ 2.75263 13.5520i 0.115194 0.567135i −0.880469 0.474103i $$-0.842772\pi$$
0.995663 0.0930315i $$-0.0296557\pi$$
$$572$$ −0.109005 + 0.883057i −0.00455774 + 0.0369225i
$$573$$ −1.95895 + 3.78407i −0.0818362 + 0.158082i
$$574$$ −0.607649 + 18.7940i −0.0253628 + 0.784445i
$$575$$ 8.39775 6.50874i 0.350210 0.271433i
$$576$$ 23.1903 6.48826i 0.966264 0.270344i
$$577$$ −5.26514 8.35372i −0.219191 0.347770i 0.718328 0.695705i $$-0.244908\pi$$
−0.937519 + 0.347935i $$0.886883\pi$$
$$578$$ −21.4617 25.2439i −0.892691 1.05001i
$$579$$ 35.5761 25.1174i 1.47849 1.04384i
$$580$$ −10.7876 + 2.70447i −0.447931 + 0.112297i
$$581$$ −27.1831 6.07244i −1.12774 0.251927i
$$582$$ 1.42462 22.2342i 0.0590523 0.921636i
$$583$$ −0.518126 + 0.158773i −0.0214586 + 0.00657572i
$$584$$ −89.9107 + 25.0283i −3.72053 + 1.03568i
$$585$$ −10.4480 20.4065i −0.431973 0.843707i
$$586$$ 0.802722 8.25271i 0.0331602 0.340916i
$$587$$ −23.3902 18.6177i −0.965415 0.768436i 0.00741084 0.999973i $$-0.497641\pi$$
−0.972826 + 0.231537i $$0.925625\pi$$
$$588$$ 11.9192 + 8.39175i 0.491539 + 0.346070i
$$589$$ −2.78480 + 3.27555i −0.114745 + 0.134967i
$$590$$ −1.31103 0.187711i −0.0539743 0.00772796i
$$591$$ −11.0801 + 4.28626i −0.455773 + 0.176313i
$$592$$ −2.71937 0.681750i −0.111765 0.0280198i
$$593$$ −1.32156 0.663710i −0.0542698 0.0272553i 0.421457 0.906848i $$-0.361519\pi$$
−0.475727 + 0.879593i $$0.657815\pi$$
$$594$$ −0.888591 0.00399550i −0.0364593 0.000163937i
$$595$$ −30.2986 + 15.2165i −1.24212 + 0.623817i
$$596$$ 66.1295 14.7727i 2.70877 0.605114i
$$597$$ −22.4875 + 18.1623i −0.920352 + 0.743333i
$$598$$ −32.8858 + 2.98427i −1.34480 + 0.122036i
$$599$$ 0.314757 + 2.85273i 0.0128606 + 0.116559i 0.998688 0.0512017i $$-0.0163051\pi$$
−0.985828 + 0.167761i $$0.946346\pi$$
$$600$$ −27.1903 13.4139i −1.11004 0.547621i
$$601$$ 41.8133 + 3.79441i 1.70560 + 0.154777i 0.899477 0.436968i $$-0.143948\pi$$
0.806125 + 0.591745i $$0.201561\pi$$
$$602$$ −1.15067 59.3283i −0.0468978 2.41804i
$$603$$ −26.5793 + 28.9885i −1.08239 + 1.18050i
$$604$$ 24.7388 + 30.6713i 1.00661 + 1.24800i
$$605$$ 7.07045 + 28.9960i 0.287455 + 1.17885i
$$606$$ 0.316520 + 23.2990i 0.0128577 + 0.946457i
$$607$$ −0.200994 + 0.358764i −0.00815808 + 0.0145618i −0.876466 0.481464i $$-0.840105\pi$$
0.868308 + 0.496026i $$0.165208\pi$$
$$608$$ 2.64857 + 4.45349i 0.107414 + 0.180613i
$$609$$ −1.19531 3.15027i −0.0484364 0.127655i
$$610$$ 55.0561 52.6196i 2.22916 2.13050i
$$611$$ 34.6232 5.41498i 1.40071 0.219066i
$$612$$ 78.5184 + 8.04590i 3.17392 + 0.325236i
$$613$$ 18.1217 10.9365i 0.731927 0.441720i −0.101154 0.994871i $$-0.532254\pi$$
0.833081 + 0.553150i $$0.186575\pi$$
$$614$$ −2.03522 + 2.88669i −0.0821348 + 0.116497i
$$615$$ −14.3310 + 3.50446i −0.577881 + 0.141313i
$$616$$ −0.894172 + 0.656746i −0.0360272 + 0.0264610i
$$617$$ −5.33215 + 11.5320i −0.214664 + 0.464261i −0.984816 0.173600i $$-0.944460\pi$$
0.770152 + 0.637860i $$0.220180\pi$$
$$618$$ −17.6310 31.9036i −0.709222 1.28335i
$$619$$ 27.1396 + 29.5218i 1.09083 + 1.18658i 0.981277 + 0.192601i $$0.0616923\pi$$
0.109557 + 0.993980i $$0.465057\pi$$
$$620$$ −6.62005 + 113.662i −0.265868 + 4.56477i
$$621$$ −4.83447 22.8137i −0.194001 0.915482i
$$622$$ −1.21274 20.8219i −0.0486264 0.834883i
$$623$$ 5.72699 5.91515i 0.229447 0.236986i
$$624$$ 24.3776 + 40.3337i 0.975885 + 1.61464i
$$625$$ −11.6250 28.9883i −0.464998 1.15953i
$$626$$ 9.59203 + 26.8935i 0.383374 + 1.07488i
$$627$$ −0.0143812 0.0542298i −0.000574330 0.00216573i
$$628$$ −5.63295 + 37.6078i −0.224779 + 1.50071i
$$629$$ −1.28570 0.918960i −0.0512640 0.0366413i
$$630$$ 16.3310 45.9783i 0.650641 1.83182i
$$631$$ −33.8377 33.1877i −1.34706 1.32118i −0.905741 0.423831i $$-0.860685\pi$$
−0.441315 0.897352i $$-0.645488\pi$$
$$632$$ −27.9615 + 121.473i −1.11225 + 4.83193i
$$633$$ 13.0759 29.8356i 0.519720 1.18586i
$$634$$ −13.6441 43.5187i −0.541877 1.72835i
$$635$$ 9.08118 31.8251i 0.360376 1.26294i
$$636$$ −39.5109 + 56.8970i −1.56671 + 2.25611i
$$637$$ −1.64823 + 4.62120i −0.0653052 + 0.183099i
$$638$$ −0.144980 + 0.00562589i −0.00573982 + 0.000222731i
$$639$$ −2.03203 0.648605i −0.0803858 0.0256584i
$$640$$ 0.103735 + 0.0423805i 0.00410050 + 0.00167524i
$$641$$ 16.0685 + 9.98304i 0.634668 + 0.394306i 0.806848 0.590759i $$-0.201172\pi$$
−0.172180 + 0.985065i $$0.555081\pi$$
$$642$$ −1.14631 5.11564i −0.0452413 0.201898i
$$643$$ 31.0734 13.1662i 1.22541 0.519223i 0.321489 0.946913i $$-0.395817\pi$$
0.903925 + 0.427691i $$0.140673\pi$$
$$644$$ −37.2315 32.9182i −1.46713 1.29716i
$$645$$ 44.5924 13.3820i 1.75582 0.526914i
$$646$$ 1.13391 + 6.95540i 0.0446132 + 0.273657i
$$647$$ −32.8670 + 11.9626i −1.29214 + 0.470299i −0.894428 0.447213i $$-0.852417\pi$$
−0.397709 + 0.917512i $$0.630194\pi$$
$$648$$ −52.4914 + 40.9048i −2.06206 + 1.60689i
$$649$$ −0.0114813 0.00417884i −0.000450679 0.000164034i
$$650$$ 3.24616 17.1131i 0.127325 0.671230i
$$651$$ −34.4343 + 2.02823i −1.34959 + 0.0794927i
$$652$$ −82.5346 + 65.6946i −3.23230 + 2.57280i
$$653$$ 1.38697 + 2.13877i 0.0542763 + 0.0836965i 0.865116 0.501571i $$-0.167245\pi$$
−0.810840 + 0.585268i $$0.800989\pi$$
$$654$$ 3.39519 + 32.5022i 0.132763 + 1.27094i
$$655$$ 42.7919 + 8.98012i 1.67202 + 0.350882i
$$656$$ 28.8799 9.25997i 1.12757 0.361541i
$$657$$ 29.8986 23.2360i 1.16646 0.906524i
$$658$$ 58.9505 + 45.6901i 2.29813 + 1.78119i
$$659$$ −5.04251 + 6.08893i −0.196428 + 0.237191i −0.859212 0.511620i $$-0.829046\pi$$
0.662784 + 0.748811i $$0.269375\pi$$
$$660$$ −1.16902 0.916973i −0.0455039 0.0356931i
$$661$$ 16.9992 + 8.26387i 0.661192 + 0.321427i 0.737195 0.675680i $$-0.236150\pi$$
−0.0760032 + 0.997108i $$0.524216\pi$$
$$662$$ 36.8095 19.0863i 1.43064 0.741810i
$$663$$ 4.46114 + 26.1890i 0.173256 + 1.01710i
$$664$$ 11.0041 + 89.1444i 0.427040 + 3.45947i
$$665$$ 3.07138 + 0.238727i 0.119103 + 0.00925743i
$$666$$ 2.25089 0.325292i 0.0872200 0.0126048i
$$667$$ −0.949798 3.68734i −0.0367763 0.142774i
$$668$$ −28.0323 + 51.5893i −1.08460 + 1.99605i
$$669$$ 6.44812 8.11193i 0.249299 0.313625i
$$670$$ −91.6812 + 15.5555i −3.54196 + 0.600961i
$$671$$ 0.596786 0.370771i 0.0230387 0.0143135i
$$672$$ −11.1222 + 40.0566i −0.429048 + 1.54522i
$$673$$ 4.27541 9.56942i 0.164805 0.368874i −0.811793 0.583945i $$-0.801508\pi$$
0.976598 + 0.215071i $$0.0689982\pi$$
$$674$$ −46.8618 49.6706i −1.80505 1.91324i
$$675$$ 12.2719 + 0.849809i 0.472344 + 0.0327092i
$$676$$ 16.8138 17.8215i 0.646683 0.685444i
$$677$$ 13.2940 + 31.9484i 0.510929 + 1.22788i 0.945022 + 0.327008i $$0.106040\pi$$
−0.434093 + 0.900868i $$0.642931\pi$$
$$678$$ −8.44117 + 8.61778i −0.324181 + 0.330964i
$$679$$ 9.26585 + 6.44349i 0.355591 + 0.247278i
$$680$$ 79.0424 + 75.5444i 3.03114 + 2.89699i
$$681$$ −3.01340 3.98810i −0.115474 0.152824i
$$682$$ −0.389068 + 1.43347i −0.0148982 + 0.0548905i
$$683$$ 3.98466 11.6456i 0.152469 0.445607i −0.843306 0.537433i $$-0.819394\pi$$
0.995775 + 0.0918264i $$0.0292705\pi$$
$$684$$ −5.73039 4.31219i −0.219107 0.164881i
$$685$$ 31.9495 + 19.2816i 1.22073 + 0.736713i
$$686$$ −47.9669 + 21.0597i −1.83138 + 0.804063i
$$687$$ 5.21633 + 4.78911i 0.199016 + 0.182716i
$$688$$ −89.5045 + 33.8937i −3.41233 + 1.29218i
$$689$$ −22.0103 7.69034i −0.838526 0.292979i
$$690$$ 24.0749 49.6059i 0.916514 1.88846i
$$691$$ 24.7345 + 37.0826i 0.940944 + 1.41069i 0.911582 + 0.411119i $$0.134862\pi$$
0.0293618 + 0.999569i $$0.490653\pi$$
$$692$$ 51.8832 + 10.1895i 1.97230 + 0.387347i
$$693$$ 0.234564 0.384182i 0.00891035 0.0145939i
$$694$$ 11.1169 13.7828i 0.421992 0.523188i
$$695$$ −43.1964 20.3130i −1.63853 0.770517i
$$696$$ −8.27370 + 7.04345i −0.313614 + 0.266981i
$$697$$ 17.0603 + 1.10435i 0.646204 + 0.0418301i
$$698$$ 1.57658 + 5.80873i 0.0596746 + 0.219864i
$$699$$ 12.0699 + 29.4882i 0.456524 + 1.11535i
$$700$$ 22.0865 14.1209i 0.834790 0.533718i
$$701$$ 2.71510 6.29430i 0.102548 0.237732i −0.859216 0.511613i $$-0.829048\pi$$
0.961764 + 0.273881i $$0.0883074\pi$$
$$702$$ −30.7111 22.7698i −1.15911 0.859389i
$$703$$ 0.0568740 + 0.131849i 0.00214505 + 0.00497277i
$$704$$ 0.435090 + 0.294291i 0.0163981 + 0.0110915i
$$705$$ −22.0958 + 54.1857i −0.832177 + 2.04075i
$$706$$ 21.5681 65.8004i 0.811727 2.47643i
$$707$$ −10.1837 5.96766i −0.382997 0.224437i
$$708$$ −1.48379 + 0.487436i −0.0557643 + 0.0183190i
$$709$$ −0.432334 0.144812i −0.0162367 0.00543855i 0.309481 0.950906i $$-0.399845\pi$$
−0.325718 + 0.945467i $$0.605606\pi$$
$$710$$ −2.85259 4.15917i −0.107056 0.156091i
$$711$$ −8.20286 49.9039i −0.307631 1.87154i
$$712$$ −24.1710 10.9871i −0.905846 0.411758i
$$713$$ −38.9288 2.01494i −1.45790 0.0754601i
$$714$$ −34.0265 + 45.1555i −1.27341 + 1.68990i
$$715$$ 0.192117 0.461699i 0.00718475 0.0172665i
$$716$$ 1.70565 + 3.81766i 0.0637432 + 0.142673i
$$717$$ 21.3493 + 26.7859i 0.797304 + 1.00034i
$$718$$ −9.89261 5.62655i −0.369189 0.209981i
$$719$$ 13.6891 + 4.38922i 0.510516 + 0.163690i 0.549410 0.835553i $$-0.314853\pi$$
−0.0388938 + 0.999243i $$0.512383\pi$$
$$720$$ −78.6960 + 0.103237i −2.93283 + 0.00384742i
$$721$$ 18.4508 + 0.715976i 0.687145 + 0.0266643i
$$722$$ −18.2429 + 45.4911i −0.678931 + 1.69300i
$$723$$ −16.9345 + 44.8084i −0.629801 + 1.66644i
$$724$$ 63.5288 + 19.4676i 2.36103 + 0.723509i
$$725$$ 2.00786 + 0.0519282i 0.0745699 + 0.00192856i
$$726$$ 32.0172 + 38.1058i 1.18827 + 1.41424i
$$727$$ −27.8921 0.360619i −1.03446 0.0133746i −0.506166 0.862436i $$-0.668938\pi$$
−0.528294 + 0.849062i $$0.677168\pi$$
$$728$$ −47.7328 −1.76909
$$729$$ 13.4079 23.4356i 0.496588 0.867986i
$$730$$ 89.5319 3.31372
$$731$$ −53.9456 0.697467i −1.99525 0.0257968i
$$732$$ 30.6612 84.4132i 1.13327 3.12000i
$$733$$ 15.0034 + 0.388025i 0.554163 + 0.0143320i 0.301922 0.953333i $$-0.402372\pi$$
0.252241 + 0.967665i $$0.418833\pi$$
$$734$$ 31.2380 + 9.57249i 1.15301 + 0.353327i
$$735$$ −5.18878 6.34016i −0.191391 0.233860i
$$736$$ −17.4862 + 43.6042i −0.644550 + 1.60727i
$$737$$ −0.857238 0.0332647i −0.0315768 0.00122532i
$$738$$ −18.8260 + 15.8390i −0.692995 + 0.583043i
$$739$$ 28.1729 + 9.03327i 1.03636 + 0.332294i 0.774340 0.632769i $$-0.218082\pi$$
0.262016 + 0.965064i $$0.415613\pi$$
$$740$$ 3.30536 + 1.87997i 0.121508 + 0.0691090i
$$741$$ 0.882476 2.24674i 0.0324186 0.0825362i
$$742$$ −20.2414 45.3051i −0.743083 1.66320i
$$743$$ −13.3571 + 32.1001i −0.490025 + 1.17764i 0.466114 + 0.884725i $$0.345654\pi$$
−0.956139 + 0.292914i $$0.905375\pi$$
$$744$$ 43.4646 + 102.394i 1.59349 + 3.75393i
$$745$$ −38.0322 1.96853i −1.39339 0.0721214i
$$746$$ 11.8884 + 5.40395i 0.435266 + 0.197853i
$$747$$ −17.8535 31.7699i −0.653226 1.16240i
$$748$$ 0.973791 + 1.41982i 0.0356053 + 0.0519138i
$$749$$ 2.51813 + 0.843461i 0.0920106 + 0.0308194i
$$750$$ −24.1065 21.5645i −0.880246 0.787425i
$$751$$ −1.08994 0.638704i −0.0397723 0.0233066i 0.485567 0.874199i $$-0.338613\pi$$
−0.525340 + 0.850893i $$0.676062\pi$$
$$752$$ 37.4687 114.310i 1.36634 4.16847i
$$753$$ 28.8964 + 37.2324i 1.05304 + 1.35682i
$$754$$ −5.17062 3.49736i −0.188303 0.127366i
$$755$$ −8.77191 20.3356i −0.319242 0.740087i
$$756$$ −6.79227 57.1363i −0.247032 2.07803i
$$757$$ 4.66975 10.8257i 0.169725 0.393467i −0.812030 0.583615i $$-0.801638\pi$$
0.981755 + 0.190148i $$0.0608969\pi$$
$$758$$ 21.7193 13.8861i 0.788882 0.504367i
$$759$$ 0.311355 0.402262i 0.0113015 0.0146012i
$$760$$ −2.60225 9.58765i −0.0943934 0.347781i
$$761$$ −52.1029 3.37273i −1.88873 0.122261i −0.923488 0.383626i $$-0.874675\pi$$
−0.965240 + 0.261365i $$0.915827\pi$$
$$762$$ −9.97044 54.2822i −0.361191 1.96644i
$$763$$ −14.9802 7.04444i −0.542321 0.255026i
$$764$$ −7.45901 + 9.24773i −0.269858 + 0.334571i
$$765$$ −41.3008 16.1909i −1.49323 0.585382i
$$766$$ 69.6721 + 13.6832i 2.51736 + 0.494392i
$$767$$ −0.291696 0.437318i −0.0105325 0.0157906i