Properties

Label 729.2.k.a.4.13
Level $729$
Weight $2$
Character 729.4
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12960$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(4,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(486))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.k (of order \(243\), degree \(162\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12960\)
Relative dimension: \(80\) over \(\Q(\zeta_{243})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{243}]$

Embedding invariants

Embedding label 4.13
Character \(\chi\) \(=\) 729.4
Dual form 729.2.k.a.547.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05837 - 0.0266128i) q^{2} +(0.611800 + 1.62040i) q^{3} +(2.23685 + 0.0578504i) q^{4} +(-2.65761 - 0.814392i) q^{5} +(-1.21619 - 3.35167i) q^{6} +(1.70918 - 4.26207i) q^{7} +(-0.488730 - 0.0189650i) q^{8} +(-2.25140 + 1.98272i) q^{9} +O(q^{10})\) \(q+(-2.05837 - 0.0266128i) q^{2} +(0.611800 + 1.62040i) q^{3} +(2.23685 + 0.0578504i) q^{4} +(-2.65761 - 0.814392i) q^{5} +(-1.21619 - 3.35167i) q^{6} +(1.70918 - 4.26207i) q^{7} +(-0.488730 - 0.0189650i) q^{8} +(-2.25140 + 1.98272i) q^{9} +(5.44867 + 1.74705i) q^{10} +(-0.0568156 - 0.0323146i) q^{11} +(1.27476 + 3.65998i) q^{12} +(-0.493390 - 1.10433i) q^{13} +(-3.63156 + 8.72744i) q^{14} +(-0.306283 - 4.80464i) q^{15} +(-3.46372 - 0.179281i) q^{16} +(-0.381134 - 0.173247i) q^{17} +(4.68698 - 4.02126i) q^{18} +(0.205864 + 0.300158i) q^{19} +(-5.89755 - 1.97541i) q^{20} +(7.95195 + 0.162028i) q^{21} +(0.116088 + 0.0680275i) q^{22} +(-2.62933 + 8.02163i) q^{23} +(-0.268274 - 0.803542i) q^{24} +(2.25808 + 1.52735i) q^{25} +(0.986190 + 2.28625i) q^{26} +(-4.59021 - 2.43515i) q^{27} +(4.06974 - 9.43473i) q^{28} +(-2.39919 + 1.53391i) q^{29} +(0.502580 + 9.89787i) q^{30} +(2.59194 + 9.54968i) q^{31} +(8.10101 + 0.524394i) q^{32} +(0.0176029 - 0.111834i) q^{33} +(0.779904 + 0.366749i) q^{34} +(-8.01334 + 9.93498i) q^{35} +(-5.15074 + 4.30480i) q^{36} +(0.472502 + 0.0927963i) q^{37} +(-0.415757 - 0.623314i) q^{38} +(1.48760 - 1.47512i) q^{39} +(1.28341 + 0.448419i) q^{40} +(-7.28978 + 2.76051i) q^{41} +(-16.3637 - 0.545137i) q^{42} +(-3.00135 + 1.31773i) q^{43} +(-0.125218 - 0.0755697i) q^{44} +(7.59806 - 3.43578i) q^{45} +(5.62562 - 16.4415i) q^{46} +(3.40924 - 12.5609i) q^{47} +(-1.82860 - 5.72231i) q^{48} +(-10.1835 - 9.73283i) q^{49} +(-4.60732 - 3.20394i) q^{50} +(0.0475514 - 0.723582i) q^{51} +(-1.03975 - 2.49876i) q^{52} +(-5.59164 + 5.92679i) q^{53} +(9.38355 + 5.13459i) q^{54} +(0.124677 + 0.132150i) q^{55} +(-0.916160 + 2.05059i) q^{56} +(-0.360428 + 0.517219i) q^{57} +(4.97924 - 3.09350i) q^{58} +(8.32036 - 1.41171i) q^{59} +(-0.407159 - 10.7650i) q^{60} +(-3.89003 + 7.15902i) q^{61} +(-5.08102 - 19.7257i) q^{62} +(4.60245 + 12.9845i) q^{63} +(-9.74505 - 0.757445i) q^{64} +(0.411883 + 3.33669i) q^{65} +(-0.0392095 + 0.229728i) q^{66} +(-0.604026 + 0.313197i) q^{67} +(-0.842516 - 0.409575i) q^{68} +(-14.6069 + 0.647051i) q^{69} +(16.7588 - 20.2366i) q^{70} +(-7.25979 - 5.62676i) q^{71} +(1.13793 - 0.926319i) q^{72} +(-11.1125 + 3.56307i) q^{73} +(-0.970113 - 0.203584i) q^{74} +(-1.09342 + 4.59343i) q^{75} +(0.443123 + 0.683316i) q^{76} +(-0.234836 + 0.186921i) q^{77} +(-3.10129 + 2.99675i) q^{78} +(-0.844570 + 4.45241i) q^{79} +(9.05922 + 3.29729i) q^{80} +(1.13762 - 8.92781i) q^{81} +(15.0785 - 5.48814i) q^{82} +(0.152532 + 0.935631i) q^{83} +(17.7779 + 0.822455i) q^{84} +(0.871814 + 0.770814i) q^{85} +(6.21295 - 2.63250i) q^{86} +(-3.95337 - 2.94920i) q^{87} +(0.0271547 + 0.0168706i) q^{88} +(-11.5515 - 4.71931i) q^{89} +(-15.7311 + 6.86990i) q^{90} +(-5.55002 + 0.215366i) q^{91} +(-6.34547 + 17.7910i) q^{92} +(-13.8886 + 10.0425i) q^{93} +(-7.35175 + 25.7643i) q^{94} +(-0.302661 - 0.965356i) q^{95} +(4.10646 + 13.4477i) q^{96} +(0.977177 - 4.24514i) q^{97} +(20.7024 + 20.3048i) q^{98} +(0.191986 - 0.0398964i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12960 q - 162 q^{2} - 162 q^{3} - 162 q^{4} - 162 q^{5} - 162 q^{6} - 162 q^{7} - 162 q^{8} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12960 q - 162 q^{2} - 162 q^{3} - 162 q^{4} - 162 q^{5} - 162 q^{6} - 162 q^{7} - 162 q^{8} - 162 q^{9} - 162 q^{10} - 162 q^{11} - 162 q^{12} - 162 q^{13} - 162 q^{14} - 162 q^{15} - 162 q^{16} - 162 q^{17} - 162 q^{18} - 162 q^{19} - 162 q^{20} - 162 q^{21} - 162 q^{22} - 162 q^{23} - 162 q^{24} - 162 q^{25} - 162 q^{26} - 162 q^{27} - 162 q^{28} - 162 q^{29} - 162 q^{30} - 162 q^{31} - 162 q^{32} - 162 q^{33} - 162 q^{34} - 162 q^{35} - 162 q^{36} - 162 q^{37} - 162 q^{38} - 162 q^{39} - 162 q^{40} - 162 q^{41} - 162 q^{42} - 162 q^{43} - 162 q^{44} - 162 q^{45} - 162 q^{46} - 162 q^{47} - 162 q^{48} - 162 q^{49} - 162 q^{50} - 162 q^{51} - 162 q^{52} - 162 q^{53} - 162 q^{54} - 162 q^{55} - 162 q^{56} - 162 q^{57} - 162 q^{58} - 162 q^{59} - 162 q^{60} - 162 q^{61} - 162 q^{62} - 162 q^{63} - 162 q^{64} - 162 q^{65} - 162 q^{66} - 162 q^{67} - 162 q^{68} - 162 q^{69} - 162 q^{70} - 162 q^{71} - 162 q^{72} - 162 q^{73} - 162 q^{74} - 162 q^{75} - 162 q^{76} - 162 q^{77} - 162 q^{78} - 162 q^{79} - 162 q^{80} - 162 q^{81} - 162 q^{82} - 162 q^{83} - 162 q^{84} - 162 q^{85} - 162 q^{86} - 162 q^{87} - 162 q^{88} - 162 q^{89} - 162 q^{90} - 162 q^{91} - 162 q^{92} - 162 q^{93} - 162 q^{94} - 162 q^{95} - 162 q^{96} - 162 q^{97} - 162 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{243}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.05837 0.0266128i −1.45549 0.0188181i −0.718878 0.695136i \(-0.755344\pi\)
−0.736609 + 0.676318i \(0.763574\pi\)
\(3\) 0.611800 + 1.62040i 0.353223 + 0.935539i
\(4\) 2.23685 + 0.0578504i 1.11842 + 0.0289252i
\(5\) −2.65761 0.814392i −1.18852 0.364207i −0.364735 0.931111i \(-0.618841\pi\)
−0.823784 + 0.566904i \(0.808141\pi\)
\(6\) −1.21619 3.35167i −0.496506 1.36831i
\(7\) 1.70918 4.26207i 0.646011 1.61091i −0.138190 0.990406i \(-0.544129\pi\)
0.784201 0.620507i \(-0.213073\pi\)
\(8\) −0.488730 0.0189650i −0.172792 0.00670512i
\(9\) −2.25140 + 1.98272i −0.750467 + 0.660908i
\(10\) 5.44867 + 1.74705i 1.72302 + 0.552464i
\(11\) −0.0568156 0.0323146i −0.0171306 0.00974323i 0.485802 0.874069i \(-0.338528\pi\)
−0.502933 + 0.864326i \(0.667746\pi\)
\(12\) 1.27476 + 3.65998i 0.367992 + 1.05655i
\(13\) −0.493390 1.10433i −0.136842 0.306285i 0.831663 0.555281i \(-0.187389\pi\)
−0.968505 + 0.248995i \(0.919900\pi\)
\(14\) −3.63156 + 8.72744i −0.970575 + 2.33251i
\(15\) −0.306283 4.80464i −0.0790820 1.24055i
\(16\) −3.46372 0.179281i −0.865931 0.0448202i
\(17\) −0.381134 0.173247i −0.0924386 0.0420185i 0.367058 0.930198i \(-0.380365\pi\)
−0.459496 + 0.888180i \(0.651970\pi\)
\(18\) 4.68698 4.02126i 1.10473 0.947820i
\(19\) 0.205864 + 0.300158i 0.0472285 + 0.0688609i 0.847570 0.530683i \(-0.178065\pi\)
−0.800342 + 0.599544i \(0.795349\pi\)
\(20\) −5.89755 1.97541i −1.31873 0.441716i
\(21\) 7.95195 + 0.162028i 1.73526 + 0.0353574i
\(22\) 0.116088 + 0.0680275i 0.0247500 + 0.0145035i
\(23\) −2.62933 + 8.02163i −0.548254 + 1.67262i 0.177055 + 0.984201i \(0.443343\pi\)
−0.725309 + 0.688424i \(0.758303\pi\)
\(24\) −0.268274 0.803542i −0.0547612 0.164022i
\(25\) 2.25808 + 1.52735i 0.451617 + 0.305469i
\(26\) 0.986190 + 2.28625i 0.193408 + 0.448370i
\(27\) −4.59021 2.43515i −0.883387 0.468644i
\(28\) 4.06974 9.43473i 0.769109 1.78300i
\(29\) −2.39919 + 1.53391i −0.445518 + 0.284840i −0.742252 0.670121i \(-0.766242\pi\)
0.296734 + 0.954960i \(0.404102\pi\)
\(30\) 0.502580 + 9.89787i 0.0917580 + 1.80710i
\(31\) 2.59194 + 9.54968i 0.465526 + 1.71517i 0.675406 + 0.737446i \(0.263968\pi\)
−0.209880 + 0.977727i \(0.567307\pi\)
\(32\) 8.10101 + 0.524394i 1.43207 + 0.0927007i
\(33\) 0.0176029 0.111834i 0.00306427 0.0194678i
\(34\) 0.779904 + 0.366749i 0.133752 + 0.0628969i
\(35\) −8.01334 + 9.93498i −1.35450 + 1.67932i
\(36\) −5.15074 + 4.30480i −0.858457 + 0.717467i
\(37\) 0.472502 + 0.0927963i 0.0776788 + 0.0152556i 0.231401 0.972859i \(-0.425669\pi\)
−0.153722 + 0.988114i \(0.549126\pi\)
\(38\) −0.415757 0.623314i −0.0674447 0.101115i
\(39\) 1.48760 1.47512i 0.238206 0.236208i
\(40\) 1.28341 + 0.448419i 0.202925 + 0.0709013i
\(41\) −7.28978 + 2.76051i −1.13847 + 0.431118i −0.850216 0.526434i \(-0.823529\pi\)
−0.288257 + 0.957553i \(0.593076\pi\)
\(42\) −16.3637 0.545137i −2.52498 0.0841165i
\(43\) −3.00135 + 1.31773i −0.457701 + 0.200952i −0.618099 0.786101i \(-0.712097\pi\)
0.160398 + 0.987052i \(0.448722\pi\)
\(44\) −0.125218 0.0755697i −0.0188774 0.0113926i
\(45\) 7.59806 3.43578i 1.13265 0.512176i
\(46\) 5.62562 16.4415i 0.829453 2.42417i
\(47\) 3.40924 12.5609i 0.497288 1.83220i −0.0549184 0.998491i \(-0.517490\pi\)
0.552207 0.833707i \(-0.313786\pi\)
\(48\) −1.82860 5.72231i −0.263935 0.825944i
\(49\) −10.1835 9.73283i −1.45479 1.39040i
\(50\) −4.60732 3.20394i −0.651574 0.453106i
\(51\) 0.0475514 0.723582i 0.00665853 0.101322i
\(52\) −1.03975 2.49876i −0.144188 0.346515i
\(53\) −5.59164 + 5.92679i −0.768070 + 0.814107i −0.986845 0.161668i \(-0.948313\pi\)
0.218775 + 0.975775i \(0.429794\pi\)
\(54\) 9.38355 + 5.13459i 1.27694 + 0.698729i
\(55\) 0.124677 + 0.132150i 0.0168114 + 0.0178191i
\(56\) −0.916160 + 2.05059i −0.122427 + 0.274022i
\(57\) −0.360428 + 0.517219i −0.0477399 + 0.0685074i
\(58\) 4.97924 3.09350i 0.653806 0.406196i
\(59\) 8.32036 1.41171i 1.08322 0.183789i 0.401832 0.915713i \(-0.368374\pi\)
0.681386 + 0.731924i \(0.261378\pi\)
\(60\) −0.407159 10.7650i −0.0525640 1.38975i
\(61\) −3.89003 + 7.15902i −0.498067 + 0.916619i 0.500634 + 0.865659i \(0.333100\pi\)
−0.998701 + 0.0509596i \(0.983772\pi\)
\(62\) −5.08102 19.7257i −0.645291 2.50517i
\(63\) 4.60245 + 12.9845i 0.579854 + 1.63589i
\(64\) −9.74505 0.757445i −1.21813 0.0946806i
\(65\) 0.411883 + 3.33669i 0.0510878 + 0.413865i
\(66\) −0.0392095 + 0.229728i −0.00482636 + 0.0282775i
\(67\) −0.604026 + 0.313197i −0.0737936 + 0.0382631i −0.496814 0.867857i \(-0.665497\pi\)
0.423020 + 0.906120i \(0.360970\pi\)
\(68\) −0.842516 0.409575i −0.102170 0.0496682i
\(69\) −14.6069 + 0.647051i −1.75846 + 0.0778958i
\(70\) 16.7588 20.2366i 2.00306 2.41874i
\(71\) −7.25979 5.62676i −0.861579 0.667774i 0.0828243 0.996564i \(-0.473606\pi\)
−0.944403 + 0.328790i \(0.893359\pi\)
\(72\) 1.13793 0.926319i 0.134106 0.109168i
\(73\) −11.1125 + 3.56307i −1.30061 + 0.417025i −0.873346 0.487100i \(-0.838055\pi\)
−0.427268 + 0.904125i \(0.640524\pi\)
\(74\) −0.970113 0.203584i −0.112773 0.0236661i
\(75\) −1.09342 + 4.59343i −0.126257 + 0.530404i
\(76\) 0.443123 + 0.683316i 0.0508297 + 0.0783817i
\(77\) −0.234836 + 0.186921i −0.0267620 + 0.0213016i
\(78\) −3.10129 + 2.99675i −0.351151 + 0.339315i
\(79\) −0.844570 + 4.45241i −0.0950216 + 0.500935i 0.902507 + 0.430675i \(0.141724\pi\)
−0.997529 + 0.0702599i \(0.977617\pi\)
\(80\) 9.05922 + 3.29729i 1.01285 + 0.368648i
\(81\) 1.13762 8.92781i 0.126402 0.991979i
\(82\) 15.0785 5.48814i 1.66515 0.606064i
\(83\) 0.152532 + 0.935631i 0.0167426 + 0.102699i 0.994005 0.109335i \(-0.0348720\pi\)
−0.977262 + 0.212034i \(0.931991\pi\)
\(84\) 17.7779 + 0.822455i 1.93973 + 0.0897372i
\(85\) 0.871814 + 0.770814i 0.0945615 + 0.0836065i
\(86\) 6.21295 2.63250i 0.669959 0.283870i
\(87\) −3.95337 2.94920i −0.423846 0.316188i
\(88\) 0.0271547 + 0.0168706i 0.00289470 + 0.00179842i
\(89\) −11.5515 4.71931i −1.22446 0.500246i −0.328550 0.944487i \(-0.606560\pi\)
−0.895907 + 0.444241i \(0.853473\pi\)
\(90\) −15.7311 + 6.86990i −1.65820 + 0.724151i
\(91\) −5.55002 + 0.215366i −0.581800 + 0.0225765i
\(92\) −6.34547 + 17.7910i −0.661561 + 1.85484i
\(93\) −13.8886 + 10.0425i −1.44018 + 1.04136i
\(94\) −7.35175 + 25.7643i −0.758276 + 2.65738i
\(95\) −0.302661 0.965356i −0.0310524 0.0990434i
\(96\) 4.10646 + 13.4477i 0.419114 + 1.37250i
\(97\) 0.977177 4.24514i 0.0992173 0.431028i −0.900777 0.434281i \(-0.857002\pi\)
0.999995 + 0.00325280i \(0.00103540\pi\)
\(98\) 20.7024 + 20.3048i 2.09126 + 2.05109i
\(99\) 0.191986 0.0398964i 0.0192953 0.00400974i
\(100\) 4.96263 + 3.54707i 0.496263 + 0.354707i
\(101\) 0.599201 4.00050i 0.0596227 0.398065i −0.938922 0.344131i \(-0.888174\pi\)
0.998544 0.0539342i \(-0.0171761\pi\)
\(102\) −0.117135 + 1.48813i −0.0115981 + 0.147347i
\(103\) 4.79087 + 13.4323i 0.472059 + 1.32353i 0.906263 + 0.422714i \(0.138923\pi\)
−0.434204 + 0.900814i \(0.642970\pi\)
\(104\) 0.220191 + 0.549076i 0.0215915 + 0.0538413i
\(105\) −21.0012 6.90661i −2.04951 0.674016i
\(106\) 11.6674 12.0507i 1.13324 1.17047i
\(107\) 0.504327 + 8.65895i 0.0487551 + 0.837093i 0.930710 + 0.365758i \(0.119190\pi\)
−0.881955 + 0.471334i \(0.843773\pi\)
\(108\) −10.1267 5.71259i −0.974445 0.549695i
\(109\) −0.429278 + 7.37041i −0.0411173 + 0.705958i 0.913264 + 0.407368i \(0.133553\pi\)
−0.954382 + 0.298590i \(0.903484\pi\)
\(110\) −0.253114 0.275331i −0.0241335 0.0262518i
\(111\) 0.138709 + 0.822415i 0.0131657 + 0.0780602i
\(112\) −6.68425 + 14.4562i −0.631602 + 1.36598i
\(113\) −8.32809 + 6.11676i −0.783441 + 0.575416i −0.909061 0.416662i \(-0.863200\pi\)
0.125621 + 0.992078i \(0.459908\pi\)
\(114\) 0.755659 1.05504i 0.0707739 0.0988132i
\(115\) 13.5205 19.1770i 1.26079 1.78827i
\(116\) −5.45535 + 3.29232i −0.506517 + 0.305684i
\(117\) 3.30040 + 1.50803i 0.305122 + 0.139417i
\(118\) −17.1639 + 2.68439i −1.58007 + 0.247118i
\(119\) −1.38982 + 1.32831i −0.127404 + 0.121766i
\(120\) 0.0585702 + 2.35398i 0.00534670 + 0.214888i
\(121\) −5.62051 9.45071i −0.510956 0.859155i
\(122\) 8.19764 14.6324i 0.742179 1.32475i
\(123\) −8.93302 10.1235i −0.805463 0.912805i
\(124\) 5.24532 + 21.5111i 0.471043 + 1.93175i
\(125\) 3.96806 + 4.91962i 0.354914 + 0.440024i
\(126\) −9.12799 26.8493i −0.813186 2.39193i
\(127\) 0.211567 + 10.9084i 0.0187736 + 0.967960i 0.884251 + 0.467012i \(0.154670\pi\)
−0.865477 + 0.500948i \(0.832985\pi\)
\(128\) 3.86927 + 0.351123i 0.341999 + 0.0310352i
\(129\) −3.97147 4.05720i −0.349669 0.357216i
\(130\) −0.759009 6.87909i −0.0665695 0.603336i
\(131\) −4.42616 + 0.401658i −0.386715 + 0.0350930i −0.282013 0.959411i \(-0.591002\pi\)
−0.104702 + 0.994504i \(0.533389\pi\)
\(132\) 0.0458447 0.249138i 0.00399027 0.0216847i
\(133\) 1.63115 0.364385i 0.141439 0.0315962i
\(134\) 1.25164 0.628600i 0.108126 0.0543027i
\(135\) 10.2158 + 10.2099i 0.879239 + 0.878728i
\(136\) 0.182986 + 0.0918990i 0.0156909 + 0.00788028i
\(137\) −0.336884 0.0844574i −0.0287820 0.00721568i 0.228758 0.973483i \(-0.426533\pi\)
−0.257540 + 0.966268i \(0.582912\pi\)
\(138\) 30.0836 0.943140i 2.56088 0.0802854i
\(139\) 10.6675 + 1.52736i 0.904809 + 0.129549i 0.578470 0.815704i \(-0.303650\pi\)
0.326339 + 0.945253i \(0.394185\pi\)
\(140\) −18.4994 + 21.7595i −1.56348 + 1.83901i
\(141\) 22.4395 2.16043i 1.88975 0.181941i
\(142\) 14.7936 + 11.7752i 1.24145 + 0.988150i
\(143\) −0.00765369 + 0.0786868i −0.000640034 + 0.00658012i
\(144\) 8.15370 6.46397i 0.679475 0.538664i
\(145\) 7.62531 2.12265i 0.633247 0.176276i
\(146\) 22.9684 7.03837i 1.90088 0.582500i
\(147\) 9.54083 22.4559i 0.786914 1.85213i
\(148\) 1.05155 + 0.234905i 0.0864365 + 0.0193091i
\(149\) −13.2847 + 3.33050i −1.08833 + 0.272845i −0.745468 0.666541i \(-0.767774\pi\)
−0.342859 + 0.939387i \(0.611395\pi\)
\(150\) 2.37291 9.42588i 0.193747 0.769620i
\(151\) 1.58933 + 1.86942i 0.129338 + 0.152131i 0.822736 0.568424i \(-0.192447\pi\)
−0.693398 + 0.720555i \(0.743887\pi\)
\(152\) −0.0949196 0.150600i −0.00769900 0.0122153i
\(153\) 1.20159 0.365635i 0.0971424 0.0295598i
\(154\) 0.488353 0.378502i 0.0393526 0.0305006i
\(155\) 0.888817 27.4902i 0.0713915 2.20806i
\(156\) 3.41287 3.21355i 0.273248 0.257290i
\(157\) 0.634696 5.14171i 0.0506543 0.410353i −0.945700 0.325041i \(-0.894622\pi\)
0.996354 0.0853121i \(-0.0271887\pi\)
\(158\) 1.85693 9.14222i 0.147729 0.727316i
\(159\) −13.0247 5.43469i −1.03293 0.430999i
\(160\) −21.1022 7.99103i −1.66828 0.631746i
\(161\) 29.6948 + 24.9169i 2.34027 + 1.96372i
\(162\) −2.57924 + 18.3465i −0.202644 + 1.44143i
\(163\) 6.33937 5.31936i 0.496538 0.416645i −0.359825 0.933020i \(-0.617163\pi\)
0.856362 + 0.516375i \(0.172719\pi\)
\(164\) −16.4658 + 5.75311i −1.28576 + 0.449242i
\(165\) −0.137859 + 0.282876i −0.0107323 + 0.0220219i
\(166\) −0.289068 1.92993i −0.0224361 0.149792i
\(167\) −1.17267 + 2.29782i −0.0907440 + 0.177811i −0.931637 0.363391i \(-0.881619\pi\)
0.840893 + 0.541202i \(0.182030\pi\)
\(168\) −3.88328 0.229996i −0.299602 0.0177446i
\(169\) 7.69758 8.59361i 0.592122 0.661047i
\(170\) −1.77400 1.60982i −0.136060 0.123468i
\(171\) −1.05861 0.267603i −0.0809541 0.0204641i
\(172\) −6.78978 + 2.77393i −0.517716 + 0.211510i
\(173\) 18.4326 + 3.12744i 1.40140 + 0.237775i 0.818379 0.574679i \(-0.194873\pi\)
0.583024 + 0.812455i \(0.301869\pi\)
\(174\) 8.05901 + 6.17576i 0.610952 + 0.468183i
\(175\) 10.3691 7.01360i 0.783834 0.530178i
\(176\) 0.191000 + 0.122115i 0.0143972 + 0.00920476i
\(177\) 7.37793 + 12.6186i 0.554559 + 0.948475i
\(178\) 23.6517 + 10.0215i 1.77277 + 0.751143i
\(179\) −4.42069 9.24510i −0.330418 0.691011i 0.668177 0.744003i \(-0.267075\pi\)
−0.998595 + 0.0529914i \(0.983124\pi\)
\(180\) 17.1945 7.24576i 1.28160 0.540067i
\(181\) −19.6761 5.47722i −1.46251 0.407118i −0.556670 0.830733i \(-0.687921\pi\)
−0.905842 + 0.423615i \(0.860761\pi\)
\(182\) 11.4297 0.295601i 0.847228 0.0219114i
\(183\) −13.9804 1.92352i −1.03346 0.142191i
\(184\) 1.43716 3.87055i 0.105949 0.285340i
\(185\) −1.18015 0.631418i −0.0867665 0.0464227i
\(186\) 28.8551 20.3015i 2.11576 1.48858i
\(187\) 0.0160560 + 0.0221593i 0.00117413 + 0.00162045i
\(188\) 8.35260 27.8996i 0.609176 2.03479i
\(189\) −18.2243 + 15.4017i −1.32562 + 1.12031i
\(190\) 0.597298 + 1.99511i 0.0433325 + 0.144741i
\(191\) 10.3540 13.5389i 0.749190 0.979637i −0.250743 0.968054i \(-0.580675\pi\)
0.999933 0.0115834i \(-0.00368720\pi\)
\(192\) −4.73465 16.2543i −0.341694 1.17305i
\(193\) −1.54129 + 0.724788i −0.110944 + 0.0521714i −0.480217 0.877150i \(-0.659442\pi\)
0.369273 + 0.929321i \(0.379607\pi\)
\(194\) −2.12437 + 8.71205i −0.152521 + 0.625489i
\(195\) −5.15478 + 2.70880i −0.369141 + 0.193981i
\(196\) −22.2159 22.3600i −1.58685 1.59714i
\(197\) 13.9837 2.74632i 0.996300 0.195667i 0.332118 0.943238i \(-0.392237\pi\)
0.664182 + 0.747571i \(0.268780\pi\)
\(198\) −0.396240 + 0.0770122i −0.0281595 + 0.00547302i
\(199\) −0.310716 + 0.171446i −0.0220261 + 0.0121535i −0.494087 0.869412i \(-0.664498\pi\)
0.472061 + 0.881566i \(0.343510\pi\)
\(200\) −1.07463 0.789285i −0.0759876 0.0558109i
\(201\) −0.877047 0.787152i −0.0618622 0.0555214i
\(202\) −1.33984 + 8.21857i −0.0942710 + 0.578256i
\(203\) 2.43698 + 12.8472i 0.171042 + 0.901700i
\(204\) 0.148225 1.61579i 0.0103778 0.113128i
\(205\) 21.6215 1.39961i 1.51011 0.0977527i
\(206\) −9.50391 27.7762i −0.662169 1.93526i
\(207\) −9.98497 23.2731i −0.694003 1.61760i
\(208\) 1.51098 + 3.91354i 0.104768 + 0.271355i
\(209\) −0.00199683 0.0237061i −0.000138123 0.00163978i
\(210\) 43.0445 + 14.7753i 2.97035 + 1.01959i
\(211\) −15.8426 + 23.7516i −1.09065 + 1.63513i −0.391456 + 0.920197i \(0.628028\pi\)
−0.699193 + 0.714933i \(0.746457\pi\)
\(212\) −12.8505 + 12.9338i −0.882576 + 0.888300i
\(213\) 4.67608 15.2062i 0.320399 1.04191i
\(214\) −0.807651 17.8367i −0.0552099 1.21930i
\(215\) 9.04955 1.05774i 0.617174 0.0721373i
\(216\) 2.19719 + 1.27718i 0.149500 + 0.0869013i
\(217\) 45.1315 + 5.27512i 3.06373 + 0.358098i
\(218\) 1.07976 15.1596i 0.0731306 1.02674i
\(219\) −12.5722 15.8268i −0.849550 1.06947i
\(220\) 0.271238 + 0.302812i 0.0182869 + 0.0204156i
\(221\) −0.00327335 + 0.506375i −0.000220189 + 0.0340625i
\(222\) −0.263628 1.69653i −0.0176935 0.113863i
\(223\) −14.2799 + 12.6256i −0.956255 + 0.845472i −0.988067 0.154022i \(-0.950777\pi\)
0.0318124 + 0.999494i \(0.489872\pi\)
\(224\) 16.0811 33.6308i 1.07446 2.24705i
\(225\) −8.11216 + 1.03848i −0.540811 + 0.0692319i
\(226\) 17.3051 12.3689i 1.15112 0.822768i
\(227\) 3.21669 + 6.30303i 0.213499 + 0.418347i 0.972553 0.232681i \(-0.0747497\pi\)
−0.759054 + 0.651028i \(0.774338\pi\)
\(228\) −0.836143 + 1.13609i −0.0553750 + 0.0752393i
\(229\) 5.89614 + 7.70976i 0.389628 + 0.509475i 0.947196 0.320656i \(-0.103903\pi\)
−0.557568 + 0.830131i \(0.688265\pi\)
\(230\) −28.3405 + 39.1136i −1.86872 + 2.57908i
\(231\) −0.446559 0.266170i −0.0293814 0.0175127i
\(232\) 1.20165 0.704166i 0.0788919 0.0462308i
\(233\) −0.850438 3.92606i −0.0557141 0.257205i 0.940979 0.338465i \(-0.109908\pi\)
−0.996693 + 0.0812607i \(0.974105\pi\)
\(234\) −6.75330 3.19192i −0.441477 0.208662i
\(235\) −19.2899 + 30.6056i −1.25834 + 1.99649i
\(236\) 18.6930 2.67644i 1.21681 0.174221i
\(237\) −7.73139 + 1.35544i −0.502208 + 0.0880452i
\(238\) 2.89611 2.69717i 0.187727 0.174831i
\(239\) −11.0276 20.2946i −0.713315 1.31275i −0.940798 0.338968i \(-0.889922\pi\)
0.227483 0.973782i \(-0.426950\pi\)
\(240\) 0.199501 + 16.6968i 0.0128777 + 1.07778i
\(241\) −12.7283 + 21.4022i −0.819903 + 1.37864i 0.103429 + 0.994637i \(0.467018\pi\)
−0.923332 + 0.384003i \(0.874545\pi\)
\(242\) 11.3176 + 19.6026i 0.727522 + 1.26010i
\(243\) 15.1626 3.61863i 0.972684 0.232135i
\(244\) −9.11555 + 15.7886i −0.583563 + 1.01076i
\(245\) 19.1375 + 34.1594i 1.22265 + 2.18237i
\(246\) 18.1180 + 21.0756i 1.15516 + 1.34373i
\(247\) 0.229901 0.375437i 0.0146282 0.0238885i
\(248\) −1.08565 4.71637i −0.0689388 0.299490i
\(249\) −1.42278 + 0.819583i −0.0901650 + 0.0519390i
\(250\) −8.03681 10.2320i −0.508292 0.647128i
\(251\) −7.94863 15.0901i −0.501713 0.952479i −0.996510 0.0834703i \(-0.973400\pi\)
0.494797 0.869008i \(-0.335242\pi\)
\(252\) 9.54382 + 29.3105i 0.601204 + 1.84639i
\(253\) 0.408603 0.370788i 0.0256887 0.0233112i
\(254\) −0.145181 22.4591i −0.00910950 1.40921i
\(255\) −0.715652 + 1.88427i −0.0448159 + 0.117998i
\(256\) 11.4894 + 1.19256i 0.718085 + 0.0745353i
\(257\) 21.6403 2.81343i 1.34988 0.175497i 0.580488 0.814269i \(-0.302862\pi\)
0.769396 + 0.638772i \(0.220557\pi\)
\(258\) 8.06679 + 8.45691i 0.502216 + 0.526504i
\(259\) 1.20310 1.85523i 0.0747568 0.115278i
\(260\) 0.728290 + 7.48748i 0.0451667 + 0.464354i
\(261\) 2.36022 8.21037i 0.146094 0.508209i
\(262\) 9.12136 0.708968i 0.563519 0.0438002i
\(263\) 3.34285 + 16.4579i 0.206129 + 1.01484i 0.941459 + 0.337126i \(0.109455\pi\)
−0.735330 + 0.677709i \(0.762973\pi\)
\(264\) −0.0107240 + 0.0543229i −0.000660017 + 0.00334334i
\(265\) 19.6871 11.1973i 1.20937 0.687845i
\(266\) −3.36722 + 0.706629i −0.206457 + 0.0433262i
\(267\) 0.579967 21.6054i 0.0354934 1.32223i
\(268\) −1.36923 + 0.665630i −0.0836392 + 0.0406598i
\(269\) −11.9481 + 16.0491i −0.728491 + 0.978533i 0.271380 + 0.962472i \(0.412520\pi\)
−0.999871 + 0.0160609i \(0.994887\pi\)
\(270\) −20.7562 21.2876i −1.26318 1.29552i
\(271\) −19.3551 25.9985i −1.17574 1.57929i −0.728793 0.684734i \(-0.759918\pi\)
−0.446948 0.894560i \(-0.647489\pi\)
\(272\) 1.28908 + 0.668408i 0.0781621 + 0.0405282i
\(273\) −3.74448 8.86150i −0.226626 0.536323i
\(274\) 0.691184 + 0.182810i 0.0417560 + 0.0110440i
\(275\) −0.0789387 0.159746i −0.00476018 0.00963307i
\(276\) −32.7108 + 0.602340i −1.96896 + 0.0362566i
\(277\) 3.49851 2.43287i 0.210205 0.146177i −0.461126 0.887335i \(-0.652554\pi\)
0.671331 + 0.741158i \(0.265723\pi\)
\(278\) −21.9171 3.42777i −1.31450 0.205584i
\(279\) −24.7699 16.3611i −1.48293 0.979512i
\(280\) 4.10478 4.70355i 0.245307 0.281091i
\(281\) 12.3179 24.9275i 0.734825 1.48705i −0.133498 0.991049i \(-0.542621\pi\)
0.868323 0.495999i \(-0.165198\pi\)
\(282\) −46.2463 + 3.84979i −2.75393 + 0.229252i
\(283\) 15.1850 13.0800i 0.902656 0.777524i −0.0728853 0.997340i \(-0.523221\pi\)
0.975541 + 0.219816i \(0.0705458\pi\)
\(284\) −15.9135 13.0062i −0.944294 0.771775i
\(285\) 1.37910 1.08104i 0.0816906 0.0640351i
\(286\) 0.0178482 0.161763i 0.00105539 0.00956524i
\(287\) −0.694104 + 35.7878i −0.0409717 + 2.11249i
\(288\) −19.2783 + 14.8814i −1.13599 + 0.876896i
\(289\) −11.0626 12.6763i −0.650742 0.745668i
\(290\) −15.7522 + 4.16627i −0.925000 + 0.244652i
\(291\) 7.47666 1.01375i 0.438290 0.0594273i
\(292\) −25.0630 + 7.32717i −1.46670 + 0.428790i
\(293\) 0.0759775 0.901995i 0.00443865 0.0526951i −0.993903 0.110254i \(-0.964834\pi\)
0.998342 + 0.0575586i \(0.0183316\pi\)
\(294\) −20.2362 + 45.9687i −1.18020 + 2.68095i
\(295\) −23.2619 3.02426i −1.35436 0.176079i
\(296\) −0.229166 0.0543133i −0.0133200 0.00315690i
\(297\) 0.182105 + 0.286686i 0.0105668 + 0.0166352i
\(298\) 27.4335 6.50186i 1.58918 0.376643i
\(299\) 10.1558 1.05414i 0.587325 0.0609627i
\(300\) −2.71155 + 10.2115i −0.156551 + 0.589564i
\(301\) 0.486412 + 15.0442i 0.0280363 + 0.867133i
\(302\) −3.22169 3.89025i −0.185387 0.223859i
\(303\) 6.84901 1.47656i 0.393465 0.0848262i
\(304\) −0.659245 1.07657i −0.0378103 0.0617455i
\(305\) 16.1684 15.8579i 0.925801 0.908019i
\(306\) −2.48304 + 0.720634i −0.141946 + 0.0411959i
\(307\) −3.03941 + 4.43157i −0.173469 + 0.252923i −0.901655 0.432455i \(-0.857647\pi\)
0.728187 + 0.685379i \(0.240363\pi\)
\(308\) −0.536105 + 0.404528i −0.0305474 + 0.0230501i
\(309\) −18.8347 + 15.9810i −1.07147 + 0.909130i
\(310\) −2.56110 + 56.5613i −0.145461 + 3.21246i
\(311\) 0.868844 + 12.1984i 0.0492677 + 0.691708i 0.960229 + 0.279215i \(0.0900743\pi\)
−0.910961 + 0.412493i \(0.864658\pi\)
\(312\) −0.755010 + 0.692722i −0.0427440 + 0.0392177i
\(313\) −5.22007 14.0586i −0.295056 0.794639i −0.996629 0.0820416i \(-0.973856\pi\)
0.701573 0.712598i \(-0.252481\pi\)
\(314\) −1.44328 + 10.5666i −0.0814487 + 0.596310i
\(315\) −1.65706 38.2559i −0.0933650 2.15547i
\(316\) −2.14675 + 9.91049i −0.120764 + 0.557509i
\(317\) 10.6764 + 32.5719i 0.599649 + 1.82942i 0.557290 + 0.830318i \(0.311841\pi\)
0.0423593 + 0.999102i \(0.486513\pi\)
\(318\) 26.6651 + 11.5332i 1.49530 + 0.646751i
\(319\) 0.185879 0.00962103i 0.0104072 0.000538674i
\(320\) 25.2817 + 9.94928i 1.41329 + 0.556182i
\(321\) −13.7224 + 6.11476i −0.765912 + 0.341292i
\(322\) −60.4597 52.0784i −3.36929 2.90221i
\(323\) −0.0264606 0.150066i −0.00147231 0.00834987i
\(324\) 3.06116 19.9043i 0.170065 1.10580i
\(325\) 0.572576 3.24724i 0.0317608 0.180125i
\(326\) −13.1903 + 10.7805i −0.730545 + 0.597077i
\(327\) −12.2057 + 3.81361i −0.674975 + 0.210893i
\(328\) 3.61509 1.21089i 0.199610 0.0668603i
\(329\) −47.7085 35.9993i −2.63026 1.98471i
\(330\) 0.291292 0.578595i 0.0160351 0.0318506i
\(331\) −8.80873 + 4.71294i −0.484172 + 0.259047i −0.695710 0.718323i \(-0.744910\pi\)
0.211538 + 0.977370i \(0.432153\pi\)
\(332\) 0.287065 + 2.10169i 0.0157547 + 0.115345i
\(333\) −1.24778 + 0.727918i −0.0683779 + 0.0398896i
\(334\) 2.47494 4.69856i 0.135423 0.257094i
\(335\) 1.86033 0.340440i 0.101641 0.0186002i
\(336\) −27.5143 1.98685i −1.50103 0.108392i
\(337\) −18.2959 18.8970i −0.996642 1.02939i −0.999568 0.0293904i \(-0.990643\pi\)
0.00292624 0.999996i \(-0.499069\pi\)
\(338\) −16.0732 + 17.4840i −0.874265 + 0.951003i
\(339\) −15.0067 9.75261i −0.815054 0.529689i
\(340\) 1.90552 + 1.77463i 0.103341 + 0.0962427i
\(341\) 0.161332 0.626329i 0.00873661 0.0339176i
\(342\) 2.17189 + 0.579000i 0.117443 + 0.0313087i
\(343\) −29.6248 + 13.4661i −1.59959 + 0.727101i
\(344\) 1.49184 0.587094i 0.0804346 0.0316540i
\(345\) 39.3463 + 10.1761i 2.11834 + 0.547863i
\(346\) −37.8578 6.92798i −2.03525 0.372450i
\(347\) −11.9010 + 15.1517i −0.638879 + 0.813384i −0.992531 0.121993i \(-0.961071\pi\)
0.353652 + 0.935377i \(0.384940\pi\)
\(348\) −8.67247 6.82562i −0.464893 0.365892i
\(349\) 1.99332 + 6.98561i 0.106700 + 0.373931i 0.996616 0.0821925i \(-0.0261922\pi\)
−0.889916 + 0.456124i \(0.849238\pi\)
\(350\) −21.5302 + 14.1606i −1.15084 + 0.756917i
\(351\) −0.424433 + 6.27058i −0.0226546 + 0.334699i
\(352\) −0.443318 0.291575i −0.0236289 0.0155410i
\(353\) 0.0985170 0.314226i 0.00524353 0.0167246i −0.951543 0.307515i \(-0.900503\pi\)
0.956787 + 0.290790i \(0.0939182\pi\)
\(354\) −14.8507 26.1702i −0.789305 1.39093i
\(355\) 14.7113 + 20.8660i 0.780795 + 1.10745i
\(356\) −25.5659 11.2246i −1.35499 0.594904i
\(357\) −3.00269 1.43940i −0.158919 0.0761813i
\(358\) 8.85339 + 19.1475i 0.467916 + 1.01198i
\(359\) 3.94480 + 2.17665i 0.208199 + 0.114879i 0.583785 0.811908i \(-0.301571\pi\)
−0.375587 + 0.926787i \(0.622559\pi\)
\(360\) −3.77856 + 1.53507i −0.199148 + 0.0809054i
\(361\) 6.79566 17.6012i 0.357666 0.926379i
\(362\) 40.3549 + 11.7978i 2.12101 + 0.620077i
\(363\) 11.8753 14.8894i 0.623292 0.781492i
\(364\) −12.4270 + 0.160670i −0.651352 + 0.00842139i
\(365\) 32.4343 0.419346i 1.69769 0.0219496i
\(366\) 28.7257 + 4.33137i 1.50151 + 0.226404i
\(367\) −19.8391 5.79996i −1.03559 0.302756i −0.281525 0.959554i \(-0.590840\pi\)
−0.754066 + 0.656798i \(0.771910\pi\)
\(368\) 10.5454 27.3133i 0.549718 1.42380i
\(369\) 10.9389 20.6686i 0.569457 1.07597i
\(370\) 2.41239 + 1.33110i 0.125414 + 0.0692005i
\(371\) 15.7033 + 33.9619i 0.815274 + 1.76322i
\(372\) −31.6475 + 21.6600i −1.64085 + 1.12302i
\(373\) 20.8186 + 9.14031i 1.07794 + 0.473267i 0.863955 0.503569i \(-0.167980\pi\)
0.213989 + 0.976836i \(0.431354\pi\)
\(374\) −0.0324594 0.0460394i −0.00167843 0.00238064i
\(375\) −5.54410 + 9.43967i −0.286296 + 0.487462i
\(376\) −1.90441 + 6.07424i −0.0982127 + 0.313255i
\(377\) 2.87767 + 1.89268i 0.148208 + 0.0974777i
\(378\) 37.9222 31.2174i 1.95051 1.60565i
\(379\) −5.30490 + 3.48909i −0.272494 + 0.179222i −0.678400 0.734692i \(-0.737326\pi\)
0.405906 + 0.913915i \(0.366956\pi\)
\(380\) −0.621160 2.17686i −0.0318649 0.111671i
\(381\) −17.5465 + 7.01655i −0.898933 + 0.359469i
\(382\) −21.6727 + 27.5924i −1.10887 + 1.41175i
\(383\) 0.838085 + 0.153369i 0.0428241 + 0.00783681i 0.201380 0.979513i \(-0.435457\pi\)
−0.158556 + 0.987350i \(0.550684\pi\)
\(384\) 1.79826 + 6.48460i 0.0917671 + 0.330916i
\(385\) 0.776328 0.305514i 0.0395654 0.0155704i
\(386\) 3.19183 1.45086i 0.162460 0.0738470i
\(387\) 4.14454 8.91758i 0.210679 0.453306i
\(388\) 2.43138 9.43919i 0.123434 0.479202i
\(389\) 23.0563 + 21.4725i 1.16900 + 1.08870i 0.994574 + 0.104029i \(0.0331734\pi\)
0.174426 + 0.984670i \(0.444193\pi\)
\(390\) 10.6825 5.43853i 0.540931 0.275391i
\(391\) 2.39185 2.60179i 0.120961 0.131578i
\(392\) 4.79241 + 4.94986i 0.242053 + 0.250006i
\(393\) −3.35877 6.92642i −0.169428 0.349392i
\(394\) −28.8568 + 5.28079i −1.45378 + 0.266042i
\(395\) 5.87054 11.1449i 0.295379 0.560763i
\(396\) 0.431751 0.0781356i 0.0216963 0.00392646i
\(397\) 3.17372 + 23.2357i 0.159284 + 1.16617i 0.880703 + 0.473669i \(0.157071\pi\)
−0.721418 + 0.692500i \(0.756509\pi\)
\(398\) 0.644131 0.344630i 0.0322874 0.0172747i
\(399\) 1.58839 + 2.42019i 0.0795189 + 0.121161i
\(400\) −7.54755 5.69514i −0.377378 0.284757i
\(401\) 7.65460 2.56394i 0.382252 0.128037i −0.119966 0.992778i \(-0.538279\pi\)
0.502219 + 0.864741i \(0.332517\pi\)
\(402\) 1.78434 + 1.64359i 0.0889948 + 0.0819748i
\(403\) 9.26714 7.57407i 0.461629 0.377291i
\(404\) 1.57175 8.91385i 0.0781976 0.443480i
\(405\) −10.2941 + 22.8002i −0.511517 + 1.13295i
\(406\) −4.67429 26.5092i −0.231981 1.31563i
\(407\) −0.0238468 0.0205410i −0.00118204 0.00101818i
\(408\) −0.0369625 + 0.352735i −0.00182992 + 0.0174630i
\(409\) 33.2320 + 13.0780i 1.64322 + 0.646667i 0.993534 0.113538i \(-0.0362184\pi\)
0.649683 + 0.760205i \(0.274902\pi\)
\(410\) −44.5424 + 2.30549i −2.19979 + 0.113860i
\(411\) −0.0692507 0.597559i −0.00341589 0.0294754i
\(412\) 9.93938 + 30.3233i 0.489678 + 1.49392i
\(413\) 8.20421 37.8748i 0.403703 1.86370i
\(414\) 19.9334 + 48.1705i 0.979673 + 2.36745i
\(415\) 0.356599 2.61076i 0.0175047 0.128157i
\(416\) −3.41785 9.20490i −0.167574 0.451307i
\(417\) 4.05146 + 18.2201i 0.198401 + 0.892244i
\(418\) 0.00347932 + 0.0488490i 0.000170179 + 0.00238928i
\(419\) 1.38583 30.6056i 0.0677020 1.49518i −0.628768 0.777593i \(-0.716440\pi\)
0.696470 0.717586i \(-0.254753\pi\)
\(420\) −46.5770 16.6640i −2.27272 0.813118i
\(421\) 25.9532 19.5834i 1.26488 0.954439i 0.264929 0.964268i \(-0.414651\pi\)
0.999952 + 0.00982933i \(0.00312882\pi\)
\(422\) 33.2420 48.4680i 1.61820 2.35939i
\(423\) 17.2292 + 35.0392i 0.837715 + 1.70367i
\(424\) 2.84520 2.79056i 0.138175 0.135521i
\(425\) −0.596024 0.973329i −0.0289114 0.0472134i
\(426\) −10.0298 + 31.1756i −0.485944 + 1.51046i
\(427\) 23.8635 + 28.8157i 1.15484 + 1.39449i
\(428\) 0.627177 + 19.3979i 0.0303157 + 0.937634i
\(429\) −0.132187 + 0.0357385i −0.00638204 + 0.00172547i
\(430\) −18.6555 + 1.93639i −0.899647 + 0.0933809i
\(431\) −27.3651 + 6.48565i −1.31813 + 0.312403i −0.828726 0.559654i \(-0.810934\pi\)
−0.489404 + 0.872057i \(0.662786\pi\)
\(432\) 15.4627 + 9.25761i 0.743947 + 0.445407i
\(433\) 15.8460 + 3.75558i 0.761512 + 0.180482i 0.592983 0.805215i \(-0.297950\pi\)
0.168529 + 0.985697i \(0.446098\pi\)
\(434\) −92.7570 12.0592i −4.45248 0.578861i
\(435\) 8.10470 + 11.0574i 0.388591 + 0.530163i
\(436\) −1.38661 + 16.4616i −0.0664066 + 0.788370i
\(437\) −2.94904 + 0.862152i −0.141072 + 0.0412423i
\(438\) 25.4570 + 32.9119i 1.21638 + 1.57259i
\(439\) −19.4554 + 5.14571i −0.928554 + 0.245591i −0.688557 0.725182i \(-0.741755\pi\)
−0.239997 + 0.970774i \(0.577146\pi\)
\(440\) −0.0584272 0.0669501i −0.00278541 0.00319172i
\(441\) 42.2247 + 1.72145i 2.01070 + 0.0819736i
\(442\) 0.0202138 1.04222i 0.000961474 0.0495734i
\(443\) 3.43397 31.1229i 0.163153 1.47870i −0.582756 0.812647i \(-0.698026\pi\)
0.745909 0.666048i \(-0.232016\pi\)
\(444\) 0.262694 + 1.84764i 0.0124669 + 0.0876851i
\(445\) 26.8560 + 21.9495i 1.27310 + 1.04051i
\(446\) 29.7294 25.6081i 1.40773 1.21258i
\(447\) −13.5243 19.4890i −0.639679 0.921797i
\(448\) −19.8844 + 40.2395i −0.939448 + 1.90114i
\(449\) −7.37806 + 8.45432i −0.348192 + 0.398984i −0.900642 0.434562i \(-0.856903\pi\)
0.552449 + 0.833546i \(0.313693\pi\)
\(450\) 16.7255 1.92169i 0.788446 0.0905892i
\(451\) 0.503379 + 0.0787270i 0.0237032 + 0.00370711i
\(452\) −18.9825 + 13.2005i −0.892862 + 0.620898i
\(453\) −2.05686 + 3.71907i −0.0966395 + 0.174737i
\(454\) −6.45339 13.0596i −0.302873 0.612916i
\(455\) 14.9252 + 3.94753i 0.699703 + 0.185063i
\(456\) 0.185961 0.245945i 0.00870842 0.0115174i
\(457\) −28.4651 14.7596i −1.33154 0.690424i −0.361275 0.932459i \(-0.617658\pi\)
−0.970268 + 0.242035i \(0.922185\pi\)
\(458\) −11.9313 16.0265i −0.557511 0.748867i
\(459\) 1.32761 + 1.72336i 0.0619673 + 0.0804394i
\(460\) 31.3527 42.1139i 1.46183 1.96357i
\(461\) −10.9150 + 5.30617i −0.508365 + 0.247133i −0.673566 0.739127i \(-0.735238\pi\)
0.165202 + 0.986260i \(0.447173\pi\)
\(462\) 0.912100 + 0.559761i 0.0424348 + 0.0260424i
\(463\) −4.65035 + 0.975902i −0.216120 + 0.0453540i −0.312186 0.950021i \(-0.601061\pi\)
0.0960660 + 0.995375i \(0.469374\pi\)
\(464\) 8.58512 4.88290i 0.398554 0.226683i
\(465\) 45.0889 15.3782i 2.09095 0.713149i
\(466\) 1.64603 + 8.10392i 0.0762510 + 0.375407i
\(467\) 11.9917 0.932065i 0.554908 0.0431308i 0.203023 0.979174i \(-0.434924\pi\)
0.351885 + 0.936043i \(0.385541\pi\)
\(468\) 7.29524 + 3.56416i 0.337223 + 0.164753i
\(469\) 0.302475 + 3.10972i 0.0139670 + 0.143593i
\(470\) 40.5203 62.4842i 1.86906 2.88218i
\(471\) 8.71994 2.11723i 0.401793 0.0975569i
\(472\) −4.09318 + 0.532150i −0.188404 + 0.0244942i
\(473\) 0.213105 + 0.0221198i 0.00979859 + 0.00101707i
\(474\) 15.9501 2.58424i 0.732614 0.118698i
\(475\) 0.00641390 + 0.992207i 0.000294290 + 0.0455256i
\(476\) −3.18565 + 2.89083i −0.146014 + 0.132501i
\(477\) 0.837845 24.4302i 0.0383623 1.11858i
\(478\) 22.1587 + 42.0673i 1.01352 + 1.92411i
\(479\) −4.97967 6.33982i −0.227527 0.289674i 0.659200 0.751967i \(-0.270895\pi\)
−0.886727 + 0.462294i \(0.847027\pi\)
\(480\) 0.0383215 39.0830i 0.00174913 1.78389i
\(481\) −0.130650 0.567582i −0.00595713 0.0258795i
\(482\) 26.7691 43.7150i 1.21930 1.99116i
\(483\) −22.2081 + 63.3615i −1.01050 + 2.88305i
\(484\) −12.0255 21.4649i −0.546613 0.975679i
\(485\) −6.05416 + 10.4861i −0.274905 + 0.476150i
\(486\) −31.3066 + 7.04495i −1.42010 + 0.319566i
\(487\) −12.0376 20.8498i −0.545477 0.944793i −0.998577 0.0533335i \(-0.983015\pi\)
0.453100 0.891460i \(-0.350318\pi\)
\(488\) 2.03694 3.42506i 0.0922082 0.155045i
\(489\) 12.4979 + 7.01794i 0.565176 + 0.317362i
\(490\) −38.4829 70.8220i −1.73848 3.19941i
\(491\) 11.3961 10.6133i 0.514301 0.478972i −0.380912 0.924611i \(-0.624390\pi\)
0.895213 + 0.445639i \(0.147024\pi\)
\(492\) −19.3961 23.1615i −0.874445 1.04420i
\(493\) 1.18016 0.168973i 0.0531516 0.00761016i
\(494\) −0.483213 + 0.766669i −0.0217408 + 0.0344941i
\(495\) −0.542715 0.0503226i −0.0243932 0.00226183i
\(496\) −7.26568 33.5421i −0.326239 1.50609i
\(497\) −36.3900 + 21.3246i −1.63231 + 0.956539i
\(498\) 2.95042 1.64914i 0.132211 0.0738998i
\(499\) −0.748350 + 1.03282i −0.0335007 + 0.0462354i −0.826197 0.563382i \(-0.809500\pi\)
0.792696 + 0.609617i \(0.208677\pi\)
\(500\) 8.59133 + 11.2340i 0.384216 + 0.502399i
\(501\) −4.44084 0.494390i −0.198402 0.0220877i
\(502\) 15.9596 + 31.2725i 0.712313 + 1.39576i
\(503\) 14.8780 10.6341i 0.663376 0.474153i −0.199281 0.979942i \(-0.563861\pi\)
0.862657 + 0.505790i \(0.168799\pi\)
\(504\) −2.00311 6.43319i −0.0892254 0.286557i
\(505\) −4.85042 + 10.1438i −0.215841 + 0.451393i
\(506\) −0.850925 + 0.752344i −0.0378282 + 0.0334458i
\(507\) 18.6345 + 7.21560i 0.827586 + 0.320456i
\(508\) −0.157809 + 24.4126i −0.00700166 + 1.08313i
\(509\) −20.3965 22.7707i −0.904058 1.00929i −0.999903 0.0138975i \(-0.995576\pi\)
0.0958458 0.995396i \(-0.469444\pi\)
\(510\) 1.52322 3.85949i 0.0674494 0.170901i
\(511\) −3.80718 + 53.4520i −0.168420 + 2.36458i
\(512\) −31.3354 3.66259i −1.38484 0.161865i
\(513\) −0.214034 1.87910i −0.00944983 0.0829642i
\(514\) −44.6186 + 5.21517i −1.96804 + 0.230031i
\(515\) −1.79308 39.5996i −0.0790124 1.74497i
\(516\) −8.64887 9.30508i −0.380745 0.409633i
\(517\) −0.599600 + 0.603488i −0.0263704 + 0.0265414i
\(518\) −2.52579 + 3.78673i −0.110977 + 0.166380i
\(519\) 6.20933 + 31.7815i 0.272560 + 1.39506i
\(520\) −0.138020 1.63855i −0.00605256 0.0718552i
\(521\) −2.46339 6.38034i −0.107923 0.279528i 0.868393 0.495876i \(-0.165153\pi\)
−0.976316 + 0.216349i \(0.930585\pi\)
\(522\) −5.07671 + 16.8372i −0.222202 + 0.736942i
\(523\) 0.429927 + 1.25651i 0.0187994 + 0.0549433i 0.955149 0.296126i \(-0.0956948\pi\)
−0.936350 + 0.351069i \(0.885818\pi\)
\(524\) −9.92387 + 0.642392i −0.433526 + 0.0280630i
\(525\) 17.7087 + 12.5113i 0.772871 + 0.546036i
\(526\) −6.44283 33.9653i −0.280921 1.48096i
\(527\) 0.666574 4.08875i 0.0290364 0.178109i
\(528\) −0.0810214 + 0.384207i −0.00352600 + 0.0167205i
\(529\) −38.8959 28.5680i −1.69112 1.24209i
\(530\) −40.8213 + 22.5243i −1.77317 + 0.978392i
\(531\) −15.9334 + 19.6753i −0.691452 + 0.853834i
\(532\) 3.66972 0.720710i 0.159103 0.0312467i
\(533\) 6.64521 + 6.68831i 0.287836 + 0.289703i
\(534\) −1.76877 + 44.4564i −0.0765420 + 1.92382i
\(535\) 5.71147 23.4228i 0.246929 1.01266i
\(536\) 0.301146 0.141613i 0.0130075 0.00611676i
\(537\) 12.2762 12.8195i 0.529757 0.553200i
\(538\) 25.0208 32.7171i 1.07872 1.41053i
\(539\) 0.264070 + 0.882054i 0.0113743 + 0.0379927i
\(540\) 22.2606 + 23.4290i 0.957944 + 1.00822i
\(541\) 8.23225 27.4976i 0.353932 1.18222i −0.576914 0.816805i \(-0.695743\pi\)
0.930846 0.365411i \(-0.119072\pi\)
\(542\) 39.1481 + 54.0295i 1.68156 + 2.32077i
\(543\) −3.16254 35.2341i −0.135718 1.51204i
\(544\) −2.99672 1.60334i −0.128483 0.0687425i
\(545\) 7.14325 19.2381i 0.305983 0.824069i
\(546\) 7.47170 + 18.3399i 0.319759 + 0.784875i
\(547\) −7.21516 + 0.186602i −0.308498 + 0.00797853i −0.179793 0.983704i \(-0.557543\pi\)
−0.128705 + 0.991683i \(0.541082\pi\)
\(548\) −0.748672 0.208407i −0.0319817 0.00890271i
\(549\) −5.43634 23.8307i −0.232017 1.01707i
\(550\) 0.158234 + 0.330918i 0.00674711 + 0.0141104i
\(551\) −0.954321 0.404358i −0.0406555 0.0172262i
\(552\) 7.15109 0.0392146i 0.304371 0.00166908i
\(553\) 17.5330 + 11.2096i 0.745577 + 0.476681i
\(554\) −7.26598 + 4.91464i −0.308702 + 0.208803i
\(555\) 0.301133 2.29862i 0.0127824 0.0975710i
\(556\) 23.7733 + 4.03360i 1.00821 + 0.171063i
\(557\) −36.5177 + 14.9191i −1.54730 + 0.632143i −0.981339 0.192287i \(-0.938410\pi\)
−0.565964 + 0.824430i \(0.691496\pi\)
\(558\) 50.5501 + 34.3363i 2.13996 + 1.45357i
\(559\) 2.93604 + 2.66432i 0.124181 + 0.112689i
\(560\) 29.5371 32.9754i 1.24817 1.39346i
\(561\) −0.0260840 + 0.0395742i −0.00110127 + 0.00167082i
\(562\) −26.0182 + 50.9821i −1.09751 + 2.15055i
\(563\) 1.52578 + 10.1867i 0.0643039 + 0.429318i 0.997543 + 0.0700615i \(0.0223196\pi\)
−0.933239 + 0.359257i \(0.883030\pi\)
\(564\) 50.3187 3.53442i 2.11880 0.148826i
\(565\) 27.1142 9.47363i 1.14070 0.398559i
\(566\) −31.6045 + 26.5193i −1.32844 + 1.11469i
\(567\) −36.1066 20.1079i −1.51633 0.844453i
\(568\) 3.44137 + 2.88765i 0.144397 + 0.121163i
\(569\) −11.0977 4.20248i −0.465239 0.176177i 0.110390 0.993888i \(-0.464790\pi\)
−0.575629 + 0.817711i \(0.695243\pi\)
\(570\) −2.86746 + 2.18847i −0.120105 + 0.0916650i
\(571\) 3.44375 16.9546i 0.144116 0.709528i −0.841463 0.540315i \(-0.818305\pi\)
0.985579 0.169214i \(-0.0541227\pi\)
\(572\) −0.0216722 + 0.175568i −0.000906160 + 0.00734085i
\(573\) 28.2730 + 8.49458i 1.18112 + 0.354866i
\(574\) 2.38114 73.6461i 0.0993868 3.07393i
\(575\) −18.1891 + 14.0976i −0.758536 + 0.587910i
\(576\) 23.4418 17.6164i 0.976743 0.734017i
\(577\) 1.53607 + 2.43714i 0.0639475 + 0.101460i 0.876438 0.481515i \(-0.159913\pi\)
−0.812490 + 0.582975i \(0.801889\pi\)
\(578\) 22.4336 + 26.3870i 0.933115 + 1.09756i
\(579\) −2.11741 2.05408i −0.0879964 0.0853646i
\(580\) 17.1794 4.30691i 0.713337 0.178835i
\(581\) 4.24844 + 0.949061i 0.176255 + 0.0393737i
\(582\) −15.4167 + 1.88771i −0.639043 + 0.0782479i
\(583\) 0.509215 0.156043i 0.0210895 0.00646262i
\(584\) 5.49857 1.53063i 0.227532 0.0633379i
\(585\) −7.54304 6.69557i −0.311866 0.276828i
\(586\) −0.180394 + 1.85462i −0.00745203 + 0.0766135i
\(587\) −29.9250 23.8192i −1.23514 0.983124i −0.999938 0.0111764i \(-0.996442\pi\)
−0.235199 0.971947i \(-0.575574\pi\)
\(588\) 22.6405 49.6785i 0.933677 2.04871i
\(589\) −2.33282 + 2.74393i −0.0961222 + 0.113062i
\(590\) 47.8012 + 6.84410i 1.96794 + 0.281767i
\(591\) 13.0054 + 20.9791i 0.534970 + 0.862964i
\(592\) −1.61998 0.406131i −0.0665807 0.0166919i
\(593\) 29.2162 + 14.6729i 1.19976 + 0.602544i 0.932532 0.361088i \(-0.117595\pi\)
0.267233 + 0.963632i \(0.413891\pi\)
\(594\) −0.367210 0.594951i −0.0150668 0.0244111i
\(595\) 4.77536 2.39827i 0.195771 0.0983197i
\(596\) −29.9086 + 6.68129i −1.22510 + 0.273677i
\(597\) −0.467907 0.398594i −0.0191501 0.0163134i
\(598\) −20.9324 + 1.89954i −0.855991 + 0.0776781i
\(599\) −2.60778 23.6350i −0.106551 0.965700i −0.922084 0.386989i \(-0.873515\pi\)
0.815533 0.578711i \(-0.196444\pi\)
\(600\) 0.621502 2.22421i 0.0253727 0.0908031i
\(601\) −28.4126 2.57834i −1.15898 0.105173i −0.505987 0.862541i \(-0.668872\pi\)
−0.652988 + 0.757368i \(0.726485\pi\)
\(602\) −0.600846 30.9795i −0.0244887 1.26263i
\(603\) 0.738924 1.90275i 0.0300913 0.0774859i
\(604\) 3.44695 + 4.27355i 0.140254 + 0.173888i
\(605\) 7.24055 + 29.6936i 0.294370 + 1.20722i
\(606\) −14.1371 + 2.85704i −0.574280 + 0.116059i
\(607\) 21.1834 37.8113i 0.859807 1.53471i 0.0148430 0.999890i \(-0.495275\pi\)
0.844964 0.534824i \(-0.179622\pi\)
\(608\) 1.51031 + 2.53953i 0.0612510 + 0.102992i
\(609\) −19.3268 + 11.8088i −0.783160 + 0.478518i
\(610\) −33.7026 + 32.2111i −1.36458 + 1.30419i
\(611\) −15.5535 + 2.43252i −0.629226 + 0.0984091i
\(612\) 2.70891 0.748357i 0.109501 0.0302505i
\(613\) −8.46056 + 5.10597i −0.341719 + 0.206228i −0.677165 0.735831i \(-0.736792\pi\)
0.335447 + 0.942059i \(0.391113\pi\)
\(614\) 6.37417 9.04093i 0.257241 0.364862i
\(615\) 15.4960 + 34.1793i 0.624858 + 1.37824i
\(616\) 0.118316 0.0869002i 0.00476710 0.00350131i
\(617\) 3.44154 7.44313i 0.138551 0.299649i −0.825943 0.563754i \(-0.809356\pi\)
0.964494 + 0.264105i \(0.0850767\pi\)
\(618\) 39.1942 32.3937i 1.57662 1.30306i
\(619\) 6.12201 + 6.65936i 0.246064 + 0.267662i 0.846950 0.531673i \(-0.178436\pi\)
−0.600886 + 0.799335i \(0.705185\pi\)
\(620\) 3.57846 61.4399i 0.143715 2.46748i
\(621\) 31.6030 30.4182i 1.26819 1.22064i
\(622\) −1.46377 25.1319i −0.0586918 1.00770i
\(623\) −39.8577 + 41.1672i −1.59686 + 1.64933i
\(624\) −5.41709 + 4.84270i −0.216857 + 0.193863i
\(625\) −11.6125 28.9572i −0.464499 1.15829i
\(626\) 10.3707 + 29.0767i 0.414497 + 1.16214i
\(627\) 0.0371917 0.0177390i 0.00148529 0.000708429i
\(628\) 1.71717 11.4645i 0.0685225 0.457483i
\(629\) −0.164010 0.117227i −0.00653950 0.00467415i
\(630\) 2.39275 + 78.7888i 0.0953296 + 3.13902i
\(631\) 1.64570 + 1.61409i 0.0655141 + 0.0642558i 0.732237 0.681050i \(-0.238476\pi\)
−0.666723 + 0.745306i \(0.732304\pi\)
\(632\) 0.497207 2.16001i 0.0197778 0.0859205i
\(633\) −48.1797 11.1401i −1.91497 0.442780i
\(634\) −21.1092 67.3292i −0.838355 2.67398i
\(635\) 8.32141 29.1624i 0.330225 1.15728i
\(636\) −28.8199 12.9101i −1.14279 0.511917i
\(637\) −5.72380 + 16.0480i −0.226785 + 0.635846i
\(638\) −0.382864 + 0.0148569i −0.0151577 + 0.000588189i
\(639\) 27.5010 1.72605i 1.08792 0.0682813i
\(640\) −9.99707 4.08425i −0.395169 0.161444i
\(641\) −10.2782 6.38563i −0.405964 0.252217i 0.309453 0.950915i \(-0.399854\pi\)
−0.715417 + 0.698697i \(0.753763\pi\)
\(642\) 28.4086 12.2212i 1.12120 0.482334i
\(643\) −17.2994 + 7.32997i −0.682223 + 0.289066i −0.703487 0.710708i \(-0.748375\pi\)
0.0212647 + 0.999774i \(0.493231\pi\)
\(644\) 64.9811 + 57.4530i 2.56062 + 2.26397i
\(645\) 7.25048 + 14.0168i 0.285487 + 0.551910i
\(646\) 0.0504720 + 0.309595i 0.00198580 + 0.0121808i
\(647\) 29.5257 10.7465i 1.16078 0.422488i 0.311402 0.950278i \(-0.399201\pi\)
0.849375 + 0.527790i \(0.176979\pi\)
\(648\) −0.725306 + 4.34172i −0.0284927 + 0.170559i
\(649\) −0.518345 0.188662i −0.0203468 0.00740564i
\(650\) −1.26499 + 6.66879i −0.0496171 + 0.261571i
\(651\) 19.0637 + 76.3585i 0.747163 + 2.99273i
\(652\) 14.4879 11.5319i 0.567391 0.451623i
\(653\) 3.63889 + 5.61134i 0.142401 + 0.219589i 0.903008 0.429624i \(-0.141354\pi\)
−0.760607 + 0.649212i \(0.775099\pi\)
\(654\) 25.2253 7.52500i 0.986385 0.294251i
\(655\) 12.0901 + 2.53718i 0.472399 + 0.0991356i
\(656\) 25.7447 8.25471i 1.00516 0.322292i
\(657\) 17.9540 30.0548i 0.700454 1.17255i
\(658\) 97.2438 + 75.3696i 3.79096 + 2.93821i
\(659\) −23.9937 + 28.9728i −0.934661 + 1.12862i 0.0568223 + 0.998384i \(0.481903\pi\)
−0.991483 + 0.130237i \(0.958426\pi\)
\(660\) −0.324733 + 0.624775i −0.0126402 + 0.0243193i
\(661\) 18.4337 + 8.96124i 0.716989 + 0.348552i 0.759467 0.650545i \(-0.225460\pi\)
−0.0424788 + 0.999097i \(0.513526\pi\)
\(662\) 18.2571 9.46655i 0.709581 0.367928i
\(663\) −0.822534 + 0.304496i −0.0319446 + 0.0118256i
\(664\) −0.0568030 0.460164i −0.00220438 0.0178578i
\(665\) −4.63172 0.360006i −0.179610 0.0139604i
\(666\) 2.58777 1.46512i 0.100274 0.0567721i
\(667\) −5.99617 23.2785i −0.232172 0.901349i
\(668\) −2.75601 + 5.07204i −0.106633 + 0.196243i
\(669\) −29.1950 15.4149i −1.12874 0.595974i
\(670\) −3.83831 + 0.651243i −0.148287 + 0.0251597i
\(671\) 0.452356 0.281040i 0.0174630 0.0108494i
\(672\) 64.3338 + 5.48255i 2.48173 + 0.211494i
\(673\) 15.8379 35.4492i 0.610508 1.36647i −0.300383 0.953819i \(-0.597114\pi\)
0.910891 0.412648i \(-0.135396\pi\)
\(674\) 37.1568 + 39.3840i 1.43123 + 1.51701i
\(675\) −6.64577 12.5096i −0.255796 0.481495i
\(676\) 17.7155 18.7773i 0.681364 0.722203i
\(677\) 9.22867 + 22.1785i 0.354687 + 0.852391i 0.996347 + 0.0854014i \(0.0272173\pi\)
−0.641660 + 0.766989i \(0.721754\pi\)
\(678\) 30.6298 + 20.4739i 1.17633 + 0.786294i
\(679\) −16.4229 11.4205i −0.630253 0.438279i
\(680\) −0.411463 0.393254i −0.0157789 0.0150806i
\(681\) −8.24547 + 9.06852i −0.315967 + 0.347506i
\(682\) −0.348749 + 1.28492i −0.0133543 + 0.0492022i
\(683\) −9.72359 + 28.4183i −0.372063 + 1.08740i 0.588300 + 0.808643i \(0.299797\pi\)
−0.960363 + 0.278752i \(0.910079\pi\)
\(684\) −2.35247 0.659829i −0.0899490 0.0252292i
\(685\) 0.826525 + 0.498810i 0.0315799 + 0.0190586i
\(686\) 61.3371 26.9298i 2.34186 1.02819i
\(687\) −8.88565 + 14.2709i −0.339009 + 0.544470i
\(688\) 10.6321 4.02617i 0.405344 0.153496i
\(689\) 9.30398 + 3.25078i 0.354453 + 0.123845i
\(690\) −80.7185 21.9933i −3.07290 0.837271i
\(691\) 18.4011 + 27.5875i 0.700012 + 1.04948i 0.995558 + 0.0941488i \(0.0300130\pi\)
−0.295546 + 0.955329i \(0.595501\pi\)
\(692\) 41.0499 + 8.06194i 1.56048 + 0.306469i
\(693\) 0.158098 0.886448i 0.00600564 0.0336734i
\(694\) 24.8999 30.8710i 0.945187 1.17185i
\(695\) −27.1063 12.7467i −1.02820 0.483510i
\(696\) 1.87620 + 1.51634i 0.0711171 + 0.0574767i
\(697\) 3.25663 + 0.210808i 0.123354 + 0.00798494i
\(698\) −3.91708 14.4320i −0.148264 0.546260i
\(699\) 5.84150 3.78001i 0.220946 0.142973i
\(700\) 23.5999 15.0885i 0.891993 0.570291i
\(701\) 9.00814 20.8832i 0.340233 0.788748i −0.659094 0.752061i \(-0.729060\pi\)
0.999327 0.0366878i \(-0.0116807\pi\)
\(702\) 1.04052 12.8959i 0.0392718 0.486723i
\(703\) 0.0694177 + 0.160928i 0.00261814 + 0.00606953i
\(704\) 0.529195 + 0.357943i 0.0199448 + 0.0134905i
\(705\) −61.3949 12.5330i −2.31226 0.472018i
\(706\) −0.211147 + 0.644171i −0.00794662 + 0.0242437i
\(707\) −16.0263 9.39144i −0.602731 0.353201i
\(708\) 15.7733 + 28.6528i 0.592797 + 1.07684i
\(709\) 23.1572 + 7.75661i 0.869687 + 0.291306i 0.717088 0.696983i \(-0.245475\pi\)
0.152599 + 0.988288i \(0.451236\pi\)
\(710\) −29.7260 43.3415i −1.11560 1.62658i
\(711\) −6.92642 11.6987i −0.259761 0.438736i
\(712\) 5.55607 + 2.52554i 0.208222 + 0.0946487i
\(713\) −83.4190 4.31774i −3.12407 0.161700i
\(714\) 6.14233 + 3.04273i 0.229871 + 0.113871i
\(715\) 0.0844224 0.202886i 0.00315722 0.00758750i
\(716\) −9.35358 20.9356i −0.349560 0.782400i
\(717\) 26.1388 30.2854i 0.976170 1.13103i
\(718\) −8.06193 4.58533i −0.300869 0.171123i
\(719\) 5.72844 + 1.83675i 0.213635 + 0.0684993i 0.410216 0.911988i \(-0.365453\pi\)
−0.196581 + 0.980487i \(0.562984\pi\)
\(720\) −26.9335 + 10.5384i −1.00375 + 0.392743i
\(721\) 65.4381 + 2.53930i 2.43704 + 0.0945684i
\(722\) −14.4564 + 36.0489i −0.538012 + 1.34160i
\(723\) −42.4674 7.53109i −1.57938 0.280084i
\(724\) −43.6955 13.3900i −1.62393 0.497634i
\(725\) −7.76038 0.200703i −0.288213 0.00745391i
\(726\) −24.8400 + 30.3319i −0.921900 + 1.12572i
\(727\) −6.44472 0.0833243i −0.239021 0.00309033i −0.106675 0.994294i \(-0.534021\pi\)
−0.132346 + 0.991204i \(0.542251\pi\)
\(728\) 2.71655 0.100682
\(729\) 15.1401 + 22.3557i 0.560745 + 0.827988i
\(730\) −66.7729 −2.47138
\(731\) 1.37221 + 0.0177414i 0.0507529 + 0.000656189i
\(732\) −31.1608 5.11139i −1.15173 0.188922i
\(733\) 26.3697 + 0.681985i 0.973985 + 0.0251897i 0.509571 0.860428i \(-0.329804\pi\)
0.464414 + 0.885618i \(0.346265\pi\)
\(734\) 40.6818 + 12.4664i 1.50159 + 0.460145i
\(735\) −43.6437 + 51.9091i −1.60982 + 1.91470i
\(736\) −25.5068 + 63.6044i −0.940191 + 2.34449i
\(737\) 0.0444390 + 0.00172443i 0.00163693 + 6.35204e-5i
\(738\) −23.0664 + 42.2526i −0.849086 + 1.55534i
\(739\) 19.7916 + 6.34592i 0.728046 + 0.233439i 0.646159 0.763203i \(-0.276374\pi\)
0.0818872 + 0.996642i \(0.473905\pi\)
\(740\) −2.60329 1.48066i −0.0956989 0.0544300i
\(741\) 0.749011 + 0.142840i 0.0275156 + 0.00524735i
\(742\) −31.4193 70.3241i −1.15344 2.58168i
\(743\) −10.2573 + 24.6507i −0.376306 + 0.904346i 0.616800 + 0.787120i \(0.288429\pi\)
−0.993105 + 0.117226i \(0.962600\pi\)
\(744\) 6.97822 4.64466i 0.255834 0.170282i
\(745\) 38.0179 + 1.96779i 1.39287 + 0.0720944i
\(746\) −42.6090 19.3682i −1.56003 0.709119i
\(747\) −2.19851 1.80405i −0.0804392 0.0660068i
\(748\) 0.0346328 + 0.0504959i 0.00126630 + 0.00184631i
\(749\) 37.7671 + 12.6503i 1.37998 + 0.462231i
\(750\) 11.6630 19.2828i 0.425874 0.704108i
\(751\) −31.1063 18.2283i −1.13508 0.665162i −0.186742 0.982409i \(-0.559793\pi\)
−0.948343 + 0.317247i \(0.897241\pi\)
\(752\) −14.0606 + 42.8963i −0.512737 + 1.56427i
\(753\) 19.5891 22.1121i 0.713865 0.805809i
\(754\) −5.87295 3.97241i −0.213880 0.144667i
\(755\) −2.70139 6.26253i −0.0983136 0.227917i
\(756\) −41.6559 + 33.3970i −1.51501 + 1.21464i
\(757\) −5.01090 + 11.6166i −0.182124 + 0.422212i −0.984681 0.174364i \(-0.944213\pi\)
0.802557 + 0.596575i \(0.203472\pi\)
\(758\) 11.0123 7.04066i 0.399985 0.255728i
\(759\) 0.850809 + 0.435254i 0.0308824 + 0.0157987i
\(760\) 0.129612 + 0.477538i 0.00470151 + 0.0173221i
\(761\) −21.8075 1.41164i −0.790520 0.0511719i −0.335946 0.941881i \(-0.609056\pi\)
−0.454573 + 0.890709i \(0.650208\pi\)
\(762\) 36.3039 13.9757i 1.31515 0.506286i
\(763\) 30.6795 + 14.4270i 1.11067 + 0.522293i
\(764\) 23.9436 29.6854i 0.866248 1.07398i
\(765\) −3.49111 0.00684620i −0.126222 0.000247525i
\(766\) −1.72101 0.337995i −0.0621825 0.0122122i
\(767\) −5.66417 8.49188i −0.204521 0.306624i