Properties

Label 729.2.i.a.685.25
Level $729$
Weight $2$
Character 729.685
Analytic conductor $5.821$
Analytic rank $0$
Dimension $1404$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.i (of order \(81\), degree \(54\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(1404\)
Relative dimension: \(26\) over \(\Q(\zeta_{81})\)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{81}]$

Embedding invariants

Embedding label 685.25
Character \(\chi\) \(=\) 729.685
Dual form 729.2.i.a.613.25

$q$-expansion

\(f(q)\) \(=\) \(q+(2.50078 + 0.696141i) q^{2} +(4.05698 + 2.44840i) q^{4} +(-0.716991 + 0.0278225i) q^{5} +(2.72859 + 0.426743i) q^{7} +(4.87841 + 5.17082i) q^{8} +O(q^{10})\) \(q+(2.50078 + 0.696141i) q^{2} +(4.05698 + 2.44840i) q^{4} +(-0.716991 + 0.0278225i) q^{5} +(2.72859 + 0.426743i) q^{7} +(4.87841 + 5.17082i) q^{8} +(-1.81241 - 0.429549i) q^{10} +(-0.742549 - 5.43642i) q^{11} +(-1.59335 + 2.32316i) q^{13} +(6.52653 + 2.96667i) q^{14} +(4.18351 + 7.94221i) q^{16} +(1.84965 - 0.928931i) q^{17} +(0.137773 + 2.36548i) q^{19} +(-2.97694 - 1.64260i) q^{20} +(1.92756 - 14.1122i) q^{22} +(-2.77393 + 7.18467i) q^{23} +(-4.47166 + 0.347565i) q^{25} +(-5.60187 + 4.70052i) q^{26} +(10.0250 + 8.41196i) q^{28} +(-2.18645 - 1.56278i) q^{29} +(4.19476 - 4.80666i) q^{31} +(1.92322 + 8.87856i) q^{32} +(5.27225 - 1.03544i) q^{34} +(-1.96824 - 0.230055i) q^{35} +(-3.11994 - 4.19081i) q^{37} +(-1.30216 + 6.01146i) q^{38} +(-3.64164 - 3.57170i) q^{40} +(-1.92690 + 7.48070i) q^{41} +(-5.74986 - 5.21772i) q^{43} +(10.2980 - 23.8735i) q^{44} +(-11.9386 + 16.0363i) q^{46} +(-1.85151 - 2.12160i) q^{47} +(0.597340 + 0.191529i) q^{49} +(-11.4246 - 2.24372i) q^{50} +(-12.1522 + 5.52385i) q^{52} +(0.472455 - 2.67943i) q^{53} +(0.683655 + 3.87720i) q^{55} +(11.1046 + 16.1908i) q^{56} +(-4.37993 - 5.43026i) q^{58} +(13.5827 - 5.54915i) q^{59} +(-3.82711 + 2.30967i) q^{61} +(13.8363 - 9.10028i) q^{62} +(-0.327284 + 5.61924i) q^{64} +(1.07778 - 1.71001i) q^{65} +(5.06095 - 3.61735i) q^{67} +(9.77840 + 0.760038i) q^{68} +(-4.76200 - 1.94549i) q^{70} +(-1.07858 - 3.60272i) q^{71} +(15.1890 - 3.59985i) q^{73} +(-4.88491 - 12.6522i) q^{74} +(-5.23269 + 9.93401i) q^{76} +(0.293846 - 15.1506i) q^{77} +(-10.6039 + 10.4002i) q^{79} +(-3.22051 - 5.57809i) q^{80} +(-10.0264 + 17.3662i) q^{82} +(1.27729 + 4.95875i) q^{83} +(-1.30034 + 0.717497i) q^{85} +(-10.7469 - 17.0511i) q^{86} +(24.4883 - 30.3607i) q^{88} +(-2.89132 + 9.65769i) q^{89} +(-5.33898 + 5.65899i) q^{91} +(-28.8447 + 22.3564i) q^{92} +(-3.15330 - 6.59457i) q^{94} +(-0.164596 - 1.69219i) q^{95} +(-5.23621 - 0.203189i) q^{97} +(1.36049 + 0.894806i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1404 q + 54 q^{2} - 54 q^{4} + 54 q^{5} - 54 q^{7} + 54 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 1404 q + 54 q^{2} - 54 q^{4} + 54 q^{5} - 54 q^{7} + 54 q^{8} - 54 q^{10} + 54 q^{11} - 54 q^{13} + 54 q^{14} - 54 q^{16} + 54 q^{17} - 54 q^{19} + 54 q^{20} - 54 q^{22} + 54 q^{23} - 54 q^{25} + 54 q^{26} - 54 q^{28} + 54 q^{29} - 54 q^{31} + 54 q^{32} - 54 q^{34} + 54 q^{35} - 54 q^{37} + 54 q^{38} - 54 q^{40} + 54 q^{41} - 54 q^{43} + 54 q^{44} - 54 q^{46} + 54 q^{47} - 54 q^{49} + 54 q^{50} - 54 q^{52} + 54 q^{53} - 54 q^{55} + 54 q^{56} - 54 q^{58} + 54 q^{59} - 54 q^{61} + 54 q^{62} - 54 q^{64} - 54 q^{67} - 135 q^{68} - 54 q^{70} - 54 q^{71} - 54 q^{73} - 162 q^{74} - 54 q^{76} - 162 q^{77} - 54 q^{79} - 351 q^{80} - 27 q^{82} - 54 q^{83} - 54 q^{85} - 162 q^{86} - 54 q^{88} - 81 q^{89} - 54 q^{91} - 270 q^{92} - 54 q^{94} - 54 q^{95} - 54 q^{97} - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{81}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.50078 + 0.696141i 1.76832 + 0.492246i 0.990650 0.136425i \(-0.0435612\pi\)
0.777671 + 0.628671i \(0.216401\pi\)
\(3\) 0 0
\(4\) 4.05698 + 2.44840i 2.02849 + 1.22420i
\(5\) −0.716991 + 0.0278225i −0.320648 + 0.0124426i −0.198597 0.980081i \(-0.563638\pi\)
−0.122051 + 0.992524i \(0.538947\pi\)
\(6\) 0 0
\(7\) 2.72859 + 0.426743i 1.03131 + 0.161294i 0.647458 0.762101i \(-0.275832\pi\)
0.383851 + 0.923395i \(0.374598\pi\)
\(8\) 4.87841 + 5.17082i 1.72478 + 1.82816i
\(9\) 0 0
\(10\) −1.81241 0.429549i −0.573134 0.135835i
\(11\) −0.742549 5.43642i −0.223887 1.63914i −0.668710 0.743523i \(-0.733153\pi\)
0.444823 0.895618i \(-0.353267\pi\)
\(12\) 0 0
\(13\) −1.59335 + 2.32316i −0.441915 + 0.644328i −0.980101 0.198498i \(-0.936394\pi\)
0.538186 + 0.842826i \(0.319110\pi\)
\(14\) 6.52653 + 2.96667i 1.74429 + 0.792877i
\(15\) 0 0
\(16\) 4.18351 + 7.94221i 1.04588 + 1.98555i
\(17\) 1.84965 0.928931i 0.448607 0.225299i −0.210128 0.977674i \(-0.567388\pi\)
0.658735 + 0.752375i \(0.271092\pi\)
\(18\) 0 0
\(19\) 0.137773 + 2.36548i 0.0316074 + 0.542678i 0.976530 + 0.215383i \(0.0690999\pi\)
−0.944922 + 0.327295i \(0.893863\pi\)
\(20\) −2.97694 1.64260i −0.665663 0.367297i
\(21\) 0 0
\(22\) 1.92756 14.1122i 0.410957 3.00874i
\(23\) −2.77393 + 7.18467i −0.578405 + 1.49811i 0.266846 + 0.963739i \(0.414018\pi\)
−0.845252 + 0.534368i \(0.820550\pi\)
\(24\) 0 0
\(25\) −4.47166 + 0.347565i −0.894333 + 0.0695130i
\(26\) −5.60187 + 4.70052i −1.09862 + 0.921848i
\(27\) 0 0
\(28\) 10.0250 + 8.41196i 1.89454 + 1.58971i
\(29\) −2.18645 1.56278i −0.406014 0.290202i 0.360090 0.932917i \(-0.382746\pi\)
−0.766105 + 0.642716i \(0.777808\pi\)
\(30\) 0 0
\(31\) 4.19476 4.80666i 0.753401 0.863301i −0.240830 0.970567i \(-0.577420\pi\)
0.994230 + 0.107266i \(0.0342096\pi\)
\(32\) 1.92322 + 8.87856i 0.339980 + 1.56952i
\(33\) 0 0
\(34\) 5.27225 1.03544i 0.904184 0.177576i
\(35\) −1.96824 0.230055i −0.332694 0.0388863i
\(36\) 0 0
\(37\) −3.11994 4.19081i −0.512916 0.688965i 0.467927 0.883767i \(-0.345001\pi\)
−0.980843 + 0.194802i \(0.937594\pi\)
\(38\) −1.30216 + 6.01146i −0.211239 + 0.975187i
\(39\) 0 0
\(40\) −3.64164 3.57170i −0.575794 0.564735i
\(41\) −1.92690 + 7.48070i −0.300932 + 1.16829i 0.621903 + 0.783094i \(0.286360\pi\)
−0.922835 + 0.385195i \(0.874134\pi\)
\(42\) 0 0
\(43\) −5.74986 5.21772i −0.876846 0.795695i 0.103160 0.994665i \(-0.467105\pi\)
−0.980006 + 0.198970i \(0.936240\pi\)
\(44\) 10.2980 23.8735i 1.55248 3.59906i
\(45\) 0 0
\(46\) −11.9386 + 16.0363i −1.76024 + 2.36442i
\(47\) −1.85151 2.12160i −0.270071 0.309467i 0.602341 0.798239i \(-0.294235\pi\)
−0.872411 + 0.488773i \(0.837445\pi\)
\(48\) 0 0
\(49\) 0.597340 + 0.191529i 0.0853342 + 0.0273613i
\(50\) −11.4246 2.24372i −1.61569 0.317310i
\(51\) 0 0
\(52\) −12.1522 + 5.52385i −1.68521 + 0.766020i
\(53\) 0.472455 2.67943i 0.0648968 0.368048i −0.935013 0.354613i \(-0.884612\pi\)
0.999910 0.0134343i \(-0.00427641\pi\)
\(54\) 0 0
\(55\) 0.683655 + 3.87720i 0.0921841 + 0.522802i
\(56\) 11.1046 + 16.1908i 1.48391 + 2.16359i
\(57\) 0 0
\(58\) −4.37993 5.43026i −0.575113 0.713029i
\(59\) 13.5827 5.54915i 1.76832 0.722438i 0.772106 0.635494i \(-0.219203\pi\)
0.996213 0.0869440i \(-0.0277101\pi\)
\(60\) 0 0
\(61\) −3.82711 + 2.30967i −0.490011 + 0.295723i −0.740097 0.672501i \(-0.765220\pi\)
0.250086 + 0.968224i \(0.419541\pi\)
\(62\) 13.8363 9.10028i 1.75721 1.15574i
\(63\) 0 0
\(64\) −0.327284 + 5.61924i −0.0409105 + 0.702406i
\(65\) 1.07778 1.71001i 0.133682 0.212101i
\(66\) 0 0
\(67\) 5.06095 3.61735i 0.618293 0.441929i −0.228727 0.973491i \(-0.573456\pi\)
0.847020 + 0.531561i \(0.178394\pi\)
\(68\) 9.77840 + 0.760038i 1.18581 + 0.0921681i
\(69\) 0 0
\(70\) −4.76200 1.94549i −0.569168 0.232531i
\(71\) −1.07858 3.60272i −0.128004 0.427564i 0.869829 0.493353i \(-0.164229\pi\)
−0.997834 + 0.0657886i \(0.979044\pi\)
\(72\) 0 0
\(73\) 15.1890 3.59985i 1.77773 0.421331i 0.795039 0.606558i \(-0.207450\pi\)
0.982696 + 0.185228i \(0.0593023\pi\)
\(74\) −4.88491 12.6522i −0.567860 1.47079i
\(75\) 0 0
\(76\) −5.23269 + 9.93401i −0.600230 + 1.13951i
\(77\) 0.293846 15.1506i 0.0334868 1.72657i
\(78\) 0 0
\(79\) −10.6039 + 10.4002i −1.19303 + 1.17012i −0.211797 + 0.977314i \(0.567931\pi\)
−0.981237 + 0.192805i \(0.938241\pi\)
\(80\) −3.22051 5.57809i −0.360064 0.623650i
\(81\) 0 0
\(82\) −10.0264 + 17.3662i −1.10723 + 1.91778i
\(83\) 1.27729 + 4.95875i 0.140201 + 0.544293i 0.999463 + 0.0327581i \(0.0104291\pi\)
−0.859262 + 0.511535i \(0.829077\pi\)
\(84\) 0 0
\(85\) −1.30034 + 0.717497i −0.141042 + 0.0778235i
\(86\) −10.7469 17.0511i −1.15887 1.83867i
\(87\) 0 0
\(88\) 24.4883 30.3607i 2.61046 3.23646i
\(89\) −2.89132 + 9.65769i −0.306479 + 1.02371i 0.656542 + 0.754289i \(0.272018\pi\)
−0.963022 + 0.269423i \(0.913167\pi\)
\(90\) 0 0
\(91\) −5.33898 + 5.65899i −0.559677 + 0.593223i
\(92\) −28.8447 + 22.3564i −3.00727 + 2.33081i
\(93\) 0 0
\(94\) −3.15330 6.59457i −0.325238 0.680178i
\(95\) −0.164596 1.69219i −0.0168872 0.173615i
\(96\) 0 0
\(97\) −5.23621 0.203189i −0.531657 0.0206307i −0.228450 0.973556i \(-0.573366\pi\)
−0.303207 + 0.952925i \(0.598057\pi\)
\(98\) 1.36049 + 0.894806i 0.137430 + 0.0903891i
\(99\) 0 0
\(100\) −18.9924 9.53835i −1.89924 0.953835i
\(101\) −0.285905 14.7412i −0.0284486 1.46680i −0.693743 0.720223i \(-0.744040\pi\)
0.665294 0.746581i \(-0.268306\pi\)
\(102\) 0 0
\(103\) −9.61327 7.45085i −0.947224 0.734154i 0.0168305 0.999858i \(-0.494642\pi\)
−0.964055 + 0.265704i \(0.914396\pi\)
\(104\) −19.7856 + 3.09442i −1.94014 + 0.303432i
\(105\) 0 0
\(106\) 3.04677 6.37178i 0.295928 0.618882i
\(107\) 9.91721 + 3.60957i 0.958733 + 0.348950i 0.773537 0.633751i \(-0.218486\pi\)
0.185196 + 0.982702i \(0.440708\pi\)
\(108\) 0 0
\(109\) −2.70858 + 0.985841i −0.259435 + 0.0944264i −0.468463 0.883483i \(-0.655192\pi\)
0.209029 + 0.977910i \(0.432970\pi\)
\(110\) −0.989404 + 10.1720i −0.0943360 + 0.969859i
\(111\) 0 0
\(112\) 8.02580 + 23.4563i 0.758367 + 2.21641i
\(113\) −11.5808 + 10.5090i −1.08943 + 0.988603i −0.999973 0.00738734i \(-0.997649\pi\)
−0.0894556 + 0.995991i \(0.528513\pi\)
\(114\) 0 0
\(115\) 1.78899 5.22852i 0.166824 0.487562i
\(116\) −5.04408 11.6935i −0.468331 1.08571i
\(117\) 0 0
\(118\) 37.8304 4.42174i 3.48257 0.407055i
\(119\) 5.44336 1.74534i 0.498992 0.159995i
\(120\) 0 0
\(121\) −18.4062 + 5.12371i −1.67329 + 0.465792i
\(122\) −11.1786 + 3.11178i −1.01207 + 0.281728i
\(123\) 0 0
\(124\) 28.7867 9.23007i 2.58512 0.828885i
\(125\) 6.75986 0.790115i 0.604621 0.0706700i
\(126\) 0 0
\(127\) −1.70274 3.94739i −0.151094 0.350274i 0.825812 0.563945i \(-0.190717\pi\)
−0.976906 + 0.213671i \(0.931458\pi\)
\(128\) 1.15165 3.36582i 0.101792 0.297499i
\(129\) 0 0
\(130\) 3.88570 3.52609i 0.340799 0.309258i
\(131\) 1.74554 + 5.10154i 0.152509 + 0.445723i 0.995781 0.0917635i \(-0.0292504\pi\)
−0.843272 + 0.537487i \(0.819374\pi\)
\(132\) 0 0
\(133\) −0.633525 + 6.51320i −0.0549335 + 0.564766i
\(134\) 15.1745 5.52308i 1.31088 0.477121i
\(135\) 0 0
\(136\) 13.8267 + 5.03251i 1.18563 + 0.431534i
\(137\) 3.83504 8.02030i 0.327649 0.685220i −0.670756 0.741678i \(-0.734030\pi\)
0.998405 + 0.0564580i \(0.0179807\pi\)
\(138\) 0 0
\(139\) −1.72835 + 0.270310i −0.146597 + 0.0229274i −0.227392 0.973803i \(-0.573020\pi\)
0.0807944 + 0.996731i \(0.474254\pi\)
\(140\) −7.42186 5.75237i −0.627262 0.486164i
\(141\) 0 0
\(142\) −0.189304 9.76048i −0.0158861 0.819081i
\(143\) 13.8128 + 6.93705i 1.15508 + 0.580105i
\(144\) 0 0
\(145\) 1.61115 + 1.05967i 0.133799 + 0.0880007i
\(146\) 40.4904 + 1.57121i 3.35101 + 0.130034i
\(147\) 0 0
\(148\) −2.39677 24.6409i −0.197013 2.02547i
\(149\) −6.41565 13.4172i −0.525591 1.09918i −0.978237 0.207490i \(-0.933471\pi\)
0.452647 0.891690i \(-0.350480\pi\)
\(150\) 0 0
\(151\) −0.205920 + 0.159600i −0.0167575 + 0.0129881i −0.620945 0.783854i \(-0.713251\pi\)
0.604187 + 0.796842i \(0.293498\pi\)
\(152\) −11.5593 + 12.2522i −0.937585 + 0.993782i
\(153\) 0 0
\(154\) 11.2818 37.6839i 0.909114 3.03665i
\(155\) −2.87387 + 3.56304i −0.230835 + 0.286190i
\(156\) 0 0
\(157\) 6.09261 + 9.66658i 0.486243 + 0.771477i 0.996048 0.0888128i \(-0.0283073\pi\)
−0.509805 + 0.860290i \(0.670283\pi\)
\(158\) −33.7581 + 18.6270i −2.68565 + 1.48188i
\(159\) 0 0
\(160\) −1.62595 6.31233i −0.128543 0.499034i
\(161\) −10.6349 + 18.4202i −0.838150 + 1.45172i
\(162\) 0 0
\(163\) 6.91859 + 11.9833i 0.541906 + 0.938608i 0.998795 + 0.0490843i \(0.0156303\pi\)
−0.456889 + 0.889524i \(0.651036\pi\)
\(164\) −26.1332 + 25.6312i −2.04066 + 2.00146i
\(165\) 0 0
\(166\) −0.257758 + 13.2899i −0.0200059 + 1.03150i
\(167\) 1.10341 2.09478i 0.0853847 0.162099i −0.838349 0.545133i \(-0.816479\pi\)
0.923734 + 0.383035i \(0.125121\pi\)
\(168\) 0 0
\(169\) 1.82401 + 4.72429i 0.140308 + 0.363407i
\(170\) −3.75135 + 0.889086i −0.287715 + 0.0681898i
\(171\) 0 0
\(172\) −10.5520 35.2461i −0.804583 2.68749i
\(173\) 11.8268 + 4.83178i 0.899174 + 0.367353i 0.780190 0.625543i \(-0.215123\pi\)
0.118984 + 0.992896i \(0.462036\pi\)
\(174\) 0 0
\(175\) −12.3496 0.959890i −0.933545 0.0725609i
\(176\) 40.0707 28.6408i 3.02044 2.15888i
\(177\) 0 0
\(178\) −13.9537 + 22.1390i −1.04587 + 1.65939i
\(179\) −1.14619 + 19.6793i −0.0856702 + 1.47090i 0.632244 + 0.774769i \(0.282134\pi\)
−0.717914 + 0.696131i \(0.754903\pi\)
\(180\) 0 0
\(181\) 1.97173 1.29683i 0.146557 0.0963923i −0.474113 0.880464i \(-0.657231\pi\)
0.620670 + 0.784072i \(0.286861\pi\)
\(182\) −17.2911 + 10.4352i −1.28170 + 0.773510i
\(183\) 0 0
\(184\) −50.6830 + 20.7063i −3.73640 + 1.52649i
\(185\) 2.35357 + 2.91797i 0.173038 + 0.214533i
\(186\) 0 0
\(187\) −6.42352 9.36572i −0.469734 0.684889i
\(188\) −2.31703 13.1405i −0.168987 0.958370i
\(189\) 0 0
\(190\) 0.766386 4.34639i 0.0555995 0.315320i
\(191\) −7.11757 + 3.23533i −0.515010 + 0.234101i −0.654416 0.756135i \(-0.727085\pi\)
0.139406 + 0.990235i \(0.455481\pi\)
\(192\) 0 0
\(193\) 21.7180 + 4.26528i 1.56330 + 0.307022i 0.898150 0.439690i \(-0.144912\pi\)
0.665148 + 0.746711i \(0.268368\pi\)
\(194\) −12.9532 4.15328i −0.929985 0.298188i
\(195\) 0 0
\(196\) 1.95445 + 2.23956i 0.139604 + 0.159968i
\(197\) 4.17704 5.61074i 0.297602 0.399749i −0.628021 0.778197i \(-0.716135\pi\)
0.925623 + 0.378448i \(0.123542\pi\)
\(198\) 0 0
\(199\) −8.65869 + 20.0731i −0.613798 + 1.42294i 0.273556 + 0.961856i \(0.411800\pi\)
−0.887354 + 0.461088i \(0.847459\pi\)
\(200\) −23.6118 21.4266i −1.66961 1.51509i
\(201\) 0 0
\(202\) 9.54696 37.0636i 0.671722 2.60779i
\(203\) −5.29902 5.19724i −0.371918 0.364775i
\(204\) 0 0
\(205\) 1.17344 5.41721i 0.0819567 0.378354i
\(206\) −18.8539 25.3252i −1.31361 1.76449i
\(207\) 0 0
\(208\) −25.1168 2.93573i −1.74154 0.203556i
\(209\) 12.7574 2.50548i 0.882449 0.173307i
\(210\) 0 0
\(211\) −0.214265 0.989155i −0.0147506 0.0680963i 0.969365 0.245623i \(-0.0789927\pi\)
−0.984116 + 0.177527i \(0.943190\pi\)
\(212\) 8.47705 9.71362i 0.582206 0.667134i
\(213\) 0 0
\(214\) 22.2880 + 15.9305i 1.52358 + 1.08899i
\(215\) 4.26777 + 3.58108i 0.291059 + 0.244228i
\(216\) 0 0
\(217\) 13.4970 11.3253i 0.916234 0.768812i
\(218\) −7.45985 + 0.579825i −0.505245 + 0.0392707i
\(219\) 0 0
\(220\) −6.71936 + 17.4036i −0.453019 + 1.17335i
\(221\) −0.789088 + 5.77715i −0.0530798 + 0.388613i
\(222\) 0 0
\(223\) 7.24949 + 4.00010i 0.485462 + 0.267866i 0.706907 0.707306i \(-0.250090\pi\)
−0.221446 + 0.975173i \(0.571078\pi\)
\(224\) 1.45880 + 25.0466i 0.0974702 + 1.67350i
\(225\) 0 0
\(226\) −36.2768 + 18.2189i −2.41310 + 1.21190i
\(227\) 7.28381 + 13.8280i 0.483443 + 0.917795i 0.998172 + 0.0604413i \(0.0192508\pi\)
−0.514728 + 0.857353i \(0.672107\pi\)
\(228\) 0 0
\(229\) 14.8675 + 6.75812i 0.982474 + 0.446589i 0.839632 0.543156i \(-0.182771\pi\)
0.142842 + 0.989745i \(0.454376\pi\)
\(230\) 8.11367 11.8300i 0.534999 0.780048i
\(231\) 0 0
\(232\) −2.58556 18.9296i −0.169750 1.24279i
\(233\) −3.93408 0.932394i −0.257730 0.0610832i 0.0997195 0.995016i \(-0.468205\pi\)
−0.357450 + 0.933932i \(0.616354\pi\)
\(234\) 0 0
\(235\) 1.38654 + 1.46965i 0.0904482 + 0.0958695i
\(236\) 68.6913 + 10.7431i 4.47142 + 0.699318i
\(237\) 0 0
\(238\) 14.8277 0.575381i 0.961135 0.0372964i
\(239\) −1.80319 1.08823i −0.116639 0.0703918i 0.457180 0.889374i \(-0.348860\pi\)
−0.573819 + 0.818982i \(0.694539\pi\)
\(240\) 0 0
\(241\) 10.2946 + 2.86570i 0.663135 + 0.184596i 0.583356 0.812216i \(-0.301739\pi\)
0.0797786 + 0.996813i \(0.474579\pi\)
\(242\) −49.5967 −3.18820
\(243\) 0 0
\(244\) −21.1815 −1.35601
\(245\) −0.433616 0.120705i −0.0277027 0.00771157i
\(246\) 0 0
\(247\) −5.71490 3.44896i −0.363630 0.219452i
\(248\) 45.3181 1.75855i 2.87770 0.111668i
\(249\) 0 0
\(250\) 17.4550 + 2.72991i 1.10395 + 0.172655i
\(251\) 0.0568054 + 0.0602102i 0.00358552 + 0.00380043i 0.729164 0.684339i \(-0.239909\pi\)
−0.725578 + 0.688140i \(0.758428\pi\)
\(252\) 0 0
\(253\) 41.1187 + 9.74530i 2.58511 + 0.612682i
\(254\) −1.51024 11.0569i −0.0947610 0.693773i
\(255\) 0 0
\(256\) 11.5904 16.8993i 0.724403 1.05621i
\(257\) 13.3475 + 6.06716i 0.832591 + 0.378459i 0.784306 0.620374i \(-0.213019\pi\)
0.0482854 + 0.998834i \(0.484624\pi\)
\(258\) 0 0
\(259\) −6.72464 12.7664i −0.417849 0.793266i
\(260\) 8.55932 4.29865i 0.530827 0.266591i
\(261\) 0 0
\(262\) 0.813834 + 13.9730i 0.0502788 + 0.863254i
\(263\) −3.68237 2.03185i −0.227065 0.125289i 0.365502 0.930811i \(-0.380897\pi\)
−0.592566 + 0.805522i \(0.701885\pi\)
\(264\) 0 0
\(265\) −0.264198 + 1.93427i −0.0162295 + 0.118821i
\(266\) −6.11842 + 15.8471i −0.375144 + 0.971648i
\(267\) 0 0
\(268\) 29.3889 2.28428i 1.79521 0.139535i
\(269\) −7.28444 + 6.11237i −0.444140 + 0.372678i −0.837256 0.546811i \(-0.815842\pi\)
0.393116 + 0.919489i \(0.371397\pi\)
\(270\) 0 0
\(271\) −8.14726 6.83637i −0.494911 0.415280i 0.360871 0.932616i \(-0.382479\pi\)
−0.855782 + 0.517336i \(0.826924\pi\)
\(272\) 15.1158 + 10.8041i 0.916531 + 0.655097i
\(273\) 0 0
\(274\) 15.1739 17.3873i 0.916687 1.05041i
\(275\) 5.20994 + 24.0517i 0.314171 + 1.45038i
\(276\) 0 0
\(277\) −10.9000 + 2.14069i −0.654918 + 0.128622i −0.509124 0.860693i \(-0.670030\pi\)
−0.145794 + 0.989315i \(0.546574\pi\)
\(278\) −4.51042 0.527192i −0.270517 0.0316189i
\(279\) 0 0
\(280\) −8.41234 11.2997i −0.502733 0.675288i
\(281\) −0.187335 + 0.864836i −0.0111755 + 0.0515918i −0.982581 0.185834i \(-0.940501\pi\)
0.971406 + 0.237426i \(0.0763037\pi\)
\(282\) 0 0
\(283\) 0.451104 + 0.442440i 0.0268154 + 0.0263003i 0.713502 0.700654i \(-0.247108\pi\)
−0.686686 + 0.726954i \(0.740935\pi\)
\(284\) 4.44511 17.2570i 0.263769 1.02401i
\(285\) 0 0
\(286\) 29.7137 + 26.9637i 1.75701 + 1.59440i
\(287\) −8.45006 + 19.5895i −0.498792 + 1.15633i
\(288\) 0 0
\(289\) −7.59339 + 10.1997i −0.446670 + 0.599982i
\(290\) 3.29145 + 3.77159i 0.193281 + 0.221475i
\(291\) 0 0
\(292\) 70.4352 + 22.5841i 4.12191 + 1.32164i
\(293\) 2.50934 + 0.492819i 0.146597 + 0.0287908i 0.265473 0.964118i \(-0.414472\pi\)
−0.118875 + 0.992909i \(0.537929\pi\)
\(294\) 0 0
\(295\) −9.58429 + 4.35659i −0.558019 + 0.253651i
\(296\) 6.44954 36.5772i 0.374872 2.12600i
\(297\) 0 0
\(298\) −6.70390 38.0197i −0.388347 2.20242i
\(299\) −12.2713 17.8920i −0.709667 1.03472i
\(300\) 0 0
\(301\) −13.4624 16.6907i −0.775958 0.962037i
\(302\) −0.626065 + 0.255776i −0.0360260 + 0.0147182i
\(303\) 0 0
\(304\) −18.2107 + 10.9902i −1.04446 + 0.630333i
\(305\) 2.67974 1.76249i 0.153441 0.100920i
\(306\) 0 0
\(307\) −1.30463 + 22.3996i −0.0744590 + 1.27841i 0.729605 + 0.683869i \(0.239704\pi\)
−0.804064 + 0.594543i \(0.797333\pi\)
\(308\) 38.2869 60.7463i 2.18160 3.46134i
\(309\) 0 0
\(310\) −9.66730 + 6.90977i −0.549066 + 0.392449i
\(311\) −1.51385 0.117665i −0.0858423 0.00667219i 0.0344994 0.999405i \(-0.489016\pi\)
−0.120342 + 0.992733i \(0.538399\pi\)
\(312\) 0 0
\(313\) 6.38492 + 2.60853i 0.360897 + 0.147443i 0.551394 0.834245i \(-0.314096\pi\)
−0.190497 + 0.981688i \(0.561010\pi\)
\(314\) 8.50700 + 28.4153i 0.480078 + 1.60357i
\(315\) 0 0
\(316\) −68.4838 + 16.2310i −3.85252 + 0.913063i
\(317\) −3.14331 8.14137i −0.176546 0.457265i 0.816160 0.577826i \(-0.196099\pi\)
−0.992706 + 0.120561i \(0.961531\pi\)
\(318\) 0 0
\(319\) −6.87239 + 13.0469i −0.384780 + 0.730487i
\(320\) 0.0783179 4.03805i 0.00437811 0.225734i
\(321\) 0 0
\(322\) −39.4188 + 38.6616i −2.19672 + 2.15453i
\(323\) 2.45220 + 4.24733i 0.136444 + 0.236328i
\(324\) 0 0
\(325\) 6.31747 10.9422i 0.350430 0.606962i
\(326\) 8.95980 + 34.7841i 0.496237 + 1.92651i
\(327\) 0 0
\(328\) −48.0816 + 26.5303i −2.65486 + 1.46489i
\(329\) −4.14663 6.57908i −0.228611 0.362716i
\(330\) 0 0
\(331\) 16.1132 19.9772i 0.885659 1.09805i −0.108919 0.994051i \(-0.534739\pi\)
0.994578 0.103995i \(-0.0331625\pi\)
\(332\) −6.95905 + 23.2448i −0.381927 + 1.27573i
\(333\) 0 0
\(334\) 4.21766 4.47046i 0.230780 0.244613i
\(335\) −3.52801 + 2.73441i −0.192756 + 0.149397i
\(336\) 0 0
\(337\) −5.48737 11.4759i −0.298916 0.625130i 0.696833 0.717233i \(-0.254592\pi\)
−0.995749 + 0.0921029i \(0.970641\pi\)
\(338\) 1.27267 + 13.0842i 0.0692242 + 0.711687i
\(339\) 0 0
\(340\) −7.03217 0.272880i −0.381373 0.0147990i
\(341\) −29.2458 19.2353i −1.58375 1.04165i
\(342\) 0 0
\(343\) −15.7278 7.89880i −0.849222 0.426495i
\(344\) −1.07032 55.1857i −0.0577080 2.97541i
\(345\) 0 0
\(346\) 26.2127 + 20.3163i 1.40920 + 1.09221i
\(347\) 28.2924 4.42485i 1.51881 0.237538i 0.660564 0.750770i \(-0.270317\pi\)
0.858250 + 0.513232i \(0.171552\pi\)
\(348\) 0 0
\(349\) 2.30048 4.81104i 0.123142 0.257529i −0.831360 0.555734i \(-0.812437\pi\)
0.954502 + 0.298205i \(0.0963879\pi\)
\(350\) −30.2156 10.9976i −1.61509 0.587845i
\(351\) 0 0
\(352\) 46.8395 17.0482i 2.49655 0.908671i
\(353\) 2.08407 21.4261i 0.110924 1.14040i −0.760321 0.649547i \(-0.774958\pi\)
0.871245 0.490849i \(-0.163313\pi\)
\(354\) 0 0
\(355\) 0.873571 + 2.55311i 0.0463643 + 0.135505i
\(356\) −35.3759 + 32.1019i −1.87492 + 1.70140i
\(357\) 0 0
\(358\) −16.5659 + 48.4158i −0.875538 + 2.55886i
\(359\) 7.24796 + 16.8027i 0.382533 + 0.886811i 0.995326 + 0.0965676i \(0.0307864\pi\)
−0.612794 + 0.790243i \(0.709954\pi\)
\(360\) 0 0
\(361\) 13.2950 1.55397i 0.699738 0.0817877i
\(362\) 5.83364 1.87048i 0.306609 0.0983104i
\(363\) 0 0
\(364\) −35.5156 + 9.88644i −1.86152 + 0.518190i
\(365\) −10.7902 + 3.00366i −0.564784 + 0.157219i
\(366\) 0 0
\(367\) −27.5680 + 8.83932i −1.43904 + 0.461409i −0.919517 0.393050i \(-0.871420\pi\)
−0.519520 + 0.854459i \(0.673889\pi\)
\(368\) −68.6669 + 8.02601i −3.57951 + 0.418385i
\(369\) 0 0
\(370\) 3.85445 + 8.93563i 0.200383 + 0.464541i
\(371\) 2.43256 7.10943i 0.126292 0.369103i
\(372\) 0 0
\(373\) 8.90247 8.07856i 0.460952 0.418292i −0.408157 0.912912i \(-0.633828\pi\)
0.869110 + 0.494620i \(0.164693\pi\)
\(374\) −9.54398 27.8933i −0.493507 1.44233i
\(375\) 0 0
\(376\) 1.93795 19.9238i 0.0999420 1.02749i
\(377\) 7.11437 2.58942i 0.366409 0.133362i
\(378\) 0 0
\(379\) −6.02404 2.19257i −0.309434 0.112625i 0.182635 0.983181i \(-0.441537\pi\)
−0.492069 + 0.870556i \(0.663759\pi\)
\(380\) 3.47540 7.26818i 0.178284 0.372850i
\(381\) 0 0
\(382\) −20.0518 + 3.13604i −1.02594 + 0.160454i
\(383\) −16.7401 12.9745i −0.855377 0.662968i 0.0874792 0.996166i \(-0.472119\pi\)
−0.942857 + 0.333199i \(0.891872\pi\)
\(384\) 0 0
\(385\) 0.210843 + 10.8710i 0.0107456 + 0.554039i
\(386\) 51.3429 + 25.7854i 2.61328 + 1.31244i
\(387\) 0 0
\(388\) −20.7457 13.6447i −1.05320 0.692704i
\(389\) −30.7701 1.19402i −1.56011 0.0605392i −0.755820 0.654780i \(-0.772761\pi\)
−0.804287 + 0.594241i \(0.797453\pi\)
\(390\) 0 0
\(391\) 1.54325 + 15.8660i 0.0780453 + 0.802376i
\(392\) 1.92371 + 4.02309i 0.0971619 + 0.203197i
\(393\) 0 0
\(394\) 14.3517 11.1234i 0.723030 0.560391i
\(395\) 7.31355 7.75191i 0.367984 0.390041i
\(396\) 0 0
\(397\) 4.87408 16.2806i 0.244623 0.817097i −0.744194 0.667963i \(-0.767166\pi\)
0.988817 0.149134i \(-0.0476486\pi\)
\(398\) −35.6272 + 44.1708i −1.78583 + 2.21408i
\(399\) 0 0
\(400\) −21.4677 34.0608i −1.07339 1.70304i
\(401\) 26.8353 14.8071i 1.34009 0.739432i 0.359067 0.933312i \(-0.383095\pi\)
0.981025 + 0.193880i \(0.0621073\pi\)
\(402\) 0 0
\(403\) 4.48292 + 17.4038i 0.223310 + 0.866943i
\(404\) 34.9324 60.5047i 1.73795 3.01022i
\(405\) 0 0
\(406\) −9.63370 16.6861i −0.478112 0.828115i
\(407\) −20.4663 + 20.0732i −1.01448 + 0.994992i
\(408\) 0 0
\(409\) 0.400958 20.6733i 0.0198261 1.02223i −0.849381 0.527780i \(-0.823025\pi\)
0.869207 0.494448i \(-0.164630\pi\)
\(410\) 6.70566 12.7304i 0.331169 0.628709i
\(411\) 0 0
\(412\) −20.7582 53.7651i −1.02268 2.64881i
\(413\) 39.4297 9.34501i 1.94021 0.459838i
\(414\) 0 0
\(415\) −1.05377 3.51984i −0.0517275 0.172782i
\(416\) −23.6906 9.67869i −1.16153 0.474537i
\(417\) 0 0
\(418\) 33.6477 + 2.61531i 1.64576 + 0.127919i
\(419\) −11.6463 + 8.32426i −0.568958 + 0.406667i −0.829262 0.558860i \(-0.811239\pi\)
0.260304 + 0.965527i \(0.416177\pi\)
\(420\) 0 0
\(421\) 5.06672 8.03889i 0.246937 0.391792i −0.699525 0.714608i \(-0.746605\pi\)
0.946462 + 0.322817i \(0.104630\pi\)
\(422\) 0.152762 2.62282i 0.00743634 0.127677i
\(423\) 0 0
\(424\) 16.1597 10.6284i 0.784783 0.516160i
\(425\) −7.94817 + 4.79674i −0.385543 + 0.232676i
\(426\) 0 0
\(427\) −11.4282 + 4.66895i −0.553051 + 0.225946i
\(428\) 31.3962 + 38.9252i 1.51759 + 1.88152i
\(429\) 0 0
\(430\) 8.17983 + 11.9265i 0.394466 + 0.575146i
\(431\) 6.59007 + 37.3742i 0.317433 + 1.80025i 0.558242 + 0.829678i \(0.311476\pi\)
−0.240810 + 0.970572i \(0.577413\pi\)
\(432\) 0 0
\(433\) −0.184493 + 1.04631i −0.00886615 + 0.0502824i −0.988920 0.148450i \(-0.952571\pi\)
0.980054 + 0.198733i \(0.0636826\pi\)
\(434\) 41.6370 18.9263i 1.99864 0.908494i
\(435\) 0 0
\(436\) −13.4024 2.63214i −0.641857 0.126057i
\(437\) −17.3773 5.57182i −0.831271 0.266536i
\(438\) 0 0
\(439\) 15.6362 + 17.9171i 0.746276 + 0.855137i 0.993501 0.113821i \(-0.0363090\pi\)
−0.247226 + 0.968958i \(0.579519\pi\)
\(440\) −16.7131 + 22.4496i −0.796768 + 1.07024i
\(441\) 0 0
\(442\) −5.99505 + 13.8981i −0.285156 + 0.661065i
\(443\) −0.0321116 0.0291397i −0.00152567 0.00138447i 0.671245 0.741236i \(-0.265760\pi\)
−0.672770 + 0.739851i \(0.734896\pi\)
\(444\) 0 0
\(445\) 1.80435 7.00491i 0.0855344 0.332065i
\(446\) 15.3448 + 15.0501i 0.726596 + 0.712641i
\(447\) 0 0
\(448\) −3.29100 + 15.1929i −0.155485 + 0.717798i
\(449\) −14.3005 19.2089i −0.674883 0.906525i 0.324340 0.945941i \(-0.394858\pi\)
−0.999223 + 0.0394152i \(0.987450\pi\)
\(450\) 0 0
\(451\) 42.0991 + 4.92067i 1.98237 + 0.231705i
\(452\) −72.7132 + 14.2804i −3.42014 + 0.671694i
\(453\) 0 0
\(454\) 8.58902 + 39.6513i 0.403103 + 1.86093i
\(455\) 3.67055 4.20598i 0.172078 0.197180i
\(456\) 0 0
\(457\) −18.3101 13.0873i −0.856511 0.612197i 0.0661502 0.997810i \(-0.478928\pi\)
−0.922661 + 0.385613i \(0.873990\pi\)
\(458\) 32.4759 + 27.2505i 1.51750 + 1.27333i
\(459\) 0 0
\(460\) 20.0594 16.8318i 0.935274 0.784788i
\(461\) −1.06014 + 0.0824003i −0.0493755 + 0.00383776i −0.102156 0.994768i \(-0.532574\pi\)
0.0527809 + 0.998606i \(0.483191\pi\)
\(462\) 0 0
\(463\) −1.42369 + 3.68745i −0.0661645 + 0.171370i −0.962023 0.272970i \(-0.911994\pi\)
0.895858 + 0.444340i \(0.146562\pi\)
\(464\) 3.26489 23.9032i 0.151568 1.10968i
\(465\) 0 0
\(466\) −9.18921 5.07039i −0.425682 0.234881i
\(467\) 1.44736 + 24.8502i 0.0669759 + 1.14993i 0.849597 + 0.527433i \(0.176845\pi\)
−0.782621 + 0.622499i \(0.786117\pi\)
\(468\) 0 0
\(469\) 15.3529 7.71052i 0.708932 0.356039i
\(470\) 2.44437 + 4.64051i 0.112750 + 0.214051i
\(471\) 0 0
\(472\) 94.9557 + 43.1627i 4.37069 + 1.98672i
\(473\) −24.0962 + 35.1331i −1.10794 + 1.61542i
\(474\) 0 0
\(475\) −1.43823 10.5297i −0.0659907 0.483137i
\(476\) 26.3569 + 6.24669i 1.20807 + 0.286317i
\(477\) 0 0
\(478\) −3.75183 3.97671i −0.171605 0.181890i
\(479\) 26.5448 + 4.15153i 1.21286 + 0.189688i 0.728418 0.685133i \(-0.240256\pi\)
0.484445 + 0.874822i \(0.339022\pi\)
\(480\) 0 0
\(481\) 14.7071 0.570701i 0.670585 0.0260217i
\(482\) 23.7497 + 14.3330i 1.08177 + 0.652851i
\(483\) 0 0
\(484\) −87.2184 24.2789i −3.96447 1.10359i
\(485\) 3.75997 0.170731
\(486\) 0 0
\(487\) 0.611056 0.0276896 0.0138448 0.999904i \(-0.495593\pi\)
0.0138448 + 0.999904i \(0.495593\pi\)
\(488\) −30.6131 8.52174i −1.38579 0.385761i
\(489\) 0 0
\(490\) −1.00035 0.603715i −0.0451913 0.0272731i
\(491\) −8.44663 + 0.327768i −0.381191 + 0.0147919i −0.228659 0.973507i \(-0.573434\pi\)
−0.152532 + 0.988299i \(0.548743\pi\)
\(492\) 0 0
\(493\) −5.49590 0.859543i −0.247523 0.0387119i
\(494\) −11.8908 12.6035i −0.534991 0.567057i
\(495\) 0 0
\(496\) 55.7243 + 13.2069i 2.50209 + 0.593007i
\(497\) −1.40557 10.2906i −0.0630486 0.461597i
\(498\) 0 0
\(499\) −8.93784 + 13.0317i −0.400113 + 0.583379i −0.971423 0.237356i \(-0.923719\pi\)
0.571310 + 0.820734i \(0.306435\pi\)
\(500\) 29.3591 + 13.3454i 1.31298 + 0.596823i
\(501\) 0 0
\(502\) 0.100143 + 0.190117i 0.00446961 + 0.00848535i
\(503\) −16.2244 + 8.14819i −0.723409 + 0.363310i −0.772097 0.635504i \(-0.780792\pi\)
0.0486881 + 0.998814i \(0.484496\pi\)
\(504\) 0 0
\(505\) 0.615128 + 10.5613i 0.0273729 + 0.469974i
\(506\) 96.0448 + 52.9953i 4.26971 + 2.35593i
\(507\) 0 0
\(508\) 2.75682 20.1835i 0.122314 0.895497i
\(509\) 9.75933 25.2773i 0.432574 1.12040i −0.529669 0.848205i \(-0.677684\pi\)
0.962243 0.272191i \(-0.0877484\pi\)
\(510\) 0 0
\(511\) 42.9806 3.34072i 1.90135 0.147785i
\(512\) 35.2993 29.6196i 1.56002 1.30901i
\(513\) 0 0
\(514\) 29.1555 + 24.4644i 1.28599 + 1.07908i
\(515\) 7.09993 + 5.07472i 0.312860 + 0.223619i
\(516\) 0 0
\(517\) −10.1591 + 11.6410i −0.446795 + 0.511970i
\(518\) −7.92965 36.6073i −0.348409 1.60843i
\(519\) 0 0
\(520\) 14.1000 2.76915i 0.618327 0.121435i
\(521\) −35.5321 4.15310i −1.55669 0.181951i −0.706225 0.707987i \(-0.749603\pi\)
−0.850462 + 0.526036i \(0.823678\pi\)
\(522\) 0 0
\(523\) −3.58627 4.81720i −0.156817 0.210641i 0.716770 0.697309i \(-0.245620\pi\)
−0.873587 + 0.486668i \(0.838212\pi\)
\(524\) −5.40897 + 24.9706i −0.236292 + 1.09085i
\(525\) 0 0
\(526\) −7.79436 7.64466i −0.339850 0.333323i
\(527\) 3.29380 12.7873i 0.143480 0.557024i
\(528\) 0 0
\(529\) −26.8923 24.4034i −1.16923 1.06102i
\(530\) −2.00723 + 4.65327i −0.0871883 + 0.202125i
\(531\) 0 0
\(532\) −18.5171 + 24.8728i −0.802819 + 1.07837i
\(533\) −14.3086 16.3959i −0.619775 0.710184i
\(534\) 0 0
\(535\) −7.21098 2.31211i −0.311758 0.0999611i
\(536\) 43.3940 + 8.52231i 1.87434 + 0.368108i
\(537\) 0 0
\(538\) −22.4719 + 10.2147i −0.968832 + 0.440388i
\(539\) 0.597679 3.38961i 0.0257439 0.146001i
\(540\) 0 0
\(541\) 7.34936 + 41.6803i 0.315974 + 1.79198i 0.566706 + 0.823920i \(0.308217\pi\)
−0.250732 + 0.968056i \(0.580671\pi\)
\(542\) −15.6155 22.7679i −0.670742 0.977966i
\(543\) 0 0
\(544\) 11.8049 + 14.6357i 0.506129 + 0.627502i
\(545\) 1.91459 0.782198i 0.0820122 0.0335057i
\(546\) 0 0
\(547\) 0.513877 0.310126i 0.0219718 0.0132600i −0.505671 0.862726i \(-0.668755\pi\)
0.527643 + 0.849466i \(0.323076\pi\)
\(548\) 35.1956 23.1485i 1.50348 0.988854i
\(549\) 0 0
\(550\) −3.71448 + 63.7751i −0.158386 + 2.71938i
\(551\) 3.39549 5.38732i 0.144653 0.229507i
\(552\) 0 0
\(553\) −33.3719 + 23.8528i −1.41912 + 1.01433i
\(554\) −28.7488 2.23453i −1.22142 0.0949362i
\(555\) 0 0
\(556\) −7.67372 3.13506i −0.325438 0.132956i
\(557\) −6.30067 21.0457i −0.266968 0.891735i −0.981391 0.192021i \(-0.938496\pi\)
0.714423 0.699714i \(-0.246689\pi\)
\(558\) 0 0
\(559\) 21.2831 5.04419i 0.900180 0.213347i
\(560\) −6.40703 16.5946i −0.270747 0.701251i
\(561\) 0 0
\(562\) −1.07053 + 2.03236i −0.0451577 + 0.0857298i
\(563\) −0.472020 + 24.3372i −0.0198933 + 1.02569i 0.848315 + 0.529492i \(0.177617\pi\)
−0.868208 + 0.496200i \(0.834728\pi\)
\(564\) 0 0
\(565\) 8.01093 7.85706i 0.337022 0.330549i
\(566\) 0.820114 + 1.42048i 0.0344720 + 0.0597072i
\(567\) 0 0
\(568\) 13.3672 23.1527i 0.560876 0.971466i
\(569\) 5.73637 + 22.2699i 0.240481 + 0.933605i 0.968695 + 0.248255i \(0.0798570\pi\)
−0.728214 + 0.685350i \(0.759649\pi\)
\(570\) 0 0
\(571\) 29.4529 16.2514i 1.23257 0.680101i 0.273116 0.961981i \(-0.411946\pi\)
0.959450 + 0.281880i \(0.0909580\pi\)
\(572\) 39.0536 + 61.9627i 1.63291 + 2.59079i
\(573\) 0 0
\(574\) −34.7688 + 43.1066i −1.45122 + 1.79923i
\(575\) 9.90696 33.0916i 0.413149 1.38001i
\(576\) 0 0
\(577\) −7.73031 + 8.19365i −0.321817 + 0.341106i −0.868004 0.496557i \(-0.834597\pi\)
0.546187 + 0.837663i \(0.316079\pi\)
\(578\) −26.0899 + 20.2212i −1.08519 + 0.841089i
\(579\) 0 0
\(580\) 3.94190 + 8.24378i 0.163678 + 0.342304i
\(581\) 1.36909 + 14.0754i 0.0567993 + 0.583948i
\(582\) 0 0
\(583\) −14.9173 0.578860i −0.617812 0.0239739i
\(584\) 92.7122 + 60.9778i 3.83646 + 2.52328i
\(585\) 0 0
\(586\) 5.93226 + 2.97929i 0.245059 + 0.123073i
\(587\) −0.664659 34.2696i −0.0274334 1.41446i −0.720435 0.693523i \(-0.756058\pi\)
0.693001 0.720936i \(-0.256288\pi\)
\(588\) 0 0
\(589\) 11.9480 + 9.26037i 0.492307 + 0.381567i
\(590\) −27.0011 + 4.22289i −1.11162 + 0.173854i
\(591\) 0 0
\(592\) 20.2320 42.3116i 0.831528 1.73899i
\(593\) 23.4470 + 8.53401i 0.962853 + 0.350450i 0.775151 0.631776i \(-0.217674\pi\)
0.187702 + 0.982226i \(0.439896\pi\)
\(594\) 0 0
\(595\) −3.85428 + 1.40284i −0.158010 + 0.0575109i
\(596\) 6.82249 70.1414i 0.279460 2.87310i
\(597\) 0 0
\(598\) −18.2325 53.2865i −0.745582 2.17905i
\(599\) 14.3871 13.0556i 0.587839 0.533436i −0.322892 0.946436i \(-0.604655\pi\)
0.910731 + 0.413000i \(0.135519\pi\)
\(600\) 0 0
\(601\) 9.76326 28.5342i 0.398252 1.16393i −0.546871 0.837217i \(-0.684181\pi\)
0.945122 0.326717i \(-0.105942\pi\)
\(602\) −22.0474 51.1116i −0.898585 2.08315i
\(603\) 0 0
\(604\) −1.22618 + 0.143319i −0.0498924 + 0.00583158i
\(605\) 13.0545 4.18576i 0.530741 0.170175i
\(606\) 0 0
\(607\) −26.1915 + 7.29091i −1.06308 + 0.295929i −0.755199 0.655495i \(-0.772460\pi\)
−0.307882 + 0.951424i \(0.599620\pi\)
\(608\) −20.7371 + 5.77255i −0.840999 + 0.234108i
\(609\) 0 0
\(610\) 7.92840 2.54214i 0.321011 0.102928i
\(611\) 7.87891 0.920912i 0.318746 0.0372561i
\(612\) 0 0
\(613\) −8.56402 19.8536i −0.345898 0.801881i −0.999004 0.0446148i \(-0.985794\pi\)
0.653107 0.757266i \(-0.273465\pi\)
\(614\) −18.8559 + 55.1083i −0.760960 + 2.22399i
\(615\) 0 0
\(616\) 79.7745 72.3915i 3.21421 2.91674i
\(617\) −0.946650 2.76669i −0.0381107 0.111383i 0.925452 0.378864i \(-0.123685\pi\)
−0.963563 + 0.267481i \(0.913809\pi\)
\(618\) 0 0
\(619\) 1.90826 19.6186i 0.0766994 0.788538i −0.875532 0.483160i \(-0.839489\pi\)
0.952231 0.305378i \(-0.0987828\pi\)
\(620\) −20.3830 + 7.41879i −0.818600 + 0.297946i
\(621\) 0 0
\(622\) −3.70389 1.34811i −0.148513 0.0540541i
\(623\) −12.0106 + 25.1180i −0.481193 + 1.00633i
\(624\) 0 0
\(625\) 17.3316 2.71062i 0.693266 0.108425i
\(626\) 14.1514 + 10.9682i 0.565604 + 0.438376i
\(627\) 0 0
\(628\) 1.04993 + 54.1342i 0.0418969 + 2.16019i
\(629\) −9.66379 4.85334i −0.385321 0.193515i
\(630\) 0 0
\(631\) 25.8599 + 17.0083i 1.02947 + 0.677091i 0.947569 0.319550i \(-0.103532\pi\)
0.0818971 + 0.996641i \(0.473902\pi\)
\(632\) −105.508 4.09419i −4.19688 0.162858i
\(633\) 0 0
\(634\) −2.19319 22.5480i −0.0871029 0.895496i
\(635\) 1.33067 + 2.78287i 0.0528062 + 0.110435i
\(636\) 0 0
\(637\) −1.39672 + 1.08254i −0.0553402 + 0.0428919i
\(638\) −26.2689 + 27.8434i −1.03999 + 1.10233i
\(639\) 0 0
\(640\) −0.732075 + 2.44530i −0.0289378 + 0.0966590i
\(641\) 6.96954 8.64087i 0.275280 0.341294i −0.621788 0.783185i \(-0.713594\pi\)
0.897069 + 0.441891i \(0.145692\pi\)
\(642\) 0 0
\(643\) −18.5069 29.3631i −0.729840 1.15797i −0.981742 0.190217i \(-0.939081\pi\)
0.251903 0.967753i \(-0.418944\pi\)
\(644\) −88.2458 + 48.6920i −3.47737 + 1.91873i
\(645\) 0 0
\(646\) 3.17568 + 12.3287i 0.124945 + 0.485068i
\(647\) 5.20638 9.01771i 0.204684 0.354523i −0.745348 0.666676i \(-0.767717\pi\)
0.950032 + 0.312153i \(0.101050\pi\)
\(648\) 0 0
\(649\) −40.2533 69.7208i −1.58008 2.73678i
\(650\) 23.4159 22.9662i 0.918448 0.900807i
\(651\) 0 0
\(652\) −1.27145 + 65.5556i −0.0497938 + 2.56736i
\(653\) 15.6354 29.6832i 0.611862 1.16159i −0.361511 0.932368i \(-0.617739\pi\)
0.973374 0.229224i \(-0.0736190\pi\)
\(654\) 0 0
\(655\) −1.39347 3.60919i −0.0544475 0.141023i
\(656\) −67.4745 + 15.9918i −2.63444 + 0.624373i
\(657\) 0 0
\(658\) −5.78987 19.3395i −0.225713 0.753932i
\(659\) −40.1912 16.4199i −1.56563 0.639629i −0.580938 0.813948i \(-0.697314\pi\)
−0.984689 + 0.174319i \(0.944228\pi\)
\(660\) 0 0
\(661\) 39.3467 + 3.05827i 1.53041 + 0.118953i 0.814880 0.579630i \(-0.196803\pi\)
0.715529 + 0.698583i \(0.246186\pi\)
\(662\) 54.2025 38.7416i 2.10664 1.50574i
\(663\) 0 0
\(664\) −19.4096 + 30.7954i −0.753239 + 1.19509i
\(665\) 0.273018 4.68753i 0.0105872 0.181775i
\(666\) 0 0
\(667\) 17.2932 11.3739i 0.669594 0.440399i
\(668\) 9.60538 5.79687i 0.371643 0.224288i
\(669\) 0 0
\(670\) −10.7263 + 4.38219i −0.414394 + 0.169299i
\(671\) 15.3982 + 19.0907i 0.594439 + 0.736989i
\(672\) 0 0
\(673\) −15.0153 21.8929i −0.578799 0.843910i 0.419150 0.907917i \(-0.362328\pi\)
−0.997949 + 0.0640071i \(0.979612\pi\)
\(674\) −5.73392 32.5187i −0.220862 1.25257i
\(675\) 0 0
\(676\) −4.16700 + 23.6322i −0.160269 + 0.908933i
\(677\) 2.89958 1.31802i 0.111440 0.0506556i −0.357315 0.933984i \(-0.616308\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(678\) 0 0
\(679\) −14.2008 2.78894i −0.544975 0.107030i
\(680\) −10.0536 3.22357i −0.385539 0.123618i
\(681\) 0 0
\(682\) −59.7470 68.4625i −2.28783 2.62157i
\(683\) 4.00094 5.37420i 0.153092 0.205638i −0.718960 0.695051i \(-0.755382\pi\)
0.872052 + 0.489413i \(0.162789\pi\)
\(684\) 0 0
\(685\) −2.52654 + 5.85718i −0.0965342 + 0.223791i
\(686\) −33.8332 30.7020i −1.29176 1.17221i
\(687\) 0 0
\(688\) 17.3856 67.4950i 0.662819 2.57322i
\(689\) 5.47195 + 5.36685i 0.208465 + 0.204461i
\(690\) 0 0
\(691\) −8.30575 + 38.3436i −0.315966 + 1.45866i 0.492601 + 0.870255i \(0.336046\pi\)
−0.808566 + 0.588405i \(0.799756\pi\)
\(692\) 36.1509 + 48.5591i 1.37425 + 1.84594i
\(693\) 0 0
\(694\) 73.8334 + 8.62989i 2.80268 + 0.327586i
\(695\) 1.23169 0.241897i 0.0467208 0.00917566i
\(696\) 0 0
\(697\) 3.38495 + 15.6267i 0.128214 + 0.591903i
\(698\) 9.10216 10.4299i 0.344522 0.394778i
\(699\) 0 0
\(700\) −47.7520 34.1311i −1.80486 1.29003i
\(701\) −17.0474 14.3045i −0.643872 0.540273i 0.261332 0.965249i \(-0.415838\pi\)
−0.905205 + 0.424976i \(0.860283\pi\)
\(702\) 0 0
\(703\) 9.48342 7.95754i 0.357674 0.300124i
\(704\) 30.7916 2.39331i 1.16050 0.0902013i
\(705\) 0 0
\(706\) 20.1274 52.1313i 0.757504 1.96199i
\(707\) 5.51059 40.3446i 0.207247 1.51732i
\(708\) 0 0
\(709\) 3.18490 + 1.75735i 0.119611 + 0.0659988i 0.541790 0.840514i \(-0.317747\pi\)
−0.422179 + 0.906513i \(0.638734\pi\)
\(710\) 0.407290 + 6.99290i 0.0152853 + 0.262439i
\(711\) 0 0
\(712\) −64.0432 + 32.1637i −2.40012 + 1.20539i
\(713\) 22.8983 + 43.4713i 0.857547 + 1.62801i
\(714\) 0 0
\(715\) −10.0967 4.58949i −0.377593 0.171637i
\(716\) −52.8329 + 77.0322i −1.97446 + 2.87883i
\(717\) 0 0
\(718\) 6.42857 + 47.0654i 0.239912 + 1.75647i
\(719\) −30.7263 7.28228i −1.14590 0.271583i −0.386551 0.922268i \(-0.626334\pi\)
−0.759348 + 0.650685i \(0.774482\pi\)
\(720\) 0 0
\(721\) −23.0511 24.4327i −0.858466 0.909921i
\(722\) 34.3298 + 5.36908i 1.27762 + 0.199817i
\(723\) 0 0
\(724\) 11.1744 0.433618i 0.415294 0.0161153i
\(725\) 10.3203 + 6.22830i 0.383285 + 0.231313i
\(726\) 0 0
\(727\) 33.4868 + 9.32168i 1.24196 + 0.345722i 0.826004 0.563665i \(-0.190609\pi\)
0.415952 + 0.909387i \(0.363449\pi\)
\(728\) −55.3073 −2.04983
\(729\) 0 0
\(730\) −29.0749 −1.07611
\(731\) −15.4822 4.30975i −0.572628 0.159402i
\(732\) 0 0
\(733\) 21.3000 + 12.8546i 0.786732 + 0.474795i 0.852300 0.523053i \(-0.175207\pi\)
−0.0655684 + 0.997848i \(0.520886\pi\)
\(734\) −75.0950 + 2.91403i −2.77181 + 0.107559i
\(735\) 0 0
\(736\) −69.1244 10.8109i −2.54796 0.398493i
\(737\) −23.4234 24.8274i −0.862813 0.914528i
\(738\) 0 0
\(739\) −32.4436 7.68926i −1.19346 0.282854i −0.414568 0.910018i \(-0.636067\pi\)
−0.778887 + 0.627164i \(0.784216\pi\)
\(740\) 2.40403 + 17.6006i 0.0883739 + 0.647011i
\(741\) 0 0
\(742\) 11.0325 16.0858i 0.405015 0.590527i
\(743\) −23.9698 10.8956i −0.879366 0.399721i −0.0773363 0.997005i \(-0.524641\pi\)
−0.802030 + 0.597284i \(0.796246\pi\)
\(744\) 0 0
\(745\) 4.97326 + 9.44151i 0.182206 + 0.345910i
\(746\) 27.8870 14.0054i 1.02101 0.512773i
\(747\) 0 0
\(748\) −3.12906 53.7239i −0.114410 1.96434i
\(749\) 25.5196 + 14.0811i 0.932466 + 0.514513i
\(750\) 0 0
\(751\) 1.80047 13.1818i 0.0657001 0.481010i −0.928317 0.371789i \(-0.878745\pi\)
0.994017 0.109221i \(-0.0348357\pi\)
\(752\) 9.10433 23.5808i 0.332001 0.859904i
\(753\) 0 0
\(754\) 19.5941 1.52298i 0.713576 0.0554635i
\(755\) 0.143202 0.120161i 0.00521166 0.00437310i
\(756\) 0 0
\(757\) −21.4671 18.0131i −0.780236 0.654696i 0.163072 0.986614i \(-0.447860\pi\)
−0.943308 + 0.331918i \(0.892304\pi\)
\(758\) −13.5385 9.67672i −0.491740 0.351474i
\(759\) 0 0
\(760\) 7.94704 9.10630i 0.288270 0.330320i
\(761\) −2.82492 13.0413i −0.102403 0.472746i −0.999521 0.0309541i \(-0.990145\pi\)
0.897118 0.441792i \(-0.145657\pi\)
\(762\) 0 0
\(763\) −7.81128 + 1.53409i −0.282787 + 0.0555377i
\(764\) −36.7972 4.30098i −1.33128 0.155604i
\(765\) 0 0
\(766\) −32.8312 44.1000i −1.18624 1.59340i
\(767\) −8.75044 + 40.3965i −0.315960 + 1.45863i
\(768\) 0 0
\(769\) −11.0718 10.8591i −0.399259 0.391591i 0.472656 0.881247i \(-0.343295\pi\)
−0.871916 + 0.489656i \(0.837122\pi\)
\(770\) −7.04049 + 27.3329i −0.253722 + 0.985008i
\(771\) 0 0
\(772\) 77.6665 + 70.4786i 2.79528 + 2.53658i
\(773\) 3.30278 7.65670i 0.118793 0.275392i −0.848437 0.529297i \(-0.822456\pi\)
0.967229 + 0.253905i \(0.0817150\pi\)
\(774\) 0 0
\(775\) −17.0869 + 22.9517i −0.613780 + 0.824450i
\(776\) −24.4938 28.0667i −0.879275 1.00754i
\(777\) 0 0
\(778\) −76.1182 24.4063i −2.72897 0.875009i
\(779\) −17.9609 3.52741i −0.643516 0.126382i
\(780\) 0 0
\(781\) −18.7850 + 8.53883i −0.672180 + 0.305543i
\(782\) −7.18562 + 40.7517i −0.256957 + 1.45728i
\(783\) 0 0
\(784\) 0.977814 + 5.54546i 0.0349219 + 0.198052i
\(785\) −4.63729 6.76133i −0.165512 0.241322i
\(786\) 0 0