Properties

Label 729.2.i.a.685.18
Level $729$
Weight $2$
Character 729.685
Analytic conductor $5.821$
Analytic rank $0$
Dimension $1404$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.i (of order \(81\), degree \(54\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(1404\)
Relative dimension: \(26\) over \(\Q(\zeta_{81})\)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{81}]$

Embedding invariants

Embedding label 685.18
Character \(\chi\) \(=\) 729.685
Dual form 729.2.i.a.613.18

$q$-expansion

\(f(q)\) \(=\) \(q+(1.11059 + 0.309154i) q^{2} +(-0.574502 - 0.346714i) q^{4} +(-2.97093 + 0.115286i) q^{5} +(4.35689 + 0.681405i) q^{7} +(-2.11307 - 2.23972i) q^{8} +O(q^{10})\) \(q+(1.11059 + 0.309154i) q^{2} +(-0.574502 - 0.346714i) q^{4} +(-2.97093 + 0.115286i) q^{5} +(4.35689 + 0.681405i) q^{7} +(-2.11307 - 2.23972i) q^{8} +(-3.33513 - 0.790440i) q^{10} +(-0.228372 - 1.67198i) q^{11} +(0.555061 - 0.809298i) q^{13} +(4.62806 + 2.10371i) q^{14} +(-1.02889 - 1.95329i) q^{16} +(0.733705 - 0.368480i) q^{17} +(-0.468654 - 8.04649i) q^{19} +(1.74678 + 0.963831i) q^{20} +(0.263270 - 1.92748i) q^{22} +(2.88972 - 7.48456i) q^{23} +(3.82820 - 0.297551i) q^{25} +(0.866642 - 0.727199i) q^{26} +(-2.26679 - 1.90206i) q^{28} +(2.38271 + 1.70306i) q^{29} +(-1.81668 + 2.08168i) q^{31} +(0.764950 + 3.53140i) q^{32} +(0.928762 - 0.182403i) q^{34} +(-13.0226 - 1.52212i) q^{35} +(-1.78516 - 2.39789i) q^{37} +(1.96712 - 9.08123i) q^{38} +(6.53599 + 6.41046i) q^{40} +(2.19104 - 8.50616i) q^{41} +(-1.13031 - 1.02570i) q^{43} +(-0.448497 + 1.03973i) q^{44} +(5.52317 - 7.41890i) q^{46} +(1.86632 + 2.13857i) q^{47} +(11.8524 + 3.80033i) q^{49} +(4.34354 + 0.853044i) q^{50} +(-0.599478 + 0.272496i) q^{52} +(-1.22675 + 6.95726i) q^{53} +(0.871232 + 4.94100i) q^{55} +(-7.68025 - 11.1981i) q^{56} +(2.11971 + 2.62802i) q^{58} +(2.23510 - 0.913139i) q^{59} +(-1.90125 + 1.14741i) q^{61} +(-2.66114 + 1.75026i) q^{62} +(-0.498934 + 8.56636i) q^{64} +(-1.55575 + 2.46836i) q^{65} +(-7.25247 + 5.18375i) q^{67} +(-0.549272 - 0.0426928i) q^{68} +(-13.9922 - 5.71643i) q^{70} +(-2.04721 - 6.83814i) q^{71} +(14.6670 - 3.47613i) q^{73} +(-1.24126 - 3.21496i) q^{74} +(-2.52058 + 4.78521i) q^{76} +(0.144303 - 7.44023i) q^{77} +(-10.8800 + 10.6710i) q^{79} +(3.28194 + 5.68449i) q^{80} +(5.06306 - 8.76947i) q^{82} +(-1.54587 - 6.00143i) q^{83} +(-2.13731 + 1.17932i) q^{85} +(-0.938213 - 1.48858i) q^{86} +(-3.26220 + 4.04449i) q^{88} +(-5.19714 + 17.3597i) q^{89} +(2.96980 - 3.14780i) q^{91} +(-4.25515 + 3.29799i) q^{92} +(1.41157 + 2.95205i) q^{94} +(2.31999 + 23.8516i) q^{95} +(13.4534 + 0.522053i) q^{97} +(11.9883 + 7.88483i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1404 q + 54 q^{2} - 54 q^{4} + 54 q^{5} - 54 q^{7} + 54 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 1404 q + 54 q^{2} - 54 q^{4} + 54 q^{5} - 54 q^{7} + 54 q^{8} - 54 q^{10} + 54 q^{11} - 54 q^{13} + 54 q^{14} - 54 q^{16} + 54 q^{17} - 54 q^{19} + 54 q^{20} - 54 q^{22} + 54 q^{23} - 54 q^{25} + 54 q^{26} - 54 q^{28} + 54 q^{29} - 54 q^{31} + 54 q^{32} - 54 q^{34} + 54 q^{35} - 54 q^{37} + 54 q^{38} - 54 q^{40} + 54 q^{41} - 54 q^{43} + 54 q^{44} - 54 q^{46} + 54 q^{47} - 54 q^{49} + 54 q^{50} - 54 q^{52} + 54 q^{53} - 54 q^{55} + 54 q^{56} - 54 q^{58} + 54 q^{59} - 54 q^{61} + 54 q^{62} - 54 q^{64} - 54 q^{67} - 135 q^{68} - 54 q^{70} - 54 q^{71} - 54 q^{73} - 162 q^{74} - 54 q^{76} - 162 q^{77} - 54 q^{79} - 351 q^{80} - 27 q^{82} - 54 q^{83} - 54 q^{85} - 162 q^{86} - 54 q^{88} - 81 q^{89} - 54 q^{91} - 270 q^{92} - 54 q^{94} - 54 q^{95} - 54 q^{97} - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{81}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11059 + 0.309154i 0.785305 + 0.218605i 0.637539 0.770418i \(-0.279952\pi\)
0.147766 + 0.989022i \(0.452792\pi\)
\(3\) 0 0
\(4\) −0.574502 0.346714i −0.287251 0.173357i
\(5\) −2.97093 + 0.115286i −1.32864 + 0.0515574i −0.693286 0.720662i \(-0.743838\pi\)
−0.635356 + 0.772220i \(0.719147\pi\)
\(6\) 0 0
\(7\) 4.35689 + 0.681405i 1.64675 + 0.257547i 0.908777 0.417283i \(-0.137018\pi\)
0.737973 + 0.674830i \(0.235783\pi\)
\(8\) −2.11307 2.23972i −0.747082 0.791861i
\(9\) 0 0
\(10\) −3.33513 0.790440i −1.05466 0.249959i
\(11\) −0.228372 1.67198i −0.0688566 0.504120i −0.992630 0.121181i \(-0.961332\pi\)
0.923774 0.382939i \(-0.125088\pi\)
\(12\) 0 0
\(13\) 0.555061 0.809298i 0.153946 0.224459i −0.740030 0.672574i \(-0.765189\pi\)
0.893976 + 0.448115i \(0.147905\pi\)
\(14\) 4.62806 + 2.10371i 1.23690 + 0.562240i
\(15\) 0 0
\(16\) −1.02889 1.95329i −0.257222 0.488323i
\(17\) 0.733705 0.368480i 0.177950 0.0893696i −0.357594 0.933877i \(-0.616403\pi\)
0.535544 + 0.844507i \(0.320107\pi\)
\(18\) 0 0
\(19\) −0.468654 8.04649i −0.107517 1.84599i −0.434151 0.900840i \(-0.642952\pi\)
0.326635 0.945151i \(-0.394085\pi\)
\(20\) 1.74678 + 0.963831i 0.390591 + 0.215519i
\(21\) 0 0
\(22\) 0.263270 1.92748i 0.0561294 0.410940i
\(23\) 2.88972 7.48456i 0.602548 1.56064i −0.209973 0.977707i \(-0.567338\pi\)
0.812521 0.582932i \(-0.198094\pi\)
\(24\) 0 0
\(25\) 3.82820 0.297551i 0.765639 0.0595102i
\(26\) 0.866642 0.727199i 0.169962 0.142615i
\(27\) 0 0
\(28\) −2.26679 1.90206i −0.428383 0.359456i
\(29\) 2.38271 + 1.70306i 0.442458 + 0.316250i 0.780809 0.624770i \(-0.214807\pi\)
−0.338351 + 0.941020i \(0.609869\pi\)
\(30\) 0 0
\(31\) −1.81668 + 2.08168i −0.326285 + 0.373881i −0.893018 0.450020i \(-0.851417\pi\)
0.566734 + 0.823901i \(0.308207\pi\)
\(32\) 0.764950 + 3.53140i 0.135225 + 0.624269i
\(33\) 0 0
\(34\) 0.928762 0.182403i 0.159281 0.0312818i
\(35\) −13.0226 1.52212i −2.20122 0.257286i
\(36\) 0 0
\(37\) −1.78516 2.39789i −0.293479 0.394210i 0.630790 0.775954i \(-0.282731\pi\)
−0.924268 + 0.381744i \(0.875324\pi\)
\(38\) 1.96712 9.08123i 0.319109 1.47317i
\(39\) 0 0
\(40\) 6.53599 + 6.41046i 1.03343 + 1.01358i
\(41\) 2.19104 8.50616i 0.342184 1.32844i −0.533601 0.845736i \(-0.679162\pi\)
0.875785 0.482702i \(-0.160345\pi\)
\(42\) 0 0
\(43\) −1.13031 1.02570i −0.172371 0.156418i 0.581256 0.813721i \(-0.302562\pi\)
−0.753627 + 0.657302i \(0.771697\pi\)
\(44\) −0.448497 + 1.03973i −0.0676135 + 0.156746i
\(45\) 0 0
\(46\) 5.52317 7.41890i 0.814347 1.09386i
\(47\) 1.86632 + 2.13857i 0.272231 + 0.311942i 0.873231 0.487307i \(-0.162021\pi\)
−0.600999 + 0.799249i \(0.705231\pi\)
\(48\) 0 0
\(49\) 11.8524 + 3.80033i 1.69321 + 0.542905i
\(50\) 4.34354 + 0.853044i 0.614269 + 0.120639i
\(51\) 0 0
\(52\) −0.599478 + 0.272496i −0.0831326 + 0.0377884i
\(53\) −1.22675 + 6.95726i −0.168507 + 0.955653i 0.776867 + 0.629665i \(0.216808\pi\)
−0.945374 + 0.325988i \(0.894303\pi\)
\(54\) 0 0
\(55\) 0.871232 + 4.94100i 0.117477 + 0.666245i
\(56\) −7.68025 11.1981i −1.02632 1.49641i
\(57\) 0 0
\(58\) 2.11971 + 2.62802i 0.278331 + 0.345076i
\(59\) 2.23510 0.913139i 0.290985 0.118881i −0.228007 0.973659i \(-0.573221\pi\)
0.518992 + 0.854779i \(0.326307\pi\)
\(60\) 0 0
\(61\) −1.90125 + 1.14741i −0.243429 + 0.146910i −0.633166 0.774016i \(-0.718245\pi\)
0.389737 + 0.920926i \(0.372566\pi\)
\(62\) −2.66114 + 1.75026i −0.337965 + 0.222283i
\(63\) 0 0
\(64\) −0.498934 + 8.56636i −0.0623667 + 1.07080i
\(65\) −1.55575 + 2.46836i −0.192967 + 0.306163i
\(66\) 0 0
\(67\) −7.25247 + 5.18375i −0.886030 + 0.633296i −0.930731 0.365704i \(-0.880828\pi\)
0.0447009 + 0.999000i \(0.485767\pi\)
\(68\) −0.549272 0.0426928i −0.0666090 0.00517726i
\(69\) 0 0
\(70\) −13.9922 5.71643i −1.67238 0.683244i
\(71\) −2.04721 6.83814i −0.242959 0.811538i −0.989290 0.145964i \(-0.953372\pi\)
0.746331 0.665575i \(-0.231813\pi\)
\(72\) 0 0
\(73\) 14.6670 3.47613i 1.71664 0.406850i 0.749682 0.661798i \(-0.230206\pi\)
0.966955 + 0.254947i \(0.0820582\pi\)
\(74\) −1.24126 3.21496i −0.144294 0.373731i
\(75\) 0 0
\(76\) −2.52058 + 4.78521i −0.289131 + 0.548901i
\(77\) 0.144303 7.44023i 0.0164449 0.847893i
\(78\) 0 0
\(79\) −10.8800 + 10.6710i −1.22410 + 1.20058i −0.251556 + 0.967843i \(0.580942\pi\)
−0.972539 + 0.232741i \(0.925230\pi\)
\(80\) 3.28194 + 5.68449i 0.366932 + 0.635545i
\(81\) 0 0
\(82\) 5.06306 8.76947i 0.559121 0.968426i
\(83\) −1.54587 6.00143i −0.169681 0.658742i −0.995496 0.0948012i \(-0.969778\pi\)
0.825815 0.563941i \(-0.190715\pi\)
\(84\) 0 0
\(85\) −2.13731 + 1.17932i −0.231824 + 0.127915i
\(86\) −0.938213 1.48858i −0.101170 0.160517i
\(87\) 0 0
\(88\) −3.26220 + 4.04449i −0.347751 + 0.431144i
\(89\) −5.19714 + 17.3597i −0.550896 + 1.84012i −0.00855473 + 0.999963i \(0.502723\pi\)
−0.542341 + 0.840158i \(0.682462\pi\)
\(90\) 0 0
\(91\) 2.96980 3.14780i 0.311319 0.329979i
\(92\) −4.25515 + 3.29799i −0.443630 + 0.343839i
\(93\) 0 0
\(94\) 1.41157 + 2.95205i 0.145593 + 0.304481i
\(95\) 2.31999 + 23.8516i 0.238026 + 2.44712i
\(96\) 0 0
\(97\) 13.4534 + 0.522053i 1.36598 + 0.0530064i 0.711296 0.702893i \(-0.248109\pi\)
0.654688 + 0.755899i \(0.272800\pi\)
\(98\) 11.9883 + 7.88483i 1.21100 + 0.796488i
\(99\) 0 0
\(100\) −2.30247 1.15634i −0.230247 0.115634i
\(101\) 0.121261 + 6.25220i 0.0120659 + 0.622117i 0.956226 + 0.292630i \(0.0945303\pi\)
−0.944160 + 0.329488i \(0.893124\pi\)
\(102\) 0 0
\(103\) −7.42474 5.75461i −0.731581 0.567018i 0.177258 0.984164i \(-0.443277\pi\)
−0.908839 + 0.417146i \(0.863030\pi\)
\(104\) −2.98548 + 0.466921i −0.292751 + 0.0457854i
\(105\) 0 0
\(106\) −3.51328 + 7.34740i −0.341240 + 0.713643i
\(107\) 2.30642 + 0.839467i 0.222970 + 0.0811544i 0.451089 0.892479i \(-0.351036\pi\)
−0.228120 + 0.973633i \(0.573258\pi\)
\(108\) 0 0
\(109\) −12.4995 + 4.54943i −1.19723 + 0.435756i −0.862257 0.506471i \(-0.830950\pi\)
−0.334974 + 0.942227i \(0.608728\pi\)
\(110\) −0.559948 + 5.75677i −0.0533889 + 0.548886i
\(111\) 0 0
\(112\) −3.15176 9.21137i −0.297814 0.870393i
\(113\) −4.12654 + 3.74463i −0.388192 + 0.352266i −0.842611 0.538523i \(-0.818983\pi\)
0.454419 + 0.890788i \(0.349847\pi\)
\(114\) 0 0
\(115\) −7.72230 + 22.5693i −0.720108 + 2.10460i
\(116\) −0.778398 1.80453i −0.0722724 0.167546i
\(117\) 0 0
\(118\) 2.76458 0.323133i 0.254500 0.0297468i
\(119\) 3.44776 1.10548i 0.316055 0.101339i
\(120\) 0 0
\(121\) 7.85373 2.18623i 0.713975 0.198749i
\(122\) −2.46623 + 0.686521i −0.223282 + 0.0621547i
\(123\) 0 0
\(124\) 1.76543 0.566062i 0.158540 0.0508339i
\(125\) 3.42632 0.400479i 0.306459 0.0358200i
\(126\) 0 0
\(127\) 3.77615 + 8.75410i 0.335079 + 0.776801i 0.999565 + 0.0294999i \(0.00939148\pi\)
−0.664486 + 0.747301i \(0.731349\pi\)
\(128\) −0.862936 + 2.52203i −0.0762735 + 0.222918i
\(129\) 0 0
\(130\) −2.49090 + 2.26037i −0.218466 + 0.198248i
\(131\) 0.602632 + 1.76126i 0.0526522 + 0.153882i 0.969341 0.245721i \(-0.0790246\pi\)
−0.916688 + 0.399603i \(0.869148\pi\)
\(132\) 0 0
\(133\) 3.44104 35.3770i 0.298376 3.06757i
\(134\) −9.65709 + 3.51489i −0.834246 + 0.303641i
\(135\) 0 0
\(136\) −2.37566 0.864670i −0.203711 0.0741449i
\(137\) 3.55080 7.42586i 0.303365 0.634434i −0.692876 0.721057i \(-0.743657\pi\)
0.996241 + 0.0866224i \(0.0276074\pi\)
\(138\) 0 0
\(139\) 9.32341 1.45816i 0.790801 0.123679i 0.253796 0.967258i \(-0.418321\pi\)
0.537006 + 0.843579i \(0.319555\pi\)
\(140\) 6.95376 + 5.38957i 0.587700 + 0.455502i
\(141\) 0 0
\(142\) −0.159568 8.22727i −0.0133906 0.690417i
\(143\) −1.47989 0.743227i −0.123754 0.0621518i
\(144\) 0 0
\(145\) −7.27521 4.78498i −0.604174 0.397371i
\(146\) 17.3636 + 0.673787i 1.43702 + 0.0557630i
\(147\) 0 0
\(148\) 0.194198 + 1.99653i 0.0159630 + 0.164114i
\(149\) −1.06378 2.22470i −0.0871481 0.182255i 0.853979 0.520307i \(-0.174183\pi\)
−0.941127 + 0.338052i \(0.890232\pi\)
\(150\) 0 0
\(151\) 1.15107 0.892146i 0.0936727 0.0726018i −0.564688 0.825305i \(-0.691003\pi\)
0.658360 + 0.752703i \(0.271250\pi\)
\(152\) −17.0316 + 18.0524i −1.38144 + 1.46425i
\(153\) 0 0
\(154\) 2.46044 8.21843i 0.198268 0.662260i
\(155\) 5.15724 6.39397i 0.414239 0.513576i
\(156\) 0 0
\(157\) −1.92647 3.05655i −0.153749 0.243939i 0.760273 0.649603i \(-0.225065\pi\)
−0.914022 + 0.405664i \(0.867040\pi\)
\(158\) −15.3822 + 8.48753i −1.22374 + 0.675232i
\(159\) 0 0
\(160\) −2.67974 10.4034i −0.211852 0.822459i
\(161\) 17.6902 30.6403i 1.39418 2.41480i
\(162\) 0 0
\(163\) −8.79231 15.2287i −0.688667 1.19281i −0.972269 0.233864i \(-0.924863\pi\)
0.283602 0.958942i \(-0.408470\pi\)
\(164\) −4.20796 + 4.12714i −0.328586 + 0.322275i
\(165\) 0 0
\(166\) 0.138539 7.14303i 0.0107527 0.554406i
\(167\) 8.71802 16.5508i 0.674621 1.28074i −0.273208 0.961955i \(-0.588085\pi\)
0.947829 0.318781i \(-0.103273\pi\)
\(168\) 0 0
\(169\) 4.33544 + 11.2291i 0.333495 + 0.863775i
\(170\) −2.73826 + 0.648980i −0.210015 + 0.0497745i
\(171\) 0 0
\(172\) 0.293741 + 0.981164i 0.0223976 + 0.0748131i
\(173\) −3.68019 1.50352i −0.279800 0.114311i 0.233956 0.972247i \(-0.424833\pi\)
−0.513756 + 0.857936i \(0.671746\pi\)
\(174\) 0 0
\(175\) 16.8818 + 1.31216i 1.27614 + 0.0991896i
\(176\) −3.03089 + 2.16635i −0.228462 + 0.163295i
\(177\) 0 0
\(178\) −11.1387 + 17.6727i −0.834881 + 1.32463i
\(179\) 0.503733 8.64877i 0.0376508 0.646439i −0.925711 0.378233i \(-0.876532\pi\)
0.963361 0.268207i \(-0.0864310\pi\)
\(180\) 0 0
\(181\) −1.31233 + 0.863134i −0.0975448 + 0.0641562i −0.597344 0.801985i \(-0.703777\pi\)
0.499799 + 0.866141i \(0.333407\pi\)
\(182\) 4.27138 2.57779i 0.316616 0.191079i
\(183\) 0 0
\(184\) −22.8695 + 9.34322i −1.68596 + 0.688791i
\(185\) 5.58004 + 6.91816i 0.410253 + 0.508633i
\(186\) 0 0
\(187\) −0.783648 1.14259i −0.0573060 0.0835542i
\(188\) −0.330735 1.87569i −0.0241213 0.136799i
\(189\) 0 0
\(190\) −4.79724 + 27.2065i −0.348028 + 1.97377i
\(191\) 10.3239 4.69277i 0.747008 0.339557i −0.00387435 0.999992i \(-0.501233\pi\)
0.750883 + 0.660436i \(0.229628\pi\)
\(192\) 0 0
\(193\) −11.6279 2.28365i −0.836995 0.164381i −0.244191 0.969727i \(-0.578522\pi\)
−0.592804 + 0.805347i \(0.701979\pi\)
\(194\) 14.7798 + 4.73895i 1.06113 + 0.340237i
\(195\) 0 0
\(196\) −5.49162 6.29270i −0.392259 0.449479i
\(197\) 0.790673 1.06206i 0.0563331 0.0756685i −0.773064 0.634328i \(-0.781277\pi\)
0.829397 + 0.558660i \(0.188684\pi\)
\(198\) 0 0
\(199\) 5.77797 13.3948i 0.409590 0.949535i −0.581155 0.813793i \(-0.697399\pi\)
0.990744 0.135742i \(-0.0433419\pi\)
\(200\) −8.75567 7.94534i −0.619119 0.561821i
\(201\) 0 0
\(202\) −1.79822 + 6.98111i −0.126522 + 0.491189i
\(203\) 9.22073 + 9.04363i 0.647169 + 0.634739i
\(204\) 0 0
\(205\) −5.52881 + 25.5238i −0.386149 + 1.78266i
\(206\) −6.46678 8.68639i −0.450562 0.605209i
\(207\) 0 0
\(208\) −2.15189 0.251520i −0.149207 0.0174398i
\(209\) −13.3465 + 2.62117i −0.923197 + 0.181310i
\(210\) 0 0
\(211\) 4.31652 + 19.9273i 0.297161 + 1.37185i 0.844777 + 0.535119i \(0.179733\pi\)
−0.547615 + 0.836730i \(0.684464\pi\)
\(212\) 3.11695 3.57163i 0.214073 0.245300i
\(213\) 0 0
\(214\) 2.30196 + 1.64534i 0.157359 + 0.112473i
\(215\) 3.47634 + 2.91699i 0.237084 + 0.198937i
\(216\) 0 0
\(217\) −9.33352 + 7.83176i −0.633601 + 0.531654i
\(218\) −15.2882 + 1.18830i −1.03545 + 0.0804815i
\(219\) 0 0
\(220\) 1.21259 3.14068i 0.0817527 0.211745i
\(221\) 0.109040 0.798315i 0.00733483 0.0537005i
\(222\) 0 0
\(223\) −2.94497 1.62497i −0.197210 0.108816i 0.381434 0.924396i \(-0.375430\pi\)
−0.578644 + 0.815580i \(0.696418\pi\)
\(224\) 0.926487 + 15.9072i 0.0619035 + 1.06284i
\(225\) 0 0
\(226\) −5.74055 + 2.88302i −0.381856 + 0.191775i
\(227\) 8.52335 + 16.1812i 0.565714 + 1.07398i 0.986024 + 0.166602i \(0.0532794\pi\)
−0.420310 + 0.907381i \(0.638079\pi\)
\(228\) 0 0
\(229\) 23.4060 + 10.6393i 1.54671 + 0.703068i 0.991676 0.128757i \(-0.0410989\pi\)
0.555038 + 0.831825i \(0.312704\pi\)
\(230\) −15.5537 + 22.6778i −1.02558 + 1.49533i
\(231\) 0 0
\(232\) −1.22045 8.93529i −0.0801266 0.586630i
\(233\) 14.2513 + 3.37762i 0.933635 + 0.221275i 0.669161 0.743117i \(-0.266654\pi\)
0.264474 + 0.964393i \(0.414802\pi\)
\(234\) 0 0
\(235\) −5.79127 6.13839i −0.377781 0.400424i
\(236\) −1.60067 0.250340i −0.104194 0.0162957i
\(237\) 0 0
\(238\) 4.17080 0.161846i 0.270353 0.0104909i
\(239\) 8.19155 + 4.94363i 0.529868 + 0.319777i 0.756273 0.654256i \(-0.227018\pi\)
−0.226405 + 0.974033i \(0.572697\pi\)
\(240\) 0 0
\(241\) −14.0512 3.91141i −0.905114 0.251956i −0.215817 0.976434i \(-0.569241\pi\)
−0.689298 + 0.724478i \(0.742081\pi\)
\(242\) 9.39815 0.604136
\(243\) 0 0
\(244\) 1.49009 0.0953932
\(245\) −35.6509 9.92412i −2.27766 0.634029i
\(246\) 0 0
\(247\) −6.77214 4.08701i −0.430901 0.260050i
\(248\) 8.50114 0.329883i 0.539823 0.0209476i
\(249\) 0 0
\(250\) 3.92904 + 0.614491i 0.248495 + 0.0388638i
\(251\) −14.9722 15.8696i −0.945037 1.00168i −0.999995 0.00319193i \(-0.998984\pi\)
0.0549580 0.998489i \(-0.482498\pi\)
\(252\) 0 0
\(253\) −13.1739 3.12228i −0.828238 0.196296i
\(254\) 1.48739 + 10.8896i 0.0933272 + 0.683276i
\(255\) 0 0
\(256\) 7.96875 11.6187i 0.498047 0.726170i
\(257\) −1.28488 0.584051i −0.0801488 0.0364321i 0.373335 0.927697i \(-0.378214\pi\)
−0.453484 + 0.891264i \(0.649819\pi\)
\(258\) 0 0
\(259\) −6.14382 11.6637i −0.381758 0.724750i
\(260\) 1.74959 0.878679i 0.108505 0.0544934i
\(261\) 0 0
\(262\) 0.124777 + 2.14234i 0.00770876 + 0.132354i
\(263\) 13.3099 + 7.34407i 0.820722 + 0.452855i 0.837126 0.547010i \(-0.184234\pi\)
−0.0164042 + 0.999865i \(0.505222\pi\)
\(264\) 0 0
\(265\) 2.84253 20.8110i 0.174615 1.27841i
\(266\) 14.7585 38.2255i 0.904902 2.34376i
\(267\) 0 0
\(268\) 5.96383 0.463546i 0.364299 0.0283156i
\(269\) −21.6731 + 18.1859i −1.32143 + 1.10881i −0.335433 + 0.942064i \(0.608883\pi\)
−0.985999 + 0.166749i \(0.946673\pi\)
\(270\) 0 0
\(271\) 21.9323 + 18.4034i 1.33229 + 1.11793i 0.983536 + 0.180713i \(0.0578404\pi\)
0.348756 + 0.937213i \(0.386604\pi\)
\(272\) −1.47465 1.05402i −0.0894138 0.0639091i
\(273\) 0 0
\(274\) 6.23921 7.14934i 0.376924 0.431907i
\(275\) −1.37175 6.33270i −0.0827196 0.381876i
\(276\) 0 0
\(277\) 13.0784 2.56851i 0.785804 0.154327i 0.216313 0.976324i \(-0.430597\pi\)
0.569491 + 0.821997i \(0.307140\pi\)
\(278\) 10.8053 + 1.26296i 0.648057 + 0.0757470i
\(279\) 0 0
\(280\) 24.1085 + 32.3833i 1.44076 + 1.93527i
\(281\) −0.155606 + 0.718358i −0.00928269 + 0.0428536i −0.981740 0.190226i \(-0.939078\pi\)
0.972458 + 0.233080i \(0.0748803\pi\)
\(282\) 0 0
\(283\) 7.06493 + 6.92923i 0.419966 + 0.411900i 0.879228 0.476401i \(-0.158059\pi\)
−0.459262 + 0.888301i \(0.651886\pi\)
\(284\) −1.19475 + 4.63832i −0.0708956 + 0.275234i
\(285\) 0 0
\(286\) −1.41378 1.28293i −0.0835983 0.0758614i
\(287\) 15.3423 35.5674i 0.905626 2.09948i
\(288\) 0 0
\(289\) −9.74915 + 13.0954i −0.573479 + 0.770317i
\(290\) −6.60048 7.56331i −0.387593 0.444133i
\(291\) 0 0
\(292\) −9.63141 3.08819i −0.563636 0.180723i
\(293\) 9.12136 + 1.79138i 0.532875 + 0.104653i 0.451910 0.892064i \(-0.350743\pi\)
0.0809655 + 0.996717i \(0.474200\pi\)
\(294\) 0 0
\(295\) −6.53506 + 2.97055i −0.380486 + 0.172952i
\(296\) −1.59843 + 9.06516i −0.0929070 + 0.526902i
\(297\) 0 0
\(298\) −0.493645 2.79960i −0.0285961 0.162177i
\(299\) −4.45327 6.49303i −0.257539 0.375502i
\(300\) 0 0
\(301\) −4.22573 5.23908i −0.243567 0.301976i
\(302\) 1.55417 0.634950i 0.0894327 0.0365373i
\(303\) 0 0
\(304\) −15.2350 + 9.19434i −0.873785 + 0.527332i
\(305\) 5.51619 3.62806i 0.315856 0.207742i
\(306\) 0 0
\(307\) 1.86024 31.9390i 0.106169 1.82286i −0.354245 0.935153i \(-0.615262\pi\)
0.460415 0.887704i \(-0.347701\pi\)
\(308\) −2.66253 + 4.22439i −0.151712 + 0.240707i
\(309\) 0 0
\(310\) 7.70429 5.50670i 0.437574 0.312759i
\(311\) −14.5698 1.13245i −0.826177 0.0642156i −0.342561 0.939496i \(-0.611294\pi\)
−0.483616 + 0.875280i \(0.660677\pi\)
\(312\) 0 0
\(313\) 5.16183 + 2.10884i 0.291764 + 0.119199i 0.519356 0.854558i \(-0.326172\pi\)
−0.227592 + 0.973757i \(0.573085\pi\)
\(314\) −1.19457 3.99014i −0.0674135 0.225177i
\(315\) 0 0
\(316\) 9.95036 2.35828i 0.559752 0.132664i
\(317\) 9.21083 + 23.8566i 0.517332 + 1.33992i 0.907837 + 0.419322i \(0.137732\pi\)
−0.390506 + 0.920601i \(0.627700\pi\)
\(318\) 0 0
\(319\) 2.30333 4.37277i 0.128962 0.244828i
\(320\) 0.494720 25.5076i 0.0276557 1.42592i
\(321\) 0 0
\(322\) 29.1191 28.5598i 1.62275 1.59158i
\(323\) −3.30883 5.73106i −0.184108 0.318885i
\(324\) 0 0
\(325\) 1.88407 3.26331i 0.104510 0.181016i
\(326\) −5.05663 19.6310i −0.280061 1.08726i
\(327\) 0 0
\(328\) −23.6812 + 13.0668i −1.30758 + 0.721491i
\(329\) 6.67413 + 10.5892i 0.367957 + 0.583803i
\(330\) 0 0
\(331\) 10.8568 13.4603i 0.596742 0.739844i −0.386472 0.922301i \(-0.626306\pi\)
0.983214 + 0.182457i \(0.0584052\pi\)
\(332\) −1.19267 + 3.98380i −0.0654564 + 0.218640i
\(333\) 0 0
\(334\) 14.7989 15.6859i 0.809758 0.858293i
\(335\) 20.9490 16.2367i 1.14457 0.887106i
\(336\) 0 0
\(337\) −6.70257 14.0172i −0.365112 0.763568i 0.634847 0.772638i \(-0.281063\pi\)
−0.999959 + 0.00907068i \(0.997113\pi\)
\(338\) 1.34338 + 13.8112i 0.0730705 + 0.751230i
\(339\) 0 0
\(340\) 1.63677 + 0.0635142i 0.0887665 + 0.00344454i
\(341\) 3.89540 + 2.56204i 0.210948 + 0.138742i
\(342\) 0 0
\(343\) 21.4647 + 10.7800i 1.15898 + 0.582064i
\(344\) 0.0911364 + 4.69897i 0.00491375 + 0.253351i
\(345\) 0 0
\(346\) −3.62236 2.80754i −0.194739 0.150934i
\(347\) −29.9331 + 4.68146i −1.60689 + 0.251314i −0.893372 0.449318i \(-0.851667\pi\)
−0.713523 + 0.700632i \(0.752902\pi\)
\(348\) 0 0
\(349\) 1.30803 2.73551i 0.0700172 0.146429i −0.864183 0.503177i \(-0.832164\pi\)
0.934200 + 0.356749i \(0.116115\pi\)
\(350\) 18.3431 + 6.67633i 0.980478 + 0.356865i
\(351\) 0 0
\(352\) 5.72973 2.08545i 0.305395 0.111155i
\(353\) −0.855468 + 8.79498i −0.0455320 + 0.468109i 0.944625 + 0.328151i \(0.106425\pi\)
−0.990157 + 0.139959i \(0.955303\pi\)
\(354\) 0 0
\(355\) 6.87045 + 20.0797i 0.364646 + 1.06572i
\(356\) 9.00460 8.17124i 0.477243 0.433075i
\(357\) 0 0
\(358\) 3.23324 9.44950i 0.170882 0.499421i
\(359\) −1.94357 4.50570i −0.102578 0.237802i 0.859196 0.511646i \(-0.170964\pi\)
−0.961774 + 0.273844i \(0.911705\pi\)
\(360\) 0 0
\(361\) −45.6548 + 5.33628i −2.40288 + 0.280857i
\(362\) −1.72430 + 0.552875i −0.0906273 + 0.0290585i
\(363\) 0 0
\(364\) −2.79754 + 0.778748i −0.146631 + 0.0408175i
\(365\) −43.1738 + 12.0183i −2.25982 + 0.629064i
\(366\) 0 0
\(367\) 9.01293 2.88988i 0.470471 0.150850i −0.0606276 0.998160i \(-0.519310\pi\)
0.531099 + 0.847310i \(0.321779\pi\)
\(368\) −17.5927 + 2.05630i −0.917085 + 0.107192i
\(369\) 0 0
\(370\) 4.05836 + 9.40832i 0.210984 + 0.489116i
\(371\) −10.0855 + 29.4761i −0.523615 + 1.53032i
\(372\) 0 0
\(373\) −1.11071 + 1.00791i −0.0575102 + 0.0521877i −0.700256 0.713892i \(-0.746931\pi\)
0.642746 + 0.766079i \(0.277795\pi\)
\(374\) −0.517076 1.51121i −0.0267374 0.0781429i
\(375\) 0 0
\(376\) 0.846131 8.69899i 0.0436359 0.448616i
\(377\) 2.70083 0.983022i 0.139100 0.0506282i
\(378\) 0 0
\(379\) 5.26683 + 1.91697i 0.270539 + 0.0984681i 0.473727 0.880672i \(-0.342908\pi\)
−0.203189 + 0.979140i \(0.565130\pi\)
\(380\) 6.93682 14.5071i 0.355851 0.744200i
\(381\) 0 0
\(382\) 12.9164 2.02008i 0.660858 0.103356i
\(383\) 13.3540 + 10.3501i 0.682359 + 0.528868i 0.893768 0.448530i \(-0.148052\pi\)
−0.211409 + 0.977398i \(0.567805\pi\)
\(384\) 0 0
\(385\) 0.429038 + 22.1211i 0.0218658 + 1.12739i
\(386\) −12.2078 6.13100i −0.621362 0.312060i
\(387\) 0 0
\(388\) −7.54799 4.96439i −0.383191 0.252029i
\(389\) −7.54227 0.292674i −0.382408 0.0148392i −0.153145 0.988204i \(-0.548940\pi\)
−0.229263 + 0.973365i \(0.573632\pi\)
\(390\) 0 0
\(391\) −0.637713 6.55626i −0.0322505 0.331565i
\(392\) −16.5333 34.5765i −0.835059 1.74638i
\(393\) 0 0
\(394\) 1.20645 0.935071i 0.0607802 0.0471082i
\(395\) 31.0935 32.9572i 1.56449 1.65826i
\(396\) 0 0
\(397\) 1.08387 3.62038i 0.0543980 0.181702i −0.926473 0.376362i \(-0.877175\pi\)
0.980871 + 0.194660i \(0.0623602\pi\)
\(398\) 10.5580 13.0899i 0.529226 0.656137i
\(399\) 0 0
\(400\) −4.51998 7.17144i −0.225999 0.358572i
\(401\) −16.2467 + 8.96455i −0.811322 + 0.447668i −0.833792 0.552079i \(-0.813835\pi\)
0.0224700 + 0.999748i \(0.492847\pi\)
\(402\) 0 0
\(403\) 0.676334 + 2.62569i 0.0336906 + 0.130795i
\(404\) 2.09806 3.63394i 0.104382 0.180795i
\(405\) 0 0
\(406\) 7.44457 + 12.8944i 0.369468 + 0.639937i
\(407\) −3.60153 + 3.53236i −0.178521 + 0.175092i
\(408\) 0 0
\(409\) 0.402162 20.7354i 0.0198857 1.02530i −0.848436 0.529298i \(-0.822455\pi\)
0.868322 0.496001i \(-0.165199\pi\)
\(410\) −14.0310 + 26.6372i −0.692943 + 1.31552i
\(411\) 0 0
\(412\) 2.27032 + 5.88029i 0.111851 + 0.289701i
\(413\) 10.3603 2.45544i 0.509797 0.120824i
\(414\) 0 0
\(415\) 5.28455 + 17.6516i 0.259408 + 0.866484i
\(416\) 3.28255 + 1.34107i 0.160940 + 0.0657513i
\(417\) 0 0
\(418\) −15.6328 1.21508i −0.764627 0.0594315i
\(419\) 27.7754 19.8527i 1.35692 0.969867i 0.357566 0.933888i \(-0.383607\pi\)
0.999353 0.0359789i \(-0.0114549\pi\)
\(420\) 0 0
\(421\) 2.44111 3.87308i 0.118972 0.188762i −0.781219 0.624257i \(-0.785402\pi\)
0.900191 + 0.435495i \(0.143427\pi\)
\(422\) −1.36671 + 23.4655i −0.0665303 + 1.14228i
\(423\) 0 0
\(424\) 18.1745 11.9536i 0.882633 0.580517i
\(425\) 2.69912 1.62893i 0.130927 0.0790147i
\(426\) 0 0
\(427\) −9.06536 + 3.70361i −0.438704 + 0.179230i
\(428\) −1.03399 1.28194i −0.0499796 0.0619650i
\(429\) 0 0
\(430\) 2.95898 + 4.31430i 0.142695 + 0.208054i
\(431\) 5.23573 + 29.6933i 0.252196 + 1.43028i 0.803169 + 0.595752i \(0.203146\pi\)
−0.550972 + 0.834523i \(0.685743\pi\)
\(432\) 0 0
\(433\) −1.56645 + 8.88378i −0.0752788 + 0.426927i 0.923755 + 0.382983i \(0.125103\pi\)
−0.999034 + 0.0439438i \(0.986008\pi\)
\(434\) −12.7869 + 5.81237i −0.613792 + 0.279003i
\(435\) 0 0
\(436\) 8.75831 + 1.72008i 0.419447 + 0.0823767i
\(437\) −61.5787 19.7444i −2.94571 0.944503i
\(438\) 0 0
\(439\) 25.3462 + 29.0435i 1.20971 + 1.38617i 0.900316 + 0.435236i \(0.143335\pi\)
0.309391 + 0.950935i \(0.399875\pi\)
\(440\) 9.22550 12.3920i 0.439808 0.590765i
\(441\) 0 0
\(442\) 0.367901 0.852890i 0.0174993 0.0405678i
\(443\) 5.92018 + 5.37228i 0.281276 + 0.255245i 0.800416 0.599445i \(-0.204612\pi\)
−0.519140 + 0.854689i \(0.673748\pi\)
\(444\) 0 0
\(445\) 13.4391 52.1736i 0.637072 2.47327i
\(446\) −2.76829 2.71512i −0.131082 0.128565i
\(447\) 0 0
\(448\) −8.01096 + 36.9827i −0.378482 + 1.74727i
\(449\) −5.48268 7.36451i −0.258743 0.347553i 0.653701 0.756753i \(-0.273215\pi\)
−0.912445 + 0.409200i \(0.865808\pi\)
\(450\) 0 0
\(451\) −14.7225 1.72081i −0.693254 0.0810297i
\(452\) 3.66902 0.720572i 0.172576 0.0338928i
\(453\) 0 0
\(454\) 4.46347 + 20.6057i 0.209481 + 0.967072i
\(455\) −8.46018 + 9.69429i −0.396619 + 0.454475i
\(456\) 0 0
\(457\) 15.9466 + 11.3980i 0.745952 + 0.533175i 0.889759 0.456431i \(-0.150873\pi\)
−0.143806 + 0.989606i \(0.545934\pi\)
\(458\) 22.7053 + 19.0520i 1.06095 + 0.890241i
\(459\) 0 0
\(460\) 12.2616 10.2887i 0.571698 0.479711i
\(461\) 9.85731 0.766171i 0.459101 0.0356841i 0.154140 0.988049i \(-0.450739\pi\)
0.304961 + 0.952365i \(0.401357\pi\)
\(462\) 0 0
\(463\) 0.120633 0.312446i 0.00560627 0.0145206i −0.930052 0.367427i \(-0.880239\pi\)
0.935659 + 0.352907i \(0.114807\pi\)
\(464\) 0.875035 6.40639i 0.0406225 0.297409i
\(465\) 0 0
\(466\) 14.7831 + 8.15700i 0.684816 + 0.377866i
\(467\) 1.25570 + 21.5595i 0.0581069 + 0.997657i 0.893802 + 0.448463i \(0.148028\pi\)
−0.835695 + 0.549194i \(0.814935\pi\)
\(468\) 0 0
\(469\) −35.1305 + 17.6432i −1.62217 + 0.814686i
\(470\) −4.53402 8.60762i −0.209139 0.397040i
\(471\) 0 0
\(472\) −6.76809 3.07648i −0.311527 0.141606i
\(473\) −1.45682 + 2.12410i −0.0669848 + 0.0976662i
\(474\) 0 0
\(475\) −4.18834 30.6641i −0.192174 1.40696i
\(476\) −2.36403 0.560285i −0.108355 0.0256806i
\(477\) 0 0
\(478\) 7.56911 + 8.02279i 0.346203 + 0.366954i
\(479\) 35.9589 + 5.62387i 1.64301 + 0.256961i 0.907344 0.420389i \(-0.138106\pi\)
0.735661 + 0.677350i \(0.236872\pi\)
\(480\) 0 0
\(481\) −2.93148 + 0.113755i −0.133664 + 0.00518677i
\(482\) −14.3958 8.68793i −0.655712 0.395724i
\(483\) 0 0
\(484\) −5.26998 1.46700i −0.239544 0.0666818i
\(485\) −40.0293 −1.81764
\(486\) 0 0
\(487\) 8.30429 0.376303 0.188152 0.982140i \(-0.439750\pi\)
0.188152 + 0.982140i \(0.439750\pi\)
\(488\) 6.58733 + 1.83371i 0.298194 + 0.0830081i
\(489\) 0 0
\(490\) −36.5255 22.0432i −1.65005 0.995812i
\(491\) 9.90733 0.384449i 0.447111 0.0173500i 0.185763 0.982595i \(-0.440524\pi\)
0.261348 + 0.965245i \(0.415833\pi\)
\(492\) 0 0
\(493\) 2.37575 + 0.371561i 0.106998 + 0.0167342i
\(494\) −6.25755 6.63261i −0.281540 0.298415i
\(495\) 0 0
\(496\) 5.93528 + 1.40669i 0.266502 + 0.0631622i
\(497\) −4.25990 31.1880i −0.191083 1.39897i
\(498\) 0 0
\(499\) 6.95378 10.1389i 0.311294 0.453878i −0.637188 0.770708i \(-0.719903\pi\)
0.948482 + 0.316830i \(0.102619\pi\)
\(500\) −2.10728 0.957876i −0.0942404 0.0428375i
\(501\) 0 0
\(502\) −11.7218 22.2533i −0.523170 0.993214i
\(503\) 10.2569 5.15119i 0.457330 0.229680i −0.205192 0.978722i \(-0.565782\pi\)
0.662523 + 0.749042i \(0.269486\pi\)
\(504\) 0 0
\(505\) −1.08105 18.5609i −0.0481061 0.825949i
\(506\) −13.6656 7.54034i −0.607509 0.335209i
\(507\) 0 0
\(508\) 0.865761 6.33849i 0.0384119 0.281225i
\(509\) −2.39693 + 6.20821i −0.106242 + 0.275174i −0.975803 0.218652i \(-0.929834\pi\)
0.869561 + 0.493826i \(0.164402\pi\)
\(510\) 0 0
\(511\) 66.2710 5.15099i 2.93165 0.227866i
\(512\) 16.5259 13.8669i 0.730347 0.612834i
\(513\) 0 0
\(514\) −1.24642 1.04587i −0.0549770 0.0461312i
\(515\) 22.7218 + 16.2406i 1.00124 + 0.715646i
\(516\) 0 0
\(517\) 3.14942 3.60884i 0.138511 0.158716i
\(518\) −3.21737 14.8530i −0.141363 0.652604i
\(519\) 0 0
\(520\) 8.81584 1.73138i 0.386600 0.0759258i
\(521\) 6.22438 + 0.727526i 0.272695 + 0.0318735i 0.251341 0.967898i \(-0.419128\pi\)
0.0213537 + 0.999772i \(0.493202\pi\)
\(522\) 0 0
\(523\) −20.6587 27.7494i −0.903341 1.21340i −0.976378 0.216068i \(-0.930677\pi\)
0.0730374 0.997329i \(-0.476731\pi\)
\(524\) 0.264439 1.22079i 0.0115521 0.0533303i
\(525\) 0 0
\(526\) 12.5113 + 12.2710i 0.545521 + 0.535043i
\(527\) −0.565846 + 2.19675i −0.0246486 + 0.0956919i
\(528\) 0 0
\(529\) −30.6357 27.8004i −1.33199 1.20871i
\(530\) 9.59067 22.2337i 0.416592 0.965769i
\(531\) 0 0
\(532\) −14.2426 + 19.1311i −0.617494 + 0.829438i
\(533\) −5.66785 6.49464i −0.245502 0.281314i
\(534\) 0 0
\(535\) −6.94899 2.22811i −0.300431 0.0963294i
\(536\) 26.9351 + 5.28989i 1.16342 + 0.228488i
\(537\) 0 0
\(538\) −29.6921 + 13.4967i −1.28012 + 0.581886i
\(539\) 3.64730 20.6849i 0.157100 0.890961i
\(540\) 0 0
\(541\) 2.06247 + 11.6969i 0.0886726 + 0.502888i 0.996504 + 0.0835510i \(0.0266261\pi\)
−0.907831 + 0.419337i \(0.862263\pi\)
\(542\) 18.6683 + 27.2190i 0.801872 + 1.16916i
\(543\) 0 0
\(544\) 1.86250 + 2.30914i 0.0798540 + 0.0990035i
\(545\) 36.6106 14.9571i 1.56823 0.640691i
\(546\) 0 0
\(547\) −25.3996 + 15.3287i −1.08601 + 0.655409i −0.942488 0.334239i \(-0.891521\pi\)
−0.143519 + 0.989648i \(0.545842\pi\)
\(548\) −4.61459 + 3.03506i −0.197125 + 0.129651i
\(549\) 0 0
\(550\) 0.434327 7.45711i 0.0185198 0.317972i
\(551\) 12.5870 19.9706i 0.536223 0.850776i
\(552\) 0 0
\(553\) −54.6742 + 39.0788i −2.32498 + 1.66180i
\(554\) 15.3188 + 1.19067i 0.650832 + 0.0505867i
\(555\) 0 0
\(556\) −5.86188 2.39484i −0.248599 0.101564i
\(557\) −7.35999 24.5841i −0.311853 1.04166i −0.959966 0.280116i \(-0.909627\pi\)
0.648113 0.761544i \(-0.275558\pi\)
\(558\) 0 0
\(559\) −1.45749 + 0.345432i −0.0616454 + 0.0146102i
\(560\) 10.4256 + 27.0030i 0.440563 + 1.14109i
\(561\) 0 0
\(562\) −0.394897 + 0.749694i −0.0166577 + 0.0316239i
\(563\) 0.797749 41.1317i 0.0336211 1.73350i −0.481559 0.876414i \(-0.659929\pi\)
0.515180 0.857082i \(-0.327725\pi\)
\(564\) 0 0
\(565\) 11.8280 11.6008i 0.497606 0.488049i
\(566\) 5.70403 + 9.87967i 0.239758 + 0.415274i
\(567\) 0 0
\(568\) −10.9896 + 19.0346i −0.461115 + 0.798675i
\(569\) 4.17261 + 16.1991i 0.174925 + 0.679100i 0.994372 + 0.105945i \(0.0337867\pi\)
−0.819447 + 0.573155i \(0.805719\pi\)
\(570\) 0 0
\(571\) 2.02813 1.11907i 0.0848744 0.0468317i −0.440108 0.897945i \(-0.645060\pi\)
0.524982 + 0.851113i \(0.324072\pi\)
\(572\) 0.592511 + 0.940082i 0.0247741 + 0.0393068i
\(573\) 0 0
\(574\) 28.0348 34.7576i 1.17015 1.45076i
\(575\) 8.83537 29.5122i 0.368460 1.23074i
\(576\) 0 0
\(577\) −3.62204 + 3.83914i −0.150788 + 0.159825i −0.798364 0.602175i \(-0.794301\pi\)
0.647577 + 0.762000i \(0.275783\pi\)
\(578\) −14.8758 + 11.5296i −0.618751 + 0.479568i
\(579\) 0 0
\(580\) 2.52060 + 5.27140i 0.104662 + 0.218883i
\(581\) −2.64577 27.2009i −0.109765 1.12848i
\(582\) 0 0
\(583\) 11.9125 + 0.462260i 0.493367 + 0.0191449i
\(584\) −38.7778 25.5046i −1.60464 1.05539i
\(585\) 0 0
\(586\) 9.57627 + 4.80938i 0.395592 + 0.198674i
\(587\) 0.697115 + 35.9431i 0.0287730 + 1.48353i 0.684766 + 0.728763i \(0.259904\pi\)
−0.655993 + 0.754767i \(0.727750\pi\)
\(588\) 0 0
\(589\) 17.6016 + 13.6423i 0.725261 + 0.562120i
\(590\) −8.17612 + 1.27872i −0.336606 + 0.0526442i
\(591\) 0 0
\(592\) −2.84705 + 5.95410i −0.117013 + 0.244712i
\(593\) 13.2609 + 4.82656i 0.544558 + 0.198203i 0.599627 0.800280i \(-0.295316\pi\)
−0.0550690 + 0.998483i \(0.517538\pi\)
\(594\) 0 0
\(595\) −10.1156 + 3.68178i −0.414700 + 0.150938i
\(596\) −0.160192 + 1.64692i −0.00656173 + 0.0674605i
\(597\) 0 0
\(598\) −2.93841 8.58783i −0.120161 0.351183i
\(599\) −17.9699 + 16.3068i −0.734229 + 0.666278i −0.950735 0.310004i \(-0.899670\pi\)
0.216506 + 0.976281i \(0.430534\pi\)
\(600\) 0 0
\(601\) 11.8821 34.7269i 0.484683 1.41654i −0.384995 0.922919i \(-0.625797\pi\)
0.869678 0.493620i \(-0.164327\pi\)
\(602\) −3.07337 7.12487i −0.125261 0.290388i
\(603\) 0 0
\(604\) −0.970610 + 0.113448i −0.0394936 + 0.00461614i
\(605\) −23.0809 + 7.40058i −0.938371 + 0.300877i
\(606\) 0 0
\(607\) −25.7042 + 7.15526i −1.04330 + 0.290423i −0.747107 0.664704i \(-0.768558\pi\)
−0.296196 + 0.955127i \(0.595718\pi\)
\(608\) 28.0569 7.81017i 1.13786 0.316744i
\(609\) 0 0
\(610\) 7.24785 2.32393i 0.293457 0.0940932i
\(611\) 2.76666 0.323377i 0.111927 0.0130824i
\(612\) 0 0
\(613\) 3.53659 + 8.19873i 0.142841 + 0.331143i 0.974586 0.224016i \(-0.0719167\pi\)
−0.831744 + 0.555159i \(0.812657\pi\)
\(614\) 11.9400 34.8960i 0.481860 1.40829i
\(615\) 0 0
\(616\) −16.9690 + 15.3985i −0.683699 + 0.620424i
\(617\) 9.41979 + 27.5304i 0.379227 + 1.10833i 0.956488 + 0.291772i \(0.0942448\pi\)
−0.577261 + 0.816559i \(0.695879\pi\)
\(618\) 0 0
\(619\) −2.29438 + 23.5883i −0.0922190 + 0.948094i 0.829052 + 0.559172i \(0.188881\pi\)
−0.921271 + 0.388922i \(0.872847\pi\)
\(620\) −5.17972 + 1.88526i −0.208022 + 0.0757140i
\(621\) 0 0
\(622\) −15.8310 5.76200i −0.634763 0.231035i
\(623\) −34.4724 + 72.0928i −1.38111 + 2.88834i
\(624\) 0 0
\(625\) −29.1013 + 4.55137i −1.16405 + 0.182055i
\(626\) 5.08072 + 3.93786i 0.203066 + 0.157388i
\(627\) 0 0
\(628\) 0.0470120 + 2.42392i 0.00187598 + 0.0967251i
\(629\) −2.19336 1.10154i −0.0874548 0.0439215i
\(630\) 0 0
\(631\) −6.16166 4.05258i −0.245292 0.161331i 0.420910 0.907102i \(-0.361711\pi\)
−0.666202 + 0.745771i \(0.732081\pi\)
\(632\) 46.8903 + 1.81956i 1.86520 + 0.0723781i
\(633\) 0 0
\(634\) 2.85408 + 29.3425i 0.113350 + 1.16534i
\(635\) −12.2279 25.5725i −0.485250 1.01481i
\(636\) 0 0
\(637\) 9.65442 7.48274i 0.382522 0.296477i
\(638\) 3.90991 4.14426i 0.154795 0.164073i
\(639\) 0 0
\(640\) 2.27297 7.59226i 0.0898471 0.300110i
\(641\) −21.3314 + 26.4468i −0.842540 + 1.04459i 0.155845 + 0.987781i \(0.450190\pi\)
−0.998385 + 0.0568044i \(0.981909\pi\)
\(642\) 0 0
\(643\) −1.41466 2.24451i −0.0557888 0.0885149i 0.816934 0.576732i \(-0.195672\pi\)
−0.872722 + 0.488217i \(0.837648\pi\)
\(644\) −20.7865 + 11.4695i −0.819102 + 0.451961i
\(645\) 0 0
\(646\) −1.90297 7.38778i −0.0748714 0.290669i
\(647\) −0.427119 + 0.739791i −0.0167918 + 0.0290842i −0.874299 0.485387i \(-0.838679\pi\)
0.857507 + 0.514472i \(0.172012\pi\)
\(648\) 0 0
\(649\) −2.03718 3.52850i −0.0799663 0.138506i
\(650\) 3.10129 3.04173i 0.121643 0.119306i
\(651\) 0 0
\(652\) −0.228809 + 11.7973i −0.00896086 + 0.462020i
\(653\) −3.05339 + 5.79673i −0.119489 + 0.226843i −0.937206 0.348777i \(-0.886597\pi\)
0.817717 + 0.575620i \(0.195239\pi\)
\(654\) 0 0
\(655\) −1.99343 5.16311i −0.0778897 0.201739i
\(656\) −18.8694 + 4.47212i −0.736725 + 0.174607i
\(657\) 0 0
\(658\) 4.13852 + 13.8236i 0.161336 + 0.538901i
\(659\) −23.3914 9.55644i −0.911200 0.372266i −0.126374 0.991983i \(-0.540334\pi\)
−0.784826 + 0.619717i \(0.787248\pi\)
\(660\) 0 0
\(661\) −16.3929 1.27415i −0.637609 0.0495589i −0.245380 0.969427i \(-0.578913\pi\)
−0.392228 + 0.919868i \(0.628296\pi\)
\(662\) 16.2187 11.5924i 0.630358 0.450552i
\(663\) 0 0
\(664\) −10.1750 + 16.1437i −0.394866 + 0.626498i
\(665\) −6.14464 + 105.499i −0.238279 + 4.09109i
\(666\) 0 0
\(667\) 19.6320 12.9122i 0.760155 0.499962i
\(668\) −10.7469 + 6.48578i −0.415810 + 0.250942i
\(669\) 0 0
\(670\) 28.2854 11.5558i 1.09276 0.446441i
\(671\) 2.35263 + 2.91680i 0.0908222 + 0.112602i
\(672\) 0 0
\(673\) 12.5074 + 18.2362i 0.482124 + 0.702954i 0.987087 0.160187i \(-0.0512099\pi\)
−0.504963 + 0.863141i \(0.668494\pi\)
\(674\) −3.11032 17.6395i −0.119805 0.679449i
\(675\) 0 0
\(676\) 1.40255 7.95428i 0.0539444 0.305934i
\(677\) 5.62180 2.55542i 0.216063 0.0982129i −0.302855 0.953037i \(-0.597940\pi\)
0.518918 + 0.854824i \(0.326335\pi\)
\(678\) 0 0
\(679\) 58.2592 + 11.4417i 2.23578 + 0.439093i
\(680\) 7.15762 + 2.29500i 0.274482 + 0.0880092i
\(681\) 0 0
\(682\) 3.53412 + 4.04965i 0.135328 + 0.155069i
\(683\) −3.83270 + 5.14821i −0.146654 + 0.196991i −0.869380 0.494144i \(-0.835482\pi\)
0.722726 + 0.691135i \(0.242889\pi\)
\(684\) 0 0
\(685\) −9.69309 + 22.4711i −0.370354 + 0.858577i
\(686\) 20.5058 + 18.6080i 0.782915 + 0.710457i
\(687\) 0 0
\(688\) −0.840538 + 3.26317i −0.0320452 + 0.124407i
\(689\) 4.94958 + 4.85451i 0.188564 + 0.184942i
\(690\) 0 0
\(691\) −4.72492 + 21.8127i −0.179745 + 0.829793i 0.795024 + 0.606577i \(0.207458\pi\)
−0.974769 + 0.223216i \(0.928345\pi\)
\(692\) 1.59298 + 2.13975i 0.0605562 + 0.0813411i
\(693\) 0 0
\(694\) −34.6907 4.05476i −1.31684 0.153917i
\(695\) −27.5311 + 5.40694i −1.04432 + 0.205097i
\(696\) 0 0
\(697\) −1.52677 7.04837i −0.0578306 0.266976i
\(698\) 2.29838 2.63365i 0.0869948 0.0996850i
\(699\) 0 0
\(700\) −9.24367 6.60698i −0.349378 0.249720i
\(701\) 21.8028 + 18.2948i 0.823482 + 0.690983i 0.953785 0.300491i \(-0.0971505\pi\)
−0.130303 + 0.991474i \(0.541595\pi\)
\(702\) 0 0
\(703\) −18.4579 + 15.4881i −0.696155 + 0.584143i
\(704\) 14.4367 1.12211i 0.544104 0.0422911i
\(705\) 0 0
\(706\) −3.66907 + 9.50314i −0.138087 + 0.357655i
\(707\) −3.73196 + 27.3228i −0.140355 + 1.02758i
\(708\) 0 0
\(709\) −39.7597 21.9385i −1.49321 0.823916i −0.494237 0.869327i \(-0.664553\pi\)
−0.998968 + 0.0454110i \(0.985540\pi\)
\(710\) 1.42255 + 24.4243i 0.0533874 + 0.916627i
\(711\) 0 0
\(712\) 49.8627 25.0420i 1.86869 0.938489i
\(713\) 10.3308 + 19.6125i 0.386891 + 0.734494i
\(714\) 0 0
\(715\) 4.48233 + 2.03747i 0.167630 + 0.0761970i
\(716\) −3.28804 + 4.79408i −0.122880 + 0.179163i
\(717\) 0 0
\(718\) −0.765553 5.60484i −0.0285702 0.209171i
\(719\) 15.4698 + 3.66641i 0.576925 + 0.136734i 0.508712 0.860937i \(-0.330122\pi\)
0.0682137 + 0.997671i \(0.478270\pi\)
\(720\) 0 0
\(721\) −28.4276 30.1314i −1.05870 1.12215i
\(722\) −52.3534 8.18793i −1.94839 0.304723i
\(723\) 0 0
\(724\) 1.05320 0.0408688i 0.0391417 0.00151888i
\(725\) 9.62823 + 5.81066i 0.357583 + 0.215803i
\(726\) 0 0
\(727\) 1.11230 + 0.309629i 0.0412528 + 0.0114835i 0.288738 0.957408i \(-0.406765\pi\)
−0.247485 + 0.968892i \(0.579604\pi\)
\(728\) −13.3256 −0.493879
\(729\) 0 0
\(730\) −51.6638 −1.91216
\(731\) −1.20727 0.336066i −0.0446524 0.0124299i
\(732\) 0 0
\(733\) −10.6126 6.40472i −0.391984 0.236564i 0.306987 0.951714i \(-0.400679\pi\)
−0.698971 + 0.715150i \(0.746358\pi\)
\(734\) 10.9031 0.423089i 0.402440 0.0156165i
\(735\) 0 0
\(736\) 28.6415 + 4.47945i 1.05574 + 0.165115i
\(737\) 10.3234 + 10.9421i 0.380266 + 0.403059i
\(738\) 0 0
\(739\) 35.1406 + 8.32848i 1.29267 + 0.306368i 0.818724 0.574187i \(-0.194682\pi\)
0.473944 + 0.880555i \(0.342830\pi\)
\(740\) −0.807121 5.90917i −0.0296704 0.217225i
\(741\) 0 0
\(742\) −20.3135 + 29.6179i −0.745733 + 1.08731i
\(743\) 7.49504 + 3.40691i 0.274966 + 0.124988i 0.546548 0.837428i \(-0.315942\pi\)
−0.271581 + 0.962415i \(0.587547\pi\)
\(744\) 0 0
\(745\) 3.41689 + 6.48681i 0.125185 + 0.237658i
\(746\) −1.54514 + 0.775997i −0.0565715 + 0.0284113i
\(747\) 0 0
\(748\) 0.0540568 + 0.928119i 0.00197651 + 0.0339354i
\(749\) 9.47679 + 5.22907i 0.346274 + 0.191066i
\(750\) 0 0
\(751\) −0.00706950 + 0.0517579i −0.000257970 + 0.00188867i −0.990929 0.134387i \(-0.957094\pi\)
0.990671 + 0.136276i \(0.0435133\pi\)
\(752\) 2.25702 5.84582i 0.0823050 0.213175i
\(753\) 0 0
\(754\) 3.30342 0.256762i 0.120303 0.00935072i
\(755\) −3.31690 + 2.78321i −0.120714 + 0.101291i
\(756\) 0 0
\(757\) 17.8487 + 14.9769i 0.648723 + 0.544343i 0.906683 0.421812i \(-0.138606\pi\)
−0.257960 + 0.966156i \(0.583050\pi\)
\(758\) 5.25664 + 3.75722i 0.190930 + 0.136468i
\(759\) 0 0
\(760\) 48.5185 55.5961i 1.75995 2.01668i
\(761\) −7.89204 36.4337i −0.286086 1.32072i −0.863533 0.504293i \(-0.831753\pi\)
0.577446 0.816429i \(-0.304049\pi\)
\(762\) 0 0
\(763\) −57.5588 + 11.3042i −2.08377 + 0.409239i
\(764\) −7.55812 0.883418i −0.273443 0.0319609i
\(765\) 0 0
\(766\) 11.6310 + 15.6232i 0.420247 + 0.564489i
\(767\) 0.501614 2.31571i 0.0181122 0.0836154i
\(768\) 0 0
\(769\) −11.1624 10.9480i −0.402527 0.394796i 0.470553 0.882371i \(-0.344054\pi\)
−0.873081 + 0.487575i \(0.837881\pi\)
\(770\) −6.36232 + 24.7001i −0.229282 + 0.890128i
\(771\) 0 0
\(772\) 5.88848 + 5.34351i 0.211931 + 0.192317i
\(773\) −11.0914 + 25.7127i −0.398929 + 0.924822i 0.593818 + 0.804600i \(0.297620\pi\)
−0.992747 + 0.120222i \(0.961639\pi\)
\(774\) 0 0
\(775\) −6.33518 + 8.50963i −0.227567 + 0.305675i
\(776\) −27.2587 31.2350i −0.978529 1.12127i
\(777\) 0 0
\(778\) −8.28588 2.65676i −0.297063 0.0952495i
\(779\) −69.4715 13.6438i −2.48908 0.488838i
\(780\) 0 0
\(781\) −10.9657 + 4.98452i −0.392383 + 0.178360i
\(782\) 1.31866 7.47847i 0.0471550 0.267429i
\(783\) 0 0
\(784\) −4.77166 27.0614i −0.170416 0.966479i
\(785\) 6.07578 + 8.85871i 0.216854 + 0.316181i
\(786\) 0 0