Properties

Label 729.2.g.d.622.5
Level $729$
Weight $2$
Character 729.622
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 622.5
Character \(\chi\) \(=\) 729.622
Dual form 729.2.g.d.109.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.453861 - 0.481064i) q^{2} +(0.0908564 + 1.55994i) q^{4} +(2.49650 + 0.291799i) q^{5} +(3.67465 - 1.84548i) q^{7} +(1.80495 + 1.51453i) q^{8} +(1.27344 - 1.06854i) q^{10} +(1.17263 - 2.71847i) q^{11} +(-3.15575 + 0.747925i) q^{13} +(0.779986 - 2.60534i) q^{14} +(-1.55626 + 0.181901i) q^{16} +(-0.572741 - 3.24818i) q^{17} +(-0.571121 + 3.23899i) q^{19} +(-0.228367 + 3.92091i) q^{20} +(-0.775546 - 1.79792i) q^{22} +(2.23062 + 1.12026i) q^{23} +(1.28214 + 0.303873i) q^{25} +(-1.07247 + 1.85757i) q^{26} +(3.21271 + 5.56458i) q^{28} +(-1.59664 - 5.33313i) q^{29} +(-5.36607 + 3.52932i) q^{31} +(-3.43286 + 4.61114i) q^{32} +(-1.82253 - 1.19870i) q^{34} +(9.71228 - 3.53498i) q^{35} +(-2.56937 - 0.935175i) q^{37} +(1.29895 + 1.74480i) q^{38} +(4.06412 + 4.30771i) q^{40} +(6.20948 + 6.58166i) q^{41} +(-4.66833 - 6.27065i) q^{43} +(4.34719 + 1.58225i) q^{44} +(1.55131 - 0.564629i) q^{46} +(8.45508 + 5.56099i) q^{47} +(5.91716 - 7.94813i) q^{49} +(0.728095 - 0.478876i) q^{50} +(-1.45344 - 4.85483i) q^{52} +(0.00494432 + 0.00856381i) q^{53} +(3.72072 - 6.44448i) q^{55} +(9.42760 + 2.23438i) q^{56} +(-3.29023 - 1.65242i) q^{58} +(-4.50463 - 10.4429i) q^{59} +(-0.523995 + 8.99665i) q^{61} +(-0.737619 + 4.18325i) q^{62} +(0.116049 + 0.658144i) q^{64} +(-8.09656 + 0.946352i) q^{65} +(-1.67644 + 5.59970i) q^{67} +(5.01494 - 1.18856i) q^{68} +(2.70747 - 6.27662i) q^{70} +(-1.81817 + 1.52563i) q^{71} +(3.61987 + 3.03743i) q^{73} +(-1.61602 + 0.811594i) q^{74} +(-5.10453 - 0.596634i) q^{76} +(-0.707860 - 12.1535i) q^{77} +(-6.17756 + 6.54783i) q^{79} -3.93828 q^{80} +5.98444 q^{82} +(2.54001 - 2.69226i) q^{83} +(-0.482034 - 8.27620i) q^{85} +(-5.13536 - 0.600238i) q^{86} +(6.23375 - 3.13071i) q^{88} +(-9.57258 - 8.03235i) q^{89} +(-10.2160 + 8.57223i) q^{91} +(-1.54487 + 3.58142i) q^{92} +(6.51263 - 1.54352i) q^{94} +(-2.37094 + 7.91949i) q^{95} +(7.10357 - 0.830288i) q^{97} +(-1.13799 - 6.45388i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{20}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.453861 0.481064i 0.320928 0.340164i −0.546745 0.837299i \(-0.684133\pi\)
0.867673 + 0.497135i \(0.165615\pi\)
\(3\) 0 0
\(4\) 0.0908564 + 1.55994i 0.0454282 + 0.779972i
\(5\) 2.49650 + 0.291799i 1.11647 + 0.130496i 0.654256 0.756273i \(-0.272982\pi\)
0.462212 + 0.886769i \(0.347056\pi\)
\(6\) 0 0
\(7\) 3.67465 1.84548i 1.38889 0.697526i 0.411981 0.911192i \(-0.364837\pi\)
0.976907 + 0.213667i \(0.0685407\pi\)
\(8\) 1.80495 + 1.51453i 0.638146 + 0.535468i
\(9\) 0 0
\(10\) 1.27344 1.06854i 0.402696 0.337902i
\(11\) 1.17263 2.71847i 0.353562 0.819648i −0.644903 0.764264i \(-0.723102\pi\)
0.998465 0.0553842i \(-0.0176384\pi\)
\(12\) 0 0
\(13\) −3.15575 + 0.747925i −0.875246 + 0.207437i −0.643599 0.765363i \(-0.722560\pi\)
−0.231647 + 0.972800i \(0.574411\pi\)
\(14\) 0.779986 2.60534i 0.208460 0.696305i
\(15\) 0 0
\(16\) −1.55626 + 0.181901i −0.389065 + 0.0454751i
\(17\) −0.572741 3.24818i −0.138910 0.787799i −0.972057 0.234746i \(-0.924574\pi\)
0.833146 0.553052i \(-0.186537\pi\)
\(18\) 0 0
\(19\) −0.571121 + 3.23899i −0.131024 + 0.743075i 0.846522 + 0.532354i \(0.178692\pi\)
−0.977546 + 0.210722i \(0.932419\pi\)
\(20\) −0.228367 + 3.92091i −0.0510644 + 0.876742i
\(21\) 0 0
\(22\) −0.775546 1.79792i −0.165347 0.383317i
\(23\) 2.23062 + 1.12026i 0.465116 + 0.233590i 0.665893 0.746047i \(-0.268051\pi\)
−0.200778 + 0.979637i \(0.564347\pi\)
\(24\) 0 0
\(25\) 1.28214 + 0.303873i 0.256428 + 0.0607745i
\(26\) −1.07247 + 1.85757i −0.210329 + 0.364300i
\(27\) 0 0
\(28\) 3.21271 + 5.56458i 0.607145 + 1.05161i
\(29\) −1.59664 5.33313i −0.296488 0.990338i −0.968336 0.249650i \(-0.919685\pi\)
0.671848 0.740689i \(-0.265501\pi\)
\(30\) 0 0
\(31\) −5.36607 + 3.52932i −0.963775 + 0.633885i −0.930783 0.365571i \(-0.880874\pi\)
−0.0329913 + 0.999456i \(0.510503\pi\)
\(32\) −3.43286 + 4.61114i −0.606850 + 0.815141i
\(33\) 0 0
\(34\) −1.82253 1.19870i −0.312561 0.205575i
\(35\) 9.71228 3.53498i 1.64167 0.597521i
\(36\) 0 0
\(37\) −2.56937 0.935175i −0.422402 0.153742i 0.122069 0.992522i \(-0.461047\pi\)
−0.544471 + 0.838780i \(0.683269\pi\)
\(38\) 1.29895 + 1.74480i 0.210718 + 0.283044i
\(39\) 0 0
\(40\) 4.06412 + 4.30771i 0.642593 + 0.681109i
\(41\) 6.20948 + 6.58166i 0.969757 + 1.02788i 0.999599 + 0.0283280i \(0.00901830\pi\)
−0.0298414 + 0.999555i \(0.509500\pi\)
\(42\) 0 0
\(43\) −4.66833 6.27065i −0.711914 0.956266i 0.288086 0.957605i \(-0.406981\pi\)
−0.999999 + 0.00133878i \(0.999574\pi\)
\(44\) 4.34719 + 1.58225i 0.655364 + 0.238533i
\(45\) 0 0
\(46\) 1.55131 0.564629i 0.228728 0.0832500i
\(47\) 8.45508 + 5.56099i 1.23330 + 0.811154i 0.987416 0.158145i \(-0.0505514\pi\)
0.245884 + 0.969299i \(0.420922\pi\)
\(48\) 0 0
\(49\) 5.91716 7.94813i 0.845309 1.13545i
\(50\) 0.728095 0.478876i 0.102968 0.0677233i
\(51\) 0 0
\(52\) −1.45344 4.85483i −0.201556 0.673244i
\(53\) 0.00494432 + 0.00856381i 0.000679154 + 0.00117633i 0.866365 0.499412i \(-0.166450\pi\)
−0.865686 + 0.500588i \(0.833117\pi\)
\(54\) 0 0
\(55\) 3.72072 6.44448i 0.501702 0.868973i
\(56\) 9.42760 + 2.23438i 1.25982 + 0.298582i
\(57\) 0 0
\(58\) −3.29023 1.65242i −0.432029 0.216973i
\(59\) −4.50463 10.4429i −0.586453 1.35955i −0.910500 0.413509i \(-0.864303\pi\)
0.324048 0.946041i \(-0.394956\pi\)
\(60\) 0 0
\(61\) −0.523995 + 8.99665i −0.0670907 + 1.15190i 0.781868 + 0.623444i \(0.214267\pi\)
−0.848959 + 0.528459i \(0.822770\pi\)
\(62\) −0.737619 + 4.18325i −0.0936777 + 0.531273i
\(63\) 0 0
\(64\) 0.116049 + 0.658144i 0.0145061 + 0.0822680i
\(65\) −8.09656 + 0.946352i −1.00425 + 0.117381i
\(66\) 0 0
\(67\) −1.67644 + 5.59970i −0.204810 + 0.684113i 0.792437 + 0.609954i \(0.208812\pi\)
−0.997246 + 0.0741583i \(0.976373\pi\)
\(68\) 5.01494 1.18856i 0.608150 0.144134i
\(69\) 0 0
\(70\) 2.70747 6.27662i 0.323604 0.750199i
\(71\) −1.81817 + 1.52563i −0.215777 + 0.181058i −0.744269 0.667880i \(-0.767202\pi\)
0.528492 + 0.848938i \(0.322758\pi\)
\(72\) 0 0
\(73\) 3.61987 + 3.03743i 0.423674 + 0.355505i 0.829559 0.558420i \(-0.188592\pi\)
−0.405885 + 0.913924i \(0.633037\pi\)
\(74\) −1.61602 + 0.811594i −0.187858 + 0.0943459i
\(75\) 0 0
\(76\) −5.10453 0.596634i −0.585530 0.0684386i
\(77\) −0.707860 12.1535i −0.0806681 1.38502i
\(78\) 0 0
\(79\) −6.17756 + 6.54783i −0.695029 + 0.736688i −0.974727 0.223400i \(-0.928284\pi\)
0.279698 + 0.960088i \(0.409766\pi\)
\(80\) −3.93828 −0.440313
\(81\) 0 0
\(82\) 5.98444 0.660871
\(83\) 2.54001 2.69226i 0.278803 0.295514i −0.572807 0.819691i \(-0.694145\pi\)
0.851609 + 0.524177i \(0.175627\pi\)
\(84\) 0 0
\(85\) −0.482034 8.27620i −0.0522839 0.897680i
\(86\) −5.13536 0.600238i −0.553760 0.0647253i
\(87\) 0 0
\(88\) 6.23375 3.13071i 0.664520 0.333734i
\(89\) −9.57258 8.03235i −1.01469 0.851427i −0.0257399 0.999669i \(-0.508194\pi\)
−0.988951 + 0.148242i \(0.952639\pi\)
\(90\) 0 0
\(91\) −10.2160 + 8.57223i −1.07093 + 0.898614i
\(92\) −1.54487 + 3.58142i −0.161064 + 0.373389i
\(93\) 0 0
\(94\) 6.51263 1.54352i 0.671726 0.159202i
\(95\) −2.37094 + 7.91949i −0.243253 + 0.812522i
\(96\) 0 0
\(97\) 7.10357 0.830288i 0.721258 0.0843030i 0.252459 0.967608i \(-0.418761\pi\)
0.468799 + 0.883305i \(0.344687\pi\)
\(98\) −1.13799 6.45388i −0.114955 0.651940i
\(99\) 0 0
\(100\) −0.357534 + 2.02767i −0.0357534 + 0.202767i
\(101\) 0.122459 2.10254i 0.0121851 0.209211i −0.986720 0.162430i \(-0.948067\pi\)
0.998905 0.0467805i \(-0.0148961\pi\)
\(102\) 0 0
\(103\) −0.818039 1.89643i −0.0806038 0.186861i 0.873148 0.487454i \(-0.162074\pi\)
−0.953752 + 0.300594i \(0.902815\pi\)
\(104\) −6.82872 3.42951i −0.669611 0.336291i
\(105\) 0 0
\(106\) 0.00636378 + 0.00150824i 0.000618105 + 0.000146493i
\(107\) −7.13179 + 12.3526i −0.689456 + 1.19417i 0.282558 + 0.959250i \(0.408817\pi\)
−0.972014 + 0.234923i \(0.924516\pi\)
\(108\) 0 0
\(109\) −6.70237 11.6088i −0.641970 1.11193i −0.984992 0.172598i \(-0.944784\pi\)
0.343022 0.939327i \(-0.388549\pi\)
\(110\) −1.41152 4.71480i −0.134583 0.449539i
\(111\) 0 0
\(112\) −5.38302 + 3.54047i −0.508647 + 0.334543i
\(113\) −1.76779 + 2.37455i −0.166300 + 0.223379i −0.877459 0.479652i \(-0.840763\pi\)
0.711159 + 0.703031i \(0.248170\pi\)
\(114\) 0 0
\(115\) 5.24184 + 3.44761i 0.488804 + 0.321492i
\(116\) 8.17432 2.97521i 0.758967 0.276241i
\(117\) 0 0
\(118\) −7.06818 2.57261i −0.650679 0.236828i
\(119\) −8.09907 10.8789i −0.742440 0.997271i
\(120\) 0 0
\(121\) 1.53367 + 1.62559i 0.139424 + 0.147781i
\(122\) 4.09015 + 4.33530i 0.370305 + 0.392500i
\(123\) 0 0
\(124\) −5.99308 8.05011i −0.538195 0.722921i
\(125\) −8.69737 3.16558i −0.777917 0.283139i
\(126\) 0 0
\(127\) −11.3063 + 4.11514i −1.00327 + 0.365160i −0.790844 0.612017i \(-0.790358\pi\)
−0.212425 + 0.977177i \(0.568136\pi\)
\(128\) −9.23660 6.07500i −0.816407 0.536960i
\(129\) 0 0
\(130\) −3.21946 + 4.32448i −0.282365 + 0.379282i
\(131\) 4.29128 2.82242i 0.374931 0.246596i −0.348032 0.937483i \(-0.613150\pi\)
0.722963 + 0.690887i \(0.242780\pi\)
\(132\) 0 0
\(133\) 3.87882 + 12.9562i 0.336336 + 1.12344i
\(134\) 1.93295 + 3.34796i 0.166981 + 0.289220i
\(135\) 0 0
\(136\) 3.88570 6.73023i 0.333196 0.577113i
\(137\) 1.84980 + 0.438412i 0.158039 + 0.0374560i 0.308874 0.951103i \(-0.400048\pi\)
−0.150834 + 0.988559i \(0.548196\pi\)
\(138\) 0 0
\(139\) 8.36246 + 4.19978i 0.709294 + 0.356221i 0.766591 0.642136i \(-0.221952\pi\)
−0.0572963 + 0.998357i \(0.518248\pi\)
\(140\) 6.39679 + 14.8294i 0.540627 + 1.25332i
\(141\) 0 0
\(142\) −0.0912720 + 1.56708i −0.00765937 + 0.131506i
\(143\) −1.66732 + 9.45583i −0.139428 + 0.790736i
\(144\) 0 0
\(145\) −2.42980 13.7801i −0.201784 1.14437i
\(146\) 3.10412 0.362820i 0.256899 0.0300272i
\(147\) 0 0
\(148\) 1.22538 4.09304i 0.100725 0.336446i
\(149\) −0.864689 + 0.204935i −0.0708381 + 0.0167889i −0.265882 0.964006i \(-0.585663\pi\)
0.195044 + 0.980794i \(0.437515\pi\)
\(150\) 0 0
\(151\) −3.19183 + 7.39949i −0.259747 + 0.602162i −0.997325 0.0731007i \(-0.976711\pi\)
0.737577 + 0.675263i \(0.235970\pi\)
\(152\) −5.93640 + 4.98123i −0.481506 + 0.404031i
\(153\) 0 0
\(154\) −6.16788 5.17546i −0.497022 0.417051i
\(155\) −14.4262 + 7.24513i −1.15874 + 0.581943i
\(156\) 0 0
\(157\) 14.3727 + 1.67993i 1.14707 + 0.134073i 0.668315 0.743878i \(-0.267016\pi\)
0.478751 + 0.877951i \(0.341090\pi\)
\(158\) 0.346176 + 5.94360i 0.0275402 + 0.472848i
\(159\) 0 0
\(160\) −9.91567 + 10.5100i −0.783902 + 0.830888i
\(161\) 10.2641 0.808928
\(162\) 0 0
\(163\) 8.05495 0.630912 0.315456 0.948940i \(-0.397843\pi\)
0.315456 + 0.948940i \(0.397843\pi\)
\(164\) −9.70285 + 10.2844i −0.757665 + 0.803078i
\(165\) 0 0
\(166\) −0.142336 2.44382i −0.0110474 0.189677i
\(167\) −16.7682 1.95992i −1.29756 0.151663i −0.560877 0.827899i \(-0.689536\pi\)
−0.736685 + 0.676236i \(0.763610\pi\)
\(168\) 0 0
\(169\) −2.21789 + 1.11386i −0.170607 + 0.0856819i
\(170\) −4.20016 3.52435i −0.322138 0.270306i
\(171\) 0 0
\(172\) 9.35772 7.85206i 0.713520 0.598714i
\(173\) 2.66291 6.17332i 0.202457 0.469349i −0.786492 0.617600i \(-0.788105\pi\)
0.988950 + 0.148251i \(0.0473644\pi\)
\(174\) 0 0
\(175\) 5.27221 1.24954i 0.398541 0.0944560i
\(176\) −1.33043 + 4.44394i −0.100285 + 0.334975i
\(177\) 0 0
\(178\) −8.20869 + 0.959459i −0.615268 + 0.0719145i
\(179\) −2.64043 14.9746i −0.197355 1.11926i −0.909024 0.416743i \(-0.863172\pi\)
0.711669 0.702515i \(-0.247940\pi\)
\(180\) 0 0
\(181\) −0.973297 + 5.51984i −0.0723446 + 0.410287i 0.927032 + 0.374982i \(0.122351\pi\)
−0.999377 + 0.0353044i \(0.988760\pi\)
\(182\) −0.512841 + 8.80515i −0.0380143 + 0.652681i
\(183\) 0 0
\(184\) 2.32948 + 5.40035i 0.171732 + 0.398119i
\(185\) −6.14155 3.08440i −0.451536 0.226770i
\(186\) 0 0
\(187\) −9.50168 2.25194i −0.694831 0.164678i
\(188\) −7.90664 + 13.6947i −0.576651 + 0.998788i
\(189\) 0 0
\(190\) 2.73371 + 4.73492i 0.198324 + 0.343507i
\(191\) 1.23201 + 4.11521i 0.0891453 + 0.297766i 0.990922 0.134435i \(-0.0429221\pi\)
−0.901777 + 0.432202i \(0.857737\pi\)
\(192\) 0 0
\(193\) −2.36750 + 1.55713i −0.170417 + 0.112085i −0.631852 0.775089i \(-0.717705\pi\)
0.461435 + 0.887174i \(0.347335\pi\)
\(194\) 2.82461 3.79411i 0.202795 0.272401i
\(195\) 0 0
\(196\) 12.9362 + 8.50830i 0.924017 + 0.607736i
\(197\) 19.9667 7.26729i 1.42257 0.517773i 0.487777 0.872968i \(-0.337808\pi\)
0.934792 + 0.355195i \(0.115586\pi\)
\(198\) 0 0
\(199\) −9.14529 3.32862i −0.648293 0.235959i −0.00311899 0.999995i \(-0.500993\pi\)
−0.645174 + 0.764036i \(0.723215\pi\)
\(200\) 1.85397 + 2.49032i 0.131096 + 0.176092i
\(201\) 0 0
\(202\) −0.955878 1.01317i −0.0672553 0.0712865i
\(203\) −15.7093 16.6509i −1.10257 1.16866i
\(204\) 0 0
\(205\) 13.5814 + 18.2430i 0.948568 + 1.27415i
\(206\) −1.28358 0.467185i −0.0894313 0.0325503i
\(207\) 0 0
\(208\) 4.77511 1.73800i 0.331094 0.120508i
\(209\) 8.13537 + 5.35072i 0.562735 + 0.370117i
\(210\) 0 0
\(211\) 11.6913 15.7041i 0.804861 1.08112i −0.190190 0.981747i \(-0.560910\pi\)
0.995051 0.0993683i \(-0.0316822\pi\)
\(212\) −0.0129098 + 0.00849093i −0.000886651 + 0.000583160i
\(213\) 0 0
\(214\) 2.70557 + 9.03722i 0.184949 + 0.617772i
\(215\) −9.82471 17.0169i −0.670040 1.16054i
\(216\) 0 0
\(217\) −13.2052 + 22.8720i −0.896424 + 1.55265i
\(218\) −8.62654 2.04453i −0.584263 0.138473i
\(219\) 0 0
\(220\) 10.3911 + 5.21859i 0.700566 + 0.351837i
\(221\) 4.23682 + 9.82205i 0.284999 + 0.660703i
\(222\) 0 0
\(223\) 0.939986 16.1389i 0.0629461 1.08074i −0.807942 0.589262i \(-0.799419\pi\)
0.870888 0.491481i \(-0.163544\pi\)
\(224\) −4.10482 + 23.2796i −0.274265 + 1.55543i
\(225\) 0 0
\(226\) 0.339982 + 1.92814i 0.0226153 + 0.128258i
\(227\) −21.0869 + 2.46470i −1.39958 + 0.163588i −0.782177 0.623056i \(-0.785891\pi\)
−0.617407 + 0.786644i \(0.711817\pi\)
\(228\) 0 0
\(229\) 2.47496 8.26696i 0.163550 0.546296i −0.836448 0.548046i \(-0.815372\pi\)
0.999998 + 0.00175006i \(0.000557061\pi\)
\(230\) 4.03759 0.956927i 0.266231 0.0630979i
\(231\) 0 0
\(232\) 5.19536 12.0442i 0.341092 0.790740i
\(233\) −11.4634 + 9.61890i −0.750989 + 0.630155i −0.935764 0.352626i \(-0.885289\pi\)
0.184775 + 0.982781i \(0.440844\pi\)
\(234\) 0 0
\(235\) 19.4854 + 16.3502i 1.27109 + 1.06657i
\(236\) 15.8811 7.97577i 1.03377 0.519178i
\(237\) 0 0
\(238\) −8.90932 1.04135i −0.577506 0.0675007i
\(239\) 0.209933 + 3.60440i 0.0135794 + 0.233150i 0.998268 + 0.0588277i \(0.0187363\pi\)
−0.984689 + 0.174322i \(0.944227\pi\)
\(240\) 0 0
\(241\) 15.7090 16.6506i 1.01191 1.07256i 0.0145522 0.999894i \(-0.495368\pi\)
0.997356 0.0726662i \(-0.0231508\pi\)
\(242\) 1.47808 0.0950149
\(243\) 0 0
\(244\) −14.0819 −0.901500
\(245\) 17.0914 18.1159i 1.09193 1.15738i
\(246\) 0 0
\(247\) −0.620210 10.6486i −0.0394630 0.677553i
\(248\) −15.0308 1.75684i −0.954454 0.111560i
\(249\) 0 0
\(250\) −5.47025 + 2.74726i −0.345969 + 0.173752i
\(251\) −16.2193 13.6096i −1.02375 0.859031i −0.0336587 0.999433i \(-0.510716\pi\)
−0.990095 + 0.140402i \(0.955160\pi\)
\(252\) 0 0
\(253\) 5.66107 4.75020i 0.355909 0.298643i
\(254\) −3.15182 + 7.30675i −0.197763 + 0.458466i
\(255\) 0 0
\(256\) −8.41516 + 1.99443i −0.525948 + 0.124652i
\(257\) 2.23335 7.45990i 0.139312 0.465336i −0.859650 0.510884i \(-0.829318\pi\)
0.998962 + 0.0455481i \(0.0145034\pi\)
\(258\) 0 0
\(259\) −11.1674 + 1.30528i −0.693908 + 0.0811062i
\(260\) −2.21188 12.5442i −0.137175 0.777958i
\(261\) 0 0
\(262\) 0.589879 3.34537i 0.0364428 0.206678i
\(263\) −0.0887569 + 1.52390i −0.00547299 + 0.0939675i −0.999938 0.0110966i \(-0.996468\pi\)
0.994465 + 0.105064i \(0.0335048\pi\)
\(264\) 0 0
\(265\) 0.00984458 + 0.0228223i 0.000604747 + 0.00140196i
\(266\) 7.99319 + 4.01433i 0.490094 + 0.246134i
\(267\) 0 0
\(268\) −8.88754 2.10638i −0.542893 0.128668i
\(269\) 14.7193 25.4946i 0.897454 1.55444i 0.0667154 0.997772i \(-0.478748\pi\)
0.830738 0.556663i \(-0.187919\pi\)
\(270\) 0 0
\(271\) −7.28643 12.6205i −0.442619 0.766639i 0.555264 0.831674i \(-0.312617\pi\)
−0.997883 + 0.0650354i \(0.979284\pi\)
\(272\) 1.48218 + 4.95082i 0.0898703 + 0.300188i
\(273\) 0 0
\(274\) 1.05046 0.690897i 0.0634605 0.0417386i
\(275\) 2.32954 3.12912i 0.140477 0.188693i
\(276\) 0 0
\(277\) −8.54418 5.61960i −0.513370 0.337649i 0.266247 0.963905i \(-0.414216\pi\)
−0.779618 + 0.626256i \(0.784587\pi\)
\(278\) 5.81576 2.11676i 0.348806 0.126955i
\(279\) 0 0
\(280\) 22.8840 + 8.32910i 1.36758 + 0.497759i
\(281\) 4.19424 + 5.63385i 0.250208 + 0.336087i 0.909427 0.415863i \(-0.136521\pi\)
−0.659219 + 0.751951i \(0.729113\pi\)
\(282\) 0 0
\(283\) 14.8381 + 15.7275i 0.882036 + 0.934904i 0.998298 0.0583150i \(-0.0185728\pi\)
−0.116262 + 0.993219i \(0.537091\pi\)
\(284\) −2.54508 2.69763i −0.151023 0.160075i
\(285\) 0 0
\(286\) 3.79213 + 5.09372i 0.224234 + 0.301198i
\(287\) 34.9640 + 12.7258i 2.06386 + 0.751183i
\(288\) 0 0
\(289\) 5.75215 2.09361i 0.338362 0.123154i
\(290\) −7.73189 5.08534i −0.454032 0.298622i
\(291\) 0 0
\(292\) −4.40934 + 5.92277i −0.258037 + 0.346604i
\(293\) 9.12929 6.00443i 0.533339 0.350782i −0.254097 0.967179i \(-0.581778\pi\)
0.787436 + 0.616396i \(0.211408\pi\)
\(294\) 0 0
\(295\) −8.19857 27.3851i −0.477339 1.59442i
\(296\) −3.22124 5.57934i −0.187230 0.324293i
\(297\) 0 0
\(298\) −0.293862 + 0.508983i −0.0170229 + 0.0294846i
\(299\) −7.87713 1.86691i −0.455546 0.107966i
\(300\) 0 0
\(301\) −28.7268 14.4272i −1.65579 0.831568i
\(302\) 2.11099 + 4.89382i 0.121474 + 0.281608i
\(303\) 0 0
\(304\) 0.299639 5.14460i 0.0171855 0.295063i
\(305\) −3.93337 + 22.3072i −0.225224 + 1.27731i
\(306\) 0 0
\(307\) 0.798574 + 4.52894i 0.0455770 + 0.258480i 0.999079 0.0429063i \(-0.0136617\pi\)
−0.953502 + 0.301386i \(0.902551\pi\)
\(308\) 18.8944 2.20844i 1.07661 0.125838i
\(309\) 0 0
\(310\) −3.06213 + 10.2282i −0.173917 + 0.580925i
\(311\) −16.9690 + 4.02173i −0.962224 + 0.228051i −0.681566 0.731756i \(-0.738701\pi\)
−0.280658 + 0.959808i \(0.590553\pi\)
\(312\) 0 0
\(313\) −6.26878 + 14.5327i −0.354333 + 0.821435i 0.644072 + 0.764965i \(0.277244\pi\)
−0.998404 + 0.0564701i \(0.982015\pi\)
\(314\) 7.33136 6.15174i 0.413732 0.347163i
\(315\) 0 0
\(316\) −10.7755 9.04173i −0.606170 0.508637i
\(317\) 17.5175 8.79762i 0.983881 0.494124i 0.117266 0.993101i \(-0.462587\pi\)
0.866615 + 0.498977i \(0.166291\pi\)
\(318\) 0 0
\(319\) −16.3702 1.91340i −0.916556 0.107130i
\(320\) 0.0976694 + 1.67692i 0.00545988 + 0.0937426i
\(321\) 0 0
\(322\) 4.65850 4.93772i 0.259608 0.275168i
\(323\) 10.8479 0.603594
\(324\) 0 0
\(325\) −4.27338 −0.237044
\(326\) 3.65583 3.87495i 0.202477 0.214614i
\(327\) 0 0
\(328\) 1.23965 + 21.2840i 0.0684484 + 1.17521i
\(329\) 41.3322 + 4.83104i 2.27872 + 0.266344i
\(330\) 0 0
\(331\) −19.5513 + 9.81905i −1.07464 + 0.539704i −0.895929 0.444198i \(-0.853489\pi\)
−0.178710 + 0.983902i \(0.557192\pi\)
\(332\) 4.43055 + 3.71767i 0.243158 + 0.204034i
\(333\) 0 0
\(334\) −8.55328 + 7.17706i −0.468015 + 0.392711i
\(335\) −5.81922 + 13.4905i −0.317938 + 0.737063i
\(336\) 0 0
\(337\) −8.72133 + 2.06699i −0.475081 + 0.112596i −0.461179 0.887307i \(-0.652573\pi\)
−0.0139020 + 0.999903i \(0.504425\pi\)
\(338\) −0.470771 + 1.57249i −0.0256066 + 0.0855320i
\(339\) 0 0
\(340\) 12.8666 1.50389i 0.697790 0.0815599i
\(341\) 3.30191 + 18.7261i 0.178809 + 1.01407i
\(342\) 0 0
\(343\) 2.07706 11.7796i 0.112151 0.636040i
\(344\) 1.07101 18.3886i 0.0577451 0.991445i
\(345\) 0 0
\(346\) −1.76117 4.08286i −0.0946813 0.219496i
\(347\) 17.1862 + 8.63124i 0.922604 + 0.463349i 0.845682 0.533688i \(-0.179194\pi\)
0.0769226 + 0.997037i \(0.475491\pi\)
\(348\) 0 0
\(349\) 20.7785 + 4.92459i 1.11225 + 0.263607i 0.745363 0.666659i \(-0.232276\pi\)
0.366884 + 0.930267i \(0.380424\pi\)
\(350\) 1.79174 3.10339i 0.0957726 0.165883i
\(351\) 0 0
\(352\) 8.50973 + 14.7393i 0.453570 + 0.785607i
\(353\) 4.21952 + 14.0942i 0.224582 + 0.750157i 0.993801 + 0.111172i \(0.0354603\pi\)
−0.769219 + 0.638985i \(0.779355\pi\)
\(354\) 0 0
\(355\) −4.98424 + 3.27818i −0.264536 + 0.173988i
\(356\) 11.6603 15.6625i 0.617993 0.830109i
\(357\) 0 0
\(358\) −8.40216 5.52619i −0.444068 0.292068i
\(359\) −10.0637 + 3.66289i −0.531142 + 0.193320i −0.593648 0.804725i \(-0.702313\pi\)
0.0625063 + 0.998045i \(0.480091\pi\)
\(360\) 0 0
\(361\) 7.68928 + 2.79867i 0.404699 + 0.147298i
\(362\) 2.21366 + 2.97346i 0.116347 + 0.156282i
\(363\) 0 0
\(364\) −14.3004 15.1575i −0.749544 0.794470i
\(365\) 8.15069 + 8.63923i 0.426627 + 0.452198i
\(366\) 0 0
\(367\) −2.36813 3.18095i −0.123615 0.166044i 0.736007 0.676974i \(-0.236709\pi\)
−0.859623 + 0.510929i \(0.829301\pi\)
\(368\) −3.67519 1.33766i −0.191583 0.0697304i
\(369\) 0 0
\(370\) −4.27121 + 1.55459i −0.222050 + 0.0808194i
\(371\) 0.0339730 + 0.0223444i 0.00176379 + 0.00116006i
\(372\) 0 0
\(373\) −14.1663 + 19.0287i −0.733505 + 0.985268i 0.266267 + 0.963899i \(0.414210\pi\)
−0.999772 + 0.0213686i \(0.993198\pi\)
\(374\) −5.39577 + 3.54885i −0.279008 + 0.183507i
\(375\) 0 0
\(376\) 6.83869 + 22.8428i 0.352678 + 1.17803i
\(377\) 9.02736 + 15.6359i 0.464933 + 0.805287i
\(378\) 0 0
\(379\) 13.0094 22.5330i 0.668249 1.15744i −0.310145 0.950689i \(-0.600377\pi\)
0.978393 0.206752i \(-0.0662892\pi\)
\(380\) −12.5694 2.97899i −0.644795 0.152819i
\(381\) 0 0
\(382\) 2.53884 + 1.27506i 0.129899 + 0.0652375i
\(383\) −11.6548 27.0188i −0.595530 1.38059i −0.903249 0.429117i \(-0.858825\pi\)
0.307719 0.951477i \(-0.400434\pi\)
\(384\) 0 0
\(385\) 1.77920 30.5477i 0.0906765 1.55686i
\(386\) −0.325437 + 1.84564i −0.0165643 + 0.0939407i
\(387\) 0 0
\(388\) 1.94061 + 11.0057i 0.0985194 + 0.558731i
\(389\) 26.3247 3.07691i 1.33471 0.156006i 0.581373 0.813637i \(-0.302516\pi\)
0.753340 + 0.657631i \(0.228441\pi\)
\(390\) 0 0
\(391\) 2.36123 7.88705i 0.119412 0.398865i
\(392\) 22.7179 5.38424i 1.14743 0.271945i
\(393\) 0 0
\(394\) 5.56608 12.9036i 0.280415 0.650075i
\(395\) −17.3329 + 14.5440i −0.872114 + 0.731790i
\(396\) 0 0
\(397\) −21.8020 18.2941i −1.09421 0.918154i −0.0971903 0.995266i \(-0.530986\pi\)
−0.997022 + 0.0771123i \(0.975430\pi\)
\(398\) −5.75197 + 2.88875i −0.288320 + 0.144800i
\(399\) 0 0
\(400\) −2.05062 0.239683i −0.102531 0.0119841i
\(401\) 0.826969 + 14.1985i 0.0412969 + 0.709040i 0.953887 + 0.300165i \(0.0970417\pi\)
−0.912590 + 0.408875i \(0.865921\pi\)
\(402\) 0 0
\(403\) 14.2943 15.1511i 0.712049 0.754728i
\(404\) 3.29097 0.163732
\(405\) 0 0
\(406\) −15.1400 −0.751383
\(407\) −5.55517 + 5.88814i −0.275360 + 0.291864i
\(408\) 0 0
\(409\) −0.181062 3.10871i −0.00895293 0.153716i −0.999822 0.0188857i \(-0.993988\pi\)
0.990869 0.134830i \(-0.0430489\pi\)
\(410\) 14.9402 + 1.74625i 0.737842 + 0.0862413i
\(411\) 0 0
\(412\) 2.88400 1.44840i 0.142084 0.0713574i
\(413\) −35.8251 30.0608i −1.76284 1.47920i
\(414\) 0 0
\(415\) 7.12674 5.98005i 0.349838 0.293549i
\(416\) 7.38446 17.1191i 0.362053 0.839333i
\(417\) 0 0
\(418\) 6.26637 1.48516i 0.306498 0.0726414i
\(419\) 1.96491 6.56326i 0.0959921 0.320636i −0.896484 0.443077i \(-0.853887\pi\)
0.992476 + 0.122441i \(0.0390721\pi\)
\(420\) 0 0
\(421\) 14.8315 1.73356i 0.722844 0.0844883i 0.253288 0.967391i \(-0.418488\pi\)
0.469556 + 0.882903i \(0.344414\pi\)
\(422\) −2.24848 12.7517i −0.109454 0.620745i
\(423\) 0 0
\(424\) −0.00404592 + 0.0229456i −0.000196487 + 0.00111434i
\(425\) 0.252698 4.33866i 0.0122577 0.210456i
\(426\) 0 0
\(427\) 14.6776 + 34.0266i 0.710300 + 1.64666i
\(428\) −19.9174 10.0029i −0.962742 0.483507i
\(429\) 0 0
\(430\) −12.6453 2.99699i −0.609810 0.144528i
\(431\) −15.4334 + 26.7314i −0.743399 + 1.28760i 0.207540 + 0.978227i \(0.433454\pi\)
−0.950939 + 0.309378i \(0.899879\pi\)
\(432\) 0 0
\(433\) 14.3849 + 24.9154i 0.691295 + 1.19736i 0.971414 + 0.237393i \(0.0762928\pi\)
−0.280119 + 0.959965i \(0.590374\pi\)
\(434\) 5.00960 + 16.7332i 0.240469 + 0.803221i
\(435\) 0 0
\(436\) 17.5002 11.5101i 0.838107 0.551231i
\(437\) −4.90246 + 6.58514i −0.234516 + 0.315010i
\(438\) 0 0
\(439\) 3.69605 + 2.43093i 0.176403 + 0.116022i 0.634640 0.772808i \(-0.281149\pi\)
−0.458237 + 0.888830i \(0.651519\pi\)
\(440\) 16.4761 5.99681i 0.785467 0.285886i
\(441\) 0 0
\(442\) 6.64797 + 2.41966i 0.316212 + 0.115092i
\(443\) −1.59297 2.13973i −0.0756843 0.101662i 0.762669 0.646789i \(-0.223889\pi\)
−0.838353 + 0.545128i \(0.816481\pi\)
\(444\) 0 0
\(445\) −21.5541 22.8460i −1.02176 1.08300i
\(446\) −7.33725 7.77703i −0.347429 0.368253i
\(447\) 0 0
\(448\) 1.64103 + 2.20428i 0.0775313 + 0.104143i
\(449\) 39.1256 + 14.2405i 1.84645 + 0.672053i 0.986975 + 0.160874i \(0.0514312\pi\)
0.859474 + 0.511179i \(0.170791\pi\)
\(450\) 0 0
\(451\) 25.1735 9.16239i 1.18537 0.431440i
\(452\) −3.86478 2.54191i −0.181784 0.119561i
\(453\) 0 0
\(454\) −8.38482 + 11.2628i −0.393519 + 0.528588i
\(455\) −28.0056 + 18.4196i −1.31292 + 0.863522i
\(456\) 0 0
\(457\) −2.19831 7.34286i −0.102833 0.343485i 0.891053 0.453899i \(-0.149967\pi\)
−0.993886 + 0.110414i \(0.964782\pi\)
\(458\) −2.85365 4.94267i −0.133342 0.230956i
\(459\) 0 0
\(460\) −4.90183 + 8.49022i −0.228549 + 0.395858i
\(461\) 21.4489 + 5.08348i 0.998974 + 0.236761i 0.697400 0.716682i \(-0.254340\pi\)
0.301573 + 0.953443i \(0.402488\pi\)
\(462\) 0 0
\(463\) 33.2070 + 16.6772i 1.54326 + 0.775054i 0.998000 0.0632131i \(-0.0201348\pi\)
0.545260 + 0.838267i \(0.316431\pi\)
\(464\) 3.45488 + 8.00931i 0.160389 + 0.371823i
\(465\) 0 0
\(466\) −0.575459 + 9.88026i −0.0266576 + 0.457694i
\(467\) 1.44385 8.18848i 0.0668134 0.378918i −0.933005 0.359863i \(-0.882823\pi\)
0.999818 0.0190543i \(-0.00606555\pi\)
\(468\) 0 0
\(469\) 4.17380 + 23.6708i 0.192728 + 1.09302i
\(470\) 16.7092 1.95302i 0.770736 0.0900862i
\(471\) 0 0
\(472\) 7.68549 25.6713i 0.353753 1.18162i
\(473\) −22.5208 + 5.33753i −1.03551 + 0.245420i
\(474\) 0 0
\(475\) −1.71650 + 3.97929i −0.0787583 + 0.182582i
\(476\) 16.2347 13.6225i 0.744115 0.624387i
\(477\) 0 0
\(478\) 1.82923 + 1.53491i 0.0836671 + 0.0702050i
\(479\) 2.28141 1.14577i 0.104240 0.0523515i −0.395915 0.918287i \(-0.629573\pi\)
0.500155 + 0.865936i \(0.333276\pi\)
\(480\) 0 0
\(481\) 8.80773 + 1.02948i 0.401598 + 0.0469400i
\(482\) −0.880298 15.1141i −0.0400965 0.688430i
\(483\) 0 0
\(484\) −2.39649 + 2.54013i −0.108931 + 0.115460i
\(485\) 17.9763 0.816263
\(486\) 0 0
\(487\) 16.3628 0.741468 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(488\) −14.5715 + 15.4449i −0.659621 + 0.699158i
\(489\) 0 0
\(490\) −0.957764 16.4442i −0.0432674 0.742872i
\(491\) 36.2381 + 4.23562i 1.63540 + 0.191151i 0.883601 0.468240i \(-0.155112\pi\)
0.751800 + 0.659391i \(0.229186\pi\)
\(492\) 0 0
\(493\) −16.4085 + 8.24066i −0.739002 + 0.371141i
\(494\) −5.40415 4.53462i −0.243144 0.204022i
\(495\) 0 0
\(496\) 7.70901 6.46863i 0.346145 0.290450i
\(497\) −3.86563 + 8.96154i −0.173397 + 0.401980i
\(498\) 0 0
\(499\) −30.8822 + 7.31920i −1.38248 + 0.327653i −0.853548 0.521015i \(-0.825554\pi\)
−0.528927 + 0.848667i \(0.677406\pi\)
\(500\) 4.14792 13.8550i 0.185501 0.619616i
\(501\) 0 0
\(502\) −13.9084 + 1.62566i −0.620763 + 0.0725567i
\(503\) 1.04817 + 5.94449i 0.0467358 + 0.265052i 0.999218 0.0395428i \(-0.0125902\pi\)
−0.952482 + 0.304595i \(0.901479\pi\)
\(504\) 0 0
\(505\) 0.919238 5.21326i 0.0409055 0.231987i
\(506\) 0.284185 4.87927i 0.0126336 0.216910i
\(507\) 0 0
\(508\) −7.44664 17.2633i −0.330391 0.765933i
\(509\) 23.5056 + 11.8050i 1.04187 + 0.523246i 0.885590 0.464467i \(-0.153754\pi\)
0.156278 + 0.987713i \(0.450050\pi\)
\(510\) 0 0
\(511\) 18.9073 + 4.48111i 0.836409 + 0.198233i
\(512\) 8.19547 14.1950i 0.362192 0.627335i
\(513\) 0 0
\(514\) −2.57506 4.46014i −0.113581 0.196728i
\(515\) −1.48886 4.97314i −0.0656070 0.219143i
\(516\) 0 0
\(517\) 25.0321 16.4638i 1.10091 0.724079i
\(518\) −4.44052 + 5.96465i −0.195105 + 0.262072i
\(519\) 0 0
\(520\) −16.0472 10.5544i −0.703715 0.462841i
\(521\) 23.7819 8.65589i 1.04190 0.379221i 0.236301 0.971680i \(-0.424065\pi\)
0.805601 + 0.592459i \(0.201843\pi\)
\(522\) 0 0
\(523\) 2.76727 + 1.00720i 0.121004 + 0.0440420i 0.401813 0.915722i \(-0.368380\pi\)
−0.280808 + 0.959764i \(0.590603\pi\)
\(524\) 4.79271 + 6.43772i 0.209370 + 0.281233i
\(525\) 0 0
\(526\) 0.692810 + 0.734335i 0.0302079 + 0.0320185i
\(527\) 14.5372 + 15.4086i 0.633252 + 0.671207i
\(528\) 0 0
\(529\) −10.0140 13.4511i −0.435390 0.584831i
\(530\) 0.0154471 + 0.00562227i 0.000670977 + 0.000244216i
\(531\) 0 0
\(532\) −19.8585 + 7.22789i −0.860973 + 0.313369i
\(533\) −24.5181 16.1258i −1.06200 0.698487i
\(534\) 0 0
\(535\) −21.4090 + 28.7573i −0.925592 + 1.24329i
\(536\) −11.5068 + 7.56816i −0.497019 + 0.326895i
\(537\) 0 0
\(538\) −5.58403 18.6520i −0.240745 0.804143i
\(539\) −14.6681 25.4058i −0.631798 1.09431i
\(540\) 0 0
\(541\) −8.84669 + 15.3229i −0.380349 + 0.658784i −0.991112 0.133030i \(-0.957529\pi\)
0.610763 + 0.791813i \(0.290863\pi\)
\(542\) −9.37828 2.22269i −0.402832 0.0954729i
\(543\) 0 0
\(544\) 16.9439 + 8.50956i 0.726465 + 0.364844i
\(545\) −13.3450 30.9372i −0.571637 1.32520i
\(546\) 0 0
\(547\) −2.36944 + 40.6817i −0.101310 + 1.73942i 0.439467 + 0.898259i \(0.355167\pi\)
−0.540777 + 0.841166i \(0.681870\pi\)
\(548\) −0.515831 + 2.92542i −0.0220352 + 0.124968i
\(549\) 0 0
\(550\) −0.448020 2.54085i −0.0191036 0.108342i
\(551\) 18.1858 2.12562i 0.774743 0.0905545i
\(552\) 0 0
\(553\) −10.6165 + 35.4615i −0.451459 + 1.50798i
\(554\) −6.58126 + 1.55979i −0.279611 + 0.0662690i
\(555\) 0 0
\(556\) −5.79164 + 13.4265i −0.245620 + 0.569412i
\(557\) −23.1644 + 19.4372i −0.981505 + 0.823581i −0.984316 0.176415i \(-0.943550\pi\)
0.00281036 + 0.999996i \(0.499105\pi\)
\(558\) 0 0
\(559\) 19.4220 + 16.2970i 0.821465 + 0.689291i
\(560\) −14.4718 + 7.26801i −0.611545 + 0.307130i
\(561\) 0 0
\(562\) 4.61385 + 0.539281i 0.194623 + 0.0227482i
\(563\) 1.07446 + 18.4478i 0.0452831 + 0.777480i 0.942152 + 0.335185i \(0.108799\pi\)
−0.896869 + 0.442296i \(0.854164\pi\)
\(564\) 0 0
\(565\) −5.10617 + 5.41223i −0.214818 + 0.227694i
\(566\) 14.3004 0.601091
\(567\) 0 0
\(568\) −5.59232 −0.234648
\(569\) −6.17461 + 6.54471i −0.258853 + 0.274368i −0.843746 0.536742i \(-0.819655\pi\)
0.584893 + 0.811110i \(0.301136\pi\)
\(570\) 0 0
\(571\) 0.981371 + 16.8495i 0.0410691 + 0.705129i 0.954514 + 0.298167i \(0.0963751\pi\)
−0.913445 + 0.406963i \(0.866588\pi\)
\(572\) −14.9020 1.74180i −0.623086 0.0728283i
\(573\) 0 0
\(574\) 21.9907 11.0442i 0.917876 0.460974i
\(575\) 2.51954 + 2.11415i 0.105072 + 0.0881661i
\(576\) 0 0
\(577\) −24.0567 + 20.1860i −1.00149 + 0.840352i −0.987191 0.159545i \(-0.948997\pi\)
−0.0143022 + 0.999898i \(0.504553\pi\)
\(578\) 1.60351 3.71736i 0.0666974 0.154622i
\(579\) 0 0
\(580\) 21.2754 5.04235i 0.883411 0.209372i
\(581\) 4.36516 14.5807i 0.181097 0.604908i
\(582\) 0 0
\(583\) 0.0290783 0.00339876i 0.00120430 0.000140762i
\(584\) 1.93340 + 10.9648i 0.0800045 + 0.453728i
\(585\) 0 0
\(586\) 1.25491 7.11695i 0.0518399 0.293999i
\(587\) 0.0800524 1.37445i 0.00330412 0.0567295i −0.996253 0.0864861i \(-0.972436\pi\)
0.999557 + 0.0297566i \(0.00947322\pi\)
\(588\) 0 0
\(589\) −8.36676 19.3963i −0.344746 0.799212i
\(590\) −16.8950 8.48500i −0.695557 0.349322i
\(591\) 0 0
\(592\) 4.16872 + 0.988004i 0.171333 + 0.0406067i
\(593\) 15.4929 26.8346i 0.636219 1.10196i −0.350037 0.936736i \(-0.613831\pi\)
0.986256 0.165227i \(-0.0528358\pi\)
\(594\) 0 0
\(595\) −17.0449 29.5226i −0.698771 1.21031i
\(596\) −0.398250 1.33025i −0.0163129 0.0544890i
\(597\) 0 0
\(598\) −4.47322 + 2.94209i −0.182924 + 0.120311i
\(599\) −14.4819 + 19.4526i −0.591715 + 0.794812i −0.992615 0.121310i \(-0.961290\pi\)
0.400899 + 0.916122i \(0.368698\pi\)
\(600\) 0 0
\(601\) −6.33832 4.16878i −0.258545 0.170048i 0.413619 0.910450i \(-0.364265\pi\)
−0.672164 + 0.740402i \(0.734635\pi\)
\(602\) −19.9784 + 7.27154i −0.814258 + 0.296366i
\(603\) 0 0
\(604\) −11.8328 4.30678i −0.481469 0.175241i
\(605\) 3.35445 + 4.50581i 0.136378 + 0.183187i
\(606\) 0 0
\(607\) −20.5630 21.7955i −0.834627 0.884653i 0.160111 0.987099i \(-0.448815\pi\)
−0.994739 + 0.102446i \(0.967333\pi\)
\(608\) −12.9748 13.7525i −0.526199 0.557739i
\(609\) 0 0
\(610\) 8.94601 + 12.0166i 0.362214 + 0.486537i
\(611\) −30.8413 11.2253i −1.24770 0.454127i
\(612\) 0 0
\(613\) 11.4606 4.17132i 0.462890 0.168478i −0.100039 0.994984i \(-0.531897\pi\)
0.562929 + 0.826505i \(0.309675\pi\)
\(614\) 2.54115 + 1.67134i 0.102553 + 0.0674499i
\(615\) 0 0
\(616\) 17.1292 23.0085i 0.690155 0.927039i
\(617\) 13.2760 8.73179i 0.534474 0.351529i −0.253404 0.967361i \(-0.581550\pi\)
0.787878 + 0.615832i \(0.211180\pi\)
\(618\) 0 0
\(619\) −6.67055 22.2812i −0.268112 0.895556i −0.980955 0.194233i \(-0.937778\pi\)
0.712844 0.701323i \(-0.247407\pi\)
\(620\) −12.6127 21.8459i −0.506539 0.877351i
\(621\) 0 0
\(622\) −5.76686 + 9.98849i −0.231230 + 0.400502i
\(623\) −49.9994 11.8501i −2.00318 0.474763i
\(624\) 0 0
\(625\) −26.6768 13.3976i −1.06707 0.535903i
\(626\) 4.14600 + 9.61150i 0.165707 + 0.384153i
\(627\) 0 0
\(628\) −1.31474 + 22.5732i −0.0524639 + 0.900770i
\(629\) −1.56603 + 8.88139i −0.0624417 + 0.354124i
\(630\) 0 0
\(631\) 2.13182 + 12.0902i 0.0848665 + 0.481302i 0.997385 + 0.0722670i \(0.0230234\pi\)
−0.912519 + 0.409035i \(0.865866\pi\)
\(632\) −21.0671 + 2.46239i −0.838003 + 0.0979485i
\(633\) 0 0
\(634\) 3.71829 12.4199i 0.147672 0.493259i
\(635\) −29.4269 + 6.97430i −1.16777 + 0.276767i
\(636\) 0 0
\(637\) −12.7284 + 29.5079i −0.504319 + 1.16914i
\(638\) −8.35027 + 7.00671i −0.330590 + 0.277398i
\(639\) 0 0
\(640\) −21.2865 17.8615i −0.841422 0.706037i
\(641\) −8.36840 + 4.20277i −0.330532 + 0.165999i −0.606324 0.795218i \(-0.707356\pi\)
0.275791 + 0.961217i \(0.411060\pi\)
\(642\) 0 0
\(643\) 19.5316 + 2.28292i 0.770252 + 0.0900295i 0.492136 0.870518i \(-0.336216\pi\)
0.278115 + 0.960548i \(0.410290\pi\)
\(644\) 0.932563 + 16.0115i 0.0367481 + 0.630941i
\(645\) 0 0
\(646\) 4.92345 5.21855i 0.193710 0.205321i
\(647\) −14.2593 −0.560591 −0.280295 0.959914i \(-0.590432\pi\)
−0.280295 + 0.959914i \(0.590432\pi\)
\(648\) 0 0
\(649\) −33.6709 −1.32170
\(650\) −1.93952 + 2.05577i −0.0760742 + 0.0806340i
\(651\) 0 0
\(652\) 0.731843 + 12.5653i 0.0286612 + 0.492094i
\(653\) −40.5133 4.73532i −1.58541 0.185308i −0.722755 0.691105i \(-0.757124\pi\)
−0.862653 + 0.505797i \(0.831198\pi\)
\(654\) 0 0
\(655\) 11.5368 5.79398i 0.450779 0.226390i
\(656\) −10.8608 9.11326i −0.424042 0.355813i
\(657\) 0 0
\(658\) 21.0831 17.6908i 0.821905 0.689660i
\(659\) 1.02550 2.37737i 0.0399477 0.0926093i −0.897074 0.441880i \(-0.854312\pi\)
0.937022 + 0.349271i \(0.113571\pi\)
\(660\) 0 0
\(661\) 29.2233 6.92605i 1.13665 0.269392i 0.381136 0.924519i \(-0.375533\pi\)
0.755519 + 0.655127i \(0.227385\pi\)
\(662\) −4.14999 + 13.8619i −0.161294 + 0.538760i
\(663\) 0 0
\(664\) 8.66211 1.01246i 0.336155 0.0392909i
\(665\) 5.90288 + 33.4769i 0.228904 + 1.29818i
\(666\) 0 0
\(667\) 2.41300 13.6848i 0.0934318 0.529878i
\(668\) 1.53387 26.3355i 0.0593472 1.01895i
\(669\) 0 0
\(670\) 3.84867 + 8.92222i 0.148687 + 0.344695i
\(671\) 23.8426 + 11.9742i 0.920435 + 0.462260i
\(672\) 0 0
\(673\) 13.4942 + 3.19818i 0.520163 + 0.123281i 0.482307 0.876002i \(-0.339799\pi\)
0.0378561 + 0.999283i \(0.487947\pi\)
\(674\) −2.96391 + 5.13365i −0.114166 + 0.197741i
\(675\) 0 0
\(676\) −1.93907 3.35858i −0.0745798 0.129176i
\(677\) −5.74687 19.1959i −0.220870 0.737757i −0.994557 0.104190i \(-0.966775\pi\)
0.773687 0.633568i \(-0.218410\pi\)
\(678\) 0 0
\(679\) 24.5709 16.1605i 0.942943 0.620184i
\(680\) 11.6645 15.6682i 0.447314 0.600847i
\(681\) 0 0
\(682\) 10.5071 + 6.91060i 0.402336 + 0.264621i
\(683\) −29.9877 + 10.9146i −1.14745 + 0.417636i −0.844597 0.535402i \(-0.820160\pi\)
−0.302849 + 0.953039i \(0.597938\pi\)
\(684\) 0 0
\(685\) 4.49011 + 1.63426i 0.171558 + 0.0624421i
\(686\) −4.72406 6.34551i −0.180365 0.242273i
\(687\) 0 0
\(688\) 8.40577 + 8.90959i 0.320467 + 0.339675i
\(689\) −0.0220081 0.0233272i −0.000838442 0.000888696i
\(690\) 0 0
\(691\) 22.3598 + 30.0344i 0.850605 + 1.14256i 0.988366 + 0.152096i \(0.0486022\pi\)
−0.137760 + 0.990466i \(0.543990\pi\)
\(692\) 9.87198 + 3.59311i 0.375276 + 0.136589i
\(693\) 0 0
\(694\) 11.9523 4.35029i 0.453704 0.165135i
\(695\) 19.6514 + 12.9249i 0.745419 + 0.490270i
\(696\) 0 0
\(697\) 17.8220 23.9391i 0.675056 0.906757i
\(698\) 11.7996 7.76071i 0.446621 0.293747i
\(699\) 0 0
\(700\) 2.42822 + 8.11081i 0.0917780 + 0.306560i
\(701\) 11.5923 + 20.0785i 0.437836 + 0.758355i 0.997522 0.0703498i \(-0.0224116\pi\)
−0.559686 + 0.828705i \(0.689078\pi\)
\(702\) 0 0
\(703\) 4.49645 7.78807i 0.169587 0.293733i
\(704\) 1.92522 + 0.456286i 0.0725596 + 0.0171969i
\(705\) 0 0
\(706\) 8.69527 + 4.36693i 0.327251 + 0.164352i
\(707\) −3.43020 7.95210i −0.129006 0.299069i
\(708\) 0 0
\(709\) −0.289566 + 4.97166i −0.0108749 + 0.186715i 0.988496 + 0.151247i \(0.0483290\pi\)
−0.999371 + 0.0354672i \(0.988708\pi\)
\(710\) −0.685132 + 3.88558i −0.0257126 + 0.145823i
\(711\) 0 0
\(712\) −5.11277 28.9960i −0.191609 1.08667i
\(713\) −15.9234 + 1.86118i −0.596336 + 0.0697016i
\(714\) 0 0
\(715\) −6.92166 + 23.1200i −0.258855 + 0.864637i
\(716\) 23.1197 5.47947i 0.864024 0.204777i
\(717\) 0 0
\(718\) −2.80544 + 6.50373i −0.104698 + 0.242717i
\(719\) 13.4111 11.2533i 0.500151 0.419677i −0.357497 0.933914i \(-0.616370\pi\)
0.857648 + 0.514238i \(0.171925\pi\)
\(720\) 0 0
\(721\) −6.50583 5.45904i −0.242290 0.203305i
\(722\) 4.83620 2.42883i 0.179985 0.0903918i
\(723\) 0 0
\(724\) −8.69907 1.01678i −0.323299 0.0377882i
\(725\) −0.426516 7.32299i −0.0158404 0.271969i
\(726\) 0 0
\(727\) −5.51070 + 5.84100i −0.204381 + 0.216631i −0.821454 0.570275i \(-0.806837\pi\)
0.617073 + 0.786906i \(0.288318\pi\)
\(728\) −31.4223 −1.16459
\(729\) 0 0
\(730\) 7.85530 0.290738
\(731\) −17.6945 + 18.7550i −0.654453 + 0.693680i
\(732\) 0 0
\(733\) 1.74889 + 30.0273i 0.0645968 + 1.10908i 0.862420 + 0.506193i \(0.168948\pi\)
−0.797823 + 0.602891i \(0.794015\pi\)
\(734\) −2.60505 0.304486i −0.0961540 0.0112388i
\(735\) 0 0
\(736\) −12.8231 + 6.43998i −0.472664 + 0.237381i
\(737\) 13.2568 + 11.1237i 0.488319 + 0.409748i
\(738\) 0 0
\(739\) 1.84741 1.55016i 0.0679580 0.0570236i −0.608176 0.793802i \(-0.708098\pi\)
0.676134 + 0.736779i \(0.263654\pi\)
\(740\) 4.25350 9.86072i 0.156362 0.362487i
\(741\) 0 0
\(742\) 0.0261681 0.00620195i 0.000960661 0.000227681i
\(743\) −5.63906 + 18.8358i −0.206877 + 0.691018i 0.790076 + 0.613009i \(0.210041\pi\)
−0.996953 + 0.0780084i \(0.975144\pi\)
\(744\) 0 0
\(745\) −2.21850 + 0.259305i −0.0812794 + 0.00950020i
\(746\) 2.72448 + 15.4513i 0.0997503 + 0.565712i
\(747\) 0 0
\(748\) 2.64961 15.0267i 0.0968793 0.549430i
\(749\) −3.41033 + 58.5532i −0.124611 + 2.13949i
\(750\) 0 0
\(751\) −2.72090 6.30775i −0.0992869 0.230173i 0.861332 0.508043i \(-0.169631\pi\)
−0.960619 + 0.277870i \(0.910372\pi\)
\(752\) −14.1698 7.11636i −0.516721 0.259507i
\(753\) 0 0
\(754\) 11.6190 + 2.75376i 0.423140 + 0.100286i
\(755\) −10.1276 + 17.5415i −0.368580 + 0.638399i
\(756\) 0 0
\(757\) −6.50209 11.2620i −0.236323 0.409323i 0.723334 0.690499i \(-0.242609\pi\)
−0.959656 + 0.281176i \(0.909276\pi\)
\(758\) −4.93535 16.4852i −0.179260 0.598770i
\(759\) 0 0
\(760\) −16.2737 + 10.7034i −0.590311 + 0.388254i
\(761\) 10.3938 13.9613i 0.376775 0.506096i −0.572775 0.819713i \(-0.694133\pi\)
0.949550 + 0.313616i \(0.101541\pi\)
\(762\) 0 0
\(763\) −46.0527 30.2894i −1.66722 1.09655i
\(764\) −6.30756 + 2.29576i −0.228200 + 0.0830578i
\(765\) 0 0
\(766\) −18.2874 6.65607i −0.660751 0.240494i
\(767\) 22.0260 + 29.5860i 0.795312 + 1.06829i
\(768\) 0 0
\(769\) 12.7844 + 13.5507i 0.461018 + 0.488651i 0.915620 0.402044i \(-0.131700\pi\)
−0.454602 + 0.890695i \(0.650219\pi\)
\(770\) −13.8879 14.7203i −0.500486 0.530484i
\(771\) 0 0
\(772\) −2.64414 3.55170i −0.0951647 0.127828i
\(773\) −27.2264 9.90961i −0.979267 0.356424i −0.197712 0.980260i \(-0.563351\pi\)
−0.781555 + 0.623836i \(0.785573\pi\)
\(774\) 0 0
\(775\) −7.95251 + 2.89448i −0.285663 + 0.103973i
\(776\) 14.0791 + 9.25996i 0.505410 + 0.332413i
\(777\) 0 0
\(778\) 10.4675 14.0604i 0.375280 0.504088i
\(779\) −24.8643 + 16.3535i −0.890856 + 0.585925i
\(780\) 0 0
\(781\) 2.01532 + 6.73163i 0.0721138 + 0.240877i
\(782\) −2.72251 4.71553i −0.0973568 0.168627i
\(783\) 0 0
\(784\) −7.76286 + 13.4457i −0.277245 + 0.480203i
\(785\) 35.3912 + 8.38787i 1.26317 + 0.299376i
\(786\) 0 0
\(787\) −13.2388 6.64876i −0.471911 0.237003i 0.196916 0.980420i \(-0.436907\pi\)
−0.668828 + 0.743418i \(0.733204\pi\)
\(788\) 13.1507 + 30.4867i 0.468473 + 1.08604i
\(789\) 0 0
\(790\) −0.870110 + 14.9392i −0.0309571 + 0.531514i
\(791\) −2.11382 + 11.9881i −0.0751588 + 0.426247i
\(792\) 0 0
\(793\) −5.07523 28.7830i −0.180227 1.02212i
\(794\) −18.6957 + 2.18522i −0.663486 + 0.0775504i
\(795\) 0 0
\(796\) 4.36154 14.5686i 0.154591 0.516369i
\(797\) 17.1318 4.06031i 0.606840 0.143824i 0.0843026 0.996440i \(-0.473134\pi\)
0.522537 + 0.852617i \(0.324986\pi\)
\(798\) 0 0
\(799\) 13.2205 30.6486i 0.467708 1.08427i
\(800\) −5.80261 + 4.86896i −0.205153 + 0.172144i
\(801\) 0 0
\(802\) 7.20573 + 6.04632i 0.254443 + 0.213503i
\(803\) 12.5019 6.27871i 0.441184 0.221571i
\(804\) 0 0
\(805\) 25.6244 + 2.99507i 0.903143 + 0.105562i
\(806\) −0.801018 13.7529i −0.0282146 0.484427i
\(807\) 0 0
\(808\) 3.40540 3.60951i 0.119802 0.126982i
\(809\) −13.3577 −0.469632 −0.234816 0.972040i \(-0.575449\pi\)
−0.234816 + 0.972040i \(0.575449\pi\)
\(810\) 0 0
\(811\) 13.6700 0.480017 0.240009 0.970771i \(-0.422850\pi\)
0.240009 + 0.970771i \(0.422850\pi\)
\(812\) 24.5471 26.0184i 0.861434 0.913067i
\(813\) 0 0
\(814\) 0.311299 + 5.34479i 0.0109110 + 0.187335i
\(815\) 20.1092 + 2.35042i 0.704393 + 0.0823318i
\(816\) 0 0
\(817\) 22.9768 11.5394i 0.803856 0.403711i
\(818\) −1.57767 1.32382i −0.0551619 0.0462863i
\(819\) 0 0
\(820\) −27.2241 + 22.8438i −0.950708 + 0.797739i
\(821\) 3.97678 9.21922i 0.138791 0.321753i −0.834618 0.550830i \(-0.814311\pi\)
0.973408 + 0.229077i \(0.0735707\pi\)
\(822\) 0 0
\(823\) −29.4335 + 6.97586i −1.02599 + 0.243163i −0.708956 0.705252i \(-0.750834\pi\)
−0.317030 + 0.948416i \(0.602686\pi\)
\(824\) 1.39568 4.66191i 0.0486209 0.162405i
\(825\) 0 0
\(826\) −30.7208 + 3.59075i −1.06891 + 0.124938i
\(827\) −8.16805 46.3233i −0.284031 1.61082i −0.708726 0.705483i \(-0.750730\pi\)
0.424695 0.905336i \(-0.360381\pi\)
\(828\) 0 0
\(829\) −0.608907 + 3.45328i −0.0211482 + 0.119938i −0.993554 0.113357i \(-0.963840\pi\)
0.972406 + 0.233295i \(0.0749507\pi\)
\(830\) 0.357762 6.14253i 0.0124181 0.213210i
\(831\) 0 0
\(832\) −0.858462 1.99014i −0.0297618 0.0689956i
\(833\) −29.2059 14.6678i −1.01193 0.508208i
\(834\) 0 0
\(835\) −41.2899 9.78589i −1.42890 0.338655i
\(836\) −7.60767 + 13.1769i −0.263117 + 0.455731i
\(837\) 0 0
\(838\) −2.26555 3.92405i −0.0782622 0.135554i
\(839\) −10.5586 35.2680i −0.364522 1.21759i −0.921932 0.387351i \(-0.873390\pi\)
0.557411 0.830237i \(-0.311795\pi\)
\(840\) 0 0
\(841\) −1.66393 + 1.09438i −0.0573768 + 0.0377373i
\(842\) 5.89749 7.92171i 0.203241 0.273000i
\(843\) 0 0
\(844\) 25.5598 + 16.8109i 0.879803 + 0.578656i
\(845\) −5.86198 + 2.13359i −0.201658 + 0.0733976i
\(846\) 0 0
\(847\) 8.63568 + 3.14313i 0.296725 + 0.107999i
\(848\) −0.00925240 0.0124281i −0.000317729 0.000426784i
\(849\) 0 0
\(850\) −1.97248 2.09071i −0.0676556 0.0717108i
\(851\) −4.68365 4.96437i −0.160553 0.170177i
\(852\) 0 0
\(853\) −22.0417 29.6072i −0.754694 1.01373i −0.999030 0.0440391i \(-0.985977\pi\)
0.244336 0.969691i \(-0.421430\pi\)
\(854\) 23.0306 + 8.38245i 0.788090 + 0.286841i
\(855\) 0 0
\(856\) −31.5810 + 11.4945i −1.07942 + 0.392875i
\(857\) −25.1496 16.5412i −0.859095 0.565035i 0.0417741 0.999127i \(-0.486699\pi\)
−0.900869 + 0.434092i \(0.857069\pi\)
\(858\) 0 0
\(859\) −11.6131 + 15.5991i −0.396233 + 0.532233i −0.954809 0.297220i \(-0.903940\pi\)
0.558576 + 0.829453i \(0.311348\pi\)
\(860\) 25.6528 16.8721i 0.874752 0.575334i
\(861\) 0 0
\(862\) 5.85491 + 19.5568i 0.199419 + 0.666106i
\(863\) 14.3566 + 24.8664i 0.488706 + 0.846463i 0.999916 0.0129930i \(-0.00413590\pi\)
−0.511210 + 0.859456i \(0.670803\pi\)
\(864\) 0 0
\(865\) 8.44932 14.6347i 0.287286 0.497593i
\(866\) 18.5147 + 4.38806i 0.629154 + 0.149112i
\(867\) 0 0
\(868\) −36.8788 18.5212i −1.25175 0.628651i
\(869\) 10.5560 + 24.4717i 0.358089 + 0.830144i
\(870\) 0 0
\(871\) 1.10226 18.9251i 0.0373487 0.641252i
\(872\) 5.48453 31.1043i 0.185730 1.05333i
\(873\) 0 0
\(874\) 0.942844 + 5.34714i 0.0318922 + 0.180870i
\(875\) −37.8018 + 4.41840i −1.27794 + 0.149369i
\(876\) 0 0
\(877\) 5.48485 18.3207i 0.185210 0.618646i −0.814072 0.580764i \(-0.802754\pi\)
0.999282 0.0378815i \(-0.0120609\pi\)
\(878\) 2.84692 0.674733i 0.0960790 0.0227711i
\(879\) 0 0
\(880\) −4.61815 + 10.7061i −0.155678 + 0.360902i
\(881\) 35.7695 30.0142i 1.20510 1.01120i 0.205635 0.978629i \(-0.434074\pi\)
0.999469 0.0325741i \(-0.0103705\pi\)
\(882\) 0 0
\(883\) −10.7311 9.00449i −0.361131 0.303025i 0.444110 0.895972i \(-0.353520\pi\)
−0.805241 + 0.592947i \(0.797964\pi\)
\(884\) −14.9369 + 7.50160i −0.502383 + 0.252306i
\(885\) 0 0
\(886\) −1.75233 0.204819i −0.0588708 0.00688101i
\(887\) 0.602791 + 10.3495i 0.0202397 + 0.347503i 0.993191 + 0.116494i \(0.0371656\pi\)
−0.972952 + 0.231009i \(0.925797\pi\)
\(888\) 0 0
\(889\) −33.9522 + 35.9872i −1.13872 + 1.20697i
\(890\) −20.7730 −0.696312
\(891\) 0 0
\(892\) 25.2612 0.845809
\(893\) −22.8409 + 24.2099i −0.764341 + 0.810154i
\(894\) 0 0
\(895\) −2.22226 38.1547i −0.0742818 1.27537i
\(896\) −45.1526 5.27758i −1.50844 0.176312i
\(897\) 0 0
\(898\) 24.6082 12.3587i 0.821186 0.412415i
\(899\) 27.3900 + 22.9829i 0.913508 + 0.766524i
\(900\) 0 0
\(901\) 0.0249850 0.0209649i 0.000832370 0.000698441i
\(902\) 7.01755 16.2685i 0.233659 0.541682i
\(903\) 0 0
\(904\) −6.78711 + 1.60857i −0.225736 + 0.0535004i
\(905\) −4.04052 + 13.4963i −0.134311 + 0.448631i
\(906\) 0 0
\(907\) 35.7230 4.17542i 1.18616 0.138643i 0.499957 0.866050i \(-0.333349\pi\)
0.686206 + 0.727408i \(0.259275\pi\)
\(908\) −5.76067 32.6704i −0.191174 1.08420i
\(909\) 0 0
\(910\) −3.84964 + 21.8324i −0.127614 + 0.723737i
\(911\) 0.369861 6.35027i 0.0122541 0.210394i −0.986623 0.163018i \(-0.947877\pi\)
0.998877 0.0473759i \(-0.0150858\pi\)
\(912\) 0 0
\(913\) −4.34031 10.0620i −0.143643 0.333003i
\(914\) −4.53012 2.27511i −0.149843 0.0752540i
\(915\) 0 0
\(916\) 13.1209 + 3.10970i 0.433525 + 0.102747i
\(917\) 10.5602 18.2909i 0.348730 0.604018i
\(918\) 0 0
\(919\) 23.2884 + 40.3367i 0.768213 + 1.33058i 0.938531 + 0.345194i \(0.112187\pi\)
−0.170318 + 0.985389i \(0.554480\pi\)
\(920\) 4.23974 + 14.1617i 0.139780 + 0.466898i
\(921\) 0 0
\(922\) 12.1803 8.01110i 0.401136 0.263832i
\(923\) 4.59663 6.17434i 0.151300 0.203231i
\(924\) 0 0
\(925\) −3.01012 1.97979i −0.0989721 0.0650950i
\(926\) 23.0942 8.40558i 0.758921 0.276225i
\(927\) 0 0
\(928\) 30.0728 + 10.9456i 0.987189 + 0.359307i
\(929\) −26.8152 36.0191i −0.879779 1.18175i −0.982355 0.187024i \(-0.940116\pi\)
0.102576 0.994725i \(-0.467292\pi\)
\(930\) 0 0
\(931\) 22.3645 + 23.7050i 0.732966 + 0.776899i
\(932\) −16.0465 17.0083i −0.525619 0.557124i
\(933\) 0 0
\(934\) −3.28388 4.41101i −0.107452 0.144333i
\(935\) −23.0638 8.39454i −0.754267 0.274531i
\(936\) 0 0
\(937\) −48.3251 + 17.5889i −1.57871 + 0.574605i −0.974924 0.222539i \(-0.928565\pi\)
−0.603790 + 0.797144i \(0.706343\pi\)
\(938\) 13.2815 + 8.73538i 0.433656 + 0.285220i
\(939\) 0 0
\(940\) −23.7350 + 31.8817i −0.774151 + 1.03987i
\(941\) −8.71156 + 5.72969i −0.283989 + 0.186782i −0.683509 0.729942i \(-0.739547\pi\)
0.399520 + 0.916724i \(0.369177\pi\)
\(942\) 0 0
\(943\) 6.47780 + 21.6374i 0.210946 + 0.704610i
\(944\) 8.90994 + 15.4325i 0.289994 + 0.502284i
\(945\) 0 0
\(946\) −7.65361 + 13.2564i −0.248840 + 0.431004i
\(947\) 43.9305 + 10.4117i 1.42755 + 0.338335i 0.870510 0.492151i \(-0.163789\pi\)
0.557039 + 0.830486i \(0.311937\pi\)
\(948\) 0 0
\(949\) −13.6952 6.87797i −0.444564 0.223268i
\(950\) 1.13524 + 2.63179i 0.0368322 + 0.0853865i
\(951\) 0 0
\(952\) 1.85809 31.9022i 0.0602212 1.03396i
\(953\) 5.08752 28.8527i 0.164801 0.934632i −0.784469 0.620168i \(-0.787064\pi\)
0.949270 0.314463i \(-0.101825\pi\)
\(954\) 0 0
\(955\) 1.87491 + 10.6331i 0.0606705 + 0.344080i
\(956\) −5.60359 + 0.654966i −0.181233 + 0.0211831i
\(957\) 0 0
\(958\) 0.484256 1.61753i 0.0156456 0.0522599i
\(959\) 7.60646 1.80276i 0.245626 0.0582143i
\(960\) 0 0
\(961\) 4.06014 9.41246i 0.130972 0.303628i
\(962\) 4.49273 3.76985i 0.144851 0.121545i
\(963\) 0 0
\(964\) 27.4013 + 22.9924i 0.882536 + 0.740536i
\(965\) −6.36484 + 3.19654i −0.204891 + 0.102900i
\(966\) 0 0
\(967\) −46.5693 5.44317i −1.49757 0.175041i −0.672510 0.740088i \(-0.734784\pi\)
−0.825059 + 0.565047i \(0.808858\pi\)
\(968\) 0.306179 + 5.25690i 0.00984098 + 0.168963i
\(969\) 0 0
\(970\) 8.15876 8.64778i 0.261962 0.277663i
\(971\) 45.6691 1.46559 0.732795 0.680449i \(-0.238215\pi\)
0.732795 + 0.680449i \(0.238215\pi\)
\(972\) 0 0
\(973\) 38.4797 1.23360
\(974\) 7.42643 7.87155i 0.237958 0.252221i
\(975\) 0 0
\(976\) −0.821024 14.0964i −0.0262803 0.451216i
\(977\) 1.23134 + 0.143923i 0.0393940 + 0.00460450i 0.135767 0.990741i \(-0.456650\pi\)
−0.0963731 + 0.995345i \(0.530724\pi\)
\(978\) 0 0
\(979\) −33.0608 + 16.6037i −1.05663 + 0.530658i
\(980\) 29.8126 + 25.0157i 0.952329 + 0.799099i
\(981\) 0 0
\(982\) 18.4847 15.5105i 0.589869 0.494959i
\(983\) −14.4907 + 33.5933i −0.462183 + 1.07146i 0.514639 + 0.857407i \(0.327926\pi\)
−0.976822 + 0.214054i \(0.931333\pi\)
\(984\) 0 0
\(985\) 51.9675 12.3165i 1.65582 0.392437i
\(986\) −3.48289 + 11.6337i −0.110918 + 0.370491i
\(987\) 0 0
\(988\) 16.5548 1.93498i 0.526680 0.0615600i
\(989\) −3.38850 19.2172i −0.107748 0.611070i
\(990\) 0 0
\(991\) −7.21791 + 40.9348i −0.229285 + 1.30034i 0.625038 + 0.780594i \(0.285083\pi\)
−0.854323 + 0.519743i \(0.826028\pi\)
\(992\) 2.14681 36.8594i 0.0681614 1.17029i
\(993\) 0 0
\(994\) 2.55662 + 5.92691i 0.0810910 + 0.187990i
\(995\) −21.8599 10.9785i −0.693007 0.348041i
\(996\) 0 0
\(997\) 20.5929 + 4.88061i 0.652185 + 0.154571i 0.543372 0.839492i \(-0.317147\pi\)
0.108812 + 0.994062i \(0.465295\pi\)
\(998\) −10.4952 + 18.1782i −0.332220 + 0.575421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.622.5 144
3.2 odd 2 729.2.g.a.622.4 144
9.2 odd 6 243.2.g.a.208.5 144
9.4 even 3 729.2.g.c.379.5 144
9.5 odd 6 729.2.g.b.379.4 144
9.7 even 3 81.2.g.a.16.4 144
81.5 odd 54 729.2.g.b.352.4 144
81.22 even 27 inner 729.2.g.d.109.5 144
81.32 odd 54 243.2.g.a.118.5 144
81.34 even 27 6561.2.a.c.1.31 72
81.47 odd 54 6561.2.a.d.1.42 72
81.49 even 27 81.2.g.a.76.4 yes 144
81.59 odd 54 729.2.g.a.109.4 144
81.76 even 27 729.2.g.c.352.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.4 144 9.7 even 3
81.2.g.a.76.4 yes 144 81.49 even 27
243.2.g.a.118.5 144 81.32 odd 54
243.2.g.a.208.5 144 9.2 odd 6
729.2.g.a.109.4 144 81.59 odd 54
729.2.g.a.622.4 144 3.2 odd 2
729.2.g.b.352.4 144 81.5 odd 54
729.2.g.b.379.4 144 9.5 odd 6
729.2.g.c.352.5 144 81.76 even 27
729.2.g.c.379.5 144 9.4 even 3
729.2.g.d.109.5 144 81.22 even 27 inner
729.2.g.d.622.5 144 1.1 even 1 trivial
6561.2.a.c.1.31 72 81.34 even 27
6561.2.a.d.1.42 72 81.47 odd 54