Properties

Label 729.2.g.d.514.3
Level $729$
Weight $2$
Character 729.514
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 514.3
Character \(\chi\) \(=\) 729.514
Dual form 729.2.g.d.217.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0484354 - 0.831603i) q^{2} +(1.29726 - 0.151628i) q^{4} +(-1.17364 - 0.278158i) q^{5} +(-0.785201 + 1.05471i) q^{7} +(-0.478230 - 2.71217i) q^{8} +(-0.174471 + 0.989477i) q^{10} +(-1.49146 - 1.58086i) q^{11} +(4.07045 - 2.04426i) q^{13} +(0.915130 + 0.601890i) q^{14} +(0.309479 - 0.0733479i) q^{16} +(3.54217 - 1.28924i) q^{17} +(-2.50517 - 0.911807i) q^{19} +(-1.56469 - 0.182886i) q^{20} +(-1.24241 + 1.31687i) q^{22} +(-3.60284 - 4.83945i) q^{23} +(-3.16810 - 1.59108i) q^{25} +(-1.89717 - 3.28599i) q^{26} +(-0.858686 + 1.48729i) q^{28} +(3.47381 - 2.28476i) q^{29} +(2.95363 - 6.84728i) q^{31} +(-1.65571 - 5.53044i) q^{32} +(-1.24371 - 2.88323i) q^{34} +(1.21492 - 1.01944i) q^{35} +(7.47819 + 6.27494i) q^{37} +(-0.636923 + 2.12747i) q^{38} +(-0.193143 + 3.31614i) q^{40} +(-0.336547 + 5.77829i) q^{41} +(1.44983 - 4.84276i) q^{43} +(-2.17451 - 1.82463i) q^{44} +(-3.85000 + 3.23053i) q^{46} +(-1.18743 - 2.75276i) q^{47} +(1.51175 + 5.04961i) q^{49} +(-1.16970 + 2.71167i) q^{50} +(4.97047 - 3.26913i) q^{52} +(-6.22987 + 10.7905i) q^{53} +(1.31071 + 2.27022i) q^{55} +(3.23606 + 1.62521i) q^{56} +(-2.06827 - 2.77817i) q^{58} +(7.48542 - 7.93408i) q^{59} +(-11.7134 - 1.36910i) q^{61} +(-5.83728 - 2.12460i) q^{62} +(-3.92120 + 1.42720i) q^{64} +(-5.34588 + 1.26700i) q^{65} +(0.693545 + 0.456152i) q^{67} +(4.39962 - 2.20957i) q^{68} +(-0.906613 - 0.960954i) q^{70} +(1.25916 - 7.14107i) q^{71} +(-1.41006 - 7.99685i) q^{73} +(4.85605 - 6.52281i) q^{74} +(-3.38811 - 0.802996i) q^{76} +(2.83844 - 0.331766i) q^{77} +(0.668640 + 11.4801i) q^{79} -0.383620 q^{80} +4.82155 q^{82} +(0.277632 + 4.76675i) q^{83} +(-4.51585 + 0.527827i) q^{85} +(-4.09748 - 0.971120i) q^{86} +(-3.57430 + 4.80112i) q^{88} +(0.578632 + 3.28158i) q^{89} +(-1.04003 + 5.89829i) q^{91} +(-5.40761 - 5.73174i) q^{92} +(-2.23169 + 1.12080i) q^{94} +(2.68654 + 1.76697i) q^{95} +(1.32651 - 0.314388i) q^{97} +(4.12605 - 1.50176i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0484354 0.831603i −0.0342490 0.588032i −0.971155 0.238450i \(-0.923361\pi\)
0.936906 0.349582i \(-0.113676\pi\)
\(3\) 0 0
\(4\) 1.29726 0.151628i 0.648629 0.0758139i
\(5\) −1.17364 0.278158i −0.524868 0.124396i −0.0403642 0.999185i \(-0.512852\pi\)
−0.484504 + 0.874789i \(0.661000\pi\)
\(6\) 0 0
\(7\) −0.785201 + 1.05471i −0.296778 + 0.398642i −0.925353 0.379107i \(-0.876231\pi\)
0.628575 + 0.777749i \(0.283639\pi\)
\(8\) −0.478230 2.71217i −0.169080 0.958899i
\(9\) 0 0
\(10\) −0.174471 + 0.989477i −0.0551727 + 0.312900i
\(11\) −1.49146 1.58086i −0.449693 0.476646i 0.462376 0.886684i \(-0.346997\pi\)
−0.912069 + 0.410038i \(0.865516\pi\)
\(12\) 0 0
\(13\) 4.07045 2.04426i 1.12894 0.566975i 0.216540 0.976274i \(-0.430523\pi\)
0.912401 + 0.409298i \(0.134226\pi\)
\(14\) 0.915130 + 0.601890i 0.244579 + 0.160862i
\(15\) 0 0
\(16\) 0.309479 0.0733479i 0.0773698 0.0183370i
\(17\) 3.54217 1.28924i 0.859102 0.312688i 0.125356 0.992112i \(-0.459993\pi\)
0.733746 + 0.679424i \(0.237770\pi\)
\(18\) 0 0
\(19\) −2.50517 0.911807i −0.574725 0.209183i 0.0382728 0.999267i \(-0.487814\pi\)
−0.612998 + 0.790084i \(0.710037\pi\)
\(20\) −1.56469 0.182886i −0.349876 0.0408947i
\(21\) 0 0
\(22\) −1.24241 + 1.31687i −0.264882 + 0.280758i
\(23\) −3.60284 4.83945i −0.751244 1.00910i −0.999187 0.0403213i \(-0.987162\pi\)
0.247943 0.968775i \(-0.420246\pi\)
\(24\) 0 0
\(25\) −3.16810 1.59108i −0.633620 0.318216i
\(26\) −1.89717 3.28599i −0.372065 0.644435i
\(27\) 0 0
\(28\) −0.858686 + 1.48729i −0.162276 + 0.281071i
\(29\) 3.47381 2.28476i 0.645070 0.424269i −0.184376 0.982856i \(-0.559026\pi\)
0.829446 + 0.558587i \(0.188656\pi\)
\(30\) 0 0
\(31\) 2.95363 6.84728i 0.530488 1.22981i −0.416675 0.909055i \(-0.636805\pi\)
0.947163 0.320753i \(-0.103936\pi\)
\(32\) −1.65571 5.53044i −0.292690 0.977654i
\(33\) 0 0
\(34\) −1.24371 2.88323i −0.213294 0.494470i
\(35\) 1.21492 1.01944i 0.205359 0.172317i
\(36\) 0 0
\(37\) 7.47819 + 6.27494i 1.22941 + 1.03159i 0.998277 + 0.0586711i \(0.0186863\pi\)
0.231129 + 0.972923i \(0.425758\pi\)
\(38\) −0.636923 + 2.12747i −0.103322 + 0.345121i
\(39\) 0 0
\(40\) −0.193143 + 3.31614i −0.0305387 + 0.524328i
\(41\) −0.336547 + 5.77829i −0.0525599 + 0.902418i 0.864242 + 0.503076i \(0.167798\pi\)
−0.916802 + 0.399342i \(0.869239\pi\)
\(42\) 0 0
\(43\) 1.44983 4.84276i 0.221097 0.738514i −0.773416 0.633899i \(-0.781454\pi\)
0.994513 0.104616i \(-0.0333612\pi\)
\(44\) −2.17451 1.82463i −0.327820 0.275074i
\(45\) 0 0
\(46\) −3.85000 + 3.23053i −0.567652 + 0.476316i
\(47\) −1.18743 2.75276i −0.173204 0.401531i 0.809397 0.587262i \(-0.199794\pi\)
−0.982601 + 0.185730i \(0.940535\pi\)
\(48\) 0 0
\(49\) 1.51175 + 5.04961i 0.215965 + 0.721373i
\(50\) −1.16970 + 2.71167i −0.165420 + 0.383488i
\(51\) 0 0
\(52\) 4.97047 3.26913i 0.689280 0.453346i
\(53\) −6.22987 + 10.7905i −0.855739 + 1.48218i 0.0202187 + 0.999796i \(0.493564\pi\)
−0.875958 + 0.482388i \(0.839770\pi\)
\(54\) 0 0
\(55\) 1.31071 + 2.27022i 0.176737 + 0.306117i
\(56\) 3.23606 + 1.62521i 0.432436 + 0.217178i
\(57\) 0 0
\(58\) −2.06827 2.77817i −0.271577 0.364791i
\(59\) 7.48542 7.93408i 0.974518 1.03293i −0.0249289 0.999689i \(-0.507936\pi\)
0.999447 0.0332400i \(-0.0105826\pi\)
\(60\) 0 0
\(61\) −11.7134 1.36910i −1.49975 0.175295i −0.673746 0.738963i \(-0.735316\pi\)
−0.826001 + 0.563668i \(0.809390\pi\)
\(62\) −5.83728 2.12460i −0.741336 0.269824i
\(63\) 0 0
\(64\) −3.92120 + 1.42720i −0.490150 + 0.178400i
\(65\) −5.34588 + 1.26700i −0.663075 + 0.157152i
\(66\) 0 0
\(67\) 0.693545 + 0.456152i 0.0847300 + 0.0557278i 0.591167 0.806549i \(-0.298667\pi\)
−0.506437 + 0.862277i \(0.669038\pi\)
\(68\) 4.39962 2.20957i 0.533533 0.267950i
\(69\) 0 0
\(70\) −0.906613 0.960954i −0.108361 0.114856i
\(71\) 1.25916 7.14107i 0.149435 0.847489i −0.814263 0.580496i \(-0.802859\pi\)
0.963698 0.266993i \(-0.0860301\pi\)
\(72\) 0 0
\(73\) −1.41006 7.99685i −0.165035 0.935960i −0.949028 0.315191i \(-0.897931\pi\)
0.783993 0.620769i \(-0.213180\pi\)
\(74\) 4.85605 6.52281i 0.564505 0.758261i
\(75\) 0 0
\(76\) −3.38811 0.802996i −0.388643 0.0921100i
\(77\) 2.83844 0.331766i 0.323470 0.0378082i
\(78\) 0 0
\(79\) 0.668640 + 11.4801i 0.0752278 + 1.29161i 0.798898 + 0.601466i \(0.205417\pi\)
−0.723670 + 0.690146i \(0.757546\pi\)
\(80\) −0.383620 −0.0428900
\(81\) 0 0
\(82\) 4.82155 0.532451
\(83\) 0.277632 + 4.76675i 0.0304740 + 0.523219i 0.978658 + 0.205497i \(0.0658810\pi\)
−0.948184 + 0.317722i \(0.897082\pi\)
\(84\) 0 0
\(85\) −4.51585 + 0.527827i −0.489813 + 0.0572509i
\(86\) −4.09748 0.971120i −0.441842 0.104719i
\(87\) 0 0
\(88\) −3.57430 + 4.80112i −0.381022 + 0.511801i
\(89\) 0.578632 + 3.28158i 0.0613348 + 0.347847i 0.999995 + 0.00300484i \(0.000956472\pi\)
−0.938661 + 0.344842i \(0.887932\pi\)
\(90\) 0 0
\(91\) −1.04003 + 5.89829i −0.109025 + 0.618309i
\(92\) −5.40761 5.73174i −0.563783 0.597575i
\(93\) 0 0
\(94\) −2.23169 + 1.12080i −0.230181 + 0.115601i
\(95\) 2.68654 + 1.76697i 0.275634 + 0.181287i
\(96\) 0 0
\(97\) 1.32651 0.314388i 0.134686 0.0319212i −0.162720 0.986672i \(-0.552027\pi\)
0.297406 + 0.954751i \(0.403879\pi\)
\(98\) 4.12605 1.50176i 0.416794 0.151701i
\(99\) 0 0
\(100\) −4.35110 1.58367i −0.435110 0.158367i
\(101\) −2.29919 0.268737i −0.228778 0.0267403i 0.000931520 1.00000i \(-0.499703\pi\)
−0.229709 + 0.973259i \(0.573778\pi\)
\(102\) 0 0
\(103\) −3.12210 + 3.30923i −0.307629 + 0.326068i −0.862682 0.505747i \(-0.831217\pi\)
0.555052 + 0.831815i \(0.312698\pi\)
\(104\) −7.49100 10.0622i −0.734553 0.986676i
\(105\) 0 0
\(106\) 9.27513 + 4.65814i 0.900880 + 0.452439i
\(107\) 6.14665 + 10.6463i 0.594219 + 1.02922i 0.993657 + 0.112457i \(0.0358721\pi\)
−0.399438 + 0.916760i \(0.630795\pi\)
\(108\) 0 0
\(109\) 4.45327 7.71330i 0.426546 0.738800i −0.570017 0.821633i \(-0.693063\pi\)
0.996563 + 0.0828329i \(0.0263968\pi\)
\(110\) 1.82444 1.19995i 0.173953 0.114411i
\(111\) 0 0
\(112\) −0.165643 + 0.384003i −0.0156518 + 0.0362849i
\(113\) 4.98772 + 16.6601i 0.469205 + 1.56725i 0.785667 + 0.618649i \(0.212320\pi\)
−0.316462 + 0.948605i \(0.602495\pi\)
\(114\) 0 0
\(115\) 2.88231 + 6.68194i 0.268777 + 0.623095i
\(116\) 4.16000 3.49065i 0.386246 0.324099i
\(117\) 0 0
\(118\) −6.96056 5.84061i −0.640772 0.537671i
\(119\) −1.42154 + 4.74827i −0.130312 + 0.435273i
\(120\) 0 0
\(121\) 0.364942 6.26581i 0.0331765 0.569619i
\(122\) −0.571205 + 9.80721i −0.0517145 + 0.887903i
\(123\) 0 0
\(124\) 2.79338 9.33055i 0.250853 0.837908i
\(125\) 7.89548 + 6.62509i 0.706193 + 0.592566i
\(126\) 0 0
\(127\) 4.35255 3.65222i 0.386226 0.324082i −0.428915 0.903345i \(-0.641104\pi\)
0.815141 + 0.579263i \(0.196660\pi\)
\(128\) −3.19633 7.40992i −0.282518 0.654950i
\(129\) 0 0
\(130\) 1.31257 + 4.38428i 0.115120 + 0.384527i
\(131\) −7.73087 + 17.9222i −0.675449 + 1.56587i 0.142000 + 0.989867i \(0.454647\pi\)
−0.817449 + 0.576001i \(0.804612\pi\)
\(132\) 0 0
\(133\) 2.92875 1.92627i 0.253955 0.167029i
\(134\) 0.345745 0.598848i 0.0298678 0.0517326i
\(135\) 0 0
\(136\) −5.19062 8.99042i −0.445092 0.770922i
\(137\) 14.1679 + 7.11536i 1.21044 + 0.607907i 0.935422 0.353532i \(-0.115020\pi\)
0.275019 + 0.961439i \(0.411316\pi\)
\(138\) 0 0
\(139\) −6.23388 8.37355i −0.528751 0.710236i 0.454855 0.890565i \(-0.349691\pi\)
−0.983606 + 0.180330i \(0.942284\pi\)
\(140\) 1.42149 1.50669i 0.120138 0.127339i
\(141\) 0 0
\(142\) −5.99952 0.701243i −0.503469 0.0588470i
\(143\) −9.30261 3.38587i −0.777923 0.283141i
\(144\) 0 0
\(145\) −4.71253 + 1.71522i −0.391354 + 0.142441i
\(146\) −6.58191 + 1.55994i −0.544722 + 0.129102i
\(147\) 0 0
\(148\) 10.6526 + 7.00632i 0.875638 + 0.575916i
\(149\) −2.60504 + 1.30830i −0.213413 + 0.107180i −0.552295 0.833649i \(-0.686248\pi\)
0.338882 + 0.940829i \(0.389951\pi\)
\(150\) 0 0
\(151\) 8.75633 + 9.28117i 0.712580 + 0.755291i 0.977946 0.208857i \(-0.0669743\pi\)
−0.265366 + 0.964148i \(0.585493\pi\)
\(152\) −1.27493 + 7.23051i −0.103411 + 0.586472i
\(153\) 0 0
\(154\) −0.413378 2.34439i −0.0333110 0.188916i
\(155\) −5.37113 + 7.21468i −0.431420 + 0.579497i
\(156\) 0 0
\(157\) −1.23639 0.293029i −0.0986743 0.0233862i 0.180982 0.983486i \(-0.442072\pi\)
−0.279656 + 0.960100i \(0.590221\pi\)
\(158\) 9.51450 1.11209i 0.756933 0.0884728i
\(159\) 0 0
\(160\) 0.404868 + 6.95131i 0.0320076 + 0.549549i
\(161\) 7.93316 0.625221
\(162\) 0 0
\(163\) 12.3636 0.968391 0.484195 0.874960i \(-0.339112\pi\)
0.484195 + 0.874960i \(0.339112\pi\)
\(164\) 0.439561 + 7.54697i 0.0343240 + 0.589320i
\(165\) 0 0
\(166\) 3.95060 0.461759i 0.306626 0.0358394i
\(167\) 3.71075 + 0.879464i 0.287146 + 0.0680550i 0.371665 0.928367i \(-0.378787\pi\)
−0.0845184 + 0.996422i \(0.526935\pi\)
\(168\) 0 0
\(169\) 4.62654 6.21452i 0.355888 0.478040i
\(170\) 0.657669 + 3.72983i 0.0504409 + 0.286065i
\(171\) 0 0
\(172\) 1.14650 6.50215i 0.0874201 0.495784i
\(173\) 16.5179 + 17.5080i 1.25584 + 1.33111i 0.921364 + 0.388702i \(0.127076\pi\)
0.334471 + 0.942406i \(0.391442\pi\)
\(174\) 0 0
\(175\) 4.16572 2.09210i 0.314899 0.158148i
\(176\) −0.577529 0.379847i −0.0435329 0.0286320i
\(177\) 0 0
\(178\) 2.70095 0.640136i 0.202445 0.0479803i
\(179\) 5.95691 2.16814i 0.445240 0.162054i −0.109664 0.993969i \(-0.534977\pi\)
0.554904 + 0.831915i \(0.312755\pi\)
\(180\) 0 0
\(181\) −5.82014 2.11836i −0.432608 0.157456i 0.116532 0.993187i \(-0.462822\pi\)
−0.549140 + 0.835731i \(0.685045\pi\)
\(182\) 4.95541 + 0.579205i 0.367320 + 0.0429335i
\(183\) 0 0
\(184\) −11.4025 + 12.0859i −0.840601 + 0.890985i
\(185\) −7.03128 9.44465i −0.516950 0.694385i
\(186\) 0 0
\(187\) −7.32112 3.67680i −0.535373 0.268875i
\(188\) −1.95779 3.39100i −0.142787 0.247314i
\(189\) 0 0
\(190\) 1.33929 2.31972i 0.0971625 0.168290i
\(191\) −5.64176 + 3.71064i −0.408223 + 0.268493i −0.736970 0.675925i \(-0.763744\pi\)
0.328747 + 0.944418i \(0.393374\pi\)
\(192\) 0 0
\(193\) −6.30224 + 14.6102i −0.453645 + 1.05167i 0.525918 + 0.850535i \(0.323722\pi\)
−0.979564 + 0.201133i \(0.935538\pi\)
\(194\) −0.325696 1.08790i −0.0233836 0.0781066i
\(195\) 0 0
\(196\) 2.72680 + 6.32143i 0.194771 + 0.451531i
\(197\) −8.88023 + 7.45140i −0.632690 + 0.530890i −0.901764 0.432229i \(-0.857727\pi\)
0.269073 + 0.963120i \(0.413283\pi\)
\(198\) 0 0
\(199\) 3.29385 + 2.76387i 0.233495 + 0.195925i 0.752026 0.659133i \(-0.229077\pi\)
−0.518531 + 0.855059i \(0.673521\pi\)
\(200\) −2.80021 + 9.35334i −0.198005 + 0.661381i
\(201\) 0 0
\(202\) −0.112120 + 1.92503i −0.00788875 + 0.135445i
\(203\) −0.317883 + 5.45785i −0.0223110 + 0.383066i
\(204\) 0 0
\(205\) 2.00227 6.68803i 0.139844 0.467112i
\(206\) 2.90318 + 2.43606i 0.202274 + 0.169728i
\(207\) 0 0
\(208\) 1.10978 0.931215i 0.0769493 0.0645682i
\(209\) 2.29493 + 5.32024i 0.158743 + 0.368009i
\(210\) 0 0
\(211\) −4.09591 13.6813i −0.281974 0.941858i −0.975235 0.221172i \(-0.929012\pi\)
0.693261 0.720687i \(-0.256173\pi\)
\(212\) −6.44563 + 14.9426i −0.442687 + 1.02626i
\(213\) 0 0
\(214\) 8.55579 5.62723i 0.584862 0.384669i
\(215\) −3.04863 + 5.28038i −0.207915 + 0.360119i
\(216\) 0 0
\(217\) 4.90269 + 8.49171i 0.332816 + 0.576455i
\(218\) −6.63010 3.32976i −0.449047 0.225520i
\(219\) 0 0
\(220\) 2.04456 + 2.74633i 0.137844 + 0.185157i
\(221\) 11.7827 12.4889i 0.792589 0.840095i
\(222\) 0 0
\(223\) 20.0537 + 2.34394i 1.34290 + 0.156962i 0.756995 0.653421i \(-0.226667\pi\)
0.585901 + 0.810383i \(0.300741\pi\)
\(224\) 7.13306 + 2.59622i 0.476598 + 0.173467i
\(225\) 0 0
\(226\) 13.6130 4.95474i 0.905526 0.329585i
\(227\) 2.65003 0.628068i 0.175889 0.0416863i −0.141728 0.989906i \(-0.545266\pi\)
0.317616 + 0.948219i \(0.397118\pi\)
\(228\) 0 0
\(229\) −1.27542 0.838856i −0.0842821 0.0554332i 0.506669 0.862141i \(-0.330877\pi\)
−0.590951 + 0.806708i \(0.701247\pi\)
\(230\) 5.41712 2.72058i 0.357194 0.179390i
\(231\) 0 0
\(232\) −7.85794 8.32893i −0.515899 0.546821i
\(233\) −1.13347 + 6.42825i −0.0742563 + 0.421128i 0.924906 + 0.380197i \(0.124144\pi\)
−0.999162 + 0.0409317i \(0.986967\pi\)
\(234\) 0 0
\(235\) 0.627909 + 3.56105i 0.0409602 + 0.232297i
\(236\) 8.50750 11.4276i 0.553791 0.743870i
\(237\) 0 0
\(238\) 4.01753 + 0.952171i 0.260417 + 0.0617201i
\(239\) 16.7833 1.96169i 1.08562 0.126891i 0.445589 0.895238i \(-0.352994\pi\)
0.640034 + 0.768347i \(0.278920\pi\)
\(240\) 0 0
\(241\) 0.732563 + 12.5776i 0.0471885 + 0.810196i 0.936017 + 0.351955i \(0.114483\pi\)
−0.888828 + 0.458240i \(0.848480\pi\)
\(242\) −5.22835 −0.336091
\(243\) 0 0
\(244\) −15.4029 −0.986070
\(245\) −0.369667 6.34694i −0.0236172 0.405491i
\(246\) 0 0
\(247\) −12.0611 + 1.40975i −0.767432 + 0.0897000i
\(248\) −19.9835 4.73619i −1.26896 0.300748i
\(249\) 0 0
\(250\) 5.12703 6.88679i 0.324262 0.435559i
\(251\) −4.48052 25.4103i −0.282808 1.60388i −0.713012 0.701152i \(-0.752669\pi\)
0.430204 0.902732i \(-0.358442\pi\)
\(252\) 0 0
\(253\) −2.27699 + 12.9134i −0.143153 + 0.811861i
\(254\) −3.24801 3.44269i −0.203799 0.216014i
\(255\) 0 0
\(256\) −13.4653 + 6.76252i −0.841580 + 0.422658i
\(257\) −12.0914 7.95265i −0.754242 0.496073i 0.113224 0.993570i \(-0.463882\pi\)
−0.867466 + 0.497497i \(0.834253\pi\)
\(258\) 0 0
\(259\) −12.4901 + 2.96021i −0.776097 + 0.183938i
\(260\) −6.74288 + 2.45421i −0.418176 + 0.152204i
\(261\) 0 0
\(262\) 15.2786 + 5.56095i 0.943914 + 0.343557i
\(263\) 10.3839 + 1.21371i 0.640300 + 0.0748403i 0.430047 0.902807i \(-0.358497\pi\)
0.210253 + 0.977647i \(0.432571\pi\)
\(264\) 0 0
\(265\) 10.3131 10.9312i 0.633528 0.671501i
\(266\) −1.74375 2.34226i −0.106916 0.143613i
\(267\) 0 0
\(268\) 0.968872 + 0.486586i 0.0591833 + 0.0297230i
\(269\) 0.105374 + 0.182513i 0.00642476 + 0.0111280i 0.869220 0.494426i \(-0.164622\pi\)
−0.862795 + 0.505554i \(0.831288\pi\)
\(270\) 0 0
\(271\) 5.70846 9.88735i 0.346765 0.600614i −0.638908 0.769283i \(-0.720614\pi\)
0.985673 + 0.168669i \(0.0539470\pi\)
\(272\) 1.00166 0.658805i 0.0607348 0.0399459i
\(273\) 0 0
\(274\) 5.23093 12.1267i 0.316012 0.732599i
\(275\) 2.20983 + 7.38135i 0.133258 + 0.445112i
\(276\) 0 0
\(277\) −4.41607 10.2376i −0.265336 0.615117i 0.732508 0.680759i \(-0.238350\pi\)
−0.997843 + 0.0656416i \(0.979091\pi\)
\(278\) −6.66153 + 5.58969i −0.399532 + 0.335247i
\(279\) 0 0
\(280\) −3.34591 2.80755i −0.199956 0.167783i
\(281\) 6.22453 20.7914i 0.371325 1.24031i −0.544510 0.838754i \(-0.683284\pi\)
0.915834 0.401556i \(-0.131531\pi\)
\(282\) 0 0
\(283\) 0.0172412 0.296021i 0.00102488 0.0175966i −0.997757 0.0669409i \(-0.978676\pi\)
0.998782 + 0.0493443i \(0.0157132\pi\)
\(284\) 0.550676 9.45474i 0.0326766 0.561035i
\(285\) 0 0
\(286\) −2.36513 + 7.90008i −0.139853 + 0.467141i
\(287\) −5.83015 4.89208i −0.344143 0.288770i
\(288\) 0 0
\(289\) −2.13795 + 1.79396i −0.125762 + 0.105527i
\(290\) 1.65464 + 3.83588i 0.0971636 + 0.225250i
\(291\) 0 0
\(292\) −3.04176 10.1602i −0.178005 0.594579i
\(293\) −5.74578 + 13.3202i −0.335672 + 0.778175i 0.663868 + 0.747850i \(0.268914\pi\)
−0.999540 + 0.0303252i \(0.990346\pi\)
\(294\) 0 0
\(295\) −10.9921 + 7.22964i −0.639986 + 0.420926i
\(296\) 13.4425 23.2830i 0.781327 1.35330i
\(297\) 0 0
\(298\) 1.21416 + 2.10299i 0.0703346 + 0.121823i
\(299\) −24.5583 12.3336i −1.42024 0.713273i
\(300\) 0 0
\(301\) 3.96929 + 5.33168i 0.228786 + 0.307313i
\(302\) 7.29413 7.73133i 0.419730 0.444888i
\(303\) 0 0
\(304\) −0.842177 0.0984364i −0.0483022 0.00564571i
\(305\) 13.3665 + 4.86501i 0.765364 + 0.278570i
\(306\) 0 0
\(307\) −3.56052 + 1.29592i −0.203210 + 0.0739622i −0.441620 0.897202i \(-0.645596\pi\)
0.238410 + 0.971165i \(0.423374\pi\)
\(308\) 3.63189 0.860773i 0.206946 0.0490471i
\(309\) 0 0
\(310\) 6.25990 + 4.11720i 0.355539 + 0.233841i
\(311\) 11.0181 5.53348i 0.624777 0.313775i −0.108096 0.994141i \(-0.534475\pi\)
0.732873 + 0.680366i \(0.238179\pi\)
\(312\) 0 0
\(313\) −4.67044 4.95038i −0.263989 0.279812i 0.581797 0.813334i \(-0.302350\pi\)
−0.845786 + 0.533522i \(0.820868\pi\)
\(314\) −0.183799 + 1.04238i −0.0103724 + 0.0588246i
\(315\) 0 0
\(316\) 2.60810 + 14.7913i 0.146717 + 0.832074i
\(317\) −8.91947 + 11.9809i −0.500967 + 0.672916i −0.978630 0.205627i \(-0.934077\pi\)
0.477663 + 0.878543i \(0.341484\pi\)
\(318\) 0 0
\(319\) −8.79293 2.08396i −0.492310 0.116680i
\(320\) 4.99907 0.584307i 0.279456 0.0326638i
\(321\) 0 0
\(322\) −0.384246 6.59724i −0.0214132 0.367650i
\(323\) −10.0493 −0.559156
\(324\) 0 0
\(325\) −16.1482 −0.895740
\(326\) −0.598835 10.2816i −0.0331664 0.569445i
\(327\) 0 0
\(328\) 15.8327 1.85058i 0.874214 0.102181i
\(329\) 3.83572 + 0.909083i 0.211470 + 0.0501194i
\(330\) 0 0
\(331\) −2.20579 + 2.96289i −0.121241 + 0.162855i −0.858600 0.512646i \(-0.828665\pi\)
0.737359 + 0.675501i \(0.236073\pi\)
\(332\) 1.08293 + 6.14162i 0.0594337 + 0.337065i
\(333\) 0 0
\(334\) 0.551633 3.12847i 0.0301840 0.171182i
\(335\) −0.687091 0.728274i −0.0375398 0.0397898i
\(336\) 0 0
\(337\) 16.4827 8.27793i 0.897870 0.450927i 0.0608800 0.998145i \(-0.480609\pi\)
0.836990 + 0.547218i \(0.184313\pi\)
\(338\) −5.39211 3.54644i −0.293292 0.192901i
\(339\) 0 0
\(340\) −5.77819 + 1.36946i −0.313366 + 0.0742692i
\(341\) −15.2298 + 5.54319i −0.824740 + 0.300181i
\(342\) 0 0
\(343\) −15.1621 5.51854i −0.818675 0.297973i
\(344\) −13.8278 1.61623i −0.745543 0.0871415i
\(345\) 0 0
\(346\) 13.7596 14.5844i 0.739723 0.784061i
\(347\) −20.0622 26.9481i −1.07699 1.44665i −0.885196 0.465218i \(-0.845976\pi\)
−0.191796 0.981435i \(-0.561431\pi\)
\(348\) 0 0
\(349\) −29.4341 14.7824i −1.57557 0.791282i −0.575916 0.817509i \(-0.695354\pi\)
−0.999656 + 0.0262270i \(0.991651\pi\)
\(350\) −1.94157 3.36289i −0.103781 0.179754i
\(351\) 0 0
\(352\) −6.27342 + 10.8659i −0.334374 + 0.579154i
\(353\) −11.1466 + 7.33122i −0.593273 + 0.390202i −0.810344 0.585954i \(-0.800720\pi\)
0.217072 + 0.976156i \(0.430350\pi\)
\(354\) 0 0
\(355\) −3.46415 + 8.03081i −0.183858 + 0.426231i
\(356\) 1.24821 + 4.16933i 0.0661552 + 0.220974i
\(357\) 0 0
\(358\) −2.09155 4.84877i −0.110542 0.256265i
\(359\) 6.91454 5.80199i 0.364936 0.306217i −0.441819 0.897104i \(-0.645667\pi\)
0.806754 + 0.590887i \(0.201222\pi\)
\(360\) 0 0
\(361\) −9.11037 7.64450i −0.479493 0.402342i
\(362\) −1.47973 + 4.94265i −0.0777730 + 0.259780i
\(363\) 0 0
\(364\) −0.454840 + 7.80931i −0.0238401 + 0.409319i
\(365\) −0.569483 + 9.77765i −0.0298081 + 0.511786i
\(366\) 0 0
\(367\) −7.34329 + 24.5283i −0.383316 + 1.28037i 0.521019 + 0.853545i \(0.325552\pi\)
−0.904336 + 0.426821i \(0.859633\pi\)
\(368\) −1.46997 1.23345i −0.0766274 0.0642980i
\(369\) 0 0
\(370\) −7.51364 + 6.30469i −0.390616 + 0.327765i
\(371\) −6.48908 15.0434i −0.336896 0.781013i
\(372\) 0 0
\(373\) 6.27172 + 20.9490i 0.324737 + 1.08470i 0.952053 + 0.305933i \(0.0989685\pi\)
−0.627315 + 0.778765i \(0.715846\pi\)
\(374\) −2.70304 + 6.26635i −0.139771 + 0.324025i
\(375\) 0 0
\(376\) −6.89811 + 4.53696i −0.355743 + 0.233976i
\(377\) 9.46934 16.4014i 0.487696 0.844714i
\(378\) 0 0
\(379\) −5.26717 9.12300i −0.270556 0.468617i 0.698448 0.715661i \(-0.253874\pi\)
−0.969004 + 0.247043i \(0.920541\pi\)
\(380\) 3.75306 + 1.88486i 0.192528 + 0.0966913i
\(381\) 0 0
\(382\) 3.35904 + 4.51198i 0.171864 + 0.230853i
\(383\) −15.0071 + 15.9066i −0.766829 + 0.812791i −0.986668 0.162745i \(-0.947965\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(384\) 0 0
\(385\) −3.42359 0.400161i −0.174482 0.0203941i
\(386\) 12.4552 + 4.53331i 0.633952 + 0.230740i
\(387\) 0 0
\(388\) 1.67315 0.608977i 0.0849414 0.0309161i
\(389\) 23.7332 5.62487i 1.20332 0.285192i 0.420414 0.907332i \(-0.361885\pi\)
0.782906 + 0.622140i \(0.213737\pi\)
\(390\) 0 0
\(391\) −19.0011 12.4972i −0.960927 0.632012i
\(392\) 12.9725 6.51502i 0.655208 0.329058i
\(393\) 0 0
\(394\) 6.62672 + 7.02392i 0.333850 + 0.353860i
\(395\) 2.40854 13.6595i 0.121187 0.687285i
\(396\) 0 0
\(397\) 4.16728 + 23.6338i 0.209150 + 1.18615i 0.890775 + 0.454445i \(0.150163\pi\)
−0.681625 + 0.731702i \(0.738726\pi\)
\(398\) 2.13890 2.87304i 0.107214 0.144013i
\(399\) 0 0
\(400\) −1.09716 0.260033i −0.0548582 0.0130016i
\(401\) 36.6641 4.28542i 1.83092 0.214004i 0.870425 0.492301i \(-0.163844\pi\)
0.960495 + 0.278297i \(0.0897700\pi\)
\(402\) 0 0
\(403\) −1.97501 33.9095i −0.0983820 1.68915i
\(404\) −3.02339 −0.150419
\(405\) 0 0
\(406\) 4.55416 0.226019
\(407\) −1.23364 21.1808i −0.0611493 1.04989i
\(408\) 0 0
\(409\) 2.83591 0.331470i 0.140227 0.0163901i −0.0456900 0.998956i \(-0.514549\pi\)
0.185917 + 0.982566i \(0.440475\pi\)
\(410\) −5.65877 1.34115i −0.279467 0.0662348i
\(411\) 0 0
\(412\) −3.54840 + 4.76632i −0.174817 + 0.234820i
\(413\) 2.49058 + 14.1248i 0.122553 + 0.695035i
\(414\) 0 0
\(415\) 1.00007 5.67169i 0.0490916 0.278412i
\(416\) −18.0451 19.1267i −0.884736 0.937765i
\(417\) 0 0
\(418\) 4.31317 2.16616i 0.210964 0.105950i
\(419\) −28.7197 18.8893i −1.40305 0.922801i −0.999971 0.00763598i \(-0.997569\pi\)
−0.403080 0.915165i \(-0.632060\pi\)
\(420\) 0 0
\(421\) 6.08312 1.44172i 0.296473 0.0702654i −0.0796876 0.996820i \(-0.525392\pi\)
0.376161 + 0.926555i \(0.377244\pi\)
\(422\) −11.1790 + 4.06883i −0.544186 + 0.198067i
\(423\) 0 0
\(424\) 32.2449 + 11.7362i 1.56595 + 0.569960i
\(425\) −13.2732 1.55142i −0.643846 0.0752548i
\(426\) 0 0
\(427\) 10.6414 11.2792i 0.514972 0.545838i
\(428\) 9.58807 + 12.8790i 0.463457 + 0.622531i
\(429\) 0 0
\(430\) 4.53885 + 2.27949i 0.218883 + 0.109927i
\(431\) −1.50862 2.61301i −0.0726679 0.125864i 0.827402 0.561610i \(-0.189818\pi\)
−0.900070 + 0.435746i \(0.856485\pi\)
\(432\) 0 0
\(433\) −15.3659 + 26.6146i −0.738439 + 1.27901i 0.214759 + 0.976667i \(0.431104\pi\)
−0.953198 + 0.302347i \(0.902230\pi\)
\(434\) 6.82427 4.48839i 0.327575 0.215450i
\(435\) 0 0
\(436\) 4.60750 10.6814i 0.220659 0.511546i
\(437\) 4.61308 + 15.4087i 0.220673 + 0.737100i
\(438\) 0 0
\(439\) 0.181258 + 0.420203i 0.00865097 + 0.0200552i 0.922487 0.386029i \(-0.126153\pi\)
−0.913836 + 0.406084i \(0.866894\pi\)
\(440\) 5.53042 4.64057i 0.263652 0.221231i
\(441\) 0 0
\(442\) −10.9565 9.19361i −0.521148 0.437296i
\(443\) 10.0119 33.4420i 0.475679 1.58888i −0.297520 0.954716i \(-0.596159\pi\)
0.773199 0.634163i \(-0.218655\pi\)
\(444\) 0 0
\(445\) 0.233693 4.01235i 0.0110781 0.190204i
\(446\) 0.977921 16.7903i 0.0463059 0.795042i
\(447\) 0 0
\(448\) 1.57365 5.25635i 0.0743479 0.248339i
\(449\) −5.48196 4.59991i −0.258710 0.217083i 0.504202 0.863586i \(-0.331787\pi\)
−0.762912 + 0.646502i \(0.776231\pi\)
\(450\) 0 0
\(451\) 9.63661 8.08607i 0.453770 0.380758i
\(452\) 8.99650 + 20.8562i 0.423160 + 0.980995i
\(453\) 0 0
\(454\) −0.650658 2.17335i −0.0305369 0.102000i
\(455\) 2.86128 6.63319i 0.134139 0.310969i
\(456\) 0 0
\(457\) 10.5960 6.96910i 0.495660 0.326001i −0.276947 0.960885i \(-0.589323\pi\)
0.772607 + 0.634884i \(0.218952\pi\)
\(458\) −0.635820 + 1.10127i −0.0297099 + 0.0514591i
\(459\) 0 0
\(460\) 4.75227 + 8.23117i 0.221576 + 0.383780i
\(461\) 0.412693 + 0.207262i 0.0192210 + 0.00965317i 0.458384 0.888754i \(-0.348429\pi\)
−0.439163 + 0.898408i \(0.644725\pi\)
\(462\) 0 0
\(463\) 22.1551 + 29.7595i 1.02964 + 1.38304i 0.921267 + 0.388931i \(0.127156\pi\)
0.108369 + 0.994111i \(0.465437\pi\)
\(464\) 0.907489 0.961882i 0.0421291 0.0446543i
\(465\) 0 0
\(466\) 5.40065 + 0.631245i 0.250180 + 0.0292419i
\(467\) −25.8480 9.40792i −1.19611 0.435347i −0.334242 0.942487i \(-0.608480\pi\)
−0.861863 + 0.507141i \(0.830702\pi\)
\(468\) 0 0
\(469\) −1.02568 + 0.373316i −0.0473614 + 0.0172381i
\(470\) 2.93096 0.694651i 0.135195 0.0320419i
\(471\) 0 0
\(472\) −25.0984 16.5075i −1.15525 0.759817i
\(473\) −9.81808 + 4.93082i −0.451436 + 0.226720i
\(474\) 0 0
\(475\) 6.48587 + 6.87462i 0.297592 + 0.315429i
\(476\) −1.12413 + 6.37527i −0.0515245 + 0.292210i
\(477\) 0 0
\(478\) −2.44425 13.8620i −0.111798 0.634035i
\(479\) −8.51578 + 11.4387i −0.389096 + 0.522646i −0.952909 0.303256i \(-0.901926\pi\)
0.563813 + 0.825902i \(0.309334\pi\)
\(480\) 0 0
\(481\) 43.2672 + 10.2545i 1.97282 + 0.467566i
\(482\) 10.4241 1.21840i 0.474805 0.0554967i
\(483\) 0 0
\(484\) −0.476647 8.18372i −0.0216658 0.371987i
\(485\) −1.64429 −0.0746634
\(486\) 0 0
\(487\) 9.07752 0.411342 0.205671 0.978621i \(-0.434062\pi\)
0.205671 + 0.978621i \(0.434062\pi\)
\(488\) 1.88846 + 32.4235i 0.0854864 + 1.46774i
\(489\) 0 0
\(490\) −5.26023 + 0.614833i −0.237633 + 0.0277753i
\(491\) −27.1313 6.43024i −1.22442 0.290193i −0.432960 0.901413i \(-0.642531\pi\)
−0.791460 + 0.611220i \(0.790679\pi\)
\(492\) 0 0
\(493\) 9.35920 12.5716i 0.421517 0.566196i
\(494\) 1.75653 + 9.96180i 0.0790302 + 0.448203i
\(495\) 0 0
\(496\) 0.411853 2.33573i 0.0184927 0.104878i
\(497\) 6.54304 + 6.93522i 0.293495 + 0.311087i
\(498\) 0 0
\(499\) −21.2606 + 10.6775i −0.951755 + 0.477989i −0.855749 0.517392i \(-0.826903\pi\)
−0.0960058 + 0.995381i \(0.530607\pi\)
\(500\) 11.2470 + 7.39729i 0.502982 + 0.330817i
\(501\) 0 0
\(502\) −20.9143 + 4.95677i −0.933450 + 0.221232i
\(503\) 7.57016 2.75531i 0.337537 0.122853i −0.167690 0.985840i \(-0.553631\pi\)
0.505227 + 0.862986i \(0.331409\pi\)
\(504\) 0 0
\(505\) 2.62367 + 0.954939i 0.116752 + 0.0424942i
\(506\) 10.8491 + 1.26808i 0.482303 + 0.0563732i
\(507\) 0 0
\(508\) 5.09260 5.39784i 0.225948 0.239491i
\(509\) −11.5280 15.4848i −0.510971 0.686353i 0.469519 0.882922i \(-0.344427\pi\)
−0.980490 + 0.196569i \(0.937020\pi\)
\(510\) 0 0
\(511\) 9.54151 + 4.79193i 0.422092 + 0.211982i
\(512\) −1.79397 3.10725i −0.0792832 0.137323i
\(513\) 0 0
\(514\) −6.02780 + 10.4405i −0.265875 + 0.460509i
\(515\) 4.58471 3.01541i 0.202027 0.132875i
\(516\) 0 0
\(517\) −2.58072 + 5.98279i −0.113500 + 0.263123i
\(518\) 3.06668 + 10.2434i 0.134742 + 0.450071i
\(519\) 0 0
\(520\) 5.99288 + 13.8930i 0.262805 + 0.609251i
\(521\) 2.04454 1.71557i 0.0895727 0.0751604i −0.596902 0.802314i \(-0.703602\pi\)
0.686474 + 0.727154i \(0.259157\pi\)
\(522\) 0 0
\(523\) 11.7693 + 9.87562i 0.514636 + 0.431831i 0.862757 0.505619i \(-0.168736\pi\)
−0.348121 + 0.937450i \(0.613180\pi\)
\(524\) −7.31144 + 24.4219i −0.319402 + 1.06688i
\(525\) 0 0
\(526\) 0.506373 8.69408i 0.0220789 0.379080i
\(527\) 1.63444 28.0622i 0.0711971 1.22241i
\(528\) 0 0
\(529\) −3.84339 + 12.8378i −0.167104 + 0.558166i
\(530\) −9.58997 8.04694i −0.416562 0.349537i
\(531\) 0 0
\(532\) 3.50727 2.94295i 0.152059 0.127593i
\(533\) 10.4424 + 24.2083i 0.452312 + 1.04858i
\(534\) 0 0
\(535\) −4.25260 14.2047i −0.183856 0.614122i
\(536\) 0.905489 2.09916i 0.0391112 0.0906699i
\(537\) 0 0
\(538\) 0.146675 0.0964694i 0.00632359 0.00415909i
\(539\) 5.72799 9.92117i 0.246722 0.427335i
\(540\) 0 0
\(541\) 9.39421 + 16.2713i 0.403889 + 0.699556i 0.994191 0.107626i \(-0.0343250\pi\)
−0.590303 + 0.807182i \(0.700992\pi\)
\(542\) −8.49884 4.26828i −0.365057 0.183338i
\(543\) 0 0
\(544\) −12.9949 17.4552i −0.557151 0.748384i
\(545\) −7.37206 + 7.81393i −0.315785 + 0.334712i
\(546\) 0 0
\(547\) 11.3834 + 1.33052i 0.486717 + 0.0568891i 0.355913 0.934519i \(-0.384170\pi\)
0.130804 + 0.991408i \(0.458244\pi\)
\(548\) 19.4583 + 7.08223i 0.831216 + 0.302538i
\(549\) 0 0
\(550\) 6.03132 2.19522i 0.257176 0.0936045i
\(551\) −10.7857 + 2.55627i −0.459488 + 0.108901i
\(552\) 0 0
\(553\) −12.6332 8.30896i −0.537217 0.353333i
\(554\) −8.29972 + 4.16828i −0.352621 + 0.177093i
\(555\) 0 0
\(556\) −9.35662 9.91744i −0.396809 0.420593i
\(557\) 4.33665 24.5943i 0.183750 1.04210i −0.743802 0.668400i \(-0.766979\pi\)
0.927551 0.373695i \(-0.121909\pi\)
\(558\) 0 0
\(559\) −3.99840 22.6761i −0.169114 0.959095i
\(560\) 0.301219 0.404607i 0.0127288 0.0170978i
\(561\) 0 0
\(562\) −17.5917 4.16930i −0.742060 0.175871i
\(563\) 17.4623 2.04106i 0.735950 0.0860202i 0.260143 0.965570i \(-0.416230\pi\)
0.475807 + 0.879550i \(0.342156\pi\)
\(564\) 0 0
\(565\) −1.21964 20.9404i −0.0513106 0.880970i
\(566\) −0.247007 −0.0103825
\(567\) 0 0
\(568\) −19.9700 −0.837922
\(569\) −0.929683 15.9620i −0.0389743 0.669164i −0.960058 0.279800i \(-0.909732\pi\)
0.921084 0.389364i \(-0.127305\pi\)
\(570\) 0 0
\(571\) −10.2603 + 1.19926i −0.429380 + 0.0501873i −0.328038 0.944664i \(-0.606388\pi\)
−0.101341 + 0.994852i \(0.532313\pi\)
\(572\) −12.5813 2.98182i −0.526050 0.124676i
\(573\) 0 0
\(574\) −3.78588 + 5.08532i −0.158020 + 0.212257i
\(575\) 3.71420 + 21.0643i 0.154893 + 0.878441i
\(576\) 0 0
\(577\) 6.79785 38.5525i 0.282998 1.60496i −0.429351 0.903138i \(-0.641258\pi\)
0.712349 0.701825i \(-0.247631\pi\)
\(578\) 1.59541 + 1.69104i 0.0663604 + 0.0703379i
\(579\) 0 0
\(580\) −5.85330 + 2.93964i −0.243045 + 0.122062i
\(581\) −5.24553 3.45004i −0.217621 0.143132i
\(582\) 0 0
\(583\) 26.3498 6.24502i 1.09130 0.258642i
\(584\) −21.0145 + 7.64866i −0.869587 + 0.316504i
\(585\) 0 0
\(586\) 11.3554 + 4.13304i 0.469088 + 0.170734i
\(587\) 17.6814 + 2.06665i 0.729788 + 0.0853000i 0.472869 0.881133i \(-0.343218\pi\)
0.256919 + 0.966433i \(0.417293\pi\)
\(588\) 0 0
\(589\) −13.6427 + 14.4605i −0.562139 + 0.595833i
\(590\) 6.54460 + 8.79092i 0.269437 + 0.361916i
\(591\) 0 0
\(592\) 2.77460 + 1.39346i 0.114035 + 0.0572707i
\(593\) 6.92687 + 11.9977i 0.284452 + 0.492686i 0.972476 0.233002i \(-0.0748549\pi\)
−0.688024 + 0.725688i \(0.741522\pi\)
\(594\) 0 0
\(595\) 2.98914 5.17735i 0.122543 0.212251i
\(596\) −3.18104 + 2.09220i −0.130300 + 0.0856999i
\(597\) 0 0
\(598\) −9.06720 + 21.0201i −0.370786 + 0.859577i
\(599\) −1.03796 3.46703i −0.0424099 0.141659i 0.934163 0.356848i \(-0.116149\pi\)
−0.976572 + 0.215189i \(0.930963\pi\)
\(600\) 0 0
\(601\) −4.11249 9.53383i −0.167752 0.388893i 0.813515 0.581543i \(-0.197551\pi\)
−0.981267 + 0.192650i \(0.938292\pi\)
\(602\) 4.24159 3.55912i 0.172874 0.145059i
\(603\) 0 0
\(604\) 12.7665 + 10.7124i 0.519462 + 0.435880i
\(605\) −2.17120 + 7.25231i −0.0882718 + 0.294848i
\(606\) 0 0
\(607\) −0.781051 + 13.4101i −0.0317019 + 0.544301i 0.944645 + 0.328093i \(0.106406\pi\)
−0.976347 + 0.216208i \(0.930631\pi\)
\(608\) −0.894873 + 15.3644i −0.0362919 + 0.623108i
\(609\) 0 0
\(610\) 3.39835 11.3513i 0.137595 0.459599i
\(611\) −10.4607 8.77758i −0.423195 0.355103i
\(612\) 0 0
\(613\) 22.2652 18.6827i 0.899281 0.754587i −0.0707686 0.997493i \(-0.522545\pi\)
0.970050 + 0.242906i \(0.0781007\pi\)
\(614\) 1.25015 + 2.89817i 0.0504519 + 0.116961i
\(615\) 0 0
\(616\) −2.25723 7.53968i −0.0909465 0.303782i
\(617\) 4.92341 11.4138i 0.198209 0.459500i −0.789904 0.613231i \(-0.789870\pi\)
0.988113 + 0.153730i \(0.0491288\pi\)
\(618\) 0 0
\(619\) −28.8790 + 18.9940i −1.16074 + 0.763434i −0.975660 0.219289i \(-0.929626\pi\)
−0.185085 + 0.982723i \(0.559256\pi\)
\(620\) −5.87380 + 10.1737i −0.235898 + 0.408586i
\(621\) 0 0
\(622\) −5.13533 8.89464i −0.205908 0.356643i
\(623\) −3.91545 1.96641i −0.156869 0.0787827i
\(624\) 0 0
\(625\) 3.16157 + 4.24673i 0.126463 + 0.169869i
\(626\) −3.89053 + 4.12373i −0.155497 + 0.164817i
\(627\) 0 0
\(628\) −1.64834 0.192664i −0.0657761 0.00768812i
\(629\) 34.5789 + 12.5857i 1.37875 + 0.501825i
\(630\) 0 0
\(631\) 12.4258 4.52262i 0.494663 0.180042i −0.0826292 0.996580i \(-0.526332\pi\)
0.577292 + 0.816538i \(0.304109\pi\)
\(632\) 30.8163 7.30359i 1.22581 0.290521i
\(633\) 0 0
\(634\) 10.3954 + 6.83716i 0.412854 + 0.271538i
\(635\) −6.12422 + 3.07570i −0.243032 + 0.122055i
\(636\) 0 0
\(637\) 16.4762 + 17.4638i 0.652813 + 0.691941i
\(638\) −1.30714 + 7.41317i −0.0517502 + 0.293490i
\(639\) 0 0
\(640\) 1.69021 + 9.58567i 0.0668115 + 0.378907i
\(641\) −3.14875 + 4.22950i −0.124368 + 0.167055i −0.859946 0.510384i \(-0.829503\pi\)
0.735578 + 0.677440i \(0.236911\pi\)
\(642\) 0 0
\(643\) 4.25864 + 1.00932i 0.167944 + 0.0398035i 0.313728 0.949513i \(-0.398422\pi\)
−0.145783 + 0.989317i \(0.546570\pi\)
\(644\) 10.2914 1.20289i 0.405537 0.0474004i
\(645\) 0 0
\(646\) 0.486740 + 8.35700i 0.0191505 + 0.328802i
\(647\) 5.42624 0.213327 0.106664 0.994295i \(-0.465983\pi\)
0.106664 + 0.994295i \(0.465983\pi\)
\(648\) 0 0
\(649\) −23.7069 −0.930576
\(650\) 0.782143 + 13.4289i 0.0306782 + 0.526724i
\(651\) 0 0
\(652\) 16.0388 1.87466i 0.628127 0.0734175i
\(653\) 10.8018 + 2.56007i 0.422706 + 0.100183i 0.436463 0.899722i \(-0.356231\pi\)
−0.0137571 + 0.999905i \(0.504379\pi\)
\(654\) 0 0
\(655\) 14.0585 18.8838i 0.549310 0.737851i
\(656\) 0.319672 + 1.81295i 0.0124811 + 0.0707837i
\(657\) 0 0
\(658\) 0.570212 3.23383i 0.0222292 0.126068i
\(659\) 5.10241 + 5.40824i 0.198762 + 0.210675i 0.819087 0.573670i \(-0.194481\pi\)
−0.620325 + 0.784345i \(0.712999\pi\)
\(660\) 0 0
\(661\) −3.42406 + 1.71963i −0.133180 + 0.0668858i −0.514142 0.857705i \(-0.671889\pi\)
0.380961 + 0.924591i \(0.375593\pi\)
\(662\) 2.57079 + 1.69083i 0.0999165 + 0.0657161i
\(663\) 0 0
\(664\) 12.7955 3.03259i 0.496562 0.117687i
\(665\) −3.97311 + 1.44609i −0.154071 + 0.0560771i
\(666\) 0 0
\(667\) −23.5726 8.57971i −0.912733 0.332208i
\(668\) 4.94716 + 0.578240i 0.191411 + 0.0223728i
\(669\) 0 0
\(670\) −0.572355 + 0.606661i −0.0221120 + 0.0234374i
\(671\) 15.3057 + 20.5592i 0.590871 + 0.793678i
\(672\) 0 0
\(673\) 37.6141 + 18.8905i 1.44992 + 0.728177i 0.987372 0.158418i \(-0.0506395\pi\)
0.462547 + 0.886595i \(0.346936\pi\)
\(674\) −7.68230 13.3061i −0.295911 0.512533i
\(675\) 0 0
\(676\) 5.05953 8.76336i 0.194597 0.337052i
\(677\) 2.08236 1.36959i 0.0800315 0.0526376i −0.508863 0.860848i \(-0.669934\pi\)
0.588894 + 0.808210i \(0.299563\pi\)
\(678\) 0 0
\(679\) −0.709986 + 1.64593i −0.0272468 + 0.0631651i
\(680\) 3.59117 + 11.9953i 0.137715 + 0.460001i
\(681\) 0 0
\(682\) 5.34740 + 12.3967i 0.204762 + 0.474693i
\(683\) −11.7411 + 9.85194i −0.449260 + 0.376974i −0.839161 0.543883i \(-0.816954\pi\)
0.389901 + 0.920857i \(0.372509\pi\)
\(684\) 0 0
\(685\) −14.6488 12.2918i −0.559701 0.469645i
\(686\) −3.85486 + 12.8761i −0.147179 + 0.491613i
\(687\) 0 0
\(688\) 0.0934850 1.60508i 0.00356408 0.0611930i
\(689\) −3.29993 + 56.6575i −0.125717 + 2.15848i
\(690\) 0 0
\(691\) −10.6430 + 35.5501i −0.404879 + 1.35239i 0.476165 + 0.879356i \(0.342027\pi\)
−0.881044 + 0.473035i \(0.843159\pi\)
\(692\) 24.0827 + 20.2078i 0.915488 + 0.768186i
\(693\) 0 0
\(694\) −21.4384 + 17.9890i −0.813792 + 0.682853i
\(695\) 4.98717 + 11.5616i 0.189174 + 0.438555i
\(696\) 0 0
\(697\) 6.25752 + 20.9016i 0.237021 + 0.791704i
\(698\) −10.8674 + 25.1935i −0.411338 + 0.953588i
\(699\) 0 0
\(700\) 5.08679 3.34564i 0.192263 0.126453i
\(701\) −3.35489 + 5.81083i −0.126712 + 0.219472i −0.922401 0.386234i \(-0.873776\pi\)
0.795689 + 0.605706i \(0.207109\pi\)
\(702\) 0 0
\(703\) −13.0126 22.5385i −0.490779 0.850054i
\(704\) 8.10452 + 4.07024i 0.305450 + 0.153403i
\(705\) 0 0
\(706\) 6.63656 + 8.91444i 0.249770 + 0.335499i
\(707\) 2.08876 2.21396i 0.0785560 0.0832645i
\(708\) 0 0
\(709\) 23.6203 + 2.76081i 0.887078 + 0.103685i 0.547413 0.836862i \(-0.315613\pi\)
0.339664 + 0.940547i \(0.389687\pi\)
\(710\) 6.84623 + 2.49182i 0.256934 + 0.0935165i
\(711\) 0 0
\(712\) 8.62351 3.13870i 0.323180 0.117628i
\(713\) −43.7786 + 10.3757i −1.63952 + 0.388573i
\(714\) 0 0
\(715\) 9.97612 + 6.56140i 0.373086 + 0.245382i
\(716\) 7.39890 3.71587i 0.276510 0.138868i
\(717\) 0 0
\(718\) −5.15986 5.46913i −0.192564 0.204106i
\(719\) −7.41202 + 42.0356i −0.276422 + 1.56766i 0.457988 + 0.888958i \(0.348570\pi\)
−0.734410 + 0.678706i \(0.762541\pi\)
\(720\) 0 0
\(721\) −1.03880 5.89131i −0.0386868 0.219404i
\(722\) −5.91593 + 7.94647i −0.220168 + 0.295737i
\(723\) 0 0
\(724\) −7.87144 1.86556i −0.292540 0.0693332i
\(725\) −14.6406 + 1.71124i −0.543739 + 0.0635539i
\(726\) 0 0
\(727\) −1.10799 19.0235i −0.0410932 0.705544i −0.954448 0.298378i \(-0.903554\pi\)
0.913354 0.407165i \(-0.133483\pi\)
\(728\) 16.4946 0.611329
\(729\) 0 0
\(730\) 8.15871 0.301967
\(731\) −1.10797 19.0231i −0.0409796 0.703593i
\(732\) 0 0
\(733\) 17.8418 2.08541i 0.659001 0.0770262i 0.219982 0.975504i \(-0.429400\pi\)
0.439019 + 0.898478i \(0.355326\pi\)
\(734\) 20.7535 + 4.91866i 0.766025 + 0.181551i
\(735\) 0 0
\(736\) −20.7991 + 27.9380i −0.766665 + 1.02981i
\(737\) −0.313285 1.77673i −0.0115400 0.0654466i
\(738\) 0 0
\(739\) 2.16602 12.2841i 0.0796782 0.451878i −0.918700 0.394955i \(-0.870760\pi\)
0.998379 0.0569224i \(-0.0181288\pi\)
\(740\) −10.5535 11.1860i −0.387953 0.411206i
\(741\) 0 0
\(742\) −12.1958 + 6.12497i −0.447722 + 0.224855i
\(743\) 21.6533 + 14.2416i 0.794384 + 0.522474i 0.880633 0.473799i \(-0.157118\pi\)
−0.0862493 + 0.996274i \(0.527488\pi\)
\(744\) 0 0
\(745\) 3.42130 0.810863i 0.125347 0.0297077i
\(746\) 17.1175 6.23026i 0.626716 0.228106i
\(747\) 0 0
\(748\) −10.0549 3.65968i −0.367643 0.133811i
\(749\) −16.0551 1.87657i −0.586640 0.0685684i
\(750\) 0 0
\(751\) −7.20276 + 7.63448i −0.262832 + 0.278586i −0.845328 0.534248i \(-0.820595\pi\)
0.582495 + 0.812834i \(0.302076\pi\)
\(752\) −0.569393 0.764827i −0.0207636 0.0278904i
\(753\) 0 0
\(754\) −14.0981 7.08032i −0.513422 0.257850i
\(755\) −7.69516 13.3284i −0.280056 0.485070i
\(756\) 0 0
\(757\) −0.0864170 + 0.149679i −0.00314088 + 0.00544016i −0.867592 0.497277i \(-0.834333\pi\)
0.864451 + 0.502718i \(0.167666\pi\)
\(758\) −7.33160 + 4.82207i −0.266296 + 0.175145i
\(759\) 0 0
\(760\) 3.50754 8.13139i 0.127232 0.294957i
\(761\) −0.537224 1.79445i −0.0194743 0.0650488i 0.947700 0.319162i \(-0.103402\pi\)
−0.967174 + 0.254113i \(0.918216\pi\)
\(762\) 0 0
\(763\) 4.63856 + 10.7534i 0.167927 + 0.389299i
\(764\) −6.75618 + 5.66911i −0.244430 + 0.205101i
\(765\) 0 0
\(766\) 13.9549 + 11.7095i 0.504211 + 0.423083i
\(767\) 14.2497 47.5974i 0.514528 1.71864i
\(768\) 0 0
\(769\) 1.62282 27.8628i 0.0585204 1.00476i −0.833430 0.552624i \(-0.813626\pi\)
0.891951 0.452132i \(-0.149337\pi\)
\(770\) −0.166952 + 2.86645i −0.00601653 + 0.103300i
\(771\) 0 0
\(772\) −5.96032 + 19.9089i −0.214517 + 0.716536i
\(773\) 0.0418155 + 0.0350873i 0.00150400 + 0.00126200i 0.643539 0.765413i \(-0.277465\pi\)
−0.642035 + 0.766675i \(0.721910\pi\)
\(774\) 0 0
\(775\) −20.2520 + 16.9934i −0.727472 + 0.610422i
\(776\) −1.48705 3.44737i −0.0533819 0.123753i
\(777\) 0 0
\(778\) −5.82718 19.4641i −0.208915 0.697823i
\(779\) 6.11180 14.1687i 0.218978 0.507648i
\(780\) 0 0
\(781\) −13.1670 + 8.66007i −0.471152 + 0.309882i
\(782\) −9.47240 + 16.4067i −0.338732 + 0.586702i
\(783\) 0 0
\(784\) 0.838235 + 1.45187i 0.0299370 + 0.0518524i
\(785\) 1.36957 + 0.687821i 0.0488819 + 0.0245494i
\(786\) 0 0
\(787\) −20.2554 27.2077i −0.722025 0.969848i −0.999957 0.00924767i \(-0.997056\pi\)
0.277932 0.960601i \(-0.410351\pi\)
\(788\) −10.3901 + 11.0129i −0.370133 + 0.392318i
\(789\) 0 0
\(790\) −11.4760 1.34135i −0.408296 0.0477230i
\(791\) −21.4879 7.82097i −0.764023 0.278082i
\(792\) 0 0
\(793\) −50.4776 + 18.3724i −1.79251 + 0.652422i
\(794\) 19.4521 4.61023i 0.690330 0.163611i
\(795\) 0 0
\(796\) 4.69206 + 3.08601i 0.166306 + 0.109381i
\(797\) 13.0138 6.53577i 0.460972 0.231509i −0.203129 0.979152i \(-0.565111\pi\)
0.664101 + 0.747643i \(0.268815\pi\)
\(798\) 0 0
\(799\) −7.75504 8.21986i −0.274354 0.290798i
\(800\) −3.55394 + 20.1554i −0.125651 + 0.712600i
\(801\) 0 0
\(802\) −5.33961 30.2825i −0.188548 1.06931i
\(803\) −10.5388 + 14.1561i −0.371907 + 0.499558i
\(804\) 0 0
\(805\) −9.31069 2.20667i −0.328159 0.0777750i
\(806\) −28.1036 + 3.28484i −0.989908 + 0.115704i
\(807\) 0 0
\(808\) 0.370679 + 6.36432i 0.0130405 + 0.223896i
\(809\) 28.0189 0.985092 0.492546 0.870286i \(-0.336066\pi\)
0.492546 + 0.870286i \(0.336066\pi\)
\(810\) 0 0
\(811\) 29.1924 1.02508 0.512542 0.858662i \(-0.328704\pi\)
0.512542 + 0.858662i \(0.328704\pi\)
\(812\) 0.415184 + 7.12844i 0.0145701 + 0.250159i
\(813\) 0 0
\(814\) −17.5543 + 2.05180i −0.615276 + 0.0719155i
\(815\) −14.5104 3.43903i −0.508278 0.120464i
\(816\) 0 0
\(817\) −8.04773 + 10.8100i −0.281554 + 0.378193i
\(818\) −0.413009 2.34229i −0.0144405 0.0818964i
\(819\) 0 0
\(820\) 1.58337 8.97971i 0.0552935 0.313585i
\(821\) 20.4884 + 21.7164i 0.715049 + 0.757908i 0.978384 0.206797i \(-0.0663039\pi\)
−0.263335 + 0.964704i \(0.584822\pi\)
\(822\) 0 0
\(823\) −35.9168 + 18.0381i −1.25198 + 0.628769i −0.946277 0.323357i \(-0.895188\pi\)
−0.305705 + 0.952126i \(0.598892\pi\)
\(824\) 10.4683 + 6.88510i 0.364680 + 0.239854i
\(825\) 0 0
\(826\) 11.6256 2.75531i 0.404505 0.0958695i
\(827\) 39.9498 14.5405i 1.38919 0.505623i 0.464238 0.885710i \(-0.346328\pi\)
0.924951 + 0.380087i \(0.124106\pi\)
\(828\) 0 0
\(829\) 5.90599 + 2.14960i 0.205124 + 0.0746589i 0.442539 0.896749i \(-0.354078\pi\)
−0.237415 + 0.971408i \(0.576300\pi\)
\(830\) −4.76503 0.556952i −0.165397 0.0193321i
\(831\) 0 0
\(832\) −13.0435 + 13.8253i −0.452202 + 0.479306i
\(833\) 11.8651 + 15.9376i 0.411100 + 0.552204i
\(834\) 0 0
\(835\) −4.11046 2.06435i −0.142248 0.0714398i
\(836\) 3.78381 + 6.55375i 0.130866 + 0.226666i
\(837\) 0 0
\(838\) −14.3173 + 24.7983i −0.494584 + 0.856644i
\(839\) −13.8375 + 9.10107i −0.477724 + 0.314204i −0.765435 0.643513i \(-0.777476\pi\)
0.287711 + 0.957717i \(0.407106\pi\)
\(840\) 0 0
\(841\) −4.63910 + 10.7546i −0.159969 + 0.370849i
\(842\) −1.49358 4.98891i −0.0514722 0.171929i
\(843\) 0 0
\(844\) −7.38791 17.1271i −0.254303 0.589539i
\(845\) −7.15852 + 6.00671i −0.246261 + 0.206637i
\(846\) 0 0
\(847\) 6.32205 + 5.30483i 0.217228 + 0.182276i
\(848\) −1.13656 + 3.79637i −0.0390296 + 0.130368i
\(849\) 0 0
\(850\) −0.647271 + 11.1132i −0.0222012 + 0.381180i
\(851\) 3.42459 58.7980i 0.117393 2.01557i
\(852\) 0 0
\(853\) 14.9484 49.9311i 0.511823 1.70961i −0.176586 0.984285i \(-0.556505\pi\)
0.688409 0.725323i \(-0.258309\pi\)
\(854\) −9.89523 8.30308i −0.338608 0.284126i
\(855\) 0 0
\(856\) 25.9351 21.7622i 0.886445 0.743815i
\(857\) −15.4005 35.7024i −0.526071 1.21957i −0.949536 0.313658i \(-0.898445\pi\)
0.423465 0.905913i \(-0.360814\pi\)
\(858\) 0 0
\(859\) 6.22471 + 20.7920i 0.212384 + 0.709413i 0.996095 + 0.0882870i \(0.0281393\pi\)
−0.783711 + 0.621126i \(0.786676\pi\)
\(860\) −3.15421 + 7.31228i −0.107558 + 0.249347i
\(861\) 0 0
\(862\) −2.09992 + 1.38114i −0.0715236 + 0.0470418i
\(863\) −21.9404 + 38.0020i −0.746861 + 1.29360i 0.202459 + 0.979291i \(0.435107\pi\)
−0.949320 + 0.314311i \(0.898227\pi\)
\(864\) 0 0
\(865\) −14.5161 25.1427i −0.493564 0.854877i
\(866\) 22.8770 + 11.4893i 0.777392 + 0.390421i
\(867\) 0 0
\(868\) 7.64764 + 10.2726i 0.259578 + 0.348673i
\(869\) 17.1512 18.1792i 0.581813 0.616686i
\(870\) 0 0
\(871\) 3.75553 + 0.438959i 0.127251 + 0.0148736i
\(872\) −23.0495 8.38933i −0.780554 0.284099i
\(873\) 0 0
\(874\) 12.5905 4.58258i 0.425881 0.155008i
\(875\) −13.1871 + 3.12539i −0.445804 + 0.105658i
\(876\) 0 0
\(877\) 20.9882 + 13.8042i 0.708721 + 0.466133i 0.851995 0.523550i \(-0.175393\pi\)
−0.143274 + 0.989683i \(0.545763\pi\)
\(878\) 0.340663 0.171087i 0.0114968 0.00577392i
\(879\) 0 0
\(880\) 0.572155 + 0.606449i 0.0192873 + 0.0204434i
\(881\) 0.463850 2.63063i 0.0156275 0.0886281i −0.975996 0.217786i \(-0.930116\pi\)
0.991624 + 0.129158i \(0.0412275\pi\)
\(882\) 0 0
\(883\) 6.82642 + 38.7145i 0.229727 + 1.30285i 0.853439 + 0.521193i \(0.174513\pi\)
−0.623711 + 0.781655i \(0.714376\pi\)
\(884\) 13.3915 17.9879i 0.450406 0.605000i
\(885\) 0 0
\(886\) −28.2954 6.70614i −0.950604 0.225297i
\(887\) −33.1937 + 3.87979i −1.11454 + 0.130271i −0.653367 0.757041i \(-0.726644\pi\)
−0.461169 + 0.887312i \(0.652570\pi\)
\(888\) 0 0
\(889\) 0.434402 + 7.45839i 0.0145694 + 0.250146i
\(890\) −3.34800 −0.112225
\(891\) 0 0
\(892\) 26.3703 0.882942
\(893\) 0.464714 + 7.97883i 0.0155511 + 0.267001i
\(894\) 0 0
\(895\) −7.59436 + 0.887653i −0.253851 + 0.0296710i
\(896\) 10.3251 + 2.44708i 0.344936 + 0.0817513i
\(897\) 0 0
\(898\) −3.55978 + 4.78161i −0.118791 + 0.159565i
\(899\) −5.38405 30.5345i −0.179568 1.01838i
\(900\) 0 0
\(901\) −8.15573 + 46.2534i −0.271707 + 1.54093i
\(902\) −7.19116 7.62218i −0.239439 0.253791i
\(903\) 0 0
\(904\) 42.7999 21.4949i 1.42350 0.714911i
\(905\) 6.24152 + 4.10511i 0.207475 + 0.136459i
\(906\) 0 0
\(907\) −11.9717 + 2.83735i −0.397515 + 0.0942127i −0.424511 0.905423i \(-0.639554\pi\)
0.0269963 + 0.999636i \(0.491406\pi\)
\(908\) 3.34254 1.21658i 0.110926 0.0403738i
\(909\) 0 0
\(910\) −5.65477 2.05817i −0.187454 0.0682276i
\(911\) 21.7054 + 2.53700i 0.719131 + 0.0840544i 0.467784 0.883843i \(-0.345052\pi\)
0.251347 + 0.967897i \(0.419126\pi\)
\(912\) 0 0
\(913\) 7.12148 7.54833i 0.235687 0.249813i
\(914\) −6.30875 8.47412i −0.208675 0.280299i
\(915\) 0 0
\(916\) −1.78174 0.894825i −0.0588704 0.0295658i
\(917\) −12.8324 22.2263i −0.423762 0.733977i
\(918\) 0 0
\(919\) 27.9349 48.3846i 0.921487 1.59606i 0.124370 0.992236i \(-0.460309\pi\)
0.797116 0.603826i \(-0.206358\pi\)
\(920\) 16.7442 11.0128i 0.552040 0.363082i
\(921\) 0 0
\(922\) 0.152371 0.353236i 0.00501807 0.0116332i
\(923\) −9.47282 31.6414i −0.311802 1.04149i
\(924\) 0 0
\(925\) −13.7077 31.7780i −0.450707 1.04486i
\(926\) 23.6750 19.8657i 0.778009 0.652827i
\(927\) 0 0
\(928\) −18.3873 15.4288i −0.603594 0.506476i
\(929\) −12.3051 + 41.1019i −0.403718 + 1.34851i 0.478673 + 0.877993i \(0.341118\pi\)
−0.882391 + 0.470518i \(0.844067\pi\)
\(930\) 0 0
\(931\) 0.817071 14.0286i 0.0267784 0.459767i
\(932\) −0.495707 + 8.51096i −0.0162374 + 0.278786i
\(933\) 0 0
\(934\) −6.57170 + 21.9510i −0.215032 + 0.718258i
\(935\) 7.56964 + 6.35168i 0.247554 + 0.207722i
\(936\) 0 0
\(937\) −10.4519 + 8.77015i −0.341447 + 0.286508i −0.797345 0.603524i \(-0.793763\pi\)
0.455898 + 0.890032i \(0.349318\pi\)
\(938\) 0.360130 + 0.834875i 0.0117587 + 0.0272597i
\(939\) 0 0
\(940\) 1.35451 + 4.52439i 0.0441794 + 0.147569i
\(941\) 17.6077 40.8193i 0.573995 1.33067i −0.345814 0.938303i \(-0.612397\pi\)
0.919809 0.392367i \(-0.128344\pi\)
\(942\) 0 0
\(943\) 29.1763 19.1896i 0.950112 0.624898i
\(944\) 1.73463 3.00447i 0.0564575 0.0977873i
\(945\) 0 0
\(946\) 4.57603 + 7.92592i 0.148780 + 0.257694i
\(947\) −3.87411 1.94565i −0.125892 0.0632251i 0.384739 0.923026i \(-0.374292\pi\)
−0.510630 + 0.859800i \(0.670588\pi\)
\(948\) 0 0
\(949\) −22.0872 29.6683i −0.716981 0.963073i
\(950\) 5.40281 5.72664i 0.175290 0.185797i
\(951\) 0 0
\(952\) 13.5579 + 1.58470i 0.439416 + 0.0513603i
\(953\) −34.6339 12.6057i −1.12190 0.408339i −0.286556 0.958063i \(-0.592511\pi\)
−0.835346 + 0.549724i \(0.814733\pi\)
\(954\) 0 0
\(955\) 7.65355 2.78566i 0.247663 0.0901419i
\(956\) 21.4749 5.08964i 0.694547 0.164611i
\(957\) 0 0
\(958\) 9.92490 + 6.52771i 0.320659 + 0.210901i
\(959\) −18.6292 + 9.35595i −0.601569 + 0.302119i
\(960\) 0 0
\(961\) −16.8879 17.9001i −0.544770 0.577422i
\(962\) 6.43203 36.4778i 0.207377 1.17609i
\(963\) 0 0
\(964\) 2.85744 + 16.2054i 0.0920320 + 0.521939i
\(965\) 11.4605 15.3942i 0.368928 0.495556i
\(966\) 0 0
\(967\) −9.95790 2.36007i −0.320225 0.0758946i 0.0673601 0.997729i \(-0.478542\pi\)
−0.387585 + 0.921834i \(0.626691\pi\)
\(968\) −17.1685 + 2.00671i −0.551817 + 0.0644981i
\(969\) 0 0
\(970\) 0.0796419 + 1.36740i 0.00255715 + 0.0439045i
\(971\) −43.9486 −1.41038 −0.705188 0.709020i \(-0.749138\pi\)
−0.705188 + 0.709020i \(0.749138\pi\)
\(972\) 0 0
\(973\) 13.7265 0.440051
\(974\) −0.439673 7.54889i −0.0140880 0.241882i
\(975\) 0 0
\(976\) −3.72547 + 0.435446i −0.119250 + 0.0139383i
\(977\) 57.4171 + 13.6081i 1.83694 + 0.435362i 0.994617 0.103619i \(-0.0330421\pi\)
0.842318 + 0.538980i \(0.181190\pi\)
\(978\) 0 0
\(979\) 4.32471 5.80909i 0.138218 0.185659i
\(980\) −1.44193 8.17758i −0.0460607 0.261223i
\(981\) 0 0
\(982\) −4.03329 + 22.8740i −0.128708 + 0.729937i
\(983\) 18.3835 + 19.4854i 0.586344 + 0.621488i 0.950827 0.309722i \(-0.100236\pi\)
−0.364483 + 0.931210i \(0.618754\pi\)
\(984\) 0 0
\(985\) 12.4949 6.27516i 0.398120 0.199943i
\(986\) −10.9079 7.17423i −0.347378 0.228474i
\(987\) 0 0
\(988\) −15.4327 + 3.65761i −0.490979 + 0.116364i
\(989\) −28.6598 + 10.4313i −0.911329 + 0.331697i
\(990\) 0 0
\(991\) 8.60252 + 3.13106i 0.273268 + 0.0994614i 0.475019 0.879975i \(-0.342441\pi\)
−0.201751 + 0.979437i \(0.564663\pi\)
\(992\) −42.7589 4.99779i −1.35760 0.158680i
\(993\) 0 0
\(994\) 5.45043 5.77712i 0.172877 0.183239i
\(995\) −3.09701 4.16000i −0.0981817 0.131881i
\(996\) 0 0
\(997\) 37.8253 + 18.9966i 1.19794 + 0.601628i 0.932034 0.362370i \(-0.118032\pi\)
0.265907 + 0.963999i \(0.414329\pi\)
\(998\) 9.90918 + 17.1632i 0.313670 + 0.543292i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.514.3 144
3.2 odd 2 729.2.g.a.514.6 144
9.2 odd 6 729.2.g.b.28.6 144
9.4 even 3 81.2.g.a.13.6 144
9.5 odd 6 243.2.g.a.10.3 144
9.7 even 3 729.2.g.c.28.3 144
81.2 odd 54 729.2.g.a.217.6 144
81.22 even 27 6561.2.a.c.1.49 72
81.25 even 27 729.2.g.c.703.3 144
81.29 odd 54 243.2.g.a.73.3 144
81.52 even 27 81.2.g.a.25.6 yes 144
81.56 odd 54 729.2.g.b.703.6 144
81.59 odd 54 6561.2.a.d.1.24 72
81.79 even 27 inner 729.2.g.d.217.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.6 144 9.4 even 3
81.2.g.a.25.6 yes 144 81.52 even 27
243.2.g.a.10.3 144 9.5 odd 6
243.2.g.a.73.3 144 81.29 odd 54
729.2.g.a.217.6 144 81.2 odd 54
729.2.g.a.514.6 144 3.2 odd 2
729.2.g.b.28.6 144 9.2 odd 6
729.2.g.b.703.6 144 81.56 odd 54
729.2.g.c.28.3 144 9.7 even 3
729.2.g.c.703.3 144 81.25 even 27
729.2.g.d.217.3 144 81.79 even 27 inner
729.2.g.d.514.3 144 1.1 even 1 trivial
6561.2.a.c.1.49 72 81.22 even 27
6561.2.a.d.1.24 72 81.59 odd 54