Properties

Label 729.2.g.d.514.1
Level $729$
Weight $2$
Character 729.514
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 514.1
Character \(\chi\) \(=\) 729.514
Dual form 729.2.g.d.217.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.126512 - 2.17212i) q^{2} +(-2.71564 + 0.317413i) q^{4} +(0.629067 + 0.149092i) q^{5} +(-1.09241 + 1.46736i) q^{7} +(0.277373 + 1.57306i) q^{8} +(0.244261 - 1.38527i) q^{10} +(0.830243 + 0.880006i) q^{11} +(-4.76615 + 2.39365i) q^{13} +(3.32548 + 2.18720i) q^{14} +(-1.93907 + 0.459569i) q^{16} +(-6.43434 + 2.34191i) q^{17} +(-5.97823 - 2.17590i) q^{19} +(-1.75565 - 0.205206i) q^{20} +(1.80645 - 1.91472i) q^{22} +(-1.86114 - 2.49994i) q^{23} +(-4.09467 - 2.05642i) q^{25} +(5.80229 + 10.0499i) q^{26} +(2.50083 - 4.33156i) q^{28} +(4.91797 - 3.23460i) q^{29} +(-1.09846 + 2.54651i) q^{31} +(2.15979 + 7.21421i) q^{32} +(5.90094 + 13.6799i) q^{34} +(-0.905967 + 0.760197i) q^{35} +(-1.09453 - 0.918418i) q^{37} +(-3.97000 + 13.2607i) q^{38} +(-0.0600440 + 1.03092i) q^{40} +(-0.0648547 + 1.11351i) q^{41} +(2.76319 - 9.22968i) q^{43} +(-2.53397 - 2.12625i) q^{44} +(-5.19473 + 4.35890i) q^{46} +(2.41701 + 5.60327i) q^{47} +(1.04784 + 3.50003i) q^{49} +(-3.94877 + 9.15429i) q^{50} +(12.1834 - 8.01315i) q^{52} +(4.26135 - 7.38088i) q^{53} +(0.391077 + 0.677365i) q^{55} +(-2.61124 - 1.31142i) q^{56} +(-7.64814 - 10.2732i) q^{58} +(-1.43295 + 1.51884i) q^{59} +(3.56577 + 0.416778i) q^{61} +(5.67029 + 2.06382i) q^{62} +(11.6517 - 4.24088i) q^{64} +(-3.35511 + 0.795175i) q^{65} +(-1.01911 - 0.670277i) q^{67} +(16.7300 - 8.40213i) q^{68} +(1.76586 + 1.87170i) q^{70} +(1.41528 - 8.02646i) q^{71} +(1.11524 + 6.32482i) q^{73} +(-1.85645 + 2.49364i) q^{74} +(16.9254 + 4.01139i) q^{76} +(-2.19824 + 0.256938i) q^{77} +(0.829051 + 14.2343i) q^{79} -1.28832 q^{80} +2.42689 q^{82} +(-0.390702 - 6.70809i) q^{83} +(-4.39679 + 0.513911i) q^{85} +(-20.3976 - 4.83432i) q^{86} +(-1.15402 + 1.55011i) q^{88} +(-2.70557 - 15.3441i) q^{89} +(1.69423 - 9.60848i) q^{91} +(5.84771 + 6.19821i) q^{92} +(11.8652 - 5.95894i) q^{94} +(-3.43630 - 2.26009i) q^{95} +(-3.62877 + 0.860034i) q^{97} +(7.46994 - 2.71884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.126512 2.17212i −0.0894574 1.53592i −0.682579 0.730812i \(-0.739142\pi\)
0.593122 0.805113i \(-0.297895\pi\)
\(3\) 0 0
\(4\) −2.71564 + 0.317413i −1.35782 + 0.158707i
\(5\) 0.629067 + 0.149092i 0.281327 + 0.0666758i 0.368857 0.929486i \(-0.379749\pi\)
−0.0875297 + 0.996162i \(0.527897\pi\)
\(6\) 0 0
\(7\) −1.09241 + 1.46736i −0.412891 + 0.554608i −0.959110 0.283034i \(-0.908659\pi\)
0.546219 + 0.837642i \(0.316066\pi\)
\(8\) 0.277373 + 1.57306i 0.0980662 + 0.556161i
\(9\) 0 0
\(10\) 0.244261 1.38527i 0.0772422 0.438062i
\(11\) 0.830243 + 0.880006i 0.250328 + 0.265332i 0.840337 0.542065i \(-0.182357\pi\)
−0.590009 + 0.807397i \(0.700876\pi\)
\(12\) 0 0
\(13\) −4.76615 + 2.39365i −1.32189 + 0.663880i −0.963001 0.269499i \(-0.913142\pi\)
−0.358893 + 0.933379i \(0.616846\pi\)
\(14\) 3.32548 + 2.18720i 0.888772 + 0.584555i
\(15\) 0 0
\(16\) −1.93907 + 0.459569i −0.484768 + 0.114892i
\(17\) −6.43434 + 2.34191i −1.56056 + 0.567996i −0.970864 0.239631i \(-0.922973\pi\)
−0.589693 + 0.807628i \(0.700751\pi\)
\(18\) 0 0
\(19\) −5.97823 2.17590i −1.37150 0.499185i −0.451909 0.892064i \(-0.649257\pi\)
−0.919590 + 0.392879i \(0.871479\pi\)
\(20\) −1.75565 0.205206i −0.392575 0.0458854i
\(21\) 0 0
\(22\) 1.80645 1.91472i 0.385136 0.408220i
\(23\) −1.86114 2.49994i −0.388074 0.521274i 0.564560 0.825392i \(-0.309046\pi\)
−0.952634 + 0.304118i \(0.901638\pi\)
\(24\) 0 0
\(25\) −4.09467 2.05642i −0.818933 0.411284i
\(26\) 5.80229 + 10.0499i 1.13792 + 1.97094i
\(27\) 0 0
\(28\) 2.50083 4.33156i 0.472612 0.818588i
\(29\) 4.91797 3.23460i 0.913244 0.600650i −0.00355721 0.999994i \(-0.501132\pi\)
0.916801 + 0.399344i \(0.130762\pi\)
\(30\) 0 0
\(31\) −1.09846 + 2.54651i −0.197288 + 0.457366i −0.987928 0.154916i \(-0.950489\pi\)
0.790639 + 0.612282i \(0.209748\pi\)
\(32\) 2.15979 + 7.21421i 0.381801 + 1.27530i
\(33\) 0 0
\(34\) 5.90094 + 13.6799i 1.01200 + 2.34609i
\(35\) −0.905967 + 0.760197i −0.153136 + 0.128497i
\(36\) 0 0
\(37\) −1.09453 0.918418i −0.179939 0.150987i 0.548369 0.836236i \(-0.315249\pi\)
−0.728309 + 0.685249i \(0.759693\pi\)
\(38\) −3.97000 + 13.2607i −0.644019 + 2.15117i
\(39\) 0 0
\(40\) −0.0600440 + 1.03092i −0.00949379 + 0.163002i
\(41\) −0.0648547 + 1.11351i −0.0101286 + 0.173902i 0.989450 + 0.144875i \(0.0462779\pi\)
−0.999579 + 0.0290269i \(0.990759\pi\)
\(42\) 0 0
\(43\) 2.76319 9.22968i 0.421382 1.40751i −0.439286 0.898347i \(-0.644769\pi\)
0.860668 0.509167i \(-0.170046\pi\)
\(44\) −2.53397 2.12625i −0.382010 0.320545i
\(45\) 0 0
\(46\) −5.19473 + 4.35890i −0.765922 + 0.642685i
\(47\) 2.41701 + 5.60327i 0.352558 + 0.817321i 0.998543 + 0.0539704i \(0.0171877\pi\)
−0.645985 + 0.763350i \(0.723553\pi\)
\(48\) 0 0
\(49\) 1.04784 + 3.50003i 0.149692 + 0.500005i
\(50\) −3.94877 + 9.15429i −0.558441 + 1.29461i
\(51\) 0 0
\(52\) 12.1834 8.01315i 1.68953 1.11122i
\(53\) 4.26135 7.38088i 0.585342 1.01384i −0.409491 0.912314i \(-0.634294\pi\)
0.994833 0.101528i \(-0.0323731\pi\)
\(54\) 0 0
\(55\) 0.391077 + 0.677365i 0.0527328 + 0.0913359i
\(56\) −2.61124 1.31142i −0.348942 0.175245i
\(57\) 0 0
\(58\) −7.64814 10.2732i −1.00425 1.34894i
\(59\) −1.43295 + 1.51884i −0.186554 + 0.197736i −0.813900 0.581005i \(-0.802660\pi\)
0.627346 + 0.778741i \(0.284141\pi\)
\(60\) 0 0
\(61\) 3.56577 + 0.416778i 0.456550 + 0.0533630i 0.341260 0.939969i \(-0.389146\pi\)
0.115290 + 0.993332i \(0.463220\pi\)
\(62\) 5.67029 + 2.06382i 0.720128 + 0.262105i
\(63\) 0 0
\(64\) 11.6517 4.24088i 1.45646 0.530110i
\(65\) −3.35511 + 0.795175i −0.416150 + 0.0986293i
\(66\) 0 0
\(67\) −1.01911 0.670277i −0.124504 0.0818873i 0.485730 0.874109i \(-0.338554\pi\)
−0.610233 + 0.792222i \(0.708924\pi\)
\(68\) 16.7300 8.40213i 2.02881 1.01891i
\(69\) 0 0
\(70\) 1.76586 + 1.87170i 0.211060 + 0.223711i
\(71\) 1.41528 8.02646i 0.167963 0.952565i −0.777994 0.628272i \(-0.783763\pi\)
0.945957 0.324293i \(-0.105126\pi\)
\(72\) 0 0
\(73\) 1.11524 + 6.32482i 0.130529 + 0.740264i 0.977870 + 0.209215i \(0.0670909\pi\)
−0.847341 + 0.531049i \(0.821798\pi\)
\(74\) −1.85645 + 2.49364i −0.215808 + 0.289880i
\(75\) 0 0
\(76\) 16.9254 + 4.01139i 1.94148 + 0.460138i
\(77\) −2.19824 + 0.256938i −0.250513 + 0.0292808i
\(78\) 0 0
\(79\) 0.829051 + 14.2343i 0.0932755 + 1.60148i 0.642822 + 0.766015i \(0.277763\pi\)
−0.549547 + 0.835463i \(0.685200\pi\)
\(80\) −1.28832 −0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) −0.390702 6.70809i −0.0428851 0.736308i −0.949387 0.314107i \(-0.898295\pi\)
0.906502 0.422201i \(-0.138742\pi\)
\(84\) 0 0
\(85\) −4.39679 + 0.513911i −0.476899 + 0.0557415i
\(86\) −20.3976 4.83432i −2.19953 0.521298i
\(87\) 0 0
\(88\) −1.15402 + 1.55011i −0.123018 + 0.165243i
\(89\) −2.70557 15.3441i −0.286790 1.62647i −0.698820 0.715297i \(-0.746291\pi\)
0.412030 0.911170i \(-0.364820\pi\)
\(90\) 0 0
\(91\) 1.69423 9.60848i 0.177604 1.00724i
\(92\) 5.84771 + 6.19821i 0.609666 + 0.646208i
\(93\) 0 0
\(94\) 11.8652 5.95894i 1.22380 0.614617i
\(95\) −3.43630 2.26009i −0.352557 0.231880i
\(96\) 0 0
\(97\) −3.62877 + 0.860034i −0.368446 + 0.0873232i −0.410668 0.911785i \(-0.634704\pi\)
0.0422221 + 0.999108i \(0.486556\pi\)
\(98\) 7.46994 2.71884i 0.754578 0.274644i
\(99\) 0 0
\(100\) 11.7724 + 4.28480i 1.17724 + 0.428480i
\(101\) 4.61913 + 0.539899i 0.459621 + 0.0537220i 0.342753 0.939426i \(-0.388641\pi\)
0.116868 + 0.993147i \(0.462715\pi\)
\(102\) 0 0
\(103\) −3.54684 + 3.75944i −0.349481 + 0.370428i −0.878138 0.478407i \(-0.841214\pi\)
0.528657 + 0.848835i \(0.322696\pi\)
\(104\) −5.08736 6.83351i −0.498857 0.670081i
\(105\) 0 0
\(106\) −16.5713 8.32243i −1.60955 0.808345i
\(107\) 6.49528 + 11.2502i 0.627922 + 1.08759i 0.987968 + 0.154659i \(0.0494278\pi\)
−0.360046 + 0.932935i \(0.617239\pi\)
\(108\) 0 0
\(109\) −0.888686 + 1.53925i −0.0851207 + 0.147433i −0.905443 0.424469i \(-0.860461\pi\)
0.820322 + 0.571902i \(0.193794\pi\)
\(110\) 1.42185 0.935163i 0.135568 0.0891643i
\(111\) 0 0
\(112\) 1.44390 3.34734i 0.136436 0.316294i
\(113\) −3.98316 13.3047i −0.374704 1.25160i −0.912693 0.408646i \(-0.866001\pi\)
0.537989 0.842952i \(-0.319184\pi\)
\(114\) 0 0
\(115\) −0.798061 1.85011i −0.0744196 0.172524i
\(116\) −12.3288 + 10.3451i −1.14470 + 0.960514i
\(117\) 0 0
\(118\) 3.48039 + 2.92040i 0.320396 + 0.268844i
\(119\) 3.59250 11.9998i 0.329324 1.10002i
\(120\) 0 0
\(121\) 0.554486 9.52015i 0.0504078 0.865468i
\(122\) 0.454183 7.79802i 0.0411198 0.705999i
\(123\) 0 0
\(124\) 2.17472 7.26407i 0.195296 0.652332i
\(125\) −4.74544 3.98190i −0.424445 0.356152i
\(126\) 0 0
\(127\) −8.72949 + 7.32491i −0.774617 + 0.649981i −0.941887 0.335930i \(-0.890949\pi\)
0.167270 + 0.985911i \(0.446505\pi\)
\(128\) −4.72038 10.9431i −0.417226 0.967239i
\(129\) 0 0
\(130\) 2.15168 + 7.18711i 0.188715 + 0.630351i
\(131\) −5.77514 + 13.3883i −0.504576 + 1.16974i 0.455560 + 0.890205i \(0.349439\pi\)
−0.960136 + 0.279534i \(0.909820\pi\)
\(132\) 0 0
\(133\) 9.72346 6.39522i 0.843131 0.554536i
\(134\) −1.32700 + 2.29842i −0.114635 + 0.198554i
\(135\) 0 0
\(136\) −5.46868 9.47202i −0.468935 0.812219i
\(137\) −0.331366 0.166418i −0.0283105 0.0142181i 0.434588 0.900630i \(-0.356894\pi\)
−0.462898 + 0.886411i \(0.653190\pi\)
\(138\) 0 0
\(139\) 8.94395 + 12.0138i 0.758616 + 1.01900i 0.998834 + 0.0482794i \(0.0153738\pi\)
−0.240218 + 0.970719i \(0.577219\pi\)
\(140\) 2.21899 2.35199i 0.187539 0.198779i
\(141\) 0 0
\(142\) −17.6135 2.05872i −1.47809 0.172764i
\(143\) −6.06349 2.20693i −0.507055 0.184553i
\(144\) 0 0
\(145\) 3.57599 1.30155i 0.296970 0.108088i
\(146\) 13.5972 3.22260i 1.12531 0.266704i
\(147\) 0 0
\(148\) 3.26387 + 2.14668i 0.268288 + 0.176456i
\(149\) −0.893861 + 0.448914i −0.0732279 + 0.0367764i −0.485036 0.874494i \(-0.661194\pi\)
0.411808 + 0.911270i \(0.364897\pi\)
\(150\) 0 0
\(151\) −0.0134726 0.0142801i −0.00109638 0.00116210i 0.726825 0.686822i \(-0.240995\pi\)
−0.727922 + 0.685660i \(0.759514\pi\)
\(152\) 1.76462 10.0076i 0.143129 0.811727i
\(153\) 0 0
\(154\) 0.836205 + 4.74235i 0.0673833 + 0.382150i
\(155\) −1.07067 + 1.43815i −0.0859979 + 0.115515i
\(156\) 0 0
\(157\) −7.59419 1.79986i −0.606083 0.143644i −0.0838947 0.996475i \(-0.526736\pi\)
−0.522188 + 0.852830i \(0.674884\pi\)
\(158\) 30.8137 3.60160i 2.45141 0.286528i
\(159\) 0 0
\(160\) 0.283076 + 4.86023i 0.0223791 + 0.384235i
\(161\) 5.70142 0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) −0.177321 3.04449i −0.0138465 0.237735i
\(165\) 0 0
\(166\) −14.5214 + 1.69731i −1.12708 + 0.131736i
\(167\) 3.55630 + 0.842859i 0.275195 + 0.0652224i 0.365896 0.930656i \(-0.380763\pi\)
−0.0907011 + 0.995878i \(0.528911\pi\)
\(168\) 0 0
\(169\) 9.22359 12.3894i 0.709507 0.953033i
\(170\) 1.67253 + 9.48537i 0.128277 + 0.727494i
\(171\) 0 0
\(172\) −4.57421 + 25.9416i −0.348780 + 1.97803i
\(173\) −9.11506 9.66140i −0.693005 0.734543i 0.281338 0.959609i \(-0.409222\pi\)
−0.974344 + 0.225066i \(0.927740\pi\)
\(174\) 0 0
\(175\) 7.49053 3.76189i 0.566231 0.284372i
\(176\) −2.01432 1.32484i −0.151835 0.0998637i
\(177\) 0 0
\(178\) −32.9869 + 7.81805i −2.47248 + 0.585987i
\(179\) −0.392738 + 0.142945i −0.0293546 + 0.0106842i −0.356656 0.934236i \(-0.616083\pi\)
0.327301 + 0.944920i \(0.393861\pi\)
\(180\) 0 0
\(181\) −19.5881 7.12947i −1.45597 0.529929i −0.511717 0.859154i \(-0.670990\pi\)
−0.944252 + 0.329225i \(0.893213\pi\)
\(182\) −21.0852 2.46450i −1.56294 0.182681i
\(183\) 0 0
\(184\) 3.41633 3.62110i 0.251855 0.266951i
\(185\) −0.551604 0.740932i −0.0405547 0.0544744i
\(186\) 0 0
\(187\) −7.40296 3.71791i −0.541358 0.271880i
\(188\) −8.34230 14.4493i −0.608425 1.05382i
\(189\) 0 0
\(190\) −4.47446 + 7.75000i −0.324612 + 0.562244i
\(191\) −5.75588 + 3.78570i −0.416481 + 0.273924i −0.740407 0.672159i \(-0.765367\pi\)
0.323927 + 0.946082i \(0.394997\pi\)
\(192\) 0 0
\(193\) −3.46427 + 8.03108i −0.249363 + 0.578089i −0.996217 0.0868989i \(-0.972304\pi\)
0.746854 + 0.664988i \(0.231564\pi\)
\(194\) 2.32718 + 7.77334i 0.167082 + 0.558093i
\(195\) 0 0
\(196\) −3.95652 9.17224i −0.282609 0.655160i
\(197\) −6.47094 + 5.42976i −0.461035 + 0.386855i −0.843512 0.537111i \(-0.819516\pi\)
0.382476 + 0.923965i \(0.375071\pi\)
\(198\) 0 0
\(199\) 9.66790 + 8.11233i 0.685339 + 0.575068i 0.917561 0.397595i \(-0.130155\pi\)
−0.232222 + 0.972663i \(0.574599\pi\)
\(200\) 2.09912 7.01155i 0.148430 0.495792i
\(201\) 0 0
\(202\) 0.588353 10.1016i 0.0413964 0.710749i
\(203\) −0.626111 + 10.7499i −0.0439444 + 0.754495i
\(204\) 0 0
\(205\) −0.206814 + 0.690805i −0.0144445 + 0.0482479i
\(206\) 8.61468 + 7.22858i 0.600213 + 0.503639i
\(207\) 0 0
\(208\) 8.14187 6.83184i 0.564537 0.473703i
\(209\) −3.04858 7.06740i −0.210875 0.488862i
\(210\) 0 0
\(211\) 1.62787 + 5.43746i 0.112067 + 0.374330i 0.995562 0.0941110i \(-0.0300009\pi\)
−0.883495 + 0.468441i \(0.844816\pi\)
\(212\) −9.22953 + 21.3965i −0.633887 + 1.46952i
\(213\) 0 0
\(214\) 23.6150 15.5318i 1.61429 1.06173i
\(215\) 3.11430 5.39413i 0.212393 0.367876i
\(216\) 0 0
\(217\) −2.53667 4.39364i −0.172200 0.298260i
\(218\) 3.45587 + 1.73560i 0.234061 + 0.117550i
\(219\) 0 0
\(220\) −1.27703 1.71535i −0.0860974 0.115649i
\(221\) 25.0613 26.5635i 1.68581 1.78685i
\(222\) 0 0
\(223\) −7.48192 0.874511i −0.501027 0.0585616i −0.138174 0.990408i \(-0.544123\pi\)
−0.362853 + 0.931846i \(0.618197\pi\)
\(224\) −12.9452 4.71166i −0.864936 0.314811i
\(225\) 0 0
\(226\) −28.3955 + 10.3351i −1.88884 + 0.687481i
\(227\) −13.2754 + 3.14632i −0.881118 + 0.208829i −0.646183 0.763182i \(-0.723636\pi\)
−0.234935 + 0.972011i \(0.575488\pi\)
\(228\) 0 0
\(229\) −13.3632 8.78913i −0.883067 0.580802i 0.0249721 0.999688i \(-0.492050\pi\)
−0.908039 + 0.418886i \(0.862421\pi\)
\(230\) −3.91771 + 1.96755i −0.258326 + 0.129736i
\(231\) 0 0
\(232\) 6.45233 + 6.83907i 0.423616 + 0.449007i
\(233\) −0.930605 + 5.27772i −0.0609660 + 0.345755i 0.939032 + 0.343829i \(0.111724\pi\)
−0.999998 + 0.00192589i \(0.999387\pi\)
\(234\) 0 0
\(235\) 0.685064 + 3.88519i 0.0446886 + 0.253442i
\(236\) 3.40928 4.57946i 0.221925 0.298098i
\(237\) 0 0
\(238\) −26.5195 6.28524i −1.71900 0.407412i
\(239\) 16.0344 1.87416i 1.03718 0.121229i 0.419578 0.907719i \(-0.362178\pi\)
0.617603 + 0.786490i \(0.288104\pi\)
\(240\) 0 0
\(241\) 1.35989 + 23.3484i 0.0875982 + 1.50400i 0.700391 + 0.713759i \(0.253009\pi\)
−0.612793 + 0.790244i \(0.709954\pi\)
\(242\) −20.7491 −1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) 0.137337 + 2.35798i 0.00877412 + 0.150646i
\(246\) 0 0
\(247\) 33.7015 3.93914i 2.14437 0.250641i
\(248\) −4.31049 1.02160i −0.273716 0.0648720i
\(249\) 0 0
\(250\) −8.04882 + 10.8114i −0.509052 + 0.683776i
\(251\) 4.21745 + 23.9183i 0.266203 + 1.50971i 0.765588 + 0.643331i \(0.222448\pi\)
−0.499385 + 0.866380i \(0.666441\pi\)
\(252\) 0 0
\(253\) 0.654768 3.71337i 0.0411649 0.233458i
\(254\) 17.0150 + 18.0349i 1.06762 + 1.13161i
\(255\) 0 0
\(256\) −1.01133 + 0.507909i −0.0632081 + 0.0317443i
\(257\) −8.04903 5.29393i −0.502085 0.330226i 0.273074 0.961993i \(-0.411960\pi\)
−0.775158 + 0.631767i \(0.782330\pi\)
\(258\) 0 0
\(259\) 2.54332 0.602777i 0.158034 0.0374547i
\(260\) 8.85887 3.22437i 0.549404 0.199967i
\(261\) 0 0
\(262\) 29.8116 + 10.8505i 1.84177 + 0.670349i
\(263\) −6.59689 0.771066i −0.406782 0.0475460i −0.0897582 0.995964i \(-0.528609\pi\)
−0.317024 + 0.948418i \(0.602683\pi\)
\(264\) 0 0
\(265\) 3.78111 4.00774i 0.232272 0.246194i
\(266\) −15.1214 20.3115i −0.927150 1.24538i
\(267\) 0 0
\(268\) 2.98028 + 1.49676i 0.182050 + 0.0914289i
\(269\) −14.6832 25.4321i −0.895251 1.55062i −0.833494 0.552529i \(-0.813663\pi\)
−0.0617568 0.998091i \(-0.519670\pi\)
\(270\) 0 0
\(271\) 9.43957 16.3498i 0.573413 0.993180i −0.422799 0.906223i \(-0.638952\pi\)
0.996212 0.0869568i \(-0.0277142\pi\)
\(272\) 11.4004 7.49815i 0.691250 0.454642i
\(273\) 0 0
\(274\) −0.319560 + 0.740823i −0.0193053 + 0.0447547i
\(275\) −1.58991 5.31066i −0.0958750 0.320245i
\(276\) 0 0
\(277\) 5.56045 + 12.8906i 0.334095 + 0.774519i 0.999604 + 0.0281297i \(0.00895515\pi\)
−0.665509 + 0.746390i \(0.731786\pi\)
\(278\) 24.9640 20.9473i 1.49724 1.25633i
\(279\) 0 0
\(280\) −1.44713 1.21428i −0.0864824 0.0725673i
\(281\) 6.33274 21.1528i 0.377780 1.26187i −0.531987 0.846753i \(-0.678554\pi\)
0.909767 0.415120i \(-0.136260\pi\)
\(282\) 0 0
\(283\) −0.230048 + 3.94978i −0.0136750 + 0.234790i 0.984544 + 0.175136i \(0.0560367\pi\)
−0.998219 + 0.0596536i \(0.981000\pi\)
\(284\) −1.29570 + 22.2462i −0.0768854 + 1.32007i
\(285\) 0 0
\(286\) −4.02663 + 13.4499i −0.238099 + 0.795307i
\(287\) −1.56307 1.31157i −0.0922652 0.0774197i
\(288\) 0 0
\(289\) 22.8934 19.2099i 1.34667 1.12999i
\(290\) −3.27954 7.60283i −0.192581 0.446453i
\(291\) 0 0
\(292\) −5.03617 16.8220i −0.294719 0.984431i
\(293\) 3.15963 7.32485i 0.184588 0.427922i −0.800646 0.599138i \(-0.795510\pi\)
0.985234 + 0.171215i \(0.0547694\pi\)
\(294\) 0 0
\(295\) −1.12787 + 0.741811i −0.0656671 + 0.0431899i
\(296\) 1.14114 1.97650i 0.0663271 0.114882i
\(297\) 0 0
\(298\) 1.08818 + 1.88478i 0.0630366 + 0.109183i
\(299\) 14.8545 + 7.46020i 0.859056 + 0.431434i
\(300\) 0 0
\(301\) 10.5247 + 14.1371i 0.606634 + 0.814851i
\(302\) −0.0293137 + 0.0310707i −0.00168681 + 0.00178792i
\(303\) 0 0
\(304\) 12.5922 + 1.47182i 0.722211 + 0.0844144i
\(305\) 2.18097 + 0.793808i 0.124882 + 0.0454533i
\(306\) 0 0
\(307\) 1.95823 0.712736i 0.111762 0.0406780i −0.285534 0.958369i \(-0.592171\pi\)
0.397296 + 0.917691i \(0.369949\pi\)
\(308\) 5.88809 1.39550i 0.335505 0.0795162i
\(309\) 0 0
\(310\) 3.25930 + 2.14367i 0.185116 + 0.121753i
\(311\) −13.4174 + 6.73846i −0.760830 + 0.382103i −0.786518 0.617567i \(-0.788118\pi\)
0.0256887 + 0.999670i \(0.491822\pi\)
\(312\) 0 0
\(313\) −3.49359 3.70299i −0.197469 0.209305i 0.621071 0.783754i \(-0.286698\pi\)
−0.818540 + 0.574449i \(0.805216\pi\)
\(314\) −2.94876 + 16.7232i −0.166408 + 0.943747i
\(315\) 0 0
\(316\) −6.76955 38.3920i −0.380817 2.15972i
\(317\) −16.5461 + 22.2253i −0.929323 + 1.24830i 0.0391636 + 0.999233i \(0.487531\pi\)
−0.968487 + 0.249065i \(0.919877\pi\)
\(318\) 0 0
\(319\) 6.92958 + 1.64234i 0.387982 + 0.0919534i
\(320\) 7.96199 0.930623i 0.445089 0.0520234i
\(321\) 0 0
\(322\) −0.721298 12.3842i −0.0401964 0.690145i
\(323\) 43.5617 2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) 1.94762 + 33.4393i 0.107869 + 1.85203i
\(327\) 0 0
\(328\) −1.76961 + 0.206838i −0.0977105 + 0.0114207i
\(329\) −10.8623 2.57442i −0.598860 0.141933i
\(330\) 0 0
\(331\) 16.2840 21.8732i 0.895049 1.20226i −0.0835546 0.996503i \(-0.526627\pi\)
0.978603 0.205756i \(-0.0659653\pi\)
\(332\) 3.19024 + 18.0928i 0.175087 + 0.992969i
\(333\) 0 0
\(334\) 1.38088 7.83136i 0.0755584 0.428513i
\(335\) −0.541154 0.573589i −0.0295664 0.0313385i
\(336\) 0 0
\(337\) −11.3657 + 5.70808i −0.619130 + 0.310939i −0.730576 0.682832i \(-0.760748\pi\)
0.111445 + 0.993771i \(0.464452\pi\)
\(338\) −28.0783 18.4674i −1.52726 1.00449i
\(339\) 0 0
\(340\) 11.7770 2.79120i 0.638698 0.151374i
\(341\) −3.15292 + 1.14757i −0.170740 + 0.0621444i
\(342\) 0 0
\(343\) −18.3136 6.66560i −0.988840 0.359908i
\(344\) 15.2853 + 1.78659i 0.824127 + 0.0963267i
\(345\) 0 0
\(346\) −19.8326 + 21.0213i −1.06621 + 1.13011i
\(347\) 5.02397 + 6.74836i 0.269701 + 0.362271i 0.916254 0.400598i \(-0.131198\pi\)
−0.646553 + 0.762869i \(0.723790\pi\)
\(348\) 0 0
\(349\) 26.9370 + 13.5282i 1.44190 + 0.724150i 0.986134 0.165948i \(-0.0530685\pi\)
0.455768 + 0.890099i \(0.349365\pi\)
\(350\) −9.11893 15.7944i −0.487427 0.844249i
\(351\) 0 0
\(352\) −4.55540 + 7.89018i −0.242803 + 0.420548i
\(353\) −19.4095 + 12.7659i −1.03307 + 0.679458i −0.948441 0.316955i \(-0.897340\pi\)
−0.0846248 + 0.996413i \(0.526969\pi\)
\(354\) 0 0
\(355\) 2.08698 4.83817i 0.110766 0.256784i
\(356\) 12.2178 + 40.8102i 0.647541 + 2.16294i
\(357\) 0 0
\(358\) 0.360180 + 0.834992i 0.0190361 + 0.0441307i
\(359\) 3.19290 2.67916i 0.168515 0.141401i −0.554630 0.832097i \(-0.687140\pi\)
0.723145 + 0.690696i \(0.242696\pi\)
\(360\) 0 0
\(361\) 16.4498 + 13.8030i 0.865780 + 0.726476i
\(362\) −13.0080 + 43.4497i −0.683684 + 2.28366i
\(363\) 0 0
\(364\) −1.55108 + 26.6310i −0.0812986 + 1.39584i
\(365\) −0.241419 + 4.14501i −0.0126365 + 0.216960i
\(366\) 0 0
\(367\) 3.36163 11.2286i 0.175476 0.586130i −0.824324 0.566118i \(-0.808445\pi\)
0.999800 0.0200114i \(-0.00637025\pi\)
\(368\) 4.75778 + 3.99225i 0.248016 + 0.208110i
\(369\) 0 0
\(370\) −1.53961 + 1.29189i −0.0800407 + 0.0671621i
\(371\) 6.17525 + 14.3158i 0.320603 + 0.743241i
\(372\) 0 0
\(373\) −10.4315 34.8438i −0.540124 1.80414i −0.592572 0.805518i \(-0.701887\pi\)
0.0524474 0.998624i \(-0.483298\pi\)
\(374\) −7.13919 + 16.5505i −0.369159 + 0.855806i
\(375\) 0 0
\(376\) −8.14387 + 5.35630i −0.419988 + 0.276230i
\(377\) −15.6973 + 27.1885i −0.808452 + 1.40028i
\(378\) 0 0
\(379\) 5.02516 + 8.70383i 0.258125 + 0.447086i 0.965740 0.259513i \(-0.0835620\pi\)
−0.707615 + 0.706599i \(0.750229\pi\)
\(380\) 10.0491 + 5.04687i 0.515510 + 0.258899i
\(381\) 0 0
\(382\) 8.95120 + 12.0235i 0.457983 + 0.615178i
\(383\) 0.207663 0.220110i 0.0106111 0.0112471i −0.722046 0.691845i \(-0.756798\pi\)
0.732657 + 0.680598i \(0.238280\pi\)
\(384\) 0 0
\(385\) −1.42115 0.166109i −0.0724285 0.00846568i
\(386\) 17.8828 + 6.50880i 0.910209 + 0.331289i
\(387\) 0 0
\(388\) 9.58146 3.48737i 0.486425 0.177044i
\(389\) 7.31685 1.73413i 0.370979 0.0879237i −0.0408974 0.999163i \(-0.513022\pi\)
0.411876 + 0.911240i \(0.364874\pi\)
\(390\) 0 0
\(391\) 17.8298 + 11.7269i 0.901694 + 0.593053i
\(392\) −5.21512 + 2.61913i −0.263403 + 0.132286i
\(393\) 0 0
\(394\) 12.6128 + 13.3688i 0.635422 + 0.673508i
\(395\) −1.60068 + 9.07791i −0.0805390 + 0.456759i
\(396\) 0 0
\(397\) 2.95983 + 16.7860i 0.148549 + 0.842466i 0.964448 + 0.264271i \(0.0851314\pi\)
−0.815899 + 0.578195i \(0.803757\pi\)
\(398\) 16.3979 22.0262i 0.821952 1.10407i
\(399\) 0 0
\(400\) 8.88492 + 2.10576i 0.444246 + 0.105288i
\(401\) −13.4856 + 1.57624i −0.673441 + 0.0787139i −0.445938 0.895064i \(-0.647130\pi\)
−0.227502 + 0.973778i \(0.573056\pi\)
\(402\) 0 0
\(403\) −0.860042 14.7664i −0.0428418 0.735565i
\(404\) −12.7153 −0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) −0.100511 1.72570i −0.00498213 0.0855399i
\(408\) 0 0
\(409\) 0.667804 0.0780551i 0.0330208 0.00385958i −0.0995665 0.995031i \(-0.531746\pi\)
0.132587 + 0.991171i \(0.457672\pi\)
\(410\) 1.52668 + 0.361830i 0.0753973 + 0.0178695i
\(411\) 0 0
\(412\) 8.43867 11.3351i 0.415744 0.558441i
\(413\) −0.663313 3.76184i −0.0326395 0.185108i
\(414\) 0 0
\(415\) 0.754343 4.27809i 0.0370292 0.210003i
\(416\) −27.5622 29.2143i −1.35135 1.43235i
\(417\) 0 0
\(418\) −14.9656 + 7.51600i −0.731991 + 0.367620i
\(419\) 16.6146 + 10.9276i 0.811675 + 0.533847i 0.886162 0.463375i \(-0.153362\pi\)
−0.0744874 + 0.997222i \(0.523732\pi\)
\(420\) 0 0
\(421\) 12.2171 2.89551i 0.595426 0.141119i 0.0781566 0.996941i \(-0.475097\pi\)
0.517270 + 0.855822i \(0.326948\pi\)
\(422\) 11.6049 4.22384i 0.564918 0.205613i
\(423\) 0 0
\(424\) 12.7926 + 4.65611i 0.621262 + 0.226121i
\(425\) 31.1624 + 3.64236i 1.51160 + 0.176681i
\(426\) 0 0
\(427\) −4.50682 + 4.77696i −0.218101 + 0.231173i
\(428\) −21.2098 28.4897i −1.02522 1.37710i
\(429\) 0 0
\(430\) −12.1107 6.08223i −0.584030 0.293311i
\(431\) 10.8013 + 18.7084i 0.520281 + 0.901153i 0.999722 + 0.0235787i \(0.00750603\pi\)
−0.479441 + 0.877574i \(0.659161\pi\)
\(432\) 0 0
\(433\) −1.99970 + 3.46358i −0.0960993 + 0.166449i −0.910067 0.414461i \(-0.863970\pi\)
0.813968 + 0.580910i \(0.197303\pi\)
\(434\) −9.22262 + 6.06581i −0.442700 + 0.291168i
\(435\) 0 0
\(436\) 1.92478 4.46213i 0.0921801 0.213697i
\(437\) 5.68669 + 18.9949i 0.272031 + 0.908648i
\(438\) 0 0
\(439\) −12.3621 28.6586i −0.590011 1.36780i −0.907706 0.419607i \(-0.862168\pi\)
0.317695 0.948193i \(-0.397091\pi\)
\(440\) −0.957063 + 0.803071i −0.0456262 + 0.0382849i
\(441\) 0 0
\(442\) −60.8697 51.0758i −2.89528 2.42943i
\(443\) −0.459510 + 1.53487i −0.0218320 + 0.0729238i −0.968211 0.250134i \(-0.919525\pi\)
0.946379 + 0.323057i \(0.104711\pi\)
\(444\) 0 0
\(445\) 0.585685 10.0558i 0.0277641 0.476692i
\(446\) −0.952996 + 16.3623i −0.0451257 + 0.774778i
\(447\) 0 0
\(448\) −6.50552 + 21.7300i −0.307357 + 1.02664i
\(449\) 8.04720 + 6.75241i 0.379771 + 0.318666i 0.812613 0.582804i \(-0.198045\pi\)
−0.432841 + 0.901470i \(0.642489\pi\)
\(450\) 0 0
\(451\) −1.03374 + 0.867414i −0.0486771 + 0.0408449i
\(452\) 15.0399 + 34.8664i 0.707418 + 1.63998i
\(453\) 0 0
\(454\) 8.51370 + 28.4378i 0.399568 + 1.33465i
\(455\) 2.49833 5.79179i 0.117124 0.271523i
\(456\) 0 0
\(457\) −34.3727 + 22.6073i −1.60789 + 1.05752i −0.654375 + 0.756171i \(0.727068\pi\)
−0.953513 + 0.301353i \(0.902562\pi\)
\(458\) −17.4005 + 30.1385i −0.813071 + 1.40828i
\(459\) 0 0
\(460\) 2.75450 + 4.77093i 0.128429 + 0.222446i
\(461\) −30.6506 15.3933i −1.42754 0.716939i −0.443734 0.896159i \(-0.646346\pi\)
−0.983809 + 0.179219i \(0.942643\pi\)
\(462\) 0 0
\(463\) −19.9050 26.7371i −0.925066 1.24258i −0.969880 0.243584i \(-0.921677\pi\)
0.0448139 0.998995i \(-0.485731\pi\)
\(464\) −8.04978 + 8.53227i −0.373702 + 0.396101i
\(465\) 0 0
\(466\) 11.5816 + 1.35370i 0.536508 + 0.0627087i
\(467\) −9.76380 3.55373i −0.451815 0.164447i 0.106082 0.994357i \(-0.466169\pi\)
−0.557897 + 0.829910i \(0.688392\pi\)
\(468\) 0 0
\(469\) 2.09681 0.763177i 0.0968218 0.0352402i
\(470\) 8.35245 1.97957i 0.385270 0.0913106i
\(471\) 0 0
\(472\) −2.78669 1.83283i −0.128268 0.0843630i
\(473\) 10.4163 5.23126i 0.478942 0.240534i
\(474\) 0 0
\(475\) 20.0043 + 21.2033i 0.917860 + 0.972874i
\(476\) −5.94706 + 33.7274i −0.272583 + 1.54589i
\(477\) 0 0
\(478\) −6.09945 34.5917i −0.278982 1.58219i
\(479\) 12.1202 16.2803i 0.553787 0.743865i −0.433788 0.901015i \(-0.642823\pi\)
0.987575 + 0.157150i \(0.0502306\pi\)
\(480\) 0 0
\(481\) 7.41507 + 1.75740i 0.338098 + 0.0801307i
\(482\) 50.5436 5.90770i 2.30220 0.269088i
\(483\) 0 0
\(484\) 1.51604 + 26.0293i 0.0689108 + 1.18315i
\(485\) −2.41096 −0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) 0.333430 + 5.72477i 0.0150937 + 0.259148i
\(489\) 0 0
\(490\) 5.10445 0.596625i 0.230596 0.0269528i
\(491\) 9.94187 + 2.35627i 0.448670 + 0.106337i 0.448738 0.893663i \(-0.351874\pi\)
−6.80725e−5 1.00000i \(0.500022\pi\)
\(492\) 0 0
\(493\) −24.0688 + 32.3300i −1.08400 + 1.45607i
\(494\) −12.8199 72.7055i −0.576796 3.27117i
\(495\) 0 0
\(496\) 0.959690 5.44267i 0.0430914 0.244383i
\(497\) 10.2316 + 10.8449i 0.458950 + 0.486459i
\(498\) 0 0
\(499\) −7.81359 + 3.92413i −0.349785 + 0.175668i −0.615013 0.788517i \(-0.710849\pi\)
0.265228 + 0.964186i \(0.414553\pi\)
\(500\) 14.1508 + 9.30715i 0.632845 + 0.416228i
\(501\) 0 0
\(502\) 51.4200 12.1868i 2.29499 0.543922i
\(503\) −12.2947 + 4.47489i −0.548192 + 0.199526i −0.601243 0.799066i \(-0.705328\pi\)
0.0530509 + 0.998592i \(0.483105\pi\)
\(504\) 0 0
\(505\) 2.82525 + 1.02831i 0.125722 + 0.0457591i
\(506\) −8.14875 0.952452i −0.362256 0.0423417i
\(507\) 0 0
\(508\) 21.3812 22.6627i 0.948636 1.00550i
\(509\) −18.1662 24.4014i −0.805202 1.08157i −0.995012 0.0997537i \(-0.968195\pi\)
0.189810 0.981821i \(-0.439213\pi\)
\(510\) 0 0
\(511\) −10.4990 5.27282i −0.464451 0.233256i
\(512\) −10.6866 18.5097i −0.472284 0.818019i
\(513\) 0 0
\(514\) −10.4808 + 18.1532i −0.462287 + 0.800705i
\(515\) −2.79170 + 1.83613i −0.123017 + 0.0809097i
\(516\) 0 0
\(517\) −2.92420 + 6.77906i −0.128606 + 0.298143i
\(518\) −1.63107 5.44814i −0.0716649 0.239378i
\(519\) 0 0
\(520\) −2.18147 5.05722i −0.0956640 0.221774i
\(521\) 8.25925 6.93034i 0.361845 0.303624i −0.443681 0.896185i \(-0.646328\pi\)
0.805525 + 0.592561i \(0.201883\pi\)
\(522\) 0 0
\(523\) 9.44644 + 7.92650i 0.413064 + 0.346602i 0.825517 0.564377i \(-0.190884\pi\)
−0.412453 + 0.910979i \(0.635328\pi\)
\(524\) 11.4336 38.1909i 0.499479 1.66838i
\(525\) 0 0
\(526\) −0.840267 + 14.4268i −0.0366374 + 0.629040i
\(527\) 1.10415 18.9576i 0.0480976 0.825804i
\(528\) 0 0
\(529\) 3.81060 12.7283i 0.165678 0.553403i
\(530\) −9.18367 7.70601i −0.398913 0.334728i
\(531\) 0 0
\(532\) −24.3755 + 20.4535i −1.05681 + 0.886772i
\(533\) −2.35626 5.46241i −0.102061 0.236603i
\(534\) 0 0
\(535\) 2.40866 + 8.04550i 0.104136 + 0.347837i
\(536\) 0.771713 1.78903i 0.0333329 0.0772744i
\(537\) 0 0
\(538\) −53.3840 + 35.1112i −2.30155 + 1.51375i
\(539\) −2.21009 + 3.82798i −0.0951952 + 0.164883i
\(540\) 0 0
\(541\) 7.99279 + 13.8439i 0.343637 + 0.595196i 0.985105 0.171953i \(-0.0550078\pi\)
−0.641468 + 0.767149i \(0.721674\pi\)
\(542\) −36.7080 18.4355i −1.57675 0.791871i
\(543\) 0 0
\(544\) −30.7919 41.3607i −1.32019 1.77332i
\(545\) −0.788533 + 0.835796i −0.0337770 + 0.0358016i
\(546\) 0 0
\(547\) −1.22825 0.143562i −0.0525161 0.00613825i 0.0897943 0.995960i \(-0.471379\pi\)
−0.142310 + 0.989822i \(0.545453\pi\)
\(548\) 0.952696 + 0.346753i 0.0406972 + 0.0148126i
\(549\) 0 0
\(550\) −11.3343 + 4.12534i −0.483295 + 0.175905i
\(551\) −36.4389 + 8.63618i −1.55235 + 0.367914i
\(552\) 0 0
\(553\) −21.7924 14.3331i −0.926706 0.609504i
\(554\) 27.2965 13.7088i 1.15972 0.582431i
\(555\) 0 0
\(556\) −28.1019 29.7863i −1.19179 1.26322i
\(557\) 2.28246 12.9445i 0.0967109 0.548475i −0.897499 0.441017i \(-0.854618\pi\)
0.994210 0.107458i \(-0.0342710\pi\)
\(558\) 0 0
\(559\) 8.92289 + 50.6042i 0.377398 + 2.14033i
\(560\) 1.40737 1.89043i 0.0594724 0.0798853i
\(561\) 0 0
\(562\) −46.7478 11.0794i −1.97194 0.467357i
\(563\) −6.04774 + 0.706879i −0.254882 + 0.0297914i −0.242574 0.970133i \(-0.577992\pi\)
−0.0123076 + 0.999924i \(0.503918\pi\)
\(564\) 0 0
\(565\) −0.522058 8.96339i −0.0219631 0.377092i
\(566\) 8.60852 0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) −0.963908 16.5497i −0.0404091 0.693798i −0.956303 0.292377i \(-0.905554\pi\)
0.915894 0.401420i \(-0.131483\pi\)
\(570\) 0 0
\(571\) −34.6117 + 4.04552i −1.44845 + 0.169300i −0.803674 0.595069i \(-0.797125\pi\)
−0.644779 + 0.764369i \(0.723050\pi\)
\(572\) 17.1668 + 4.06861i 0.717780 + 0.170117i
\(573\) 0 0
\(574\) −2.65115 + 3.56112i −0.110657 + 0.148638i
\(575\) 2.47981 + 14.0637i 0.103415 + 0.586497i
\(576\) 0 0
\(577\) 5.38675 30.5498i 0.224254 1.27180i −0.639854 0.768497i \(-0.721005\pi\)
0.864107 0.503308i \(-0.167884\pi\)
\(578\) −44.6225 47.2971i −1.85605 1.96730i
\(579\) 0 0
\(580\) −9.29798 + 4.66962i −0.386078 + 0.193895i
\(581\) 10.2700 + 6.75465i 0.426069 + 0.280230i
\(582\) 0 0
\(583\) 10.0332 2.37791i 0.415532 0.0984829i
\(584\) −9.63999 + 3.50867i −0.398906 + 0.145190i
\(585\) 0 0
\(586\) −16.3102 5.93644i −0.673769 0.245232i
\(587\) 44.2431 + 5.17128i 1.82611 + 0.213442i 0.958752 0.284243i \(-0.0917424\pi\)
0.867358 + 0.497685i \(0.165816\pi\)
\(588\) 0 0
\(589\) 12.1077 12.8335i 0.498891 0.528794i
\(590\) 1.75399 + 2.35602i 0.0722108 + 0.0969960i
\(591\) 0 0
\(592\) 2.54445 + 1.27787i 0.104576 + 0.0525201i
\(593\) 9.90549 + 17.1568i 0.406770 + 0.704546i 0.994526 0.104493i \(-0.0333219\pi\)
−0.587756 + 0.809038i \(0.699989\pi\)
\(594\) 0 0
\(595\) 4.04899 7.01306i 0.165992 0.287507i
\(596\) 2.28492 1.50281i 0.0935938 0.0615576i
\(597\) 0 0
\(598\) 14.3252 33.2096i 0.585801 1.35804i
\(599\) 8.00993 + 26.7550i 0.327277 + 1.09318i 0.950393 + 0.311051i \(0.100681\pi\)
−0.623116 + 0.782129i \(0.714134\pi\)
\(600\) 0 0
\(601\) −4.01814 9.31508i −0.163903 0.379970i 0.816395 0.577494i \(-0.195969\pi\)
−0.980298 + 0.197524i \(0.936710\pi\)
\(602\) 29.3761 24.6495i 1.19728 1.00464i
\(603\) 0 0
\(604\) 0.0411194 + 0.0345033i 0.00167313 + 0.00140392i
\(605\) 1.76818 5.90615i 0.0718869 0.240119i
\(606\) 0 0
\(607\) −0.628918 + 10.7981i −0.0255270 + 0.438282i 0.961196 + 0.275868i \(0.0889651\pi\)
−0.986723 + 0.162414i \(0.948072\pi\)
\(608\) 2.78565 47.8277i 0.112973 1.93967i
\(609\) 0 0
\(610\) 1.44833 4.83776i 0.0586412 0.195875i
\(611\) −24.9321 20.9205i −1.00865 0.846355i
\(612\) 0 0
\(613\) 4.13859 3.47269i 0.167156 0.140261i −0.555372 0.831602i \(-0.687424\pi\)
0.722528 + 0.691341i \(0.242980\pi\)
\(614\) −1.79589 4.16334i −0.0724763 0.168019i
\(615\) 0 0
\(616\) −1.01391 3.38670i −0.0408517 0.136454i
\(617\) −9.91795 + 22.9924i −0.399282 + 0.925639i 0.593403 + 0.804905i \(0.297784\pi\)
−0.992685 + 0.120734i \(0.961475\pi\)
\(618\) 0 0
\(619\) −21.2925 + 14.0043i −0.855817 + 0.562880i −0.899874 0.436149i \(-0.856342\pi\)
0.0440575 + 0.999029i \(0.485972\pi\)
\(620\) 2.45106 4.24535i 0.0984368 0.170498i
\(621\) 0 0
\(622\) 16.3342 + 28.2917i 0.654943 + 1.13439i
\(623\) 25.4708 + 12.7919i 1.02047 + 0.512497i
\(624\) 0 0
\(625\) 11.2895 + 15.1644i 0.451580 + 0.606578i
\(626\) −7.60137 + 8.05698i −0.303812 + 0.322022i
\(627\) 0 0
\(628\) 21.1944 + 2.47727i 0.845750 + 0.0988540i
\(629\) 9.19342 + 3.34613i 0.366566 + 0.133419i
\(630\) 0 0
\(631\) −18.7709 + 6.83203i −0.747256 + 0.271979i −0.687451 0.726231i \(-0.741270\pi\)
−0.0598054 + 0.998210i \(0.519048\pi\)
\(632\) −22.1614 + 5.25234i −0.881533 + 0.208927i
\(633\) 0 0
\(634\) 50.3694 + 33.1285i 2.00043 + 1.31570i
\(635\) −6.58352 + 3.30637i −0.261259 + 0.131209i
\(636\) 0 0
\(637\) −13.3720 14.1735i −0.529819 0.561575i
\(638\) 2.69069 15.2597i 0.106526 0.604137i
\(639\) 0 0
\(640\) −1.33792 7.58769i −0.0528857 0.299930i
\(641\) −5.33236 + 7.16261i −0.210616 + 0.282906i −0.894860 0.446347i \(-0.852725\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(642\) 0 0
\(643\) 13.0387 + 3.09023i 0.514197 + 0.121867i 0.479519 0.877532i \(-0.340811\pi\)
0.0346781 + 0.999399i \(0.488959\pi\)
\(644\) −15.4830 + 1.80971i −0.610117 + 0.0713125i
\(645\) 0 0
\(646\) −5.51107 94.6214i −0.216830 3.72283i
\(647\) −48.7223 −1.91547 −0.957736 0.287649i \(-0.907126\pi\)
−0.957736 + 0.287649i \(0.907126\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) −3.09172 53.0827i −0.121267 2.08208i
\(651\) 0 0
\(652\) 41.8066 4.88650i 1.63727 0.191370i
\(653\) 4.67541 + 1.10809i 0.182963 + 0.0433630i 0.321076 0.947053i \(-0.395956\pi\)
−0.138113 + 0.990416i \(0.544104\pi\)
\(654\) 0 0
\(655\) −5.62903 + 7.56110i −0.219944 + 0.295437i
\(656\) −0.385978 2.18899i −0.0150699 0.0854656i
\(657\) 0 0
\(658\) −4.21775 + 23.9201i −0.164425 + 0.932501i
\(659\) 17.3570 + 18.3974i 0.676133 + 0.716659i 0.971053 0.238863i \(-0.0767746\pi\)
−0.294920 + 0.955522i \(0.595293\pi\)
\(660\) 0 0
\(661\) −12.6327 + 6.34438i −0.491355 + 0.246768i −0.677183 0.735814i \(-0.736800\pi\)
0.185828 + 0.982582i \(0.440503\pi\)
\(662\) −49.5714 32.6036i −1.92665 1.26718i
\(663\) 0 0
\(664\) 10.4439 2.47524i 0.405300 0.0960579i
\(665\) 7.07019 2.57334i 0.274170 0.0997898i
\(666\) 0 0
\(667\) −17.2393 6.27461i −0.667510 0.242954i
\(668\) −9.92518 1.16009i −0.384017 0.0448851i
\(669\) 0 0
\(670\) −1.17745 + 1.24802i −0.0454887 + 0.0482152i
\(671\) 2.59368 + 3.48392i 0.100128 + 0.134495i
\(672\) 0 0
\(673\) 2.38363 + 1.19711i 0.0918823 + 0.0461450i 0.494147 0.869378i \(-0.335481\pi\)
−0.402265 + 0.915523i \(0.631777\pi\)
\(674\) 13.8366 + 23.9656i 0.532965 + 0.923122i
\(675\) 0 0
\(676\) −21.1154 + 36.5730i −0.812131 + 1.40665i
\(677\) 12.3339 8.11215i 0.474031 0.311775i −0.289918 0.957051i \(-0.593628\pi\)
0.763949 + 0.645276i \(0.223258\pi\)
\(678\) 0 0
\(679\) 2.70211 6.26420i 0.103698 0.240398i
\(680\) −2.02797 6.77388i −0.0777689 0.259766i
\(681\) 0 0
\(682\) 2.89155 + 6.70336i 0.110723 + 0.256685i
\(683\) −16.0712 + 13.4854i −0.614948 + 0.516003i −0.896211 0.443628i \(-0.853691\pi\)
0.281263 + 0.959631i \(0.409247\pi\)
\(684\) 0 0
\(685\) −0.183640 0.154092i −0.00701653 0.00588756i
\(686\) −12.1616 + 40.6226i −0.464333 + 1.55098i
\(687\) 0 0
\(688\) −1.11634 + 19.1669i −0.0425602 + 0.730731i
\(689\) −2.64300 + 45.3786i −0.100690 + 1.72879i
\(690\) 0 0
\(691\) −9.99045 + 33.3704i −0.380055 + 1.26947i 0.527507 + 0.849551i \(0.323127\pi\)
−0.907561 + 0.419920i \(0.862058\pi\)
\(692\) 27.8199 + 23.3437i 1.05755 + 0.887394i
\(693\) 0 0
\(694\) 14.0227 11.7664i 0.532294 0.446648i
\(695\) 3.83519 + 8.89097i 0.145477 + 0.337254i
\(696\) 0 0
\(697\) −2.19045 7.31660i −0.0829691 0.277136i
\(698\) 25.9772 60.2219i 0.983251 2.27943i
\(699\) 0 0
\(700\) −19.1475 + 12.5935i −0.723709 + 0.475991i
\(701\) 21.8053 37.7679i 0.823576 1.42647i −0.0794276 0.996841i \(-0.525309\pi\)
0.903003 0.429634i \(-0.141357\pi\)
\(702\) 0 0
\(703\) 4.54496 + 7.87209i 0.171416 + 0.296902i
\(704\) 13.4057 + 6.73262i 0.505248 + 0.253745i
\(705\) 0 0
\(706\) 30.1846 + 40.5449i 1.13601 + 1.52593i
\(707\) −5.83819 + 6.18812i −0.219568 + 0.232728i
\(708\) 0 0
\(709\) −18.1438 2.12071i −0.681406 0.0796449i −0.231654 0.972798i \(-0.574414\pi\)
−0.449752 + 0.893153i \(0.648488\pi\)
\(710\) −10.7731 3.92111i −0.404309 0.147156i
\(711\) 0 0
\(712\) 23.3867 8.51206i 0.876453 0.319003i
\(713\) 8.41050 1.99332i 0.314976 0.0746506i
\(714\) 0 0
\(715\) −3.48531 2.29233i −0.130343 0.0857281i
\(716\) 1.02116 0.512848i 0.0381627 0.0191660i
\(717\) 0 0
\(718\) −6.22342 6.59644i −0.232256 0.246177i
\(719\) −3.15002 + 17.8647i −0.117476 + 0.666240i 0.868018 + 0.496532i \(0.165393\pi\)
−0.985494 + 0.169708i \(0.945718\pi\)
\(720\) 0 0
\(721\) −1.64184 9.31131i −0.0611451 0.346771i
\(722\) 27.9008 37.4773i 1.03836 1.39476i
\(723\) 0 0
\(724\) 55.4572 + 13.1436i 2.06105 + 0.488478i
\(725\) −26.7891 + 3.13120i −0.994924 + 0.116290i
\(726\) 0 0
\(727\) −1.17766 20.2197i −0.0436770 0.749906i −0.947057 0.321065i \(-0.895959\pi\)
0.903380 0.428841i \(-0.141078\pi\)
\(728\) 15.5847 0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) 3.83580 + 65.8581i 0.141872 + 2.43585i
\(732\) 0 0
\(733\) 1.75603 0.205251i 0.0648606 0.00758111i −0.0836007 0.996499i \(-0.526642\pi\)
0.148461 + 0.988918i \(0.452568\pi\)
\(734\) −24.8153 5.88133i −0.915948 0.217084i
\(735\) 0 0
\(736\) 14.0154 18.8260i 0.516616 0.693936i
\(737\) −0.256258 1.45331i −0.00943939 0.0535334i
\(738\) 0 0
\(739\) −1.58340 + 8.97988i −0.0582461 + 0.330330i −0.999982 0.00602346i \(-0.998083\pi\)
0.941736 + 0.336354i \(0.109194\pi\)
\(740\) 1.73314 + 1.83702i 0.0637115 + 0.0675303i
\(741\) 0 0
\(742\) 30.3145 15.2245i 1.11288 0.558910i
\(743\) 16.6442 + 10.9471i 0.610616 + 0.401608i 0.816813 0.576902i \(-0.195739\pi\)
−0.206197 + 0.978510i \(0.566109\pi\)
\(744\) 0 0
\(745\) −0.629228 + 0.149130i −0.0230531 + 0.00546369i
\(746\) −74.3653 + 27.0667i −2.72271 + 0.990984i
\(747\) 0 0
\(748\) 21.2839 + 7.74671i 0.778217 + 0.283248i
\(749\) −23.6035 2.75885i −0.862451 0.100806i
\(750\) 0 0
\(751\) 26.4586 28.0445i 0.965487 1.02336i −0.0342262 0.999414i \(-0.510897\pi\)
0.999713 0.0239424i \(-0.00762184\pi\)
\(752\) −7.26185 9.75436i −0.264812 0.355705i
\(753\) 0 0
\(754\) 61.0427 + 30.6568i 2.22305 + 1.11646i
\(755\) −0.00634611 0.0109918i −0.000230959 0.000400032i
\(756\) 0 0
\(757\) 25.4729 44.1204i 0.925829 1.60358i 0.135606 0.990763i \(-0.456702\pi\)
0.790223 0.612820i \(-0.209965\pi\)
\(758\) 18.2701 12.0164i 0.663599 0.436456i
\(759\) 0 0
\(760\) 2.60212 6.03239i 0.0943889 0.218818i
\(761\) −11.1682 37.3045i −0.404848 1.35229i −0.881080 0.472967i \(-0.843183\pi\)
0.476233 0.879319i \(-0.342002\pi\)
\(762\) 0 0
\(763\) −1.28782 2.98550i −0.0466222 0.108082i
\(764\) 14.4293 12.1076i 0.522033 0.438038i
\(765\) 0 0
\(766\) −0.504379 0.423224i −0.0182239 0.0152917i
\(767\) 3.19409 10.6690i 0.115332 0.385235i
\(768\) 0 0
\(769\) −1.98573 + 34.0937i −0.0716073 + 1.22945i 0.750792 + 0.660539i \(0.229672\pi\)
−0.822399 + 0.568911i \(0.807365\pi\)
\(770\) −0.181016 + 3.10793i −0.00652338 + 0.112002i
\(771\) 0 0
\(772\) 6.85855 22.9091i 0.246845 0.824518i
\(773\) −2.31945 1.94625i −0.0834247 0.0700016i 0.600122 0.799909i \(-0.295119\pi\)
−0.683546 + 0.729907i \(0.739563\pi\)
\(774\) 0 0
\(775\) 9.73449 8.16820i 0.349673 0.293411i
\(776\) −2.35941 5.46972i −0.0846978 0.196352i
\(777\) 0 0
\(778\) −4.69241 15.6737i −0.168231 0.561930i
\(779\) 2.81061 6.51572i 0.100700 0.233450i
\(780\) 0 0
\(781\) 8.23836 5.41845i 0.294792 0.193887i
\(782\) 23.2165 40.2122i 0.830222 1.43799i
\(783\) 0 0
\(784\) −3.64034 6.30526i −0.130012 0.225188i
\(785\) −4.50892 2.26446i −0.160930 0.0808221i
\(786\) 0 0
\(787\) 1.35626 + 1.82178i 0.0483456 + 0.0649394i 0.825639 0.564199i \(-0.190815\pi\)
−0.777293 + 0.629139i \(0.783408\pi\)
\(788\) 15.8493 16.7993i 0.564608 0.598449i
\(789\) 0 0
\(790\) 19.9209 + 2.32841i 0.708752 + 0.0828413i
\(791\) 23.8739 + 8.68939i 0.848858 + 0.308959i
\(792\) 0 0
\(793\) −17.9926 + 6.54878i −0.638936 + 0.232554i
\(794\) 36.0869 8.55274i 1.28067 0.303525i
\(795\) 0 0
\(796\) −28.8295 18.9615i −1.02184 0.672072i
\(797\) 11.2447 5.64728i 0.398306 0.200037i −0.238359 0.971177i \(-0.576610\pi\)
0.636665 + 0.771140i \(0.280313\pi\)
\(798\) 0 0
\(799\) −28.6742 30.3929i −1.01442 1.07522i
\(800\) 5.99181 33.9812i 0.211842 1.20142i
\(801\) 0 0
\(802\) 5.12989 + 29.0931i 0.181143 + 1.02731i
\(803\) −4.63996 + 6.23255i −0.163741 + 0.219942i
\(804\) 0 0
\(805\) 3.58658 + 0.850035i 0.126410 + 0.0299598i
\(806\) −31.9656 + 3.73624i −1.12594 + 0.131603i
\(807\) 0 0
\(808\) 0.431929 + 7.41593i 0.0151952 + 0.260891i
\(809\) −13.7132 −0.482129 −0.241065 0.970509i \(-0.577497\pi\)
−0.241065 + 0.970509i \(0.577497\pi\)
\(810\) 0 0
\(811\) 1.72288 0.0604985 0.0302493 0.999542i \(-0.490370\pi\)
0.0302493 + 0.999542i \(0.490370\pi\)
\(812\) −1.71187 29.3917i −0.0600748 1.03144i
\(813\) 0 0
\(814\) −3.73572 + 0.436644i −0.130937 + 0.0153043i
\(815\) −9.68433 2.29523i −0.339227 0.0803983i
\(816\) 0 0
\(817\) −36.6018 + 49.1647i −1.28053 + 1.72006i
\(818\) −0.254031 1.44068i −0.00888198 0.0503722i
\(819\) 0 0
\(820\) 0.342361 1.94163i 0.0119558 0.0678046i
\(821\) 35.4816 + 37.6083i 1.23832 + 1.31254i 0.932820 + 0.360344i \(0.117341\pi\)
0.305496 + 0.952193i \(0.401178\pi\)
\(822\) 0 0
\(823\) 18.2164 9.14864i 0.634985 0.318902i −0.102026 0.994782i \(-0.532533\pi\)
0.737012 + 0.675880i \(0.236236\pi\)
\(824\) −6.89762 4.53664i −0.240290 0.158041i
\(825\) 0 0
\(826\) −8.08726 + 1.91672i −0.281392 + 0.0666911i
\(827\) 40.3124 14.6725i 1.40180 0.510213i 0.473087 0.881016i \(-0.343140\pi\)
0.928712 + 0.370803i \(0.120917\pi\)
\(828\) 0 0
\(829\) −13.4165 4.88321i −0.465975 0.169601i 0.0983534 0.995152i \(-0.468642\pi\)
−0.564328 + 0.825551i \(0.690865\pi\)
\(830\) −9.38798 1.09730i −0.325861 0.0380877i
\(831\) 0 0
\(832\) −45.3827 + 48.1028i −1.57336 + 1.66767i
\(833\) −14.9389 20.0664i −0.517603 0.695261i
\(834\) 0 0
\(835\) 2.11149 + 1.06043i 0.0730711 + 0.0366977i
\(836\) 10.5221 + 18.2249i 0.363916 + 0.630321i
\(837\) 0 0
\(838\) 21.6341 37.4714i 0.747338 1.29443i
\(839\) −25.1136 + 16.5175i −0.867018 + 0.570247i −0.903259 0.429096i \(-0.858832\pi\)
0.0362407 + 0.999343i \(0.488462\pi\)
\(840\) 0 0
\(841\) 2.23748 5.18707i 0.0771545 0.178864i
\(842\) −7.83502 26.1708i −0.270013 0.901905i
\(843\) 0 0
\(844\) −6.14664 14.2495i −0.211576 0.490488i
\(845\) 7.64942 6.41863i 0.263148 0.220807i
\(846\) 0 0
\(847\) 13.3637 + 11.2135i 0.459183 + 0.385300i
\(848\) −4.87105 + 16.2704i −0.167273 + 0.558730i
\(849\) 0 0
\(850\) 3.96925 68.1495i 0.136144 2.33751i
\(851\) −0.258925 + 4.44556i −0.00887582 + 0.152392i
\(852\) 0 0
\(853\) −10.4796 + 35.0042i −0.358813 + 1.19852i 0.568010 + 0.823022i \(0.307713\pi\)
−0.926823 + 0.375498i \(0.877472\pi\)
\(854\) 10.9463 + 9.18504i 0.374575 + 0.314306i
\(855\) 0 0
\(856\) −15.8956 + 13.3380i −0.543299 + 0.455882i
\(857\) −18.2829 42.3845i −0.624532 1.44783i −0.877128 0.480256i \(-0.840544\pi\)
0.252596 0.967572i \(-0.418716\pi\)
\(858\) 0 0
\(859\) 0.0885216 + 0.295683i 0.00302032 + 0.0100886i 0.959486 0.281755i \(-0.0909165\pi\)
−0.956466 + 0.291844i \(0.905731\pi\)
\(860\) −6.74516 + 15.6370i −0.230008 + 0.533219i
\(861\) 0 0
\(862\) 39.2705 25.8286i 1.33756 0.879727i
\(863\) 16.3176 28.2630i 0.555459 0.962083i −0.442409 0.896813i \(-0.645876\pi\)
0.997868 0.0652694i \(-0.0207907\pi\)
\(864\) 0 0
\(865\) −4.29355 7.43665i −0.145985 0.252854i
\(866\) 7.77630 + 3.90541i 0.264250 + 0.132711i
\(867\) 0 0
\(868\) 8.28329 + 11.1264i 0.281153 + 0.377654i
\(869\) −11.8379 + 12.5475i −0.401574 + 0.425643i
\(870\) 0 0
\(871\) 6.46163 + 0.755256i 0.218944 + 0.0255909i
\(872\) −2.66783 0.971011i −0.0903441 0.0328826i
\(873\) 0 0
\(874\) 40.5398 14.7553i 1.37128 0.499105i
\(875\) 11.0268 2.61340i 0.372774 0.0883491i
\(876\) 0 0
\(877\) −5.80901 3.82065i −0.196156 0.129014i 0.447631 0.894218i \(-0.352268\pi\)
−0.643788 + 0.765204i \(0.722638\pi\)
\(878\) −60.6861 + 30.4777i −2.04806 + 1.02857i
\(879\) 0 0
\(880\) −1.06962 1.13373i −0.0360570 0.0382182i
\(881\) 6.47573 36.7257i 0.218173 1.23732i −0.657142 0.753767i \(-0.728235\pi\)
0.875315 0.483553i \(-0.160654\pi\)
\(882\) 0 0
\(883\) 1.07456 + 6.09412i 0.0361618 + 0.205084i 0.997536 0.0701625i \(-0.0223518\pi\)
−0.961374 + 0.275246i \(0.911241\pi\)
\(884\) −59.6261 + 80.0917i −2.00544 + 2.69378i
\(885\) 0 0
\(886\) 3.39206 + 0.803933i 0.113958 + 0.0270087i
\(887\) 18.4976 2.16206i 0.621088 0.0725948i 0.200271 0.979740i \(-0.435818\pi\)
0.420817 + 0.907146i \(0.361744\pi\)
\(888\) 0 0
\(889\) −1.21211 20.8110i −0.0406527 0.697980i
\(890\) −21.9166 −0.734646
\(891\) 0 0
\(892\) 20.5958 0.689599
\(893\) −2.25733 38.7568i −0.0755385 1.29695i
\(894\) 0 0
\(895\) −0.268371 + 0.0313680i −0.00897064 + 0.00104852i
\(896\) 21.2139 + 5.02779i 0.708708 + 0.167967i
\(897\) 0 0
\(898\) 13.6490 18.3338i 0.455473 0.611807i
\(899\) 2.83476 + 16.0767i 0.0945444 + 0.536188i
\(900\) 0 0
\(901\) −10.1337 + 57.4708i −0.337601 + 1.91463i
\(902\) 2.01491 + 2.13568i 0.0670892 + 0.0711104i
\(903\) 0 0
\(904\) 19.8242 9.95610i 0.659344 0.331135i
\(905\) −11.2593 7.40533i −0.374271 0.246162i
\(906\) 0 0
\(907\) 25.4769 6.03814i 0.845947 0.200493i 0.215285 0.976551i \(-0.430932\pi\)
0.630661 + 0.776058i \(0.282784\pi\)
\(908\) 35.0525 12.7581i 1.16326 0.423392i
\(909\) 0 0
\(910\) −12.8966 4.69396i −0.427516 0.155603i
\(911\) −7.90750 0.924254i −0.261987 0.0306219i −0.0159147 0.999873i \(-0.505066\pi\)
−0.246072 + 0.969251i \(0.579140\pi\)
\(912\) 0 0
\(913\) 5.57878 5.91316i 0.184631 0.195697i
\(914\) 53.4544 + 71.8017i 1.76811 + 2.37499i
\(915\) 0 0
\(916\) 39.0795 + 19.6265i 1.29122 + 0.648477i
\(917\) −13.3366 23.0996i −0.440412 0.762816i
\(918\) 0 0
\(919\) −27.5324 + 47.6875i −0.908210 + 1.57307i −0.0916606 + 0.995790i \(0.529217\pi\)
−0.816549 + 0.577276i \(0.804116\pi\)
\(920\) 2.68898 1.76857i 0.0886530 0.0583080i
\(921\) 0 0
\(922\) −29.5586 + 68.5245i −0.973460 + 2.25673i
\(923\) 12.4671 + 41.6430i 0.410360 + 1.37070i
\(924\) 0 0
\(925\) 2.59308 + 6.01143i 0.0852598 + 0.197654i
\(926\) −55.5581 + 46.6188i −1.82575 + 1.53199i
\(927\) 0 0
\(928\) 33.9569 + 28.4932i 1.11469 + 0.935336i
\(929\) 12.5788 42.0162i 0.412697 1.37851i −0.458989 0.888442i \(-0.651788\pi\)
0.871687 0.490063i \(-0.163026\pi\)
\(930\) 0 0
\(931\) 1.35148 23.2040i 0.0442929 0.760480i
\(932\) 0.851973 14.6278i 0.0279073 0.479150i
\(933\) 0 0
\(934\) −6.48392 + 21.6578i −0.212160 + 0.708664i
\(935\) −4.10265 3.44253i −0.134171 0.112583i
\(936\) 0 0
\(937\) 25.4682 21.3704i 0.832010 0.698140i −0.123741 0.992315i \(-0.539489\pi\)
0.955752 + 0.294175i \(0.0950449\pi\)
\(938\) −1.92299 4.45799i −0.0627878 0.145558i
\(939\) 0 0
\(940\) −3.09360 10.3333i −0.100902 0.337037i
\(941\) 4.43921 10.2912i 0.144714 0.335485i −0.830407 0.557157i \(-0.811892\pi\)
0.975121 + 0.221672i \(0.0711514\pi\)
\(942\) 0 0
\(943\) 2.90442 1.91027i 0.0945810 0.0622069i
\(944\) 2.08058 3.60368i 0.0677172 0.117290i
\(945\) 0 0
\(946\) −12.6807 21.9637i −0.412286 0.714101i
\(947\) 4.22787 + 2.12331i 0.137387 + 0.0689984i 0.516165 0.856489i \(-0.327359\pi\)
−0.378778 + 0.925488i \(0.623655\pi\)
\(948\) 0 0
\(949\) −20.4548 27.4756i −0.663991 0.891895i
\(950\) 43.5254 46.1343i 1.41215 1.49679i
\(951\) 0 0
\(952\) 19.8728 + 2.32280i 0.644082 + 0.0752824i
\(953\) 1.77553 + 0.646238i 0.0575149 + 0.0209337i 0.370617 0.928786i \(-0.379146\pi\)
−0.313102 + 0.949719i \(0.601368\pi\)
\(954\) 0 0
\(955\) −4.18525 + 1.52331i −0.135432 + 0.0492930i
\(956\) −42.9489 + 10.1791i −1.38907 + 0.329215i
\(957\) 0 0
\(958\) −36.8962 24.2670i −1.19206 0.784031i
\(959\) 0.606181 0.304436i 0.0195746 0.00983074i
\(960\) 0 0
\(961\) 15.9954 + 16.9541i 0.515981 + 0.546908i
\(962\) 2.87920 16.3288i 0.0928293 0.526461i
\(963\) 0 0
\(964\) −11.1041 62.9743i −0.357638 2.02827i
\(965\) −3.37662 + 4.53559i −0.108697 + 0.146006i
\(966\) 0 0
\(967\) −54.3404 12.8789i −1.74747 0.414158i −0.772236 0.635336i \(-0.780862\pi\)
−0.975234 + 0.221178i \(0.929010\pi\)
\(968\) 15.1296 1.76839i 0.486283 0.0568383i
\(969\) 0 0
\(970\) 0.305016 + 5.23692i 0.00979346 + 0.168147i
\(971\) −6.12547 −0.196576 −0.0982879 0.995158i \(-0.531337\pi\)
−0.0982879 + 0.995158i \(0.531337\pi\)
\(972\) 0 0
\(973\) −27.3990 −0.878370
\(974\) 3.48813 + 59.8889i 0.111767 + 1.91896i
\(975\) 0 0
\(976\) −7.10582 + 0.830551i −0.227452 + 0.0265853i
\(977\) 27.7777 + 6.58343i 0.888687 + 0.210623i 0.649510 0.760353i \(-0.274974\pi\)
0.239177 + 0.970976i \(0.423122\pi\)
\(978\) 0 0
\(979\) 11.2566 15.1202i 0.359762 0.483244i
\(980\) −1.12141 6.35984i −0.0358222 0.203158i
\(981\) 0 0
\(982\) 3.86034 21.8931i 0.123188 0.698636i
\(983\) 15.1504 + 16.0585i 0.483224 + 0.512187i 0.922412 0.386208i \(-0.126215\pi\)
−0.439188 + 0.898395i \(0.644734\pi\)
\(984\) 0 0
\(985\) −4.88019 + 2.45092i −0.155496 + 0.0780929i
\(986\) 73.2697 + 48.1902i 2.33338 + 1.53469i
\(987\) 0 0
\(988\) −90.2709 + 21.3946i −2.87190 + 0.680653i
\(989\) −28.2164 + 10.2699i −0.897228 + 0.326564i
\(990\) 0 0
\(991\) 33.4354 + 12.1695i 1.06211 + 0.386577i 0.813221 0.581955i \(-0.197712\pi\)
0.248890 + 0.968532i \(0.419934\pi\)
\(992\) −20.7435 2.42456i −0.658606 0.0769800i
\(993\) 0 0
\(994\) 22.2620 23.5963i 0.706107 0.748430i
\(995\) 4.87228 + 6.54461i 0.154462 + 0.207478i
\(996\) 0 0
\(997\) 32.9108 + 16.5284i 1.04230 + 0.523461i 0.885727 0.464206i \(-0.153660\pi\)
0.156570 + 0.987667i \(0.449956\pi\)
\(998\) 9.51222 + 16.4757i 0.301104 + 0.521528i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.514.1 144
3.2 odd 2 729.2.g.a.514.8 144
9.2 odd 6 729.2.g.b.28.8 144
9.4 even 3 81.2.g.a.13.8 144
9.5 odd 6 243.2.g.a.10.1 144
9.7 even 3 729.2.g.c.28.1 144
81.2 odd 54 729.2.g.a.217.8 144
81.22 even 27 6561.2.a.c.1.65 72
81.25 even 27 729.2.g.c.703.1 144
81.29 odd 54 243.2.g.a.73.1 144
81.52 even 27 81.2.g.a.25.8 yes 144
81.56 odd 54 729.2.g.b.703.8 144
81.59 odd 54 6561.2.a.d.1.8 72
81.79 even 27 inner 729.2.g.d.217.1 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.8 144 9.4 even 3
81.2.g.a.25.8 yes 144 81.52 even 27
243.2.g.a.10.1 144 9.5 odd 6
243.2.g.a.73.1 144 81.29 odd 54
729.2.g.a.217.8 144 81.2 odd 54
729.2.g.a.514.8 144 3.2 odd 2
729.2.g.b.28.8 144 9.2 odd 6
729.2.g.b.703.8 144 81.56 odd 54
729.2.g.c.28.1 144 9.7 even 3
729.2.g.c.703.1 144 81.25 even 27
729.2.g.d.217.1 144 81.79 even 27 inner
729.2.g.d.514.1 144 1.1 even 1 trivial
6561.2.a.c.1.65 72 81.22 even 27
6561.2.a.d.1.8 72 81.59 odd 54