Properties

Label 729.2.g.d.217.1
Level $729$
Weight $2$
Character 729.217
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 217.1
Character \(\chi\) \(=\) 729.217
Dual form 729.2.g.d.514.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.126512 + 2.17212i) q^{2} +(-2.71564 - 0.317413i) q^{4} +(0.629067 - 0.149092i) q^{5} +(-1.09241 - 1.46736i) q^{7} +(0.277373 - 1.57306i) q^{8} +(0.244261 + 1.38527i) q^{10} +(0.830243 - 0.880006i) q^{11} +(-4.76615 - 2.39365i) q^{13} +(3.32548 - 2.18720i) q^{14} +(-1.93907 - 0.459569i) q^{16} +(-6.43434 - 2.34191i) q^{17} +(-5.97823 + 2.17590i) q^{19} +(-1.75565 + 0.205206i) q^{20} +(1.80645 + 1.91472i) q^{22} +(-1.86114 + 2.49994i) q^{23} +(-4.09467 + 2.05642i) q^{25} +(5.80229 - 10.0499i) q^{26} +(2.50083 + 4.33156i) q^{28} +(4.91797 + 3.23460i) q^{29} +(-1.09846 - 2.54651i) q^{31} +(2.15979 - 7.21421i) q^{32} +(5.90094 - 13.6799i) q^{34} +(-0.905967 - 0.760197i) q^{35} +(-1.09453 + 0.918418i) q^{37} +(-3.97000 - 13.2607i) q^{38} +(-0.0600440 - 1.03092i) q^{40} +(-0.0648547 - 1.11351i) q^{41} +(2.76319 + 9.22968i) q^{43} +(-2.53397 + 2.12625i) q^{44} +(-5.19473 - 4.35890i) q^{46} +(2.41701 - 5.60327i) q^{47} +(1.04784 - 3.50003i) q^{49} +(-3.94877 - 9.15429i) q^{50} +(12.1834 + 8.01315i) q^{52} +(4.26135 + 7.38088i) q^{53} +(0.391077 - 0.677365i) q^{55} +(-2.61124 + 1.31142i) q^{56} +(-7.64814 + 10.2732i) q^{58} +(-1.43295 - 1.51884i) q^{59} +(3.56577 - 0.416778i) q^{61} +(5.67029 - 2.06382i) q^{62} +(11.6517 + 4.24088i) q^{64} +(-3.35511 - 0.795175i) q^{65} +(-1.01911 + 0.670277i) q^{67} +(16.7300 + 8.40213i) q^{68} +(1.76586 - 1.87170i) q^{70} +(1.41528 + 8.02646i) q^{71} +(1.11524 - 6.32482i) q^{73} +(-1.85645 - 2.49364i) q^{74} +(16.9254 - 4.01139i) q^{76} +(-2.19824 - 0.256938i) q^{77} +(0.829051 - 14.2343i) q^{79} -1.28832 q^{80} +2.42689 q^{82} +(-0.390702 + 6.70809i) q^{83} +(-4.39679 - 0.513911i) q^{85} +(-20.3976 + 4.83432i) q^{86} +(-1.15402 - 1.55011i) q^{88} +(-2.70557 + 15.3441i) q^{89} +(1.69423 + 9.60848i) q^{91} +(5.84771 - 6.19821i) q^{92} +(11.8652 + 5.95894i) q^{94} +(-3.43630 + 2.26009i) q^{95} +(-3.62877 - 0.860034i) q^{97} +(7.46994 + 2.71884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{14}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.126512 + 2.17212i −0.0894574 + 1.53592i 0.593122 + 0.805113i \(0.297895\pi\)
−0.682579 + 0.730812i \(0.739142\pi\)
\(3\) 0 0
\(4\) −2.71564 0.317413i −1.35782 0.158707i
\(5\) 0.629067 0.149092i 0.281327 0.0666758i −0.0875297 0.996162i \(-0.527897\pi\)
0.368857 + 0.929486i \(0.379749\pi\)
\(6\) 0 0
\(7\) −1.09241 1.46736i −0.412891 0.554608i 0.546219 0.837642i \(-0.316066\pi\)
−0.959110 + 0.283034i \(0.908659\pi\)
\(8\) 0.277373 1.57306i 0.0980662 0.556161i
\(9\) 0 0
\(10\) 0.244261 + 1.38527i 0.0772422 + 0.438062i
\(11\) 0.830243 0.880006i 0.250328 0.265332i −0.590009 0.807397i \(-0.700876\pi\)
0.840337 + 0.542065i \(0.182357\pi\)
\(12\) 0 0
\(13\) −4.76615 2.39365i −1.32189 0.663880i −0.358893 0.933379i \(-0.616846\pi\)
−0.963001 + 0.269499i \(0.913142\pi\)
\(14\) 3.32548 2.18720i 0.888772 0.584555i
\(15\) 0 0
\(16\) −1.93907 0.459569i −0.484768 0.114892i
\(17\) −6.43434 2.34191i −1.56056 0.567996i −0.589693 0.807628i \(-0.700751\pi\)
−0.970864 + 0.239631i \(0.922973\pi\)
\(18\) 0 0
\(19\) −5.97823 + 2.17590i −1.37150 + 0.499185i −0.919590 0.392879i \(-0.871479\pi\)
−0.451909 + 0.892064i \(0.649257\pi\)
\(20\) −1.75565 + 0.205206i −0.392575 + 0.0458854i
\(21\) 0 0
\(22\) 1.80645 + 1.91472i 0.385136 + 0.408220i
\(23\) −1.86114 + 2.49994i −0.388074 + 0.521274i −0.952634 0.304118i \(-0.901638\pi\)
0.564560 + 0.825392i \(0.309046\pi\)
\(24\) 0 0
\(25\) −4.09467 + 2.05642i −0.818933 + 0.411284i
\(26\) 5.80229 10.0499i 1.13792 1.97094i
\(27\) 0 0
\(28\) 2.50083 + 4.33156i 0.472612 + 0.818588i
\(29\) 4.91797 + 3.23460i 0.913244 + 0.600650i 0.916801 0.399344i \(-0.130762\pi\)
−0.00355721 + 0.999994i \(0.501132\pi\)
\(30\) 0 0
\(31\) −1.09846 2.54651i −0.197288 0.457366i 0.790639 0.612282i \(-0.209748\pi\)
−0.987928 + 0.154916i \(0.950489\pi\)
\(32\) 2.15979 7.21421i 0.381801 1.27530i
\(33\) 0 0
\(34\) 5.90094 13.6799i 1.01200 2.34609i
\(35\) −0.905967 0.760197i −0.153136 0.128497i
\(36\) 0 0
\(37\) −1.09453 + 0.918418i −0.179939 + 0.150987i −0.728309 0.685249i \(-0.759693\pi\)
0.548369 + 0.836236i \(0.315249\pi\)
\(38\) −3.97000 13.2607i −0.644019 2.15117i
\(39\) 0 0
\(40\) −0.0600440 1.03092i −0.00949379 0.163002i
\(41\) −0.0648547 1.11351i −0.0101286 0.173902i −0.999579 0.0290269i \(-0.990759\pi\)
0.989450 0.144875i \(-0.0462779\pi\)
\(42\) 0 0
\(43\) 2.76319 + 9.22968i 0.421382 + 1.40751i 0.860668 + 0.509167i \(0.170046\pi\)
−0.439286 + 0.898347i \(0.644769\pi\)
\(44\) −2.53397 + 2.12625i −0.382010 + 0.320545i
\(45\) 0 0
\(46\) −5.19473 4.35890i −0.765922 0.642685i
\(47\) 2.41701 5.60327i 0.352558 0.817321i −0.645985 0.763350i \(-0.723553\pi\)
0.998543 0.0539704i \(-0.0171877\pi\)
\(48\) 0 0
\(49\) 1.04784 3.50003i 0.149692 0.500005i
\(50\) −3.94877 9.15429i −0.558441 1.29461i
\(51\) 0 0
\(52\) 12.1834 + 8.01315i 1.68953 + 1.11122i
\(53\) 4.26135 + 7.38088i 0.585342 + 1.01384i 0.994833 + 0.101528i \(0.0323731\pi\)
−0.409491 + 0.912314i \(0.634294\pi\)
\(54\) 0 0
\(55\) 0.391077 0.677365i 0.0527328 0.0913359i
\(56\) −2.61124 + 1.31142i −0.348942 + 0.175245i
\(57\) 0 0
\(58\) −7.64814 + 10.2732i −1.00425 + 1.34894i
\(59\) −1.43295 1.51884i −0.186554 0.197736i 0.627346 0.778741i \(-0.284141\pi\)
−0.813900 + 0.581005i \(0.802660\pi\)
\(60\) 0 0
\(61\) 3.56577 0.416778i 0.456550 0.0533630i 0.115290 0.993332i \(-0.463220\pi\)
0.341260 + 0.939969i \(0.389146\pi\)
\(62\) 5.67029 2.06382i 0.720128 0.262105i
\(63\) 0 0
\(64\) 11.6517 + 4.24088i 1.45646 + 0.530110i
\(65\) −3.35511 0.795175i −0.416150 0.0986293i
\(66\) 0 0
\(67\) −1.01911 + 0.670277i −0.124504 + 0.0818873i −0.610233 0.792222i \(-0.708924\pi\)
0.485730 + 0.874109i \(0.338554\pi\)
\(68\) 16.7300 + 8.40213i 2.02881 + 1.01891i
\(69\) 0 0
\(70\) 1.76586 1.87170i 0.211060 0.223711i
\(71\) 1.41528 + 8.02646i 0.167963 + 0.952565i 0.945957 + 0.324293i \(0.105126\pi\)
−0.777994 + 0.628272i \(0.783763\pi\)
\(72\) 0 0
\(73\) 1.11524 6.32482i 0.130529 0.740264i −0.847341 0.531049i \(-0.821798\pi\)
0.977870 0.209215i \(-0.0670909\pi\)
\(74\) −1.85645 2.49364i −0.215808 0.289880i
\(75\) 0 0
\(76\) 16.9254 4.01139i 1.94148 0.460138i
\(77\) −2.19824 0.256938i −0.250513 0.0292808i
\(78\) 0 0
\(79\) 0.829051 14.2343i 0.0932755 1.60148i −0.549547 0.835463i \(-0.685200\pi\)
0.642822 0.766015i \(-0.277763\pi\)
\(80\) −1.28832 −0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) −0.390702 + 6.70809i −0.0428851 + 0.736308i 0.906502 + 0.422201i \(0.138742\pi\)
−0.949387 + 0.314107i \(0.898295\pi\)
\(84\) 0 0
\(85\) −4.39679 0.513911i −0.476899 0.0557415i
\(86\) −20.3976 + 4.83432i −2.19953 + 0.521298i
\(87\) 0 0
\(88\) −1.15402 1.55011i −0.123018 0.165243i
\(89\) −2.70557 + 15.3441i −0.286790 + 1.62647i 0.412030 + 0.911170i \(0.364820\pi\)
−0.698820 + 0.715297i \(0.746291\pi\)
\(90\) 0 0
\(91\) 1.69423 + 9.60848i 0.177604 + 1.00724i
\(92\) 5.84771 6.19821i 0.609666 0.646208i
\(93\) 0 0
\(94\) 11.8652 + 5.95894i 1.22380 + 0.614617i
\(95\) −3.43630 + 2.26009i −0.352557 + 0.231880i
\(96\) 0 0
\(97\) −3.62877 0.860034i −0.368446 0.0873232i 0.0422221 0.999108i \(-0.486556\pi\)
−0.410668 + 0.911785i \(0.634704\pi\)
\(98\) 7.46994 + 2.71884i 0.754578 + 0.274644i
\(99\) 0 0
\(100\) 11.7724 4.28480i 1.17724 0.428480i
\(101\) 4.61913 0.539899i 0.459621 0.0537220i 0.116868 0.993147i \(-0.462715\pi\)
0.342753 + 0.939426i \(0.388641\pi\)
\(102\) 0 0
\(103\) −3.54684 3.75944i −0.349481 0.370428i 0.528657 0.848835i \(-0.322696\pi\)
−0.878138 + 0.478407i \(0.841214\pi\)
\(104\) −5.08736 + 6.83351i −0.498857 + 0.670081i
\(105\) 0 0
\(106\) −16.5713 + 8.32243i −1.60955 + 0.808345i
\(107\) 6.49528 11.2502i 0.627922 1.08759i −0.360046 0.932935i \(-0.617239\pi\)
0.987968 0.154659i \(-0.0494278\pi\)
\(108\) 0 0
\(109\) −0.888686 1.53925i −0.0851207 0.147433i 0.820322 0.571902i \(-0.193794\pi\)
−0.905443 + 0.424469i \(0.860461\pi\)
\(110\) 1.42185 + 0.935163i 0.135568 + 0.0891643i
\(111\) 0 0
\(112\) 1.44390 + 3.34734i 0.136436 + 0.316294i
\(113\) −3.98316 + 13.3047i −0.374704 + 1.25160i 0.537989 + 0.842952i \(0.319184\pi\)
−0.912693 + 0.408646i \(0.866001\pi\)
\(114\) 0 0
\(115\) −0.798061 + 1.85011i −0.0744196 + 0.172524i
\(116\) −12.3288 10.3451i −1.14470 0.960514i
\(117\) 0 0
\(118\) 3.48039 2.92040i 0.320396 0.268844i
\(119\) 3.59250 + 11.9998i 0.329324 + 1.10002i
\(120\) 0 0
\(121\) 0.554486 + 9.52015i 0.0504078 + 0.865468i
\(122\) 0.454183 + 7.79802i 0.0411198 + 0.705999i
\(123\) 0 0
\(124\) 2.17472 + 7.26407i 0.195296 + 0.652332i
\(125\) −4.74544 + 3.98190i −0.424445 + 0.356152i
\(126\) 0 0
\(127\) −8.72949 7.32491i −0.774617 0.649981i 0.167270 0.985911i \(-0.446505\pi\)
−0.941887 + 0.335930i \(0.890949\pi\)
\(128\) −4.72038 + 10.9431i −0.417226 + 0.967239i
\(129\) 0 0
\(130\) 2.15168 7.18711i 0.188715 0.630351i
\(131\) −5.77514 13.3883i −0.504576 1.16974i −0.960136 0.279534i \(-0.909820\pi\)
0.455560 0.890205i \(-0.349439\pi\)
\(132\) 0 0
\(133\) 9.72346 + 6.39522i 0.843131 + 0.554536i
\(134\) −1.32700 2.29842i −0.114635 0.198554i
\(135\) 0 0
\(136\) −5.46868 + 9.47202i −0.468935 + 0.812219i
\(137\) −0.331366 + 0.166418i −0.0283105 + 0.0142181i −0.462898 0.886411i \(-0.653190\pi\)
0.434588 + 0.900630i \(0.356894\pi\)
\(138\) 0 0
\(139\) 8.94395 12.0138i 0.758616 1.01900i −0.240218 0.970719i \(-0.577219\pi\)
0.998834 0.0482794i \(-0.0153738\pi\)
\(140\) 2.21899 + 2.35199i 0.187539 + 0.198779i
\(141\) 0 0
\(142\) −17.6135 + 2.05872i −1.47809 + 0.172764i
\(143\) −6.06349 + 2.20693i −0.507055 + 0.184553i
\(144\) 0 0
\(145\) 3.57599 + 1.30155i 0.296970 + 0.108088i
\(146\) 13.5972 + 3.22260i 1.12531 + 0.266704i
\(147\) 0 0
\(148\) 3.26387 2.14668i 0.268288 0.176456i
\(149\) −0.893861 0.448914i −0.0732279 0.0367764i 0.411808 0.911270i \(-0.364897\pi\)
−0.485036 + 0.874494i \(0.661194\pi\)
\(150\) 0 0
\(151\) −0.0134726 + 0.0142801i −0.00109638 + 0.00116210i −0.727922 0.685660i \(-0.759514\pi\)
0.726825 + 0.686822i \(0.240995\pi\)
\(152\) 1.76462 + 10.0076i 0.143129 + 0.811727i
\(153\) 0 0
\(154\) 0.836205 4.74235i 0.0673833 0.382150i
\(155\) −1.07067 1.43815i −0.0859979 0.115515i
\(156\) 0 0
\(157\) −7.59419 + 1.79986i −0.606083 + 0.143644i −0.522188 0.852830i \(-0.674884\pi\)
−0.0838947 + 0.996475i \(0.526736\pi\)
\(158\) 30.8137 + 3.60160i 2.45141 + 0.286528i
\(159\) 0 0
\(160\) 0.283076 4.86023i 0.0223791 0.384235i
\(161\) 5.70142 0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) −0.177321 + 3.04449i −0.0138465 + 0.237735i
\(165\) 0 0
\(166\) −14.5214 1.69731i −1.12708 0.131736i
\(167\) 3.55630 0.842859i 0.275195 0.0652224i −0.0907011 0.995878i \(-0.528911\pi\)
0.365896 + 0.930656i \(0.380763\pi\)
\(168\) 0 0
\(169\) 9.22359 + 12.3894i 0.709507 + 0.953033i
\(170\) 1.67253 9.48537i 0.128277 0.727494i
\(171\) 0 0
\(172\) −4.57421 25.9416i −0.348780 1.97803i
\(173\) −9.11506 + 9.66140i −0.693005 + 0.734543i −0.974344 0.225066i \(-0.927740\pi\)
0.281338 + 0.959609i \(0.409222\pi\)
\(174\) 0 0
\(175\) 7.49053 + 3.76189i 0.566231 + 0.284372i
\(176\) −2.01432 + 1.32484i −0.151835 + 0.0998637i
\(177\) 0 0
\(178\) −32.9869 7.81805i −2.47248 0.585987i
\(179\) −0.392738 0.142945i −0.0293546 0.0106842i 0.327301 0.944920i \(-0.393861\pi\)
−0.356656 + 0.934236i \(0.616083\pi\)
\(180\) 0 0
\(181\) −19.5881 + 7.12947i −1.45597 + 0.529929i −0.944252 0.329225i \(-0.893213\pi\)
−0.511717 + 0.859154i \(0.670990\pi\)
\(182\) −21.0852 + 2.46450i −1.56294 + 0.182681i
\(183\) 0 0
\(184\) 3.41633 + 3.62110i 0.251855 + 0.266951i
\(185\) −0.551604 + 0.740932i −0.0405547 + 0.0544744i
\(186\) 0 0
\(187\) −7.40296 + 3.71791i −0.541358 + 0.271880i
\(188\) −8.34230 + 14.4493i −0.608425 + 1.05382i
\(189\) 0 0
\(190\) −4.47446 7.75000i −0.324612 0.562244i
\(191\) −5.75588 3.78570i −0.416481 0.273924i 0.323927 0.946082i \(-0.394997\pi\)
−0.740407 + 0.672159i \(0.765367\pi\)
\(192\) 0 0
\(193\) −3.46427 8.03108i −0.249363 0.578089i 0.746854 0.664988i \(-0.231564\pi\)
−0.996217 + 0.0868989i \(0.972304\pi\)
\(194\) 2.32718 7.77334i 0.167082 0.558093i
\(195\) 0 0
\(196\) −3.95652 + 9.17224i −0.282609 + 0.655160i
\(197\) −6.47094 5.42976i −0.461035 0.386855i 0.382476 0.923965i \(-0.375071\pi\)
−0.843512 + 0.537111i \(0.819516\pi\)
\(198\) 0 0
\(199\) 9.66790 8.11233i 0.685339 0.575068i −0.232222 0.972663i \(-0.574599\pi\)
0.917561 + 0.397595i \(0.130155\pi\)
\(200\) 2.09912 + 7.01155i 0.148430 + 0.495792i
\(201\) 0 0
\(202\) 0.588353 + 10.1016i 0.0413964 + 0.710749i
\(203\) −0.626111 10.7499i −0.0439444 0.754495i
\(204\) 0 0
\(205\) −0.206814 0.690805i −0.0144445 0.0482479i
\(206\) 8.61468 7.22858i 0.600213 0.503639i
\(207\) 0 0
\(208\) 8.14187 + 6.83184i 0.564537 + 0.473703i
\(209\) −3.04858 + 7.06740i −0.210875 + 0.488862i
\(210\) 0 0
\(211\) 1.62787 5.43746i 0.112067 0.374330i −0.883495 0.468441i \(-0.844816\pi\)
0.995562 + 0.0941110i \(0.0300009\pi\)
\(212\) −9.22953 21.3965i −0.633887 1.46952i
\(213\) 0 0
\(214\) 23.6150 + 15.5318i 1.61429 + 1.06173i
\(215\) 3.11430 + 5.39413i 0.212393 + 0.367876i
\(216\) 0 0
\(217\) −2.53667 + 4.39364i −0.172200 + 0.298260i
\(218\) 3.45587 1.73560i 0.234061 0.117550i
\(219\) 0 0
\(220\) −1.27703 + 1.71535i −0.0860974 + 0.115649i
\(221\) 25.0613 + 26.5635i 1.68581 + 1.78685i
\(222\) 0 0
\(223\) −7.48192 + 0.874511i −0.501027 + 0.0585616i −0.362853 0.931846i \(-0.618197\pi\)
−0.138174 + 0.990408i \(0.544123\pi\)
\(224\) −12.9452 + 4.71166i −0.864936 + 0.314811i
\(225\) 0 0
\(226\) −28.3955 10.3351i −1.88884 0.687481i
\(227\) −13.2754 3.14632i −0.881118 0.208829i −0.234935 0.972011i \(-0.575488\pi\)
−0.646183 + 0.763182i \(0.723636\pi\)
\(228\) 0 0
\(229\) −13.3632 + 8.78913i −0.883067 + 0.580802i −0.908039 0.418886i \(-0.862421\pi\)
0.0249721 + 0.999688i \(0.492050\pi\)
\(230\) −3.91771 1.96755i −0.258326 0.129736i
\(231\) 0 0
\(232\) 6.45233 6.83907i 0.423616 0.449007i
\(233\) −0.930605 5.27772i −0.0609660 0.345755i −0.999998 0.00192589i \(-0.999387\pi\)
0.939032 0.343829i \(-0.111724\pi\)
\(234\) 0 0
\(235\) 0.685064 3.88519i 0.0446886 0.253442i
\(236\) 3.40928 + 4.57946i 0.221925 + 0.298098i
\(237\) 0 0
\(238\) −26.5195 + 6.28524i −1.71900 + 0.407412i
\(239\) 16.0344 + 1.87416i 1.03718 + 0.121229i 0.617603 0.786490i \(-0.288104\pi\)
0.419578 + 0.907719i \(0.362178\pi\)
\(240\) 0 0
\(241\) 1.35989 23.3484i 0.0875982 1.50400i −0.612793 0.790244i \(-0.709954\pi\)
0.700391 0.713759i \(-0.253009\pi\)
\(242\) −20.7491 −1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) 0.137337 2.35798i 0.00877412 0.150646i
\(246\) 0 0
\(247\) 33.7015 + 3.93914i 2.14437 + 0.250641i
\(248\) −4.31049 + 1.02160i −0.273716 + 0.0648720i
\(249\) 0 0
\(250\) −8.04882 10.8114i −0.509052 0.683776i
\(251\) 4.21745 23.9183i 0.266203 1.50971i −0.499385 0.866380i \(-0.666441\pi\)
0.765588 0.643331i \(-0.222448\pi\)
\(252\) 0 0
\(253\) 0.654768 + 3.71337i 0.0411649 + 0.233458i
\(254\) 17.0150 18.0349i 1.06762 1.13161i
\(255\) 0 0
\(256\) −1.01133 0.507909i −0.0632081 0.0317443i
\(257\) −8.04903 + 5.29393i −0.502085 + 0.330226i −0.775158 0.631767i \(-0.782330\pi\)
0.273074 + 0.961993i \(0.411960\pi\)
\(258\) 0 0
\(259\) 2.54332 + 0.602777i 0.158034 + 0.0374547i
\(260\) 8.85887 + 3.22437i 0.549404 + 0.199967i
\(261\) 0 0
\(262\) 29.8116 10.8505i 1.84177 0.670349i
\(263\) −6.59689 + 0.771066i −0.406782 + 0.0475460i −0.317024 0.948418i \(-0.602683\pi\)
−0.0897582 + 0.995964i \(0.528609\pi\)
\(264\) 0 0
\(265\) 3.78111 + 4.00774i 0.232272 + 0.246194i
\(266\) −15.1214 + 20.3115i −0.927150 + 1.24538i
\(267\) 0 0
\(268\) 2.98028 1.49676i 0.182050 0.0914289i
\(269\) −14.6832 + 25.4321i −0.895251 + 1.55062i −0.0617568 + 0.998091i \(0.519670\pi\)
−0.833494 + 0.552529i \(0.813663\pi\)
\(270\) 0 0
\(271\) 9.43957 + 16.3498i 0.573413 + 0.993180i 0.996212 + 0.0869568i \(0.0277142\pi\)
−0.422799 + 0.906223i \(0.638952\pi\)
\(272\) 11.4004 + 7.49815i 0.691250 + 0.454642i
\(273\) 0 0
\(274\) −0.319560 0.740823i −0.0193053 0.0447547i
\(275\) −1.58991 + 5.31066i −0.0958750 + 0.320245i
\(276\) 0 0
\(277\) 5.56045 12.8906i 0.334095 0.774519i −0.665509 0.746390i \(-0.731786\pi\)
0.999604 0.0281297i \(-0.00895515\pi\)
\(278\) 24.9640 + 20.9473i 1.49724 + 1.25633i
\(279\) 0 0
\(280\) −1.44713 + 1.21428i −0.0864824 + 0.0725673i
\(281\) 6.33274 + 21.1528i 0.377780 + 1.26187i 0.909767 + 0.415120i \(0.136260\pi\)
−0.531987 + 0.846753i \(0.678554\pi\)
\(282\) 0 0
\(283\) −0.230048 3.94978i −0.0136750 0.234790i −0.998219 0.0596536i \(-0.981000\pi\)
0.984544 0.175136i \(-0.0560367\pi\)
\(284\) −1.29570 22.2462i −0.0768854 1.32007i
\(285\) 0 0
\(286\) −4.02663 13.4499i −0.238099 0.795307i
\(287\) −1.56307 + 1.31157i −0.0922652 + 0.0774197i
\(288\) 0 0
\(289\) 22.8934 + 19.2099i 1.34667 + 1.12999i
\(290\) −3.27954 + 7.60283i −0.192581 + 0.446453i
\(291\) 0 0
\(292\) −5.03617 + 16.8220i −0.294719 + 0.984431i
\(293\) 3.15963 + 7.32485i 0.184588 + 0.427922i 0.985234 0.171215i \(-0.0547694\pi\)
−0.800646 + 0.599138i \(0.795510\pi\)
\(294\) 0 0
\(295\) −1.12787 0.741811i −0.0656671 0.0431899i
\(296\) 1.14114 + 1.97650i 0.0663271 + 0.114882i
\(297\) 0 0
\(298\) 1.08818 1.88478i 0.0630366 0.109183i
\(299\) 14.8545 7.46020i 0.859056 0.431434i
\(300\) 0 0
\(301\) 10.5247 14.1371i 0.606634 0.814851i
\(302\) −0.0293137 0.0310707i −0.00168681 0.00178792i
\(303\) 0 0
\(304\) 12.5922 1.47182i 0.722211 0.0844144i
\(305\) 2.18097 0.793808i 0.124882 0.0454533i
\(306\) 0 0
\(307\) 1.95823 + 0.712736i 0.111762 + 0.0406780i 0.397296 0.917691i \(-0.369949\pi\)
−0.285534 + 0.958369i \(0.592171\pi\)
\(308\) 5.88809 + 1.39550i 0.335505 + 0.0795162i
\(309\) 0 0
\(310\) 3.25930 2.14367i 0.185116 0.121753i
\(311\) −13.4174 6.73846i −0.760830 0.382103i 0.0256887 0.999670i \(-0.491822\pi\)
−0.786518 + 0.617567i \(0.788118\pi\)
\(312\) 0 0
\(313\) −3.49359 + 3.70299i −0.197469 + 0.209305i −0.818540 0.574449i \(-0.805216\pi\)
0.621071 + 0.783754i \(0.286698\pi\)
\(314\) −2.94876 16.7232i −0.166408 0.943747i
\(315\) 0 0
\(316\) −6.76955 + 38.3920i −0.380817 + 2.15972i
\(317\) −16.5461 22.2253i −0.929323 1.24830i −0.968487 0.249065i \(-0.919877\pi\)
0.0391636 0.999233i \(-0.487531\pi\)
\(318\) 0 0
\(319\) 6.92958 1.64234i 0.387982 0.0919534i
\(320\) 7.96199 + 0.930623i 0.445089 + 0.0520234i
\(321\) 0 0
\(322\) −0.721298 + 12.3842i −0.0401964 + 0.690145i
\(323\) 43.5617 2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) 1.94762 33.4393i 0.107869 1.85203i
\(327\) 0 0
\(328\) −1.76961 0.206838i −0.0977105 0.0114207i
\(329\) −10.8623 + 2.57442i −0.598860 + 0.141933i
\(330\) 0 0
\(331\) 16.2840 + 21.8732i 0.895049 + 1.20226i 0.978603 + 0.205756i \(0.0659653\pi\)
−0.0835546 + 0.996503i \(0.526627\pi\)
\(332\) 3.19024 18.0928i 0.175087 0.992969i
\(333\) 0 0
\(334\) 1.38088 + 7.83136i 0.0755584 + 0.428513i
\(335\) −0.541154 + 0.573589i −0.0295664 + 0.0313385i
\(336\) 0 0
\(337\) −11.3657 5.70808i −0.619130 0.310939i 0.111445 0.993771i \(-0.464452\pi\)
−0.730576 + 0.682832i \(0.760748\pi\)
\(338\) −28.0783 + 18.4674i −1.52726 + 1.00449i
\(339\) 0 0
\(340\) 11.7770 + 2.79120i 0.638698 + 0.151374i
\(341\) −3.15292 1.14757i −0.170740 0.0621444i
\(342\) 0 0
\(343\) −18.3136 + 6.66560i −0.988840 + 0.359908i
\(344\) 15.2853 1.78659i 0.824127 0.0963267i
\(345\) 0 0
\(346\) −19.8326 21.0213i −1.06621 1.13011i
\(347\) 5.02397 6.74836i 0.269701 0.362271i −0.646553 0.762869i \(-0.723790\pi\)
0.916254 + 0.400598i \(0.131198\pi\)
\(348\) 0 0
\(349\) 26.9370 13.5282i 1.44190 0.724150i 0.455768 0.890099i \(-0.349365\pi\)
0.986134 + 0.165948i \(0.0530685\pi\)
\(350\) −9.11893 + 15.7944i −0.487427 + 0.844249i
\(351\) 0 0
\(352\) −4.55540 7.89018i −0.242803 0.420548i
\(353\) −19.4095 12.7659i −1.03307 0.679458i −0.0846248 0.996413i \(-0.526969\pi\)
−0.948441 + 0.316955i \(0.897340\pi\)
\(354\) 0 0
\(355\) 2.08698 + 4.83817i 0.110766 + 0.256784i
\(356\) 12.2178 40.8102i 0.647541 2.16294i
\(357\) 0 0
\(358\) 0.360180 0.834992i 0.0190361 0.0441307i
\(359\) 3.19290 + 2.67916i 0.168515 + 0.141401i 0.723145 0.690696i \(-0.242696\pi\)
−0.554630 + 0.832097i \(0.687140\pi\)
\(360\) 0 0
\(361\) 16.4498 13.8030i 0.865780 0.726476i
\(362\) −13.0080 43.4497i −0.683684 2.28366i
\(363\) 0 0
\(364\) −1.55108 26.6310i −0.0812986 1.39584i
\(365\) −0.241419 4.14501i −0.0126365 0.216960i
\(366\) 0 0
\(367\) 3.36163 + 11.2286i 0.175476 + 0.586130i 0.999800 + 0.0200114i \(0.00637025\pi\)
−0.824324 + 0.566118i \(0.808445\pi\)
\(368\) 4.75778 3.99225i 0.248016 0.208110i
\(369\) 0 0
\(370\) −1.53961 1.29189i −0.0800407 0.0671621i
\(371\) 6.17525 14.3158i 0.320603 0.743241i
\(372\) 0 0
\(373\) −10.4315 + 34.8438i −0.540124 + 1.80414i 0.0524474 + 0.998624i \(0.483298\pi\)
−0.592572 + 0.805518i \(0.701887\pi\)
\(374\) −7.13919 16.5505i −0.369159 0.855806i
\(375\) 0 0
\(376\) −8.14387 5.35630i −0.419988 0.276230i
\(377\) −15.6973 27.1885i −0.808452 1.40028i
\(378\) 0 0
\(379\) 5.02516 8.70383i 0.258125 0.447086i −0.707615 0.706599i \(-0.750229\pi\)
0.965740 + 0.259513i \(0.0835620\pi\)
\(380\) 10.0491 5.04687i 0.515510 0.258899i
\(381\) 0 0
\(382\) 8.95120 12.0235i 0.457983 0.615178i
\(383\) 0.207663 + 0.220110i 0.0106111 + 0.0112471i 0.732657 0.680598i \(-0.238280\pi\)
−0.722046 + 0.691845i \(0.756798\pi\)
\(384\) 0 0
\(385\) −1.42115 + 0.166109i −0.0724285 + 0.00846568i
\(386\) 17.8828 6.50880i 0.910209 0.331289i
\(387\) 0 0
\(388\) 9.58146 + 3.48737i 0.486425 + 0.177044i
\(389\) 7.31685 + 1.73413i 0.370979 + 0.0879237i 0.411876 0.911240i \(-0.364874\pi\)
−0.0408974 + 0.999163i \(0.513022\pi\)
\(390\) 0 0
\(391\) 17.8298 11.7269i 0.901694 0.593053i
\(392\) −5.21512 2.61913i −0.263403 0.132286i
\(393\) 0 0
\(394\) 12.6128 13.3688i 0.635422 0.673508i
\(395\) −1.60068 9.07791i −0.0805390 0.456759i
\(396\) 0 0
\(397\) 2.95983 16.7860i 0.148549 0.842466i −0.815899 0.578195i \(-0.803757\pi\)
0.964448 0.264271i \(-0.0851314\pi\)
\(398\) 16.3979 + 22.0262i 0.821952 + 1.10407i
\(399\) 0 0
\(400\) 8.88492 2.10576i 0.444246 0.105288i
\(401\) −13.4856 1.57624i −0.673441 0.0787139i −0.227502 0.973778i \(-0.573056\pi\)
−0.445938 + 0.895064i \(0.647130\pi\)
\(402\) 0 0
\(403\) −0.860042 + 14.7664i −0.0428418 + 0.735565i
\(404\) −12.7153 −0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) −0.100511 + 1.72570i −0.00498213 + 0.0855399i
\(408\) 0 0
\(409\) 0.667804 + 0.0780551i 0.0330208 + 0.00385958i 0.132587 0.991171i \(-0.457672\pi\)
−0.0995665 + 0.995031i \(0.531746\pi\)
\(410\) 1.52668 0.361830i 0.0753973 0.0178695i
\(411\) 0 0
\(412\) 8.43867 + 11.3351i 0.415744 + 0.558441i
\(413\) −0.663313 + 3.76184i −0.0326395 + 0.185108i
\(414\) 0 0
\(415\) 0.754343 + 4.27809i 0.0370292 + 0.210003i
\(416\) −27.5622 + 29.2143i −1.35135 + 1.43235i
\(417\) 0 0
\(418\) −14.9656 7.51600i −0.731991 0.367620i
\(419\) 16.6146 10.9276i 0.811675 0.533847i −0.0744874 0.997222i \(-0.523732\pi\)
0.886162 + 0.463375i \(0.153362\pi\)
\(420\) 0 0
\(421\) 12.2171 + 2.89551i 0.595426 + 0.141119i 0.517270 0.855822i \(-0.326948\pi\)
0.0781566 + 0.996941i \(0.475097\pi\)
\(422\) 11.6049 + 4.22384i 0.564918 + 0.205613i
\(423\) 0 0
\(424\) 12.7926 4.65611i 0.621262 0.226121i
\(425\) 31.1624 3.64236i 1.51160 0.176681i
\(426\) 0 0
\(427\) −4.50682 4.77696i −0.218101 0.231173i
\(428\) −21.2098 + 28.4897i −1.02522 + 1.37710i
\(429\) 0 0
\(430\) −12.1107 + 6.08223i −0.584030 + 0.293311i
\(431\) 10.8013 18.7084i 0.520281 0.901153i −0.479441 0.877574i \(-0.659161\pi\)
0.999722 0.0235787i \(-0.00750603\pi\)
\(432\) 0 0
\(433\) −1.99970 3.46358i −0.0960993 0.166449i 0.813968 0.580910i \(-0.197303\pi\)
−0.910067 + 0.414461i \(0.863970\pi\)
\(434\) −9.22262 6.06581i −0.442700 0.291168i
\(435\) 0 0
\(436\) 1.92478 + 4.46213i 0.0921801 + 0.213697i
\(437\) 5.68669 18.9949i 0.272031 0.908648i
\(438\) 0 0
\(439\) −12.3621 + 28.6586i −0.590011 + 1.36780i 0.317695 + 0.948193i \(0.397091\pi\)
−0.907706 + 0.419607i \(0.862168\pi\)
\(440\) −0.957063 0.803071i −0.0456262 0.0382849i
\(441\) 0 0
\(442\) −60.8697 + 51.0758i −2.89528 + 2.42943i
\(443\) −0.459510 1.53487i −0.0218320 0.0729238i 0.946379 0.323057i \(-0.104711\pi\)
−0.968211 + 0.250134i \(0.919525\pi\)
\(444\) 0 0
\(445\) 0.585685 + 10.0558i 0.0277641 + 0.476692i
\(446\) −0.952996 16.3623i −0.0451257 0.774778i
\(447\) 0 0
\(448\) −6.50552 21.7300i −0.307357 1.02664i
\(449\) 8.04720 6.75241i 0.379771 0.318666i −0.432841 0.901470i \(-0.642489\pi\)
0.812613 + 0.582804i \(0.198045\pi\)
\(450\) 0 0
\(451\) −1.03374 0.867414i −0.0486771 0.0408449i
\(452\) 15.0399 34.8664i 0.707418 1.63998i
\(453\) 0 0
\(454\) 8.51370 28.4378i 0.399568 1.33465i
\(455\) 2.49833 + 5.79179i 0.117124 + 0.271523i
\(456\) 0 0
\(457\) −34.3727 22.6073i −1.60789 1.05752i −0.953513 0.301353i \(-0.902562\pi\)
−0.654375 0.756171i \(-0.727068\pi\)
\(458\) −17.4005 30.1385i −0.813071 1.40828i
\(459\) 0 0
\(460\) 2.75450 4.77093i 0.128429 0.222446i
\(461\) −30.6506 + 15.3933i −1.42754 + 0.716939i −0.983809 0.179219i \(-0.942643\pi\)
−0.443734 + 0.896159i \(0.646346\pi\)
\(462\) 0 0
\(463\) −19.9050 + 26.7371i −0.925066 + 1.24258i 0.0448139 + 0.998995i \(0.485731\pi\)
−0.969880 + 0.243584i \(0.921677\pi\)
\(464\) −8.04978 8.53227i −0.373702 0.396101i
\(465\) 0 0
\(466\) 11.5816 1.35370i 0.536508 0.0627087i
\(467\) −9.76380 + 3.55373i −0.451815 + 0.164447i −0.557897 0.829910i \(-0.688392\pi\)
0.106082 + 0.994357i \(0.466169\pi\)
\(468\) 0 0
\(469\) 2.09681 + 0.763177i 0.0968218 + 0.0352402i
\(470\) 8.35245 + 1.97957i 0.385270 + 0.0913106i
\(471\) 0 0
\(472\) −2.78669 + 1.83283i −0.128268 + 0.0843630i
\(473\) 10.4163 + 5.23126i 0.478942 + 0.240534i
\(474\) 0 0
\(475\) 20.0043 21.2033i 0.917860 0.972874i
\(476\) −5.94706 33.7274i −0.272583 1.54589i
\(477\) 0 0
\(478\) −6.09945 + 34.5917i −0.278982 + 1.58219i
\(479\) 12.1202 + 16.2803i 0.553787 + 0.743865i 0.987575 0.157150i \(-0.0502306\pi\)
−0.433788 + 0.901015i \(0.642823\pi\)
\(480\) 0 0
\(481\) 7.41507 1.75740i 0.338098 0.0801307i
\(482\) 50.5436 + 5.90770i 2.30220 + 0.269088i
\(483\) 0 0
\(484\) 1.51604 26.0293i 0.0689108 1.18315i
\(485\) −2.41096 −0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) 0.333430 5.72477i 0.0150937 0.259148i
\(489\) 0 0
\(490\) 5.10445 + 0.596625i 0.230596 + 0.0269528i
\(491\) 9.94187 2.35627i 0.448670 0.106337i −6.80725e−5 1.00000i \(-0.500022\pi\)
0.448738 + 0.893663i \(0.351874\pi\)
\(492\) 0 0
\(493\) −24.0688 32.3300i −1.08400 1.45607i
\(494\) −12.8199 + 72.7055i −0.576796 + 3.27117i
\(495\) 0 0
\(496\) 0.959690 + 5.44267i 0.0430914 + 0.244383i
\(497\) 10.2316 10.8449i 0.458950 0.486459i
\(498\) 0 0
\(499\) −7.81359 3.92413i −0.349785 0.175668i 0.265228 0.964186i \(-0.414553\pi\)
−0.615013 + 0.788517i \(0.710849\pi\)
\(500\) 14.1508 9.30715i 0.632845 0.416228i
\(501\) 0 0
\(502\) 51.4200 + 12.1868i 2.29499 + 0.543922i
\(503\) −12.2947 4.47489i −0.548192 0.199526i 0.0530509 0.998592i \(-0.483105\pi\)
−0.601243 + 0.799066i \(0.705328\pi\)
\(504\) 0 0
\(505\) 2.82525 1.02831i 0.125722 0.0457591i
\(506\) −8.14875 + 0.952452i −0.362256 + 0.0423417i
\(507\) 0 0
\(508\) 21.3812 + 22.6627i 0.948636 + 1.00550i
\(509\) −18.1662 + 24.4014i −0.805202 + 1.08157i 0.189810 + 0.981821i \(0.439213\pi\)
−0.995012 + 0.0997537i \(0.968195\pi\)
\(510\) 0 0
\(511\) −10.4990 + 5.27282i −0.464451 + 0.233256i
\(512\) −10.6866 + 18.5097i −0.472284 + 0.818019i
\(513\) 0 0
\(514\) −10.4808 18.1532i −0.462287 0.800705i
\(515\) −2.79170 1.83613i −0.123017 0.0809097i
\(516\) 0 0
\(517\) −2.92420 6.77906i −0.128606 0.298143i
\(518\) −1.63107 + 5.44814i −0.0716649 + 0.239378i
\(519\) 0 0
\(520\) −2.18147 + 5.05722i −0.0956640 + 0.221774i
\(521\) 8.25925 + 6.93034i 0.361845 + 0.303624i 0.805525 0.592561i \(-0.201883\pi\)
−0.443681 + 0.896185i \(0.646328\pi\)
\(522\) 0 0
\(523\) 9.44644 7.92650i 0.413064 0.346602i −0.412453 0.910979i \(-0.635328\pi\)
0.825517 + 0.564377i \(0.190884\pi\)
\(524\) 11.4336 + 38.1909i 0.499479 + 1.66838i
\(525\) 0 0
\(526\) −0.840267 14.4268i −0.0366374 0.629040i
\(527\) 1.10415 + 18.9576i 0.0480976 + 0.825804i
\(528\) 0 0
\(529\) 3.81060 + 12.7283i 0.165678 + 0.553403i
\(530\) −9.18367 + 7.70601i −0.398913 + 0.334728i
\(531\) 0 0
\(532\) −24.3755 20.4535i −1.05681 0.886772i
\(533\) −2.35626 + 5.46241i −0.102061 + 0.236603i
\(534\) 0 0
\(535\) 2.40866 8.04550i 0.104136 0.347837i
\(536\) 0.771713 + 1.78903i 0.0333329 + 0.0772744i
\(537\) 0 0
\(538\) −53.3840 35.1112i −2.30155 1.51375i
\(539\) −2.21009 3.82798i −0.0951952 0.164883i
\(540\) 0 0
\(541\) 7.99279 13.8439i 0.343637 0.595196i −0.641468 0.767149i \(-0.721674\pi\)
0.985105 + 0.171953i \(0.0550078\pi\)
\(542\) −36.7080 + 18.4355i −1.57675 + 0.791871i
\(543\) 0 0
\(544\) −30.7919 + 41.3607i −1.32019 + 1.77332i
\(545\) −0.788533 0.835796i −0.0337770 0.0358016i
\(546\) 0 0
\(547\) −1.22825 + 0.143562i −0.0525161 + 0.00613825i −0.142310 0.989822i \(-0.545453\pi\)
0.0897943 + 0.995960i \(0.471379\pi\)
\(548\) 0.952696 0.346753i 0.0406972 0.0148126i
\(549\) 0 0
\(550\) −11.3343 4.12534i −0.483295 0.175905i
\(551\) −36.4389 8.63618i −1.55235 0.367914i
\(552\) 0 0
\(553\) −21.7924 + 14.3331i −0.926706 + 0.609504i
\(554\) 27.2965 + 13.7088i 1.15972 + 0.582431i
\(555\) 0 0
\(556\) −28.1019 + 29.7863i −1.19179 + 1.26322i
\(557\) 2.28246 + 12.9445i 0.0967109 + 0.548475i 0.994210 + 0.107458i \(0.0342710\pi\)
−0.897499 + 0.441017i \(0.854618\pi\)
\(558\) 0 0
\(559\) 8.92289 50.6042i 0.377398 2.14033i
\(560\) 1.40737 + 1.89043i 0.0594724 + 0.0798853i
\(561\) 0 0
\(562\) −46.7478 + 11.0794i −1.97194 + 0.467357i
\(563\) −6.04774 0.706879i −0.254882 0.0297914i −0.0123076 0.999924i \(-0.503918\pi\)
−0.242574 + 0.970133i \(0.577992\pi\)
\(564\) 0 0
\(565\) −0.522058 + 8.96339i −0.0219631 + 0.377092i
\(566\) 8.60852 0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) −0.963908 + 16.5497i −0.0404091 + 0.693798i 0.915894 + 0.401420i \(0.131483\pi\)
−0.956303 + 0.292377i \(0.905554\pi\)
\(570\) 0 0
\(571\) −34.6117 4.04552i −1.44845 0.169300i −0.644779 0.764369i \(-0.723050\pi\)
−0.803674 + 0.595069i \(0.797125\pi\)
\(572\) 17.1668 4.06861i 0.717780 0.170117i
\(573\) 0 0
\(574\) −2.65115 3.56112i −0.110657 0.148638i
\(575\) 2.47981 14.0637i 0.103415 0.586497i
\(576\) 0 0
\(577\) 5.38675 + 30.5498i 0.224254 + 1.27180i 0.864107 + 0.503308i \(0.167884\pi\)
−0.639854 + 0.768497i \(0.721005\pi\)
\(578\) −44.6225 + 47.2971i −1.85605 + 1.96730i
\(579\) 0 0
\(580\) −9.29798 4.66962i −0.386078 0.193895i
\(581\) 10.2700 6.75465i 0.426069 0.280230i
\(582\) 0 0
\(583\) 10.0332 + 2.37791i 0.415532 + 0.0984829i
\(584\) −9.63999 3.50867i −0.398906 0.145190i
\(585\) 0 0
\(586\) −16.3102 + 5.93644i −0.673769 + 0.245232i
\(587\) 44.2431 5.17128i 1.82611 0.213442i 0.867358 0.497685i \(-0.165816\pi\)
0.958752 + 0.284243i \(0.0917424\pi\)
\(588\) 0 0
\(589\) 12.1077 + 12.8335i 0.498891 + 0.528794i
\(590\) 1.75399 2.35602i 0.0722108 0.0969960i
\(591\) 0 0
\(592\) 2.54445 1.27787i 0.104576 0.0525201i
\(593\) 9.90549 17.1568i 0.406770 0.704546i −0.587756 0.809038i \(-0.699989\pi\)
0.994526 + 0.104493i \(0.0333219\pi\)
\(594\) 0 0
\(595\) 4.04899 + 7.01306i 0.165992 + 0.287507i
\(596\) 2.28492 + 1.50281i 0.0935938 + 0.0615576i
\(597\) 0 0
\(598\) 14.3252 + 33.2096i 0.585801 + 1.35804i
\(599\) 8.00993 26.7550i 0.327277 1.09318i −0.623116 0.782129i \(-0.714134\pi\)
0.950393 0.311051i \(-0.100681\pi\)
\(600\) 0 0
\(601\) −4.01814 + 9.31508i −0.163903 + 0.379970i −0.980298 0.197524i \(-0.936710\pi\)
0.816395 + 0.577494i \(0.195969\pi\)
\(602\) 29.3761 + 24.6495i 1.19728 + 1.00464i
\(603\) 0 0
\(604\) 0.0411194 0.0345033i 0.00167313 0.00140392i
\(605\) 1.76818 + 5.90615i 0.0718869 + 0.240119i
\(606\) 0 0
\(607\) −0.628918 10.7981i −0.0255270 0.438282i −0.986723 0.162414i \(-0.948072\pi\)
0.961196 0.275868i \(-0.0889651\pi\)
\(608\) 2.78565 + 47.8277i 0.112973 + 1.93967i
\(609\) 0 0
\(610\) 1.44833 + 4.83776i 0.0586412 + 0.195875i
\(611\) −24.9321 + 20.9205i −1.00865 + 0.846355i
\(612\) 0 0
\(613\) 4.13859 + 3.47269i 0.167156 + 0.140261i 0.722528 0.691341i \(-0.242980\pi\)
−0.555372 + 0.831602i \(0.687424\pi\)
\(614\) −1.79589 + 4.16334i −0.0724763 + 0.168019i
\(615\) 0 0
\(616\) −1.01391 + 3.38670i −0.0408517 + 0.136454i
\(617\) −9.91795 22.9924i −0.399282 0.925639i −0.992685 0.120734i \(-0.961475\pi\)
0.593403 0.804905i \(-0.297784\pi\)
\(618\) 0 0
\(619\) −21.2925 14.0043i −0.855817 0.562880i 0.0440575 0.999029i \(-0.485972\pi\)
−0.899874 + 0.436149i \(0.856342\pi\)
\(620\) 2.45106 + 4.24535i 0.0984368 + 0.170498i
\(621\) 0 0
\(622\) 16.3342 28.2917i 0.654943 1.13439i
\(623\) 25.4708 12.7919i 1.02047 0.512497i
\(624\) 0 0
\(625\) 11.2895 15.1644i 0.451580 0.606578i
\(626\) −7.60137 8.05698i −0.303812 0.322022i
\(627\) 0 0
\(628\) 21.1944 2.47727i 0.845750 0.0988540i
\(629\) 9.19342 3.34613i 0.366566 0.133419i
\(630\) 0 0
\(631\) −18.7709 6.83203i −0.747256 0.271979i −0.0598054 0.998210i \(-0.519048\pi\)
−0.687451 + 0.726231i \(0.741270\pi\)
\(632\) −22.1614 5.25234i −0.881533 0.208927i
\(633\) 0 0
\(634\) 50.3694 33.1285i 2.00043 1.31570i
\(635\) −6.58352 3.30637i −0.261259 0.131209i
\(636\) 0 0
\(637\) −13.3720 + 14.1735i −0.529819 + 0.561575i
\(638\) 2.69069 + 15.2597i 0.106526 + 0.604137i
\(639\) 0 0
\(640\) −1.33792 + 7.58769i −0.0528857 + 0.299930i
\(641\) −5.33236 7.16261i −0.210616 0.282906i 0.684244 0.729253i \(-0.260132\pi\)
−0.894860 + 0.446347i \(0.852725\pi\)
\(642\) 0 0
\(643\) 13.0387 3.09023i 0.514197 0.121867i 0.0346781 0.999399i \(-0.488959\pi\)
0.479519 + 0.877532i \(0.340811\pi\)
\(644\) −15.4830 1.80971i −0.610117 0.0713125i
\(645\) 0 0
\(646\) −5.51107 + 94.6214i −0.216830 + 3.72283i
\(647\) −48.7223 −1.91547 −0.957736 0.287649i \(-0.907126\pi\)
−0.957736 + 0.287649i \(0.907126\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) −3.09172 + 53.0827i −0.121267 + 2.08208i
\(651\) 0 0
\(652\) 41.8066 + 4.88650i 1.63727 + 0.191370i
\(653\) 4.67541 1.10809i 0.182963 0.0433630i −0.138113 0.990416i \(-0.544104\pi\)
0.321076 + 0.947053i \(0.395956\pi\)
\(654\) 0 0
\(655\) −5.62903 7.56110i −0.219944 0.295437i
\(656\) −0.385978 + 2.18899i −0.0150699 + 0.0854656i
\(657\) 0 0
\(658\) −4.21775 23.9201i −0.164425 0.932501i
\(659\) 17.3570 18.3974i 0.676133 0.716659i −0.294920 0.955522i \(-0.595293\pi\)
0.971053 + 0.238863i \(0.0767746\pi\)
\(660\) 0 0
\(661\) −12.6327 6.34438i −0.491355 0.246768i 0.185828 0.982582i \(-0.440503\pi\)
−0.677183 + 0.735814i \(0.736800\pi\)
\(662\) −49.5714 + 32.6036i −1.92665 + 1.26718i
\(663\) 0 0
\(664\) 10.4439 + 2.47524i 0.405300 + 0.0960579i
\(665\) 7.07019 + 2.57334i 0.274170 + 0.0997898i
\(666\) 0 0
\(667\) −17.2393 + 6.27461i −0.667510 + 0.242954i
\(668\) −9.92518 + 1.16009i −0.384017 + 0.0448851i
\(669\) 0 0
\(670\) −1.17745 1.24802i −0.0454887 0.0482152i
\(671\) 2.59368 3.48392i 0.100128 0.134495i
\(672\) 0 0
\(673\) 2.38363 1.19711i 0.0918823 0.0461450i −0.402265 0.915523i \(-0.631777\pi\)
0.494147 + 0.869378i \(0.335481\pi\)
\(674\) 13.8366 23.9656i 0.532965 0.923122i
\(675\) 0 0
\(676\) −21.1154 36.5730i −0.812131 1.40665i
\(677\) 12.3339 + 8.11215i 0.474031 + 0.311775i 0.763949 0.645276i \(-0.223258\pi\)
−0.289918 + 0.957051i \(0.593628\pi\)
\(678\) 0 0
\(679\) 2.70211 + 6.26420i 0.103698 + 0.240398i
\(680\) −2.02797 + 6.77388i −0.0777689 + 0.259766i
\(681\) 0 0
\(682\) 2.89155 6.70336i 0.110723 0.256685i
\(683\) −16.0712 13.4854i −0.614948 0.516003i 0.281263 0.959631i \(-0.409247\pi\)
−0.896211 + 0.443628i \(0.853691\pi\)
\(684\) 0 0
\(685\) −0.183640 + 0.154092i −0.00701653 + 0.00588756i
\(686\) −12.1616 40.6226i −0.464333 1.55098i
\(687\) 0 0
\(688\) −1.11634 19.1669i −0.0425602 0.730731i
\(689\) −2.64300 45.3786i −0.100690 1.72879i
\(690\) 0 0
\(691\) −9.99045 33.3704i −0.380055 1.26947i −0.907561 0.419920i \(-0.862058\pi\)
0.527507 0.849551i \(-0.323127\pi\)
\(692\) 27.8199 23.3437i 1.05755 0.887394i
\(693\) 0 0
\(694\) 14.0227 + 11.7664i 0.532294 + 0.446648i
\(695\) 3.83519 8.89097i 0.145477 0.337254i
\(696\) 0 0
\(697\) −2.19045 + 7.31660i −0.0829691 + 0.277136i
\(698\) 25.9772 + 60.2219i 0.983251 + 2.27943i
\(699\) 0 0
\(700\) −19.1475 12.5935i −0.723709 0.475991i
\(701\) 21.8053 + 37.7679i 0.823576 + 1.42647i 0.903003 + 0.429634i \(0.141357\pi\)
−0.0794276 + 0.996841i \(0.525309\pi\)
\(702\) 0 0
\(703\) 4.54496 7.87209i 0.171416 0.296902i
\(704\) 13.4057 6.73262i 0.505248 0.253745i
\(705\) 0 0
\(706\) 30.1846 40.5449i 1.13601 1.52593i
\(707\) −5.83819 6.18812i −0.219568 0.232728i
\(708\) 0 0
\(709\) −18.1438 + 2.12071i −0.681406 + 0.0796449i −0.449752 0.893153i \(-0.648488\pi\)
−0.231654 + 0.972798i \(0.574414\pi\)
\(710\) −10.7731 + 3.92111i −0.404309 + 0.147156i
\(711\) 0 0
\(712\) 23.3867 + 8.51206i 0.876453 + 0.319003i
\(713\) 8.41050 + 1.99332i 0.314976 + 0.0746506i
\(714\) 0 0
\(715\) −3.48531 + 2.29233i −0.130343 + 0.0857281i
\(716\) 1.02116 + 0.512848i 0.0381627 + 0.0191660i
\(717\) 0 0
\(718\) −6.22342 + 6.59644i −0.232256 + 0.246177i
\(719\) −3.15002 17.8647i −0.117476 0.666240i −0.985494 0.169708i \(-0.945718\pi\)
0.868018 0.496532i \(-0.165393\pi\)
\(720\) 0 0
\(721\) −1.64184 + 9.31131i −0.0611451 + 0.346771i
\(722\) 27.9008 + 37.4773i 1.03836 + 1.39476i
\(723\) 0 0
\(724\) 55.4572 13.1436i 2.06105 0.488478i
\(725\) −26.7891 3.13120i −0.994924 0.116290i
\(726\) 0 0
\(727\) −1.17766 + 20.2197i −0.0436770 + 0.749906i 0.903380 + 0.428841i \(0.141078\pi\)
−0.947057 + 0.321065i \(0.895959\pi\)
\(728\) 15.5847 0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) 3.83580 65.8581i 0.141872 2.43585i
\(732\) 0 0
\(733\) 1.75603 + 0.205251i 0.0648606 + 0.00758111i 0.148461 0.988918i \(-0.452568\pi\)
−0.0836007 + 0.996499i \(0.526642\pi\)
\(734\) −24.8153 + 5.88133i −0.915948 + 0.217084i
\(735\) 0 0
\(736\) 14.0154 + 18.8260i 0.516616 + 0.693936i
\(737\) −0.256258 + 1.45331i −0.00943939 + 0.0535334i
\(738\) 0 0
\(739\) −1.58340 8.97988i −0.0582461 0.330330i 0.941736 0.336354i \(-0.109194\pi\)
−0.999982 + 0.00602346i \(0.998083\pi\)
\(740\) 1.73314 1.83702i 0.0637115 0.0675303i
\(741\) 0 0
\(742\) 30.3145 + 15.2245i 1.11288 + 0.558910i
\(743\) 16.6442 10.9471i 0.610616 0.401608i −0.206197 0.978510i \(-0.566109\pi\)
0.816813 + 0.576902i \(0.195739\pi\)
\(744\) 0 0
\(745\) −0.629228 0.149130i −0.0230531 0.00546369i
\(746\) −74.3653 27.0667i −2.72271 0.990984i
\(747\) 0 0
\(748\) 21.2839 7.74671i 0.778217 0.283248i
\(749\) −23.6035 + 2.75885i −0.862451 + 0.100806i
\(750\) 0 0
\(751\) 26.4586 + 28.0445i 0.965487 + 1.02336i 0.999713 + 0.0239424i \(0.00762184\pi\)
−0.0342262 + 0.999414i \(0.510897\pi\)
\(752\) −7.26185 + 9.75436i −0.264812 + 0.355705i
\(753\) 0 0
\(754\) 61.0427 30.6568i 2.22305 1.11646i
\(755\) −0.00634611 + 0.0109918i −0.000230959 + 0.000400032i
\(756\) 0 0
\(757\) 25.4729 + 44.1204i 0.925829 + 1.60358i 0.790223 + 0.612820i \(0.209965\pi\)
0.135606 + 0.990763i \(0.456702\pi\)
\(758\) 18.2701 + 12.0164i 0.663599 + 0.436456i
\(759\) 0 0
\(760\) 2.60212 + 6.03239i 0.0943889 + 0.218818i
\(761\) −11.1682 + 37.3045i −0.404848 + 1.35229i 0.476233 + 0.879319i \(0.342002\pi\)
−0.881080 + 0.472967i \(0.843183\pi\)
\(762\) 0 0
\(763\) −1.28782 + 2.98550i −0.0466222 + 0.108082i
\(764\) 14.4293 + 12.1076i 0.522033 + 0.438038i
\(765\) 0 0
\(766\) −0.504379 + 0.423224i −0.0182239 + 0.0152917i
\(767\) 3.19409 + 10.6690i 0.115332 + 0.385235i
\(768\) 0 0
\(769\) −1.98573 34.0937i −0.0716073 1.22945i −0.822399 0.568911i \(-0.807365\pi\)
0.750792 0.660539i \(-0.229672\pi\)
\(770\) −0.181016 3.10793i −0.00652338 0.112002i
\(771\) 0 0
\(772\) 6.85855 + 22.9091i 0.246845 + 0.824518i
\(773\) −2.31945 + 1.94625i −0.0834247 + 0.0700016i −0.683546 0.729907i \(-0.739563\pi\)
0.600122 + 0.799909i \(0.295119\pi\)
\(774\) 0 0
\(775\) 9.73449 + 8.16820i 0.349673 + 0.293411i
\(776\) −2.35941 + 5.46972i −0.0846978 + 0.196352i
\(777\) 0 0
\(778\) −4.69241 + 15.6737i −0.168231 + 0.561930i
\(779\) 2.81061 + 6.51572i 0.100700 + 0.233450i
\(780\) 0 0
\(781\) 8.23836 + 5.41845i 0.294792 + 0.193887i
\(782\) 23.2165 + 40.2122i 0.830222 + 1.43799i
\(783\) 0 0
\(784\) −3.64034 + 6.30526i −0.130012 + 0.225188i
\(785\) −4.50892 + 2.26446i −0.160930 + 0.0808221i
\(786\) 0 0
\(787\) 1.35626 1.82178i 0.0483456 0.0649394i −0.777293 0.629139i \(-0.783408\pi\)
0.825639 + 0.564199i \(0.190815\pi\)
\(788\) 15.8493 + 16.7993i 0.564608 + 0.598449i
\(789\) 0 0
\(790\) 19.9209 2.32841i 0.708752 0.0828413i
\(791\) 23.8739 8.68939i 0.848858 0.308959i
\(792\) 0 0
\(793\) −17.9926 6.54878i −0.638936 0.232554i
\(794\) 36.0869 + 8.55274i 1.28067 + 0.303525i
\(795\) 0 0
\(796\) −28.8295 + 18.9615i −1.02184 + 0.672072i
\(797\) 11.2447 + 5.64728i 0.398306 + 0.200037i 0.636665 0.771140i \(-0.280313\pi\)
−0.238359 + 0.971177i \(0.576610\pi\)
\(798\) 0 0
\(799\) −28.6742 + 30.3929i −1.01442 + 1.07522i
\(800\) 5.99181 + 33.9812i 0.211842 + 1.20142i
\(801\) 0 0
\(802\) 5.12989 29.0931i 0.181143 1.02731i
\(803\) −4.63996 6.23255i −0.163741 0.219942i
\(804\) 0 0
\(805\) 3.58658 0.850035i 0.126410 0.0299598i
\(806\) −31.9656 3.73624i −1.12594 0.131603i
\(807\) 0 0
\(808\) 0.431929 7.41593i 0.0151952 0.260891i
\(809\) −13.7132 −0.482129 −0.241065 0.970509i \(-0.577497\pi\)
−0.241065 + 0.970509i \(0.577497\pi\)
\(810\) 0 0
\(811\) 1.72288 0.0604985 0.0302493 0.999542i \(-0.490370\pi\)
0.0302493 + 0.999542i \(0.490370\pi\)
\(812\) −1.71187 + 29.3917i −0.0600748 + 1.03144i
\(813\) 0 0
\(814\) −3.73572 0.436644i −0.130937 0.0153043i
\(815\) −9.68433 + 2.29523i −0.339227 + 0.0803983i
\(816\) 0 0
\(817\) −36.6018 49.1647i −1.28053 1.72006i
\(818\) −0.254031 + 1.44068i −0.00888198 + 0.0503722i
\(819\) 0 0
\(820\) 0.342361 + 1.94163i 0.0119558 + 0.0678046i
\(821\) 35.4816 37.6083i 1.23832 1.31254i 0.305496 0.952193i \(-0.401178\pi\)
0.932820 0.360344i \(-0.117341\pi\)
\(822\) 0 0
\(823\) 18.2164 + 9.14864i 0.634985 + 0.318902i 0.737012 0.675880i \(-0.236236\pi\)
−0.102026 + 0.994782i \(0.532533\pi\)
\(824\) −6.89762 + 4.53664i −0.240290 + 0.158041i
\(825\) 0 0
\(826\) −8.08726 1.91672i −0.281392 0.0666911i
\(827\) 40.3124 + 14.6725i 1.40180 + 0.510213i 0.928712 0.370803i \(-0.120917\pi\)
0.473087 + 0.881016i \(0.343140\pi\)
\(828\) 0 0
\(829\) −13.4165 + 4.88321i −0.465975 + 0.169601i −0.564328 0.825551i \(-0.690865\pi\)
0.0983534 + 0.995152i \(0.468642\pi\)
\(830\) −9.38798 + 1.09730i −0.325861 + 0.0380877i
\(831\) 0 0
\(832\) −45.3827 48.1028i −1.57336 1.66767i
\(833\) −14.9389 + 20.0664i −0.517603 + 0.695261i
\(834\) 0 0
\(835\) 2.11149 1.06043i 0.0730711 0.0366977i
\(836\) 10.5221 18.2249i 0.363916 0.630321i
\(837\) 0 0
\(838\) 21.6341 + 37.4714i 0.747338 + 1.29443i
\(839\) −25.1136 16.5175i −0.867018 0.570247i 0.0362407 0.999343i \(-0.488462\pi\)
−0.903259 + 0.429096i \(0.858832\pi\)
\(840\) 0 0
\(841\) 2.23748 + 5.18707i 0.0771545 + 0.178864i
\(842\) −7.83502 + 26.1708i −0.270013 + 0.901905i
\(843\) 0 0
\(844\) −6.14664 + 14.2495i −0.211576 + 0.490488i
\(845\) 7.64942 + 6.41863i 0.263148 + 0.220807i
\(846\) 0 0
\(847\) 13.3637 11.2135i 0.459183 0.385300i
\(848\) −4.87105 16.2704i −0.167273 0.558730i
\(849\) 0 0
\(850\) 3.96925 + 68.1495i 0.136144 + 2.33751i
\(851\) −0.258925 4.44556i −0.00887582 0.152392i
\(852\) 0 0
\(853\) −10.4796 35.0042i −0.358813 1.19852i −0.926823 0.375498i \(-0.877472\pi\)
0.568010 0.823022i \(-0.307713\pi\)
\(854\) 10.9463 9.18504i 0.374575 0.314306i
\(855\) 0 0
\(856\) −15.8956 13.3380i −0.543299 0.455882i
\(857\) −18.2829 + 42.3845i −0.624532 + 1.44783i 0.252596 + 0.967572i \(0.418716\pi\)
−0.877128 + 0.480256i \(0.840544\pi\)
\(858\) 0 0
\(859\) 0.0885216 0.295683i 0.00302032 0.0100886i −0.956466 0.291844i \(-0.905731\pi\)
0.959486 + 0.281755i \(0.0909165\pi\)
\(860\) −6.74516 15.6370i −0.230008 0.533219i
\(861\) 0 0
\(862\) 39.2705 + 25.8286i 1.33756 + 0.879727i
\(863\) 16.3176 + 28.2630i 0.555459 + 0.962083i 0.997868 + 0.0652694i \(0.0207907\pi\)
−0.442409 + 0.896813i \(0.645876\pi\)
\(864\) 0 0
\(865\) −4.29355 + 7.43665i −0.145985 + 0.252854i
\(866\) 7.77630 3.90541i 0.264250 0.132711i
\(867\) 0 0
\(868\) 8.28329 11.1264i 0.281153 0.377654i
\(869\) −11.8379 12.5475i −0.401574 0.425643i
\(870\) 0 0
\(871\) 6.46163 0.755256i 0.218944 0.0255909i
\(872\) −2.66783 + 0.971011i −0.0903441 + 0.0328826i
\(873\) 0 0
\(874\) 40.5398 + 14.7553i 1.37128 + 0.499105i
\(875\) 11.0268 + 2.61340i 0.372774 + 0.0883491i
\(876\) 0 0
\(877\) −5.80901 + 3.82065i −0.196156 + 0.129014i −0.643788 0.765204i \(-0.722638\pi\)
0.447631 + 0.894218i \(0.352268\pi\)
\(878\) −60.6861 30.4777i −2.04806 1.02857i
\(879\) 0 0
\(880\) −1.06962 + 1.13373i −0.0360570 + 0.0382182i
\(881\) 6.47573 + 36.7257i 0.218173 + 1.23732i 0.875315 + 0.483553i \(0.160654\pi\)
−0.657142 + 0.753767i \(0.728235\pi\)
\(882\) 0 0
\(883\) 1.07456 6.09412i 0.0361618 0.205084i −0.961374 0.275246i \(-0.911241\pi\)
0.997536 + 0.0701625i \(0.0223518\pi\)
\(884\) −59.6261 80.0917i −2.00544 2.69378i
\(885\) 0 0
\(886\) 3.39206 0.803933i 0.113958 0.0270087i
\(887\) 18.4976 + 2.16206i 0.621088 + 0.0725948i 0.420817 0.907146i \(-0.361744\pi\)
0.200271 + 0.979740i \(0.435818\pi\)
\(888\) 0 0
\(889\) −1.21211 + 20.8110i −0.0406527 + 0.697980i
\(890\) −21.9166 −0.734646
\(891\) 0 0
\(892\) 20.5958 0.689599
\(893\) −2.25733 + 38.7568i −0.0755385 + 1.29695i
\(894\) 0 0
\(895\) −0.268371 0.0313680i −0.00897064 0.00104852i
\(896\) 21.2139 5.02779i 0.708708 0.167967i
\(897\) 0 0
\(898\) 13.6490 + 18.3338i 0.455473 + 0.611807i
\(899\) 2.83476 16.0767i 0.0945444 0.536188i
\(900\) 0 0
\(901\) −10.1337 57.4708i −0.337601 1.91463i
\(902\) 2.01491 2.13568i 0.0670892 0.0711104i
\(903\) 0 0
\(904\) 19.8242 + 9.95610i 0.659344 + 0.331135i
\(905\) −11.2593 + 7.40533i −0.374271 + 0.246162i
\(906\) 0 0
\(907\) 25.4769 + 6.03814i 0.845947 + 0.200493i 0.630661 0.776058i \(-0.282784\pi\)
0.215285 + 0.976551i \(0.430932\pi\)
\(908\) 35.0525 + 12.7581i 1.16326 + 0.423392i
\(909\) 0 0
\(910\) −12.8966 + 4.69396i −0.427516 + 0.155603i
\(911\) −7.90750 + 0.924254i −0.261987 + 0.0306219i −0.246072 0.969251i \(-0.579140\pi\)
−0.0159147 + 0.999873i \(0.505066\pi\)
\(912\) 0 0
\(913\) 5.57878 + 5.91316i 0.184631 + 0.195697i
\(914\) 53.4544 71.8017i 1.76811 2.37499i
\(915\) 0 0
\(916\) 39.0795 19.6265i 1.29122 0.648477i
\(917\) −13.3366 + 23.0996i −0.440412 + 0.762816i
\(918\) 0 0
\(919\) −27.5324 47.6875i −0.908210 1.57307i −0.816549 0.577276i \(-0.804116\pi\)
−0.0916606 0.995790i \(-0.529217\pi\)
\(920\) 2.68898 + 1.76857i 0.0886530 + 0.0583080i
\(921\) 0 0
\(922\) −29.5586 68.5245i −0.973460 2.25673i
\(923\) 12.4671 41.6430i 0.410360 1.37070i
\(924\) 0 0
\(925\) 2.59308 6.01143i 0.0852598 0.197654i
\(926\) −55.5581 46.6188i −1.82575 1.53199i
\(927\) 0 0
\(928\) 33.9569 28.4932i 1.11469 0.935336i
\(929\) 12.5788 + 42.0162i 0.412697 + 1.37851i 0.871687 + 0.490063i \(0.163026\pi\)
−0.458989 + 0.888442i \(0.651788\pi\)
\(930\) 0 0
\(931\) 1.35148 + 23.2040i 0.0442929 + 0.760480i
\(932\) 0.851973 + 14.6278i 0.0279073 + 0.479150i
\(933\) 0 0
\(934\) −6.48392 21.6578i −0.212160 0.708664i
\(935\) −4.10265 + 3.44253i −0.134171 + 0.112583i
\(936\) 0 0
\(937\) 25.4682 + 21.3704i 0.832010 + 0.698140i 0.955752 0.294175i \(-0.0950449\pi\)
−0.123741 + 0.992315i \(0.539489\pi\)
\(938\) −1.92299 + 4.45799i −0.0627878 + 0.145558i
\(939\) 0 0
\(940\) −3.09360 + 10.3333i −0.100902 + 0.337037i
\(941\) 4.43921 + 10.2912i 0.144714 + 0.335485i 0.975121 0.221672i \(-0.0711514\pi\)
−0.830407 + 0.557157i \(0.811892\pi\)
\(942\) 0 0
\(943\) 2.90442 + 1.91027i 0.0945810 + 0.0622069i
\(944\) 2.08058 + 3.60368i 0.0677172 + 0.117290i
\(945\) 0 0
\(946\) −12.6807 + 21.9637i −0.412286 + 0.714101i
\(947\) 4.22787 2.12331i 0.137387 0.0689984i −0.378778 0.925488i \(-0.623655\pi\)
0.516165 + 0.856489i \(0.327359\pi\)
\(948\) 0 0
\(949\) −20.4548 + 27.4756i −0.663991 + 0.891895i
\(950\) 43.5254 + 46.1343i 1.41215 + 1.49679i
\(951\) 0 0
\(952\) 19.8728 2.32280i 0.644082 0.0752824i
\(953\) 1.77553 0.646238i 0.0575149 0.0209337i −0.313102 0.949719i \(-0.601368\pi\)
0.370617 + 0.928786i \(0.379146\pi\)
\(954\) 0 0
\(955\) −4.18525 1.52331i −0.135432 0.0492930i
\(956\) −42.9489 10.1791i −1.38907 0.329215i
\(957\) 0 0
\(958\) −36.8962 + 24.2670i −1.19206 + 0.784031i
\(959\) 0.606181 + 0.304436i 0.0195746 + 0.00983074i
\(960\) 0 0
\(961\) 15.9954 16.9541i 0.515981 0.546908i
\(962\) 2.87920 + 16.3288i 0.0928293 + 0.526461i
\(963\) 0 0
\(964\) −11.1041 + 62.9743i −0.357638 + 2.02827i
\(965\) −3.37662 4.53559i −0.108697 0.146006i
\(966\) 0 0
\(967\) −54.3404 + 12.8789i −1.74747 + 0.414158i −0.975234 0.221178i \(-0.929010\pi\)
−0.772236 + 0.635336i \(0.780862\pi\)
\(968\) 15.1296 + 1.76839i 0.486283 + 0.0568383i
\(969\) 0 0
\(970\) 0.305016 5.23692i 0.00979346 0.168147i
\(971\) −6.12547 −0.196576 −0.0982879 0.995158i \(-0.531337\pi\)
−0.0982879 + 0.995158i \(0.531337\pi\)
\(972\) 0 0
\(973\) −27.3990 −0.878370
\(974\) 3.48813 59.8889i 0.111767 1.91896i
\(975\) 0 0
\(976\) −7.10582 0.830551i −0.227452 0.0265853i
\(977\) 27.7777 6.58343i 0.888687 0.210623i 0.239177 0.970976i \(-0.423122\pi\)
0.649510 + 0.760353i \(0.274974\pi\)
\(978\) 0 0
\(979\) 11.2566 + 15.1202i 0.359762 + 0.483244i
\(980\) −1.12141 + 6.35984i −0.0358222 + 0.203158i
\(981\) 0 0
\(982\) 3.86034 + 21.8931i 0.123188 + 0.698636i
\(983\) 15.1504 16.0585i 0.483224 0.512187i −0.439188 0.898395i \(-0.644734\pi\)
0.922412 + 0.386208i \(0.126215\pi\)
\(984\) 0 0
\(985\) −4.88019 2.45092i −0.155496 0.0780929i
\(986\) 73.2697 48.1902i 2.33338 1.53469i
\(987\) 0 0
\(988\) −90.2709 21.3946i −2.87190 0.680653i
\(989\) −28.2164 10.2699i −0.897228 0.326564i
\(990\) 0 0
\(991\) 33.4354 12.1695i 1.06211 0.386577i 0.248890 0.968532i \(-0.419934\pi\)
0.813221 + 0.581955i \(0.197712\pi\)
\(992\) −20.7435 + 2.42456i −0.658606 + 0.0769800i
\(993\) 0 0
\(994\) 22.2620 + 23.5963i 0.706107 + 0.748430i
\(995\) 4.87228 6.54461i 0.154462 0.207478i
\(996\) 0 0
\(997\) 32.9108 16.5284i 1.04230 0.523461i 0.156570 0.987667i \(-0.449956\pi\)
0.885727 + 0.464206i \(0.153660\pi\)
\(998\) 9.51222 16.4757i 0.301104 0.521528i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.217.1 144
3.2 odd 2 729.2.g.a.217.8 144
9.2 odd 6 243.2.g.a.73.1 144
9.4 even 3 729.2.g.c.703.1 144
9.5 odd 6 729.2.g.b.703.8 144
9.7 even 3 81.2.g.a.25.8 yes 144
81.11 odd 54 6561.2.a.d.1.8 72
81.13 even 27 729.2.g.c.28.1 144
81.14 odd 54 243.2.g.a.10.1 144
81.40 even 27 inner 729.2.g.d.514.1 144
81.41 odd 54 729.2.g.a.514.8 144
81.67 even 27 81.2.g.a.13.8 144
81.68 odd 54 729.2.g.b.28.8 144
81.70 even 27 6561.2.a.c.1.65 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.8 144 81.67 even 27
81.2.g.a.25.8 yes 144 9.7 even 3
243.2.g.a.10.1 144 81.14 odd 54
243.2.g.a.73.1 144 9.2 odd 6
729.2.g.a.217.8 144 3.2 odd 2
729.2.g.a.514.8 144 81.41 odd 54
729.2.g.b.28.8 144 81.68 odd 54
729.2.g.b.703.8 144 9.5 odd 6
729.2.g.c.28.1 144 81.13 even 27
729.2.g.c.703.1 144 9.4 even 3
729.2.g.d.217.1 144 1.1 even 1 trivial
729.2.g.d.514.1 144 81.40 even 27 inner
6561.2.a.c.1.65 72 81.70 even 27
6561.2.a.d.1.8 72 81.11 odd 54