Properties

Label 729.2.g.d.109.7
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.7
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.d.622.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38579 + 1.46885i) q^{2} +(-0.120822 + 2.07444i) q^{4} +(2.74943 - 0.321362i) q^{5} +(-0.546257 - 0.274341i) q^{7} +(-0.120591 + 0.101188i) q^{8} +(4.28217 + 3.59317i) q^{10} +(-1.48325 - 3.43857i) q^{11} +(3.32773 + 0.788687i) q^{13} +(-0.354033 - 1.18255i) q^{14} +(3.81206 + 0.445566i) q^{16} +(-1.31516 + 7.45862i) q^{17} +(0.132568 + 0.751830i) q^{19} +(0.334454 + 5.74235i) q^{20} +(2.99528 - 6.94383i) q^{22} +(1.94270 - 0.975661i) q^{23} +(2.59085 - 0.614044i) q^{25} +(3.45308 + 5.98091i) q^{26} +(0.635103 - 1.10003i) q^{28} +(1.30287 - 4.35188i) q^{29} +(-6.83895 - 4.49805i) q^{31} +(4.81627 + 6.46937i) q^{32} +(-12.7782 + 8.40432i) q^{34} +(-1.59006 - 0.578734i) q^{35} +(3.96908 - 1.44463i) q^{37} +(-0.920617 + 1.23660i) q^{38} +(-0.299038 + 0.316962i) q^{40} +(-6.20503 + 6.57695i) q^{41} +(1.04785 - 1.40751i) q^{43} +(7.31231 - 2.66146i) q^{44} +(4.12528 + 1.50148i) q^{46} +(-9.82847 + 6.46428i) q^{47} +(-3.95698 - 5.31514i) q^{49} +(4.49233 + 2.95465i) q^{50} +(-2.03815 + 6.80788i) q^{52} +(-2.80062 + 4.85082i) q^{53} +(-5.18313 - 8.97744i) q^{55} +(0.0936337 - 0.0221916i) q^{56} +(8.19779 - 4.11708i) q^{58} +(0.599347 - 1.38944i) q^{59} +(-0.175804 - 3.01844i) q^{61} +(-2.87039 - 16.2788i) q^{62} +(-1.49529 + 8.48019i) q^{64} +(9.40281 + 1.09903i) q^{65} +(2.19466 + 7.33068i) q^{67} +(-15.3135 - 3.62938i) q^{68} +(-1.35341 - 3.13757i) q^{70} +(-5.19850 - 4.36206i) q^{71} +(0.438511 - 0.367955i) q^{73} +(7.62227 + 3.82805i) q^{74} +(-1.57564 + 0.184166i) q^{76} +(-0.133101 + 2.28526i) q^{77} +(-6.32380 - 6.70284i) q^{79} +10.6242 q^{80} -18.2595 q^{82} +(4.24676 + 4.50130i) q^{83} +(-1.21901 + 20.9296i) q^{85} +(3.51954 - 0.411375i) q^{86} +(0.526809 + 0.264573i) q^{88} +(-3.52742 + 2.95986i) q^{89} +(-1.60143 - 1.34376i) q^{91} +(1.78923 + 4.14790i) q^{92} +(-23.1153 - 5.47843i) q^{94} +(0.606095 + 2.02450i) q^{95} +(10.4458 + 1.22093i) q^{97} +(2.32362 - 13.1779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38579 + 1.46885i 0.979903 + 1.03864i 0.999246 + 0.0388240i \(0.0123612\pi\)
−0.0193427 + 0.999813i \(0.506157\pi\)
\(3\) 0 0
\(4\) −0.120822 + 2.07444i −0.0604111 + 1.03722i
\(5\) 2.74943 0.321362i 1.22958 0.143717i 0.523610 0.851958i \(-0.324585\pi\)
0.705971 + 0.708241i \(0.250511\pi\)
\(6\) 0 0
\(7\) −0.546257 0.274341i −0.206466 0.103691i 0.342562 0.939495i \(-0.388705\pi\)
−0.549027 + 0.835804i \(0.685002\pi\)
\(8\) −0.120591 + 0.101188i −0.0426353 + 0.0357753i
\(9\) 0 0
\(10\) 4.28217 + 3.59317i 1.35414 + 1.13626i
\(11\) −1.48325 3.43857i −0.447218 1.03677i −0.981500 0.191462i \(-0.938677\pi\)
0.534282 0.845306i \(-0.320582\pi\)
\(12\) 0 0
\(13\) 3.32773 + 0.788687i 0.922947 + 0.218742i 0.664504 0.747284i \(-0.268643\pi\)
0.258442 + 0.966027i \(0.416791\pi\)
\(14\) −0.354033 1.18255i −0.0946193 0.316050i
\(15\) 0 0
\(16\) 3.81206 + 0.445566i 0.953016 + 0.111392i
\(17\) −1.31516 + 7.45862i −0.318972 + 1.80898i 0.230058 + 0.973177i \(0.426109\pi\)
−0.549030 + 0.835803i \(0.685003\pi\)
\(18\) 0 0
\(19\) 0.132568 + 0.751830i 0.0304132 + 0.172482i 0.996231 0.0867403i \(-0.0276450\pi\)
−0.965818 + 0.259222i \(0.916534\pi\)
\(20\) 0.334454 + 5.74235i 0.0747861 + 1.28403i
\(21\) 0 0
\(22\) 2.99528 6.94383i 0.638595 1.48043i
\(23\) 1.94270 0.975661i 0.405081 0.203439i −0.234579 0.972097i \(-0.575371\pi\)
0.639660 + 0.768658i \(0.279075\pi\)
\(24\) 0 0
\(25\) 2.59085 0.614044i 0.518171 0.122809i
\(26\) 3.45308 + 5.98091i 0.677205 + 1.17295i
\(27\) 0 0
\(28\) 0.635103 1.10003i 0.120023 0.207886i
\(29\) 1.30287 4.35188i 0.241937 0.808124i −0.747639 0.664106i \(-0.768812\pi\)
0.989575 0.144018i \(-0.0460024\pi\)
\(30\) 0 0
\(31\) −6.83895 4.49805i −1.22831 0.807873i −0.241603 0.970375i \(-0.577673\pi\)
−0.986708 + 0.162502i \(0.948044\pi\)
\(32\) 4.81627 + 6.46937i 0.851404 + 1.14363i
\(33\) 0 0
\(34\) −12.7782 + 8.40432i −2.19143 + 1.44133i
\(35\) −1.59006 0.578734i −0.268769 0.0978239i
\(36\) 0 0
\(37\) 3.96908 1.44463i 0.652513 0.237495i 0.00551256 0.999985i \(-0.498245\pi\)
0.647001 + 0.762489i \(0.276023\pi\)
\(38\) −0.920617 + 1.23660i −0.149344 + 0.200604i
\(39\) 0 0
\(40\) −0.299038 + 0.316962i −0.0472821 + 0.0501161i
\(41\) −6.20503 + 6.57695i −0.969063 + 1.02715i 0.0305559 + 0.999533i \(0.490272\pi\)
−0.999619 + 0.0276134i \(0.991209\pi\)
\(42\) 0 0
\(43\) 1.04785 1.40751i 0.159796 0.214644i −0.715013 0.699111i \(-0.753579\pi\)
0.874809 + 0.484468i \(0.160987\pi\)
\(44\) 7.31231 2.66146i 1.10237 0.401231i
\(45\) 0 0
\(46\) 4.12528 + 1.50148i 0.608240 + 0.221381i
\(47\) −9.82847 + 6.46428i −1.43363 + 0.942913i −0.434522 + 0.900661i \(0.643083\pi\)
−0.999107 + 0.0422515i \(0.986547\pi\)
\(48\) 0 0
\(49\) −3.95698 5.31514i −0.565282 0.759306i
\(50\) 4.49233 + 2.95465i 0.635311 + 0.417851i
\(51\) 0 0
\(52\) −2.03815 + 6.80788i −0.282640 + 0.944084i
\(53\) −2.80062 + 4.85082i −0.384695 + 0.666312i −0.991727 0.128366i \(-0.959027\pi\)
0.607032 + 0.794678i \(0.292360\pi\)
\(54\) 0 0
\(55\) −5.18313 8.97744i −0.698893 1.21052i
\(56\) 0.0936337 0.0221916i 0.0125123 0.00296548i
\(57\) 0 0
\(58\) 8.19779 4.11708i 1.07642 0.540599i
\(59\) 0.599347 1.38944i 0.0780283 0.180890i −0.874737 0.484599i \(-0.838966\pi\)
0.952765 + 0.303709i \(0.0982249\pi\)
\(60\) 0 0
\(61\) −0.175804 3.01844i −0.0225094 0.386471i −0.990683 0.136190i \(-0.956514\pi\)
0.968173 0.250281i \(-0.0805229\pi\)
\(62\) −2.87039 16.2788i −0.364540 2.06741i
\(63\) 0 0
\(64\) −1.49529 + 8.48019i −0.186911 + 1.06002i
\(65\) 9.40281 + 1.09903i 1.16628 + 0.136318i
\(66\) 0 0
\(67\) 2.19466 + 7.33068i 0.268121 + 0.895585i 0.980952 + 0.194250i \(0.0622272\pi\)
−0.712831 + 0.701335i \(0.752588\pi\)
\(68\) −15.3135 3.62938i −1.85704 0.440126i
\(69\) 0 0
\(70\) −1.35341 3.13757i −0.161764 0.375011i
\(71\) −5.19850 4.36206i −0.616948 0.517681i 0.279895 0.960031i \(-0.409701\pi\)
−0.896843 + 0.442350i \(0.854145\pi\)
\(72\) 0 0
\(73\) 0.438511 0.367955i 0.0513238 0.0430658i −0.616765 0.787147i \(-0.711557\pi\)
0.668089 + 0.744082i \(0.267113\pi\)
\(74\) 7.62227 + 3.82805i 0.886071 + 0.445002i
\(75\) 0 0
\(76\) −1.57564 + 0.184166i −0.180739 + 0.0211253i
\(77\) −0.133101 + 2.28526i −0.0151683 + 0.260430i
\(78\) 0 0
\(79\) −6.32380 6.70284i −0.711483 0.754128i 0.266267 0.963899i \(-0.414210\pi\)
−0.977751 + 0.209771i \(0.932728\pi\)
\(80\) 10.6242 1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) 4.24676 + 4.50130i 0.466143 + 0.494082i 0.917208 0.398409i \(-0.130437\pi\)
−0.451065 + 0.892491i \(0.648956\pi\)
\(84\) 0 0
\(85\) −1.21901 + 20.9296i −0.132220 + 2.27013i
\(86\) 3.51954 0.411375i 0.379522 0.0443597i
\(87\) 0 0
\(88\) 0.526809 + 0.264573i 0.0561580 + 0.0282036i
\(89\) −3.52742 + 2.95986i −0.373906 + 0.313744i −0.810304 0.586009i \(-0.800698\pi\)
0.436399 + 0.899753i \(0.356254\pi\)
\(90\) 0 0
\(91\) −1.60143 1.34376i −0.167875 0.140864i
\(92\) 1.78923 + 4.14790i 0.186540 + 0.432448i
\(93\) 0 0
\(94\) −23.1153 5.47843i −2.38416 0.565057i
\(95\) 0.606095 + 2.02450i 0.0621841 + 0.207709i
\(96\) 0 0
\(97\) 10.4458 + 1.22093i 1.06061 + 0.123967i 0.628464 0.777839i \(-0.283684\pi\)
0.432142 + 0.901806i \(0.357758\pi\)
\(98\) 2.32362 13.1779i 0.234721 1.33117i
\(99\) 0 0
\(100\) 0.960763 + 5.44876i 0.0960763 + 0.544876i
\(101\) −0.142370 2.44440i −0.0141663 0.243227i −0.997956 0.0639015i \(-0.979646\pi\)
0.983790 0.179325i \(-0.0573914\pi\)
\(102\) 0 0
\(103\) 6.75628 15.6628i 0.665716 1.54330i −0.164811 0.986325i \(-0.552701\pi\)
0.830527 0.556978i \(-0.188039\pi\)
\(104\) −0.481100 + 0.241617i −0.0471757 + 0.0236925i
\(105\) 0 0
\(106\) −11.0062 + 2.60853i −1.06902 + 0.253362i
\(107\) 0.402056 + 0.696381i 0.0388682 + 0.0673217i 0.884805 0.465961i \(-0.154291\pi\)
−0.845937 + 0.533283i \(0.820958\pi\)
\(108\) 0 0
\(109\) 2.11135 3.65696i 0.202230 0.350273i −0.747016 0.664806i \(-0.768514\pi\)
0.949247 + 0.314532i \(0.101848\pi\)
\(110\) 6.00381 20.0541i 0.572441 1.91209i
\(111\) 0 0
\(112\) −1.96013 1.28920i −0.185215 0.121818i
\(113\) −7.37084 9.90076i −0.693390 0.931385i 0.306399 0.951903i \(-0.400876\pi\)
−0.999789 + 0.0205182i \(0.993468\pi\)
\(114\) 0 0
\(115\) 5.02778 3.30682i 0.468842 0.308363i
\(116\) 8.87030 + 3.22852i 0.823586 + 0.299761i
\(117\) 0 0
\(118\) 2.87146 1.04513i 0.264339 0.0962116i
\(119\) 2.76462 3.71352i 0.253432 0.340418i
\(120\) 0 0
\(121\) −2.07506 + 2.19944i −0.188642 + 0.199949i
\(122\) 4.19002 4.44116i 0.379346 0.402083i
\(123\) 0 0
\(124\) 10.1572 13.6435i 0.912145 1.22522i
\(125\) −6.07999 + 2.21294i −0.543811 + 0.197931i
\(126\) 0 0
\(127\) −9.37360 3.41171i −0.831772 0.302740i −0.109186 0.994021i \(-0.534824\pi\)
−0.722586 + 0.691281i \(0.757047\pi\)
\(128\) −1.05138 + 0.691505i −0.0929300 + 0.0611210i
\(129\) 0 0
\(130\) 11.4160 + 15.3344i 1.00125 + 1.34491i
\(131\) −4.58946 3.01853i −0.400983 0.263731i 0.332961 0.942941i \(-0.391952\pi\)
−0.733944 + 0.679210i \(0.762323\pi\)
\(132\) 0 0
\(133\) 0.133841 0.447061i 0.0116055 0.0387651i
\(134\) −7.72636 + 13.3824i −0.667456 + 1.15607i
\(135\) 0 0
\(136\) −0.596125 1.03252i −0.0511173 0.0885378i
\(137\) −14.8200 + 3.51241i −1.26616 + 0.300086i −0.808211 0.588893i \(-0.799564\pi\)
−0.457949 + 0.888978i \(0.651416\pi\)
\(138\) 0 0
\(139\) 14.3127 7.18809i 1.21398 0.609686i 0.277612 0.960693i \(-0.410457\pi\)
0.936373 + 0.351008i \(0.114161\pi\)
\(140\) 1.39266 3.22855i 0.117701 0.272863i
\(141\) 0 0
\(142\) −0.796812 13.6807i −0.0668670 1.14806i
\(143\) −2.22392 12.6125i −0.185973 1.05471i
\(144\) 0 0
\(145\) 2.18361 12.3839i 0.181339 1.02842i
\(146\) 1.14816 + 0.134200i 0.0950222 + 0.0111065i
\(147\) 0 0
\(148\) 2.51724 + 8.40816i 0.206916 + 0.691147i
\(149\) 8.60207 + 2.03873i 0.704709 + 0.167019i 0.567319 0.823498i \(-0.307981\pi\)
0.137390 + 0.990517i \(0.456129\pi\)
\(150\) 0 0
\(151\) 0.391266 + 0.907056i 0.0318408 + 0.0738152i 0.933394 0.358852i \(-0.116832\pi\)
−0.901554 + 0.432667i \(0.857572\pi\)
\(152\) −0.0920625 0.0772496i −0.00746726 0.00626577i
\(153\) 0 0
\(154\) −3.54117 + 2.97139i −0.285355 + 0.239442i
\(155\) −20.2487 10.1693i −1.62641 0.816816i
\(156\) 0 0
\(157\) −18.0755 + 2.11272i −1.44258 + 0.168613i −0.801102 0.598528i \(-0.795753\pi\)
−0.641478 + 0.767141i \(0.721679\pi\)
\(158\) 1.08202 18.5775i 0.0860805 1.47795i
\(159\) 0 0
\(160\) 15.3210 + 16.2393i 1.21123 + 1.28383i
\(161\) −1.32888 −0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) −12.8938 13.6666i −1.00683 1.06718i
\(165\) 0 0
\(166\) −0.726629 + 12.4757i −0.0563974 + 0.968306i
\(167\) −5.86126 + 0.685083i −0.453558 + 0.0530133i −0.339805 0.940496i \(-0.610361\pi\)
−0.113753 + 0.993509i \(0.536287\pi\)
\(168\) 0 0
\(169\) −1.16546 0.585314i −0.0896505 0.0450242i
\(170\) −32.4318 + 27.2135i −2.48740 + 2.08718i
\(171\) 0 0
\(172\) 2.79319 + 2.34377i 0.212979 + 0.178711i
\(173\) 3.56184 + 8.25726i 0.270801 + 0.627788i 0.998298 0.0583234i \(-0.0185755\pi\)
−0.727496 + 0.686111i \(0.759316\pi\)
\(174\) 0 0
\(175\) −1.58373 0.375351i −0.119719 0.0283739i
\(176\) −4.12215 13.7689i −0.310719 1.03787i
\(177\) 0 0
\(178\) −9.23587 1.07952i −0.692258 0.0809134i
\(179\) 0.223820 1.26935i 0.0167291 0.0948754i −0.975300 0.220884i \(-0.929106\pi\)
0.992029 + 0.126009i \(0.0402168\pi\)
\(180\) 0 0
\(181\) 0.645386 + 3.66017i 0.0479712 + 0.272058i 0.999353 0.0359546i \(-0.0114472\pi\)
−0.951382 + 0.308013i \(0.900336\pi\)
\(182\) −0.245463 4.21444i −0.0181949 0.312395i
\(183\) 0 0
\(184\) −0.135547 + 0.314234i −0.00999267 + 0.0231656i
\(185\) 10.4485 5.24741i 0.768186 0.385797i
\(186\) 0 0
\(187\) 27.5977 6.54077i 2.01814 0.478309i
\(188\) −12.2223 21.1696i −0.891400 1.54395i
\(189\) 0 0
\(190\) −2.13377 + 3.69580i −0.154800 + 0.268122i
\(191\) −2.09081 + 6.98378i −0.151285 + 0.505328i −0.999712 0.0239841i \(-0.992365\pi\)
0.848427 + 0.529313i \(0.177550\pi\)
\(192\) 0 0
\(193\) 8.04337 + 5.29021i 0.578974 + 0.380797i 0.804956 0.593334i \(-0.202189\pi\)
−0.225982 + 0.974131i \(0.572559\pi\)
\(194\) 12.6823 + 17.0352i 0.910534 + 1.22306i
\(195\) 0 0
\(196\) 11.5040 7.56632i 0.821716 0.540451i
\(197\) 4.63898 + 1.68845i 0.330513 + 0.120297i 0.501946 0.864899i \(-0.332617\pi\)
−0.171433 + 0.985196i \(0.554840\pi\)
\(198\) 0 0
\(199\) −2.36550 + 0.860973i −0.167686 + 0.0610327i −0.424499 0.905428i \(-0.639550\pi\)
0.256813 + 0.966461i \(0.417328\pi\)
\(200\) −0.250300 + 0.336211i −0.0176989 + 0.0237737i
\(201\) 0 0
\(202\) 3.39317 3.59655i 0.238743 0.253052i
\(203\) −1.90560 + 2.01982i −0.133747 + 0.141763i
\(204\) 0 0
\(205\) −14.9467 + 20.0769i −1.04392 + 1.40223i
\(206\) 32.3692 11.7814i 2.25527 0.820851i
\(207\) 0 0
\(208\) 12.3341 + 4.48925i 0.855217 + 0.311273i
\(209\) 2.38859 1.57100i 0.165222 0.108668i
\(210\) 0 0
\(211\) 4.17283 + 5.60508i 0.287269 + 0.385870i 0.922209 0.386692i \(-0.126382\pi\)
−0.634939 + 0.772562i \(0.718975\pi\)
\(212\) −9.72436 6.39581i −0.667872 0.439266i
\(213\) 0 0
\(214\) −0.465716 + 1.55560i −0.0318357 + 0.106339i
\(215\) 2.42868 4.20659i 0.165634 0.286887i
\(216\) 0 0
\(217\) 2.50183 + 4.33330i 0.169835 + 0.294163i
\(218\) 8.29743 1.96653i 0.561973 0.133190i
\(219\) 0 0
\(220\) 19.2494 9.66740i 1.29779 0.651776i
\(221\) −10.2590 + 23.7830i −0.690095 + 1.59982i
\(222\) 0 0
\(223\) 1.04650 + 17.9678i 0.0700790 + 1.20321i 0.831714 + 0.555204i \(0.187360\pi\)
−0.761635 + 0.648006i \(0.775603\pi\)
\(224\) −0.856110 4.85524i −0.0572012 0.324404i
\(225\) 0 0
\(226\) 4.32831 24.5471i 0.287915 1.63285i
\(227\) 0.609362 + 0.0712243i 0.0404448 + 0.00472732i 0.136291 0.990669i \(-0.456482\pi\)
−0.0958464 + 0.995396i \(0.530556\pi\)
\(228\) 0 0
\(229\) 1.43265 + 4.78538i 0.0946720 + 0.316227i 0.992187 0.124757i \(-0.0398150\pi\)
−0.897515 + 0.440983i \(0.854630\pi\)
\(230\) 11.8247 + 2.80250i 0.779697 + 0.184792i
\(231\) 0 0
\(232\) 0.283243 + 0.656632i 0.0185958 + 0.0431100i
\(233\) 10.0792 + 8.45747i 0.660311 + 0.554067i 0.910180 0.414213i \(-0.135943\pi\)
−0.249869 + 0.968280i \(0.580387\pi\)
\(234\) 0 0
\(235\) −24.9453 + 20.9316i −1.62725 + 1.36543i
\(236\) 2.80990 + 1.41118i 0.182909 + 0.0918603i
\(237\) 0 0
\(238\) 9.28581 1.08536i 0.601910 0.0703531i
\(239\) 0.529012 9.08278i 0.0342189 0.587517i −0.937000 0.349329i \(-0.886410\pi\)
0.971219 0.238188i \(-0.0765533\pi\)
\(240\) 0 0
\(241\) 9.77902 + 10.3652i 0.629922 + 0.667679i 0.961199 0.275855i \(-0.0889609\pi\)
−0.331277 + 0.943534i \(0.607479\pi\)
\(242\) −6.10626 −0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) −12.5875 13.3420i −0.804186 0.852387i
\(246\) 0 0
\(247\) −0.151808 + 2.60644i −0.00965931 + 0.165844i
\(248\) 1.27986 0.149595i 0.0812714 0.00949926i
\(249\) 0 0
\(250\) −11.6761 5.86395i −0.738461 0.370869i
\(251\) 6.58379 5.52445i 0.415565 0.348700i −0.410908 0.911677i \(-0.634788\pi\)
0.826473 + 0.562976i \(0.190344\pi\)
\(252\) 0 0
\(253\) −6.23640 5.23296i −0.392079 0.328993i
\(254\) −7.97856 18.4964i −0.500619 1.16057i
\(255\) 0 0
\(256\) 14.2851 + 3.38562i 0.892817 + 0.211602i
\(257\) 6.36608 + 21.2642i 0.397105 + 1.32642i 0.889851 + 0.456251i \(0.150808\pi\)
−0.492746 + 0.870173i \(0.664007\pi\)
\(258\) 0 0
\(259\) −2.56446 0.299743i −0.159348 0.0186251i
\(260\) −3.41594 + 19.3728i −0.211848 + 1.20145i
\(261\) 0 0
\(262\) −1.92625 10.9243i −0.119004 0.674906i
\(263\) −0.305988 5.25362i −0.0188681 0.323952i −0.994514 0.104602i \(-0.966643\pi\)
0.975646 0.219350i \(-0.0703938\pi\)
\(264\) 0 0
\(265\) −6.14124 + 14.2370i −0.377254 + 0.874572i
\(266\) 0.842145 0.422941i 0.0516352 0.0259322i
\(267\) 0 0
\(268\) −15.4722 + 3.66698i −0.945116 + 0.223997i
\(269\) −3.11423 5.39401i −0.189878 0.328878i 0.755331 0.655343i \(-0.227476\pi\)
−0.945209 + 0.326465i \(0.894143\pi\)
\(270\) 0 0
\(271\) −3.65935 + 6.33818i −0.222290 + 0.385017i −0.955503 0.294982i \(-0.904686\pi\)
0.733213 + 0.679999i \(0.238020\pi\)
\(272\) −8.33676 + 27.8467i −0.505490 + 1.68846i
\(273\) 0 0
\(274\) −25.6967 16.9010i −1.55239 1.02103i
\(275\) −5.95433 7.99805i −0.359060 0.482301i
\(276\) 0 0
\(277\) 15.5663 10.2381i 0.935287 0.615148i 0.0122776 0.999925i \(-0.496092\pi\)
0.923010 + 0.384776i \(0.125721\pi\)
\(278\) 30.3926 + 11.0620i 1.82283 + 0.663456i
\(279\) 0 0
\(280\) 0.250307 0.0911045i 0.0149587 0.00544453i
\(281\) −0.610261 + 0.819722i −0.0364051 + 0.0489005i −0.819953 0.572431i \(-0.806001\pi\)
0.783548 + 0.621331i \(0.213408\pi\)
\(282\) 0 0
\(283\) 7.52347 7.97442i 0.447224 0.474030i −0.464063 0.885802i \(-0.653609\pi\)
0.911287 + 0.411773i \(0.135090\pi\)
\(284\) 9.67691 10.2569i 0.574219 0.608637i
\(285\) 0 0
\(286\) 15.4440 20.7449i 0.913222 1.22667i
\(287\) 5.19387 1.89041i 0.306584 0.111588i
\(288\) 0 0
\(289\) −37.9265 13.8041i −2.23097 0.812008i
\(290\) 21.2161 13.9541i 1.24585 0.819412i
\(291\) 0 0
\(292\) 0.710317 + 0.954122i 0.0415682 + 0.0558357i
\(293\) −20.2853 13.3418i −1.18508 0.779438i −0.205138 0.978733i \(-0.565764\pi\)
−0.979939 + 0.199295i \(0.936135\pi\)
\(294\) 0 0
\(295\) 1.20135 4.01278i 0.0699451 0.233633i
\(296\) −0.332457 + 0.575832i −0.0193237 + 0.0334696i
\(297\) 0 0
\(298\) 8.92609 + 15.4604i 0.517075 + 0.895599i
\(299\) 7.23428 1.71456i 0.418369 0.0991553i
\(300\) 0 0
\(301\) −0.958536 + 0.481395i −0.0552491 + 0.0277471i
\(302\) −0.790120 + 1.83170i −0.0454663 + 0.105403i
\(303\) 0 0
\(304\) 0.170367 + 2.92509i 0.00977123 + 0.167765i
\(305\) −1.45337 8.24247i −0.0832198 0.471963i
\(306\) 0 0
\(307\) −4.31169 + 24.4528i −0.246081 + 1.39560i 0.571887 + 0.820333i \(0.306212\pi\)
−0.817968 + 0.575264i \(0.804899\pi\)
\(308\) −4.72455 0.552221i −0.269206 0.0314657i
\(309\) 0 0
\(310\) −13.1233 43.8349i −0.745354 2.48966i
\(311\) 1.80082 + 0.426803i 0.102115 + 0.0242018i 0.281356 0.959604i \(-0.409216\pi\)
−0.179241 + 0.983805i \(0.557364\pi\)
\(312\) 0 0
\(313\) −2.75336 6.38301i −0.155629 0.360789i 0.822507 0.568755i \(-0.192575\pi\)
−0.978136 + 0.207966i \(0.933316\pi\)
\(314\) −28.1521 23.6225i −1.58872 1.33309i
\(315\) 0 0
\(316\) 14.6687 12.3085i 0.825178 0.692406i
\(317\) 23.2678 + 11.6855i 1.30685 + 0.656324i 0.959578 0.281441i \(-0.0908124\pi\)
0.347270 + 0.937765i \(0.387109\pi\)
\(318\) 0 0
\(319\) −16.8967 + 1.97495i −0.946036 + 0.110576i
\(320\) −1.38597 + 23.7962i −0.0774781 + 1.33025i
\(321\) 0 0
\(322\) −1.84155 1.95193i −0.102626 0.108777i
\(323\) −5.78196 −0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) 23.7620 + 25.1863i 1.31606 + 1.39494i
\(327\) 0 0
\(328\) 0.0827635 1.42099i 0.00456985 0.0784613i
\(329\) 7.14229 0.834814i 0.393767 0.0460248i
\(330\) 0 0
\(331\) −23.2661 11.6847i −1.27882 0.642249i −0.325884 0.945410i \(-0.605662\pi\)
−0.952939 + 0.303161i \(0.901958\pi\)
\(332\) −9.85078 + 8.26579i −0.540632 + 0.453644i
\(333\) 0 0
\(334\) −9.12878 7.65996i −0.499505 0.419134i
\(335\) 8.38987 + 19.4499i 0.458387 + 1.06266i
\(336\) 0 0
\(337\) −14.6259 3.46641i −0.796726 0.188828i −0.187959 0.982177i \(-0.560187\pi\)
−0.608767 + 0.793349i \(0.708335\pi\)
\(338\) −0.755339 2.52301i −0.0410850 0.137234i
\(339\) 0 0
\(340\) −43.2698 5.05752i −2.34663 0.274282i
\(341\) −5.32295 + 30.1880i −0.288254 + 1.63477i
\(342\) 0 0
\(343\) 1.44640 + 8.20293i 0.0780981 + 0.442917i
\(344\) 0.0160614 + 0.275763i 0.000865972 + 0.0148682i
\(345\) 0 0
\(346\) −7.19275 + 16.6747i −0.386685 + 0.896436i
\(347\) −22.7180 + 11.4094i −1.21957 + 0.612490i −0.937861 0.347011i \(-0.887197\pi\)
−0.281706 + 0.959501i \(0.590900\pi\)
\(348\) 0 0
\(349\) −28.4767 + 6.74910i −1.52432 + 0.361271i −0.905530 0.424283i \(-0.860526\pi\)
−0.618793 + 0.785554i \(0.712378\pi\)
\(350\) −1.64339 2.84643i −0.0878427 0.152148i
\(351\) 0 0
\(352\) 15.1016 26.1568i 0.804920 1.39416i
\(353\) −8.22886 + 27.4863i −0.437978 + 1.46295i 0.399629 + 0.916677i \(0.369139\pi\)
−0.837608 + 0.546272i \(0.816046\pi\)
\(354\) 0 0
\(355\) −15.6947 10.3226i −0.832988 0.547865i
\(356\) −5.71385 7.67504i −0.302834 0.406776i
\(357\) 0 0
\(358\) 2.17465 1.43029i 0.114934 0.0755932i
\(359\) 19.5984 + 7.13322i 1.03436 + 0.376477i 0.802740 0.596329i \(-0.203375\pi\)
0.231622 + 0.972806i \(0.425597\pi\)
\(360\) 0 0
\(361\) 17.3065 6.29905i 0.910868 0.331529i
\(362\) −4.48188 + 6.02021i −0.235563 + 0.316415i
\(363\) 0 0
\(364\) 2.98103 3.15971i 0.156249 0.165614i
\(365\) 1.08741 1.15259i 0.0569175 0.0603291i
\(366\) 0 0
\(367\) −20.6418 + 27.7268i −1.07750 + 1.44733i −0.192753 + 0.981247i \(0.561742\pi\)
−0.884742 + 0.466080i \(0.845666\pi\)
\(368\) 7.84042 2.85368i 0.408710 0.148758i
\(369\) 0 0
\(370\) 22.1871 + 8.07544i 1.15345 + 0.419822i
\(371\) 2.86064 1.88147i 0.148517 0.0976812i
\(372\) 0 0
\(373\) −5.59504 7.51544i −0.289700 0.389135i 0.633318 0.773892i \(-0.281693\pi\)
−0.923018 + 0.384757i \(0.874285\pi\)
\(374\) 47.8521 + 31.4728i 2.47437 + 1.62742i
\(375\) 0 0
\(376\) 0.531117 1.77406i 0.0273903 0.0914899i
\(377\) 7.76787 13.4543i 0.400065 0.692934i
\(378\) 0 0
\(379\) 0.963771 + 1.66930i 0.0495056 + 0.0857462i 0.889716 0.456514i \(-0.150902\pi\)
−0.840211 + 0.542260i \(0.817569\pi\)
\(380\) −4.27293 + 1.01270i −0.219197 + 0.0519506i
\(381\) 0 0
\(382\) −13.1556 + 6.60698i −0.673098 + 0.338042i
\(383\) 7.72041 17.8979i 0.394494 0.914541i −0.599010 0.800742i \(-0.704439\pi\)
0.993504 0.113799i \(-0.0363019\pi\)
\(384\) 0 0
\(385\) 0.368444 + 6.32594i 0.0187776 + 0.322400i
\(386\) 3.37590 + 19.1457i 0.171829 + 0.974489i
\(387\) 0 0
\(388\) −3.79483 + 21.5216i −0.192653 + 1.09259i
\(389\) 9.07811 + 1.06108i 0.460279 + 0.0537989i 0.343073 0.939309i \(-0.388532\pi\)
0.117206 + 0.993108i \(0.462606\pi\)
\(390\) 0 0
\(391\) 4.72213 + 15.7730i 0.238808 + 0.797675i
\(392\) 1.01500 + 0.240560i 0.0512654 + 0.0121501i
\(393\) 0 0
\(394\) 3.94857 + 9.15382i 0.198926 + 0.461163i
\(395\) −19.5409 16.3967i −0.983208 0.825009i
\(396\) 0 0
\(397\) 25.5466 21.4361i 1.28215 1.07585i 0.289202 0.957268i \(-0.406610\pi\)
0.992944 0.118581i \(-0.0378344\pi\)
\(398\) −4.54274 2.28145i −0.227707 0.114359i
\(399\) 0 0
\(400\) 10.1501 1.18638i 0.507505 0.0593188i
\(401\) 0.206340 3.54271i 0.0103041 0.176915i −0.989229 0.146373i \(-0.953240\pi\)
0.999534 0.0305412i \(-0.00972307\pi\)
\(402\) 0 0
\(403\) −19.2106 20.3621i −0.956950 1.01431i
\(404\) 5.08795 0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) −10.8546 11.5052i −0.538043 0.570293i
\(408\) 0 0
\(409\) 1.86266 31.9807i 0.0921027 1.58134i −0.563422 0.826169i \(-0.690516\pi\)
0.655525 0.755173i \(-0.272447\pi\)
\(410\) −50.2031 + 5.86790i −2.47935 + 0.289795i
\(411\) 0 0
\(412\) 31.6752 + 15.9079i 1.56053 + 0.783726i
\(413\) −0.708579 + 0.594568i −0.0348669 + 0.0292568i
\(414\) 0 0
\(415\) 13.1227 + 11.0113i 0.644168 + 0.540522i
\(416\) 10.9249 + 25.3268i 0.535639 + 1.24175i
\(417\) 0 0
\(418\) 5.61766 + 1.33141i 0.274769 + 0.0651213i
\(419\) 4.25467 + 14.2116i 0.207854 + 0.694281i 0.996809 + 0.0798292i \(0.0254375\pi\)
−0.788955 + 0.614452i \(0.789377\pi\)
\(420\) 0 0
\(421\) 15.4744 + 1.80870i 0.754176 + 0.0881505i 0.484489 0.874798i \(-0.339006\pi\)
0.269687 + 0.962948i \(0.413080\pi\)
\(422\) −2.45037 + 13.8968i −0.119282 + 0.676484i
\(423\) 0 0
\(424\) −0.153114 0.868355i −0.00743589 0.0421710i
\(425\) 1.17254 + 20.1317i 0.0568766 + 0.976533i
\(426\) 0 0
\(427\) −0.732046 + 1.69707i −0.0354262 + 0.0821271i
\(428\) −1.49318 + 0.749902i −0.0721754 + 0.0362479i
\(429\) 0 0
\(430\) 9.54451 2.26209i 0.460277 0.109088i
\(431\) −0.648713 1.12360i −0.0312474 0.0541221i 0.849979 0.526817i \(-0.176615\pi\)
−0.881226 + 0.472695i \(0.843281\pi\)
\(432\) 0 0
\(433\) −8.76506 + 15.1815i −0.421222 + 0.729577i −0.996059 0.0886901i \(-0.971732\pi\)
0.574838 + 0.818268i \(0.305065\pi\)
\(434\) −2.89796 + 9.67987i −0.139107 + 0.464649i
\(435\) 0 0
\(436\) 7.33105 + 4.82170i 0.351093 + 0.230918i
\(437\) 0.991071 + 1.33124i 0.0474094 + 0.0636818i
\(438\) 0 0
\(439\) −18.1453 + 11.9344i −0.866028 + 0.569596i −0.902961 0.429722i \(-0.858612\pi\)
0.0369331 + 0.999318i \(0.488241\pi\)
\(440\) 1.53345 + 0.558129i 0.0731042 + 0.0266077i
\(441\) 0 0
\(442\) −49.1506 + 17.8894i −2.33786 + 0.850910i
\(443\) 5.46021 7.33434i 0.259422 0.348465i −0.653260 0.757133i \(-0.726599\pi\)
0.912683 + 0.408668i \(0.134007\pi\)
\(444\) 0 0
\(445\) −8.74720 + 9.27149i −0.414657 + 0.439511i
\(446\) −24.9418 + 26.4367i −1.18103 + 1.25182i
\(447\) 0 0
\(448\) 3.14327 4.22215i 0.148506 0.199478i
\(449\) −11.6732 + 4.24870i −0.550893 + 0.200509i −0.602443 0.798162i \(-0.705806\pi\)
0.0515501 + 0.998670i \(0.483584\pi\)
\(450\) 0 0
\(451\) 31.8189 + 11.5811i 1.49829 + 0.545335i
\(452\) 21.4291 14.0941i 1.00794 0.662932i
\(453\) 0 0
\(454\) 0.739832 + 0.993767i 0.0347220 + 0.0466398i
\(455\) −4.83485 3.17993i −0.226661 0.149077i
\(456\) 0 0
\(457\) 5.36176 17.9095i 0.250812 0.837772i −0.736150 0.676819i \(-0.763358\pi\)
0.986962 0.160953i \(-0.0514567\pi\)
\(458\) −5.04367 + 8.73589i −0.235675 + 0.408201i
\(459\) 0 0
\(460\) 6.25233 + 10.8293i 0.291516 + 0.504921i
\(461\) 39.9745 9.47414i 1.86180 0.441255i 0.863764 0.503897i \(-0.168101\pi\)
0.998036 + 0.0626425i \(0.0199528\pi\)
\(462\) 0 0
\(463\) −3.69053 + 1.85346i −0.171514 + 0.0861374i −0.532485 0.846440i \(-0.678742\pi\)
0.360971 + 0.932577i \(0.382445\pi\)
\(464\) 6.90567 16.0091i 0.320588 0.743205i
\(465\) 0 0
\(466\) 1.54492 + 26.5252i 0.0715669 + 1.22876i
\(467\) −4.38922 24.8925i −0.203109 1.15189i −0.900388 0.435087i \(-0.856717\pi\)
0.697279 0.716799i \(-0.254394\pi\)
\(468\) 0 0
\(469\) 0.812254 4.60652i 0.0375064 0.212710i
\(470\) −65.3144 7.63416i −3.01273 0.352138i
\(471\) 0 0
\(472\) 0.0683188 + 0.228201i 0.00314463 + 0.0105038i
\(473\) −6.39406 1.51542i −0.293999 0.0696791i
\(474\) 0 0
\(475\) 0.805121 + 1.86648i 0.0369415 + 0.0856399i
\(476\) 7.36945 + 6.18370i 0.337778 + 0.283430i
\(477\) 0 0
\(478\) 14.0744 11.8098i 0.643748 0.540168i
\(479\) −18.5894 9.33596i −0.849372 0.426571i −0.0298064 0.999556i \(-0.509489\pi\)
−0.819566 + 0.572985i \(0.805785\pi\)
\(480\) 0 0
\(481\) 14.3474 1.67697i 0.654185 0.0764633i
\(482\) −1.67321 + 28.7279i −0.0762127 + 1.30852i
\(483\) 0 0
\(484\) −4.31189 4.57033i −0.195995 0.207742i
\(485\) 29.1122 1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) 0.326629 + 0.346207i 0.0147858 + 0.0156721i
\(489\) 0 0
\(490\) 2.15375 36.9784i 0.0972964 1.67051i
\(491\) 36.2982 4.24265i 1.63811 0.191468i 0.753387 0.657577i \(-0.228419\pi\)
0.884727 + 0.466109i \(0.154345\pi\)
\(492\) 0 0
\(493\) 30.7455 + 15.4410i 1.38471 + 0.695427i
\(494\) −4.03886 + 3.38900i −0.181717 + 0.152479i
\(495\) 0 0
\(496\) −24.0663 20.1941i −1.08061 0.906740i
\(497\) 1.64303 + 3.80897i 0.0736998 + 0.170855i
\(498\) 0 0
\(499\) 35.4129 + 8.39301i 1.58530 + 0.375723i 0.926410 0.376517i \(-0.122878\pi\)
0.658890 + 0.752239i \(0.271026\pi\)
\(500\) −3.85600 12.8799i −0.172446 0.576008i
\(501\) 0 0
\(502\) 17.2384 + 2.01488i 0.769387 + 0.0899284i
\(503\) 1.38230 7.83939i 0.0616335 0.349541i −0.938359 0.345662i \(-0.887654\pi\)
0.999992 0.00387871i \(-0.00123464\pi\)
\(504\) 0 0
\(505\) −1.17697 6.67494i −0.0523746 0.297031i
\(506\) −0.955899 16.4122i −0.0424949 0.729610i
\(507\) 0 0
\(508\) 8.20992 19.0327i 0.364256 0.844441i
\(509\) −1.49130 + 0.748960i −0.0661008 + 0.0331971i −0.481543 0.876423i \(-0.659923\pi\)
0.415442 + 0.909620i \(0.363627\pi\)
\(510\) 0 0
\(511\) −0.340485 + 0.0806964i −0.0150622 + 0.00356980i
\(512\) 16.0816 + 27.8541i 0.710711 + 1.23099i
\(513\) 0 0
\(514\) −22.4119 + 38.8186i −0.988548 + 1.71221i
\(515\) 13.5425 45.2350i 0.596753 1.99329i
\(516\) 0 0
\(517\) 36.8060 + 24.2077i 1.61873 + 1.06465i
\(518\) −3.11353 4.18220i −0.136801 0.183755i
\(519\) 0 0
\(520\) −1.24510 + 0.818917i −0.0546014 + 0.0359119i
\(521\) 32.9725 + 12.0010i 1.44455 + 0.525773i 0.941063 0.338230i \(-0.109828\pi\)
0.503486 + 0.864003i \(0.332050\pi\)
\(522\) 0 0
\(523\) 11.3086 4.11600i 0.494491 0.179980i −0.0827236 0.996573i \(-0.526362\pi\)
0.577214 + 0.816593i \(0.304140\pi\)
\(524\) 6.81627 9.15584i 0.297770 0.399975i
\(525\) 0 0
\(526\) 7.29276 7.72988i 0.317980 0.337039i
\(527\) 42.5435 45.0935i 1.85322 1.96430i
\(528\) 0 0
\(529\) −10.9125 + 14.6580i −0.474455 + 0.637304i
\(530\) −29.4226 + 10.7089i −1.27803 + 0.465167i
\(531\) 0 0
\(532\) 0.911231 + 0.331661i 0.0395069 + 0.0143793i
\(533\) −25.8358 + 16.9925i −1.11907 + 0.736026i
\(534\) 0 0
\(535\) 1.32921 + 1.78544i 0.0574669 + 0.0771915i
\(536\) −1.00643 0.661941i −0.0434712 0.0285915i
\(537\) 0 0
\(538\) 3.60733 12.0493i 0.155523 0.519483i
\(539\) −12.4073 + 21.4900i −0.534420 + 0.925642i
\(540\) 0 0
\(541\) −9.81306 16.9967i −0.421896 0.730746i 0.574229 0.818695i \(-0.305302\pi\)
−0.996125 + 0.0879490i \(0.971969\pi\)
\(542\) −14.3810 + 3.40835i −0.617715 + 0.146401i
\(543\) 0 0
\(544\) −54.5867 + 27.4145i −2.34038 + 1.17539i
\(545\) 4.62979 10.7331i 0.198318 0.459754i
\(546\) 0 0
\(547\) −0.507250 8.70914i −0.0216884 0.372376i −0.991636 0.129063i \(-0.958803\pi\)
0.969948 0.243313i \(-0.0782341\pi\)
\(548\) −5.49569 31.1676i −0.234764 1.33141i
\(549\) 0 0
\(550\) 3.49651 19.8297i 0.149092 0.845540i
\(551\) 3.44459 + 0.402615i 0.146745 + 0.0171520i
\(552\) 0 0
\(553\) 1.61556 + 5.39635i 0.0687007 + 0.229476i
\(554\) 36.6099 + 8.67671i 1.55541 + 0.368638i
\(555\) 0 0
\(556\) 13.1820 + 30.5592i 0.559040 + 1.29600i
\(557\) 15.1698 + 12.7290i 0.642765 + 0.539344i 0.904866 0.425696i \(-0.139971\pi\)
−0.262101 + 0.965041i \(0.584415\pi\)
\(558\) 0 0
\(559\) 4.59706 3.85739i 0.194435 0.163150i
\(560\) −5.80354 2.91465i −0.245244 0.123166i
\(561\) 0 0
\(562\) −2.04975 + 0.239581i −0.0864634 + 0.0101061i
\(563\) −1.97439 + 33.8990i −0.0832108 + 1.42867i 0.655777 + 0.754955i \(0.272341\pi\)
−0.738987 + 0.673719i \(0.764696\pi\)
\(564\) 0 0
\(565\) −23.4473 24.8527i −0.986436 1.04556i
\(566\) 22.1392 0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) 13.2027 + 13.9941i 0.553486 + 0.586661i 0.942348 0.334635i \(-0.108613\pi\)
−0.388861 + 0.921296i \(0.627132\pi\)
\(570\) 0 0
\(571\) 0.144601 2.48271i 0.00605138 0.103898i −0.993930 0.110015i \(-0.964910\pi\)
0.999981 + 0.00611695i \(0.00194710\pi\)
\(572\) 26.4325 3.08951i 1.10520 0.129179i
\(573\) 0 0
\(574\) 9.97437 + 5.00931i 0.416322 + 0.209085i
\(575\) 4.43416 3.72070i 0.184917 0.155164i
\(576\) 0 0
\(577\) 19.5278 + 16.3857i 0.812951 + 0.682147i 0.951310 0.308235i \(-0.0997383\pi\)
−0.138359 + 0.990382i \(0.544183\pi\)
\(578\) −32.2821 74.8382i −1.34276 3.11286i
\(579\) 0 0
\(580\) 25.4258 + 6.02602i 1.05575 + 0.250217i
\(581\) −1.08493 3.62393i −0.0450106 0.150346i
\(582\) 0 0
\(583\) 20.8339 + 2.43514i 0.862854 + 0.100853i
\(584\) −0.0156480 + 0.0887440i −0.000647517 + 0.00367225i
\(585\) 0 0
\(586\) −8.51396 48.2851i −0.351709 1.99464i
\(587\) −0.0520618 0.893866i −0.00214882 0.0368938i 0.997063 0.0765818i \(-0.0244006\pi\)
−0.999212 + 0.0396880i \(0.987364\pi\)
\(588\) 0 0
\(589\) 2.47514 5.73802i 0.101986 0.236431i
\(590\) 7.55901 3.79628i 0.311199 0.156290i
\(591\) 0 0
\(592\) 15.7741 3.73852i 0.648310 0.153652i
\(593\) −16.2145 28.0843i −0.665848 1.15328i −0.979055 0.203597i \(-0.934737\pi\)
0.313207 0.949685i \(-0.398597\pi\)
\(594\) 0 0
\(595\) 6.40773 11.0985i 0.262691 0.454994i
\(596\) −5.26854 + 17.5981i −0.215808 + 0.720848i
\(597\) 0 0
\(598\) 12.5436 + 8.25008i 0.512948 + 0.337371i
\(599\) −25.1367 33.7644i −1.02706 1.37958i −0.922910 0.385016i \(-0.874196\pi\)
−0.104148 0.994562i \(-0.533212\pi\)
\(600\) 0 0
\(601\) 25.8496 17.0016i 1.05443 0.693509i 0.100926 0.994894i \(-0.467819\pi\)
0.953502 + 0.301385i \(0.0974490\pi\)
\(602\) −2.03543 0.740836i −0.0829580 0.0301942i
\(603\) 0 0
\(604\) −1.92891 + 0.702064i −0.0784861 + 0.0285666i
\(605\) −4.99842 + 6.71405i −0.203215 + 0.272965i
\(606\) 0 0
\(607\) 10.2760 10.8919i 0.417090 0.442090i −0.484428 0.874831i \(-0.660972\pi\)
0.901518 + 0.432742i \(0.142454\pi\)
\(608\) −4.22538 + 4.47864i −0.171362 + 0.181633i
\(609\) 0 0
\(610\) 10.0929 13.5572i 0.408651 0.548913i
\(611\) −37.8048 + 13.7598i −1.52942 + 0.556663i
\(612\) 0 0
\(613\) 17.2467 + 6.27730i 0.696589 + 0.253538i 0.665954 0.745993i \(-0.268025\pi\)
0.0306353 + 0.999531i \(0.490247\pi\)
\(614\) −41.8928 + 27.5533i −1.69065 + 1.11196i
\(615\) 0 0
\(616\) −0.215190 0.289050i −0.00867025 0.0116462i
\(617\) 27.3834 + 18.0103i 1.10241 + 0.725069i 0.964158 0.265328i \(-0.0854802\pi\)
0.138255 + 0.990397i \(0.455851\pi\)
\(618\) 0 0
\(619\) 1.72149 5.75017i 0.0691925 0.231119i −0.916398 0.400268i \(-0.868917\pi\)
0.985590 + 0.169150i \(0.0541021\pi\)
\(620\) 23.5420 40.7760i 0.945471 1.63760i
\(621\) 0 0
\(622\) 1.86865 + 3.23661i 0.0749262 + 0.129776i
\(623\) 2.73889 0.649129i 0.109731 0.0260068i
\(624\) 0 0
\(625\) −27.9024 + 14.0131i −1.11610 + 0.560524i
\(626\) 5.56013 12.8898i 0.222227 0.515181i
\(627\) 0 0
\(628\) −2.19879 37.7517i −0.0877412 1.50646i
\(629\) 5.55497 + 31.5038i 0.221491 + 1.25614i
\(630\) 0 0
\(631\) −4.24361 + 24.0667i −0.168935 + 0.958080i 0.775978 + 0.630760i \(0.217257\pi\)
−0.944914 + 0.327320i \(0.893854\pi\)
\(632\) 1.44084 + 0.168410i 0.0573135 + 0.00669899i
\(633\) 0 0
\(634\) 15.0800 + 50.3707i 0.598903 + 2.00048i
\(635\) −26.8684 6.36793i −1.06624 0.252704i
\(636\) 0 0
\(637\) −8.97577 20.8082i −0.355633 0.824450i
\(638\) −26.3163 22.0820i −1.04187 0.874234i
\(639\) 0 0
\(640\) −2.66848 + 2.23912i −0.105481 + 0.0885089i
\(641\) 9.21794 + 4.62942i 0.364087 + 0.182851i 0.621432 0.783468i \(-0.286551\pi\)
−0.257345 + 0.966320i \(0.582848\pi\)
\(642\) 0 0
\(643\) 43.0139 5.02761i 1.69630 0.198270i 0.787738 0.616010i \(-0.211252\pi\)
0.908566 + 0.417741i \(0.137178\pi\)
\(644\) 0.160558 2.75668i 0.00632688 0.108628i
\(645\) 0 0
\(646\) −8.01259 8.49285i −0.315251 0.334147i
\(647\) 6.50021 0.255550 0.127775 0.991803i \(-0.459217\pi\)
0.127775 + 0.991803i \(0.459217\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) 12.6190 + 13.3753i 0.494956 + 0.524623i
\(651\) 0 0
\(652\) −2.07173 + 35.5702i −0.0811350 + 1.39303i
\(653\) −2.95697 + 0.345620i −0.115715 + 0.0135251i −0.173753 0.984789i \(-0.555590\pi\)
0.0580383 + 0.998314i \(0.481515\pi\)
\(654\) 0 0
\(655\) −13.5884 6.82436i −0.530944 0.266650i
\(656\) −26.5844 + 22.3070i −1.03795 + 0.870941i
\(657\) 0 0
\(658\) 11.1240 + 9.33410i 0.433657 + 0.363881i
\(659\) −11.1338 25.8110i −0.433710 1.00545i −0.985221 0.171285i \(-0.945208\pi\)
0.551512 0.834167i \(-0.314051\pi\)
\(660\) 0 0
\(661\) −3.16302 0.749650i −0.123027 0.0291580i 0.168641 0.985678i \(-0.446062\pi\)
−0.291668 + 0.956520i \(0.594210\pi\)
\(662\) −15.0789 50.3671i −0.586059 1.95757i
\(663\) 0 0
\(664\) −0.967598 0.113096i −0.0375501 0.00438898i
\(665\) 0.224319 1.27217i 0.00869871 0.0493328i
\(666\) 0 0
\(667\) −1.71488 9.72556i −0.0664004 0.376575i
\(668\) −0.712992 12.2416i −0.0275865 0.473642i
\(669\) 0 0
\(670\) −16.9424 + 39.2770i −0.654544 + 1.51740i
\(671\) −10.1183 + 5.08162i −0.390614 + 0.196174i
\(672\) 0 0
\(673\) 13.5198 3.20426i 0.521152 0.123515i 0.0383830 0.999263i \(-0.487779\pi\)
0.482769 + 0.875748i \(0.339631\pi\)
\(674\) −15.1769 26.2871i −0.584591 1.01254i
\(675\) 0 0
\(676\) 1.35501 2.34695i 0.0521158 0.0902672i
\(677\) 3.11373 10.4006i 0.119670 0.399727i −0.877074 0.480356i \(-0.840508\pi\)
0.996744 + 0.0806287i \(0.0256928\pi\)
\(678\) 0 0
\(679\) −5.37112 3.53264i −0.206125 0.135570i
\(680\) −1.97082 2.64726i −0.0755773 0.101518i
\(681\) 0 0
\(682\) −51.7182 + 34.0156i −1.98039 + 1.30253i
\(683\) −31.5858 11.4963i −1.20860 0.439893i −0.342380 0.939562i \(-0.611233\pi\)
−0.866217 + 0.499668i \(0.833455\pi\)
\(684\) 0 0
\(685\) −39.6178 + 14.4197i −1.51372 + 0.550949i
\(686\) −10.0445 + 13.4921i −0.383501 + 0.515131i
\(687\) 0 0
\(688\) 4.62162 4.89864i 0.176198 0.186759i
\(689\) −13.1455 + 13.9334i −0.500804 + 0.530821i
\(690\) 0 0
\(691\) −0.267326 + 0.359082i −0.0101696 + 0.0136601i −0.807179 0.590307i \(-0.799007\pi\)
0.797009 + 0.603967i \(0.206414\pi\)
\(692\) −17.5595 + 6.39115i −0.667513 + 0.242955i
\(693\) 0 0
\(694\) −48.2412 17.5584i −1.83121 0.666507i
\(695\) 37.0417 24.3627i 1.40507 0.924129i
\(696\) 0 0
\(697\) −40.8943 54.9306i −1.54898 2.08065i
\(698\) −49.3762 32.4753i −1.86892 1.22921i
\(699\) 0 0
\(700\) 0.969993 3.24000i 0.0366623 0.122461i
\(701\) 1.94332 3.36593i 0.0733982 0.127129i −0.826990 0.562216i \(-0.809949\pi\)
0.900389 + 0.435087i \(0.143282\pi\)
\(702\) 0 0
\(703\) 1.61229 + 2.79256i 0.0608086 + 0.105324i
\(704\) 31.3776 7.43663i 1.18259 0.280278i
\(705\) 0 0
\(706\) −51.7769 + 26.0033i −1.94865 + 0.978648i
\(707\) −0.592827 + 1.37433i −0.0222956 + 0.0516869i
\(708\) 0 0
\(709\) 0.857054 + 14.7150i 0.0321873 + 0.552635i 0.975400 + 0.220444i \(0.0707507\pi\)
−0.943212 + 0.332191i \(0.892212\pi\)
\(710\) −6.58725 37.3581i −0.247215 1.40203i
\(711\) 0 0
\(712\) 0.125874 0.713864i 0.00471731 0.0267532i
\(713\) −17.6746 2.06587i −0.661919 0.0773673i
\(714\) 0 0
\(715\) −10.1677 33.9624i −0.380249 1.27012i
\(716\) 2.60614 + 0.617666i 0.0973959 + 0.0230833i
\(717\) 0 0
\(718\) 16.6816 + 38.6723i 0.622552 + 1.44324i
\(719\) 24.7821 + 20.7947i 0.924218 + 0.775511i 0.974770 0.223210i \(-0.0716537\pi\)
−0.0505523 + 0.998721i \(0.516098\pi\)
\(720\) 0 0
\(721\) −7.98762 + 6.70241i −0.297474 + 0.249611i
\(722\) 33.2356 + 16.6915i 1.23690 + 0.621195i
\(723\) 0 0
\(724\) −7.67077 + 0.896585i −0.285082 + 0.0333213i
\(725\) 0.703295 12.0751i 0.0261197 0.448458i
\(726\) 0 0
\(727\) 6.33415 + 6.71380i 0.234921 + 0.249001i 0.834100 0.551614i \(-0.185988\pi\)
−0.599179 + 0.800615i \(0.704506\pi\)
\(728\) 0.329090 0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) 9.12000 + 9.66663i 0.337315 + 0.357533i
\(732\) 0 0
\(733\) 3.08131 52.9040i 0.113811 1.95405i −0.148126 0.988969i \(-0.547324\pi\)
0.261936 0.965085i \(-0.415639\pi\)
\(734\) −69.3320 + 8.10374i −2.55909 + 0.299115i
\(735\) 0 0
\(736\) 15.6685 + 7.86901i 0.577548 + 0.290055i
\(737\) 21.9518 18.4198i 0.808606 0.678501i
\(738\) 0 0
\(739\) 2.18316 + 1.83188i 0.0803087 + 0.0673870i 0.682058 0.731298i \(-0.261085\pi\)
−0.601750 + 0.798685i \(0.705529\pi\)
\(740\) 9.62303 + 22.3087i 0.353750 + 0.820084i
\(741\) 0 0
\(742\) 6.72786 + 1.59453i 0.246988 + 0.0585372i
\(743\) 8.43563 + 28.1770i 0.309473 + 1.03371i 0.961336 + 0.275376i \(0.0888025\pi\)
−0.651863 + 0.758337i \(0.726012\pi\)
\(744\) 0 0
\(745\) 24.3059 + 2.84096i 0.890501 + 0.104085i
\(746\) 3.28553 18.6331i 0.120292 0.682208i
\(747\) 0 0
\(748\) 10.2340 + 58.0400i 0.374193 + 2.12215i
\(749\) −0.0285802 0.490704i −0.00104430 0.0179299i
\(750\) 0 0
\(751\) −10.8644 + 25.1865i −0.396447 + 0.919067i 0.596729 + 0.802443i \(0.296467\pi\)
−0.993176 + 0.116624i \(0.962793\pi\)
\(752\) −40.3470 + 20.2630i −1.47130 + 0.738917i
\(753\) 0 0
\(754\) 30.5271 7.23506i 1.11173 0.263485i
\(755\) 1.36725 + 2.36815i 0.0497593 + 0.0861857i
\(756\) 0 0
\(757\) 14.2323 24.6511i 0.517282 0.895959i −0.482516 0.875887i \(-0.660277\pi\)
0.999799 0.0200719i \(-0.00638952\pi\)
\(758\) −1.11637 + 3.72894i −0.0405485 + 0.135441i
\(759\) 0 0
\(760\) −0.277944 0.182807i −0.0100821 0.00663110i
\(761\) 16.7039 + 22.4372i 0.605514 + 0.813347i 0.994146 0.108046i \(-0.0344594\pi\)
−0.388631 + 0.921393i \(0.627052\pi\)
\(762\) 0 0
\(763\) −2.15659 + 1.41841i −0.0780739 + 0.0513500i
\(764\) −14.2348 5.18104i −0.514997 0.187444i
\(765\) 0 0
\(766\) 36.9883 13.4626i 1.33644 0.486425i
\(767\) 3.09030 4.15099i 0.111584 0.149884i
\(768\) 0 0
\(769\) −32.2285 + 34.1602i −1.16219 + 1.23185i −0.194169 + 0.980968i \(0.562201\pi\)
−0.968018 + 0.250879i \(0.919280\pi\)
\(770\) −8.78129 + 9.30762i −0.316456 + 0.335424i
\(771\) 0 0
\(772\) −11.9460 + 16.0463i −0.429947 + 0.577519i
\(773\) 41.5507 15.1232i 1.49447 0.543944i 0.539851 0.841761i \(-0.318481\pi\)
0.954623 + 0.297816i \(0.0962583\pi\)
\(774\) 0 0
\(775\) −20.4807 7.45437i −0.735689 0.267769i
\(776\) −1.38321 + 0.909749i −0.0496542 + 0.0326581i
\(777\) 0 0
\(778\) 11.0218 + 14.8049i 0.395151 + 0.530780i
\(779\) −5.76733 3.79323i −0.206636 0.135907i
\(780\) 0 0
\(781\) −7.28855 + 24.3454i −0.260805 + 0.871148i
\(782\) −16.6244 + 28.7942i −0.594486 + 1.02968i
\(783\) 0 0
\(784\) −12.7160 22.0247i −0.454143 0.786598i
\(785\) −49.0183 + 11.6175i −1.74954 + 0.414648i
\(786\) 0 0
\(787\) 32.6021 16.3734i 1.16214 0.583649i 0.240102 0.970748i \(-0.422819\pi\)
0.922038 + 0.387099i \(0.126523\pi\)
\(788\) −4.06308 + 9.41927i −0.144741 + 0.335548i
\(789\) 0 0
\(790\) −2.99517 51.4252i −0.106564 1.82963i
\(791\) 1.31019 + 7.43049i 0.0465852 + 0.264198i
\(792\) 0 0
\(793\) 1.79557 10.1832i 0.0637627 0.361616i
\(794\) 66.8888 + 7.81818i 2.37380 + 0.277457i
\(795\) 0 0
\(796\) −1.50023 5.01112i −0.0531742 0.177614i
\(797\) −14.7098 3.48628i −0.521046 0.123490i −0.0383267 0.999265i \(-0.512203\pi\)
−0.482719 + 0.875775i \(0.660351\pi\)
\(798\) 0 0
\(799\) −35.2886 81.8083i −1.24842 2.89417i
\(800\) 16.4507 + 13.8038i 0.581621 + 0.488038i
\(801\) 0 0
\(802\) 5.48967 4.60638i 0.193847 0.162657i
\(803\) −1.91566 0.962081i −0.0676022 0.0339511i
\(804\) 0 0
\(805\) −3.65366 + 0.427051i −0.128774 + 0.0150516i
\(806\) 3.28698 56.4353i 0.115779 1.98785i
\(807\) 0 0
\(808\) 0.264512 + 0.280366i 0.00930549 + 0.00986325i
\(809\) −49.6978 −1.74728 −0.873641 0.486571i \(-0.838247\pi\)
−0.873641 + 0.486571i \(0.838247\pi\)
\(810\) 0 0
\(811\) −8.76133 −0.307652 −0.153826 0.988098i \(-0.549159\pi\)
−0.153826 + 0.988098i \(0.549159\pi\)
\(812\) −3.95975 4.19709i −0.138960 0.147289i
\(813\) 0 0
\(814\) 1.85725 31.8877i 0.0650965 1.11766i
\(815\) 47.1441 5.51036i 1.65139 0.193019i
\(816\) 0 0
\(817\) 1.19712 + 0.601217i 0.0418820 + 0.0210339i
\(818\) 49.5562 41.5826i 1.73269 1.45390i
\(819\) 0 0
\(820\) −39.8424 33.4317i −1.39136 1.16749i
\(821\) −14.0466 32.5637i −0.490230 1.13648i −0.966380 0.257117i \(-0.917227\pi\)
0.476150 0.879364i \(-0.342032\pi\)
\(822\) 0 0
\(823\) −1.82849 0.433361i −0.0637372 0.0151060i 0.198624 0.980076i \(-0.436353\pi\)
−0.262361 + 0.964970i \(0.584501\pi\)
\(824\) 0.770140 + 2.57245i 0.0268291 + 0.0896155i
\(825\) 0 0
\(826\) −1.85528 0.216851i −0.0645533 0.00754520i
\(827\) 1.66995 9.47075i 0.0580698 0.329330i −0.941909 0.335869i \(-0.890970\pi\)
0.999979 + 0.00653851i \(0.00208129\pi\)
\(828\) 0 0
\(829\) −1.31856 7.47791i −0.0457954 0.259719i 0.953311 0.301991i \(-0.0976513\pi\)
−0.999106 + 0.0422726i \(0.986540\pi\)
\(830\) 2.01142 + 34.5347i 0.0698173 + 1.19872i
\(831\) 0 0
\(832\) −11.6641 + 27.0405i −0.404381 + 0.937460i
\(833\) 44.8476 22.5233i 1.55388 0.780387i
\(834\) 0 0
\(835\) −15.8950 + 3.76717i −0.550068 + 0.130368i
\(836\) 2.97035 + 5.14479i 0.102732 + 0.177936i
\(837\) 0 0
\(838\) −14.9786 + 25.9438i −0.517429 + 0.896213i
\(839\) 11.3639 37.9580i 0.392325 1.31046i −0.502707 0.864457i \(-0.667663\pi\)
0.895033 0.446001i \(-0.147152\pi\)
\(840\) 0 0
\(841\) 6.98773 + 4.59591i 0.240956 + 0.158479i
\(842\) 18.7876 + 25.2361i 0.647463 + 0.869694i
\(843\) 0 0
\(844\) −12.1316 + 7.97906i −0.417586 + 0.274651i
\(845\) −3.39243 1.23475i −0.116703 0.0424765i
\(846\) 0 0
\(847\) 1.73692 0.632185i 0.0596811 0.0217221i
\(848\) −12.8375 + 17.2438i −0.440842 + 0.592154i
\(849\) 0 0
\(850\) −27.9457 + 29.6207i −0.958530 + 1.01598i
\(851\) 6.30127 6.67896i 0.216005 0.228952i
\(852\) 0 0
\(853\) 2.05643 2.76227i 0.0704110 0.0945783i −0.765523 0.643409i \(-0.777519\pi\)
0.835933 + 0.548831i \(0.184927\pi\)
\(854\) −3.50722 + 1.27652i −0.120015 + 0.0436817i
\(855\) 0 0
\(856\) −0.118950 0.0432941i −0.00406561 0.00147976i
\(857\) 18.5031 12.1697i 0.632053 0.415708i −0.192655 0.981267i \(-0.561710\pi\)
0.824708 + 0.565559i \(0.191339\pi\)
\(858\) 0 0
\(859\) 21.2724 + 28.5737i 0.725804 + 0.974924i 0.999913 + 0.0132249i \(0.00420973\pi\)
−0.274109 + 0.961699i \(0.588383\pi\)
\(860\) 8.43288 + 5.54639i 0.287559 + 0.189130i
\(861\) 0 0
\(862\) 0.751429 2.50995i 0.0255938 0.0854891i
\(863\) 10.4873 18.1645i 0.356992 0.618328i −0.630465 0.776218i \(-0.717136\pi\)
0.987457 + 0.157890i \(0.0504691\pi\)
\(864\) 0 0
\(865\) 12.4466 + 21.5581i 0.423196 + 0.732998i
\(866\) −34.4460 + 8.16385i −1.17052 + 0.277419i
\(867\) 0 0
\(868\) −9.29143 + 4.66633i −0.315372 + 0.158386i
\(869\) −13.6684 + 31.6868i −0.463668 + 1.07490i
\(870\) 0 0
\(871\) 1.52163 + 26.1254i 0.0515586 + 0.885227i
\(872\) 0.115431 + 0.654639i 0.00390897 + 0.0221689i
\(873\) 0 0
\(874\) −0.581978 + 3.30056i −0.0196857 + 0.111643i
\(875\) 3.92834 + 0.459157i 0.132802 + 0.0155223i
\(876\) 0 0
\(877\) −12.1070 40.4401i −0.408823 1.36556i −0.876388 0.481605i \(-0.840054\pi\)
0.467565 0.883959i \(-0.345131\pi\)
\(878\) −42.6755 10.1143i −1.44023 0.341340i
\(879\) 0 0
\(880\) −15.7584 36.5320i −0.531214 1.23149i
\(881\) −29.2913 24.5783i −0.986848 0.828064i −0.00173943 0.999998i \(-0.500554\pi\)
−0.985108 + 0.171935i \(0.944998\pi\)
\(882\) 0 0
\(883\) −22.0694 + 18.5184i −0.742693 + 0.623194i −0.933560 0.358422i \(-0.883315\pi\)
0.190866 + 0.981616i \(0.438870\pi\)
\(884\) −48.0969 24.1552i −1.61767 0.812426i
\(885\) 0 0
\(886\) 18.3398 2.14361i 0.616137 0.0720161i
\(887\) 0.797647 13.6951i 0.0267824 0.459835i −0.958080 0.286500i \(-0.907508\pi\)
0.984863 0.173336i \(-0.0554546\pi\)
\(888\) 0 0
\(889\) 4.18443 + 4.43523i 0.140341 + 0.148753i
\(890\) −25.7403 −0.862816
\(891\) 0 0
\(892\) −37.3995 −1.25223
\(893\) −6.16298 6.53238i −0.206236 0.218598i
\(894\) 0 0
\(895\) 0.207457 3.56190i 0.00693453 0.119061i
\(896\) 0.764034 0.0893027i 0.0255246 0.00298340i
\(897\) 0 0
\(898\) −22.4174 11.2584i −0.748078 0.375699i
\(899\) −28.4852 + 23.9019i −0.950035 + 0.797174i
\(900\) 0 0
\(901\) −32.4972 27.2684i −1.08264 0.908441i
\(902\) 27.0834 + 62.7864i 0.901779 + 2.09056i
\(903\) 0 0
\(904\) 1.89069 + 0.448102i 0.0628835 + 0.0149037i
\(905\) 2.95068 + 9.85597i 0.0980840 + 0.327623i
\(906\) 0 0
\(907\) −56.3534 6.58677i −1.87119 0.218710i −0.896618 0.442805i \(-0.853984\pi\)
−0.974567 + 0.224094i \(0.928058\pi\)
\(908\) −0.221375 + 1.25548i −0.00734659 + 0.0416646i
\(909\) 0 0
\(910\) −2.02924 11.5084i −0.0672687 0.381500i
\(911\) 0.0414988 + 0.712508i 0.00137492 + 0.0236064i 0.998926 0.0463376i \(-0.0147550\pi\)
−0.997551 + 0.0699440i \(0.977718\pi\)
\(912\) 0 0
\(913\) 9.17902 21.2794i 0.303781 0.704244i
\(914\) 33.7367 16.9432i 1.11591 0.560432i
\(915\) 0 0
\(916\) −10.1001 + 2.39376i −0.333716 + 0.0790921i
\(917\) 1.67892 + 2.90797i 0.0554428 + 0.0960297i
\(918\) 0 0
\(919\) 28.6606 49.6416i 0.945425 1.63752i 0.190527 0.981682i \(-0.438980\pi\)
0.754898 0.655842i \(-0.227686\pi\)
\(920\) −0.271694 + 0.907522i −0.00895750 + 0.0299201i
\(921\) 0 0
\(922\) 69.3125 + 45.5876i 2.28269 + 1.50135i
\(923\) −13.8589 18.6157i −0.456171 0.612744i
\(924\) 0 0
\(925\) 9.39625 6.18001i 0.308947 0.203198i
\(926\) −7.83677 2.85235i −0.257532 0.0937341i
\(927\) 0 0
\(928\) 34.4289 12.5311i 1.13018 0.411353i
\(929\) 8.93536 12.0023i 0.293160 0.393782i −0.631003 0.775780i \(-0.717357\pi\)
0.924163 + 0.381998i \(0.124764\pi\)
\(930\) 0 0
\(931\) 3.47151 3.67959i 0.113774 0.120594i
\(932\) −18.7623 + 19.8869i −0.614579 + 0.651416i
\(933\) 0 0
\(934\) 30.4809 40.9429i 0.997365 1.33969i
\(935\) 73.7759 26.8522i 2.41273 0.878162i
\(936\) 0 0
\(937\) 23.1819 + 8.43751i 0.757319 + 0.275641i 0.691682 0.722202i \(-0.256870\pi\)
0.0656366 + 0.997844i \(0.479092\pi\)
\(938\) 7.89193 5.19060i 0.257681 0.169479i
\(939\) 0 0
\(940\) −40.4073 54.2765i −1.31794 1.77030i
\(941\) 19.4338 + 12.7818i 0.633523 + 0.416675i 0.825245 0.564775i \(-0.191037\pi\)
−0.191722 + 0.981449i \(0.561407\pi\)
\(942\) 0 0
\(943\) −5.63765 + 18.8310i −0.183587 + 0.613223i
\(944\) 2.90384 5.02959i 0.0945119 0.163699i
\(945\) 0 0
\(946\) −6.63491 11.4920i −0.215720 0.373637i
\(947\) −18.6605 + 4.42261i −0.606384 + 0.143716i −0.522327 0.852745i \(-0.674936\pi\)
−0.0840570 + 0.996461i \(0.526788\pi\)
\(948\) 0 0
\(949\) 1.74945 0.878606i 0.0567895 0.0285208i
\(950\) −1.62586 + 3.76916i −0.0527497 + 0.122288i
\(951\) 0 0
\(952\) 0.0423757 + 0.727563i 0.00137340 + 0.0235804i
\(953\) 5.37991 + 30.5110i 0.174272 + 0.988348i 0.938980 + 0.343971i \(0.111772\pi\)
−0.764708 + 0.644377i \(0.777117\pi\)
\(954\) 0 0
\(955\) −3.50420 + 19.8733i −0.113393 + 0.643085i
\(956\) 18.7778 + 2.19481i 0.607316 + 0.0709851i
\(957\) 0 0
\(958\) −12.0479 40.2429i −0.389251 1.30019i
\(959\) 9.05915 + 2.14706i 0.292535 + 0.0693321i
\(960\) 0 0
\(961\) 14.2603 + 33.0592i 0.460011 + 1.06642i
\(962\) 22.3457 + 18.7503i 0.720456 + 0.604534i
\(963\) 0 0
\(964\) −22.6834 + 19.0336i −0.730583 + 0.613032i
\(965\) 23.8147 + 11.9602i 0.766623 + 0.385013i
\(966\) 0 0
\(967\) −19.7235 + 2.30534i −0.634264 + 0.0741348i −0.427148 0.904182i \(-0.640482\pi\)
−0.207116 + 0.978316i \(0.566408\pi\)
\(968\) 0.0276775 0.475204i 0.000889587 0.0152736i
\(969\) 0 0
\(970\) 40.3435 + 42.7616i 1.29535 + 1.37299i
\(971\) −3.39436 −0.108930 −0.0544651 0.998516i \(-0.517345\pi\)
−0.0544651 + 0.998516i \(0.517345\pi\)
\(972\) 0 0
\(973\) −9.79039 −0.313865
\(974\) −9.14706 9.69532i −0.293091 0.310658i
\(975\) 0 0
\(976\) 0.674738 11.5848i 0.0215978 0.370820i
\(977\) 53.2053 6.21881i 1.70219 0.198957i 0.791249 0.611494i \(-0.209431\pi\)
0.910941 + 0.412537i \(0.135357\pi\)
\(978\) 0 0
\(979\) 15.4097 + 7.73906i 0.492497 + 0.247342i
\(980\) 29.1980 24.5000i 0.932694 0.782624i
\(981\) 0 0
\(982\) 56.5336 + 47.4373i 1.80406 + 1.51379i
\(983\) 11.0201 + 25.5474i 0.351486 + 0.814836i 0.998623 + 0.0524620i \(0.0167068\pi\)
−0.647137 + 0.762374i \(0.724034\pi\)
\(984\) 0 0
\(985\) 13.2971 + 3.15148i 0.423682 + 0.100414i
\(986\) 19.9264 + 66.5587i 0.634585 + 2.11966i
\(987\) 0 0
\(988\) −5.38856 0.629833i −0.171433 0.0200376i
\(989\) 0.662412 3.75672i 0.0210635 0.119457i
\(990\) 0 0
\(991\) 2.53438 + 14.3732i 0.0805071 + 0.456579i 0.998236 + 0.0593711i \(0.0189095\pi\)
−0.917729 + 0.397207i \(0.869979\pi\)
\(992\) −3.83867 65.9075i −0.121878 2.09257i
\(993\) 0 0
\(994\) −3.31792 + 7.69180i −0.105238 + 0.243969i
\(995\) −6.22710 + 3.12737i −0.197412 + 0.0991441i
\(996\) 0 0
\(997\) −2.37129 + 0.562006i −0.0750995 + 0.0177989i −0.267994 0.963421i \(-0.586361\pi\)
0.192894 + 0.981220i \(0.438213\pi\)
\(998\) 36.7468 + 63.6474i 1.16320 + 2.01472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.109.7 144
3.2 odd 2 729.2.g.a.109.2 144
9.2 odd 6 729.2.g.b.352.2 144
9.4 even 3 81.2.g.a.76.2 yes 144
9.5 odd 6 243.2.g.a.118.7 144
9.7 even 3 729.2.g.c.352.7 144
81.11 odd 54 729.2.g.a.622.2 144
81.16 even 27 729.2.g.c.379.7 144
81.31 even 27 6561.2.a.c.1.14 72
81.38 odd 54 243.2.g.a.208.7 144
81.43 even 27 81.2.g.a.16.2 144
81.50 odd 54 6561.2.a.d.1.59 72
81.65 odd 54 729.2.g.b.379.2 144
81.70 even 27 inner 729.2.g.d.622.7 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.2 144 81.43 even 27
81.2.g.a.76.2 yes 144 9.4 even 3
243.2.g.a.118.7 144 9.5 odd 6
243.2.g.a.208.7 144 81.38 odd 54
729.2.g.a.109.2 144 3.2 odd 2
729.2.g.a.622.2 144 81.11 odd 54
729.2.g.b.352.2 144 9.2 odd 6
729.2.g.b.379.2 144 81.65 odd 54
729.2.g.c.352.7 144 9.7 even 3
729.2.g.c.379.7 144 81.16 even 27
729.2.g.d.109.7 144 1.1 even 1 trivial
729.2.g.d.622.7 144 81.70 even 27 inner
6561.2.a.c.1.14 72 81.31 even 27
6561.2.a.d.1.59 72 81.50 odd 54