[N,k,chi] = [729,2,Mod(28,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([44]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{144} - 9 T_{2}^{143} + 36 T_{2}^{142} - 75 T_{2}^{141} + 45 T_{2}^{140} + 306 T_{2}^{139} - 1599 T_{2}^{138} + 4932 T_{2}^{137} - 10926 T_{2}^{136} + 13287 T_{2}^{135} + 27108 T_{2}^{134} - 227907 T_{2}^{133} + 766611 T_{2}^{132} + \cdots + 13966276041 \)
acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).