Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [729,2,Mod(28,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([44]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.g (of order \(27\), degree \(18\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{27})\) |
Twist minimal: | no (minimal twist has level 81) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −1.76633 | + | 1.16173i | 0 | 0.978129 | − | 2.26756i | −2.05186 | + | 2.17484i | 0 | 3.48897 | + | 0.407803i | 0.172370 | + | 0.977557i | 0 | 1.09767 | − | 6.22518i | ||||||
28.2 | −1.68031 | + | 1.10516i | 0 | 0.809915 | − | 1.87759i | 2.40279 | − | 2.54681i | 0 | −2.90760 | − | 0.339850i | 0.0156557 | + | 0.0887876i | 0 | −1.22281 | + | 6.93490i | ||||||
28.3 | −1.26928 | + | 0.834819i | 0 | 0.121992 | − | 0.282809i | 0.0546290 | − | 0.0579033i | 0 | 0.848729 | + | 0.0992022i | −0.446364 | − | 2.53145i | 0 | −0.0210007 | + | 0.119101i | ||||||
28.4 | −0.103498 | + | 0.0680719i | 0 | −0.786081 | + | 1.82234i | 2.31283 | − | 2.45146i | 0 | 3.71541 | + | 0.434269i | −0.0857144 | − | 0.486111i | 0 | −0.0724987 | + | 0.411161i | ||||||
28.5 | 0.463223 | − | 0.304667i | 0 | −0.670406 | + | 1.55417i | −0.355980 | + | 0.377317i | 0 | −2.24586 | − | 0.262503i | 0.355511 | + | 2.01620i | 0 | −0.0499424 | + | 0.283238i | ||||||
28.6 | 0.890910 | − | 0.585961i | 0 | −0.341789 | + | 0.792356i | 0.585850 | − | 0.620965i | 0 | 0.284505 | + | 0.0332539i | 0.530120 | + | 3.00646i | 0 | 0.158079 | − | 0.896509i | ||||||
28.7 | 1.97349 | − | 1.29799i | 0 | 1.41775 | − | 3.28671i | 1.82524 | − | 1.93464i | 0 | −4.56284 | − | 0.533319i | −0.647845 | − | 3.67411i | 0 | 1.09096 | − | 6.18715i | ||||||
28.8 | 2.23012 | − | 1.46677i | 0 | 2.02985 | − | 4.70573i | −1.24595 | + | 1.32063i | 0 | 2.56492 | + | 0.299797i | −1.44840 | − | 8.21430i | 0 | −0.841551 | + | 4.77267i | ||||||
55.1 | −0.971435 | + | 2.25204i | 0 | −2.75551 | − | 2.92067i | 0.232513 | + | 3.99210i | 0 | −1.28109 | − | 0.303625i | 4.64483 | − | 1.69058i | 0 | −9.21624 | − | 3.35444i | ||||||
55.2 | −0.677333 | + | 1.57023i | 0 | −0.634371 | − | 0.672394i | −0.0798566 | − | 1.37108i | 0 | −0.301861 | − | 0.0715423i | −1.72842 | + | 0.629095i | 0 | 2.20701 | + | 0.803287i | ||||||
55.3 | −0.415272 | + | 0.962709i | 0 | 0.618125 | + | 0.655174i | 0.0443725 | + | 0.761846i | 0 | 2.82023 | + | 0.668406i | −2.85789 | + | 1.04019i | 0 | −0.751863 | − | 0.273656i | ||||||
55.4 | 0.0742143 | − | 0.172048i | 0 | 1.34839 | + | 1.42921i | −0.0921050 | − | 1.58138i | 0 | −3.93765 | − | 0.933240i | 0.698107 | − | 0.254090i | 0 | −0.278909 | − | 0.101515i | ||||||
55.5 | 0.280212 | − | 0.649604i | 0 | 1.02902 | + | 1.09069i | −0.199739 | − | 3.42939i | 0 | 2.63236 | + | 0.623881i | 2.32646 | − | 0.846761i | 0 | −2.28372 | − | 0.831205i | ||||||
55.6 | 0.361975 | − | 0.839152i | 0 | 0.799333 | + | 0.847243i | 0.221432 | + | 3.80183i | 0 | −0.706680 | − | 0.167486i | 2.71786 | − | 0.989221i | 0 | 3.27047 | + | 1.19035i | ||||||
55.7 | 0.837555 | − | 1.94167i | 0 | −1.69610 | − | 1.79777i | 0.0261173 | + | 0.448416i | 0 | −2.37407 | − | 0.562666i | −0.937080 | + | 0.341069i | 0 | 0.892552 | + | 0.324862i | ||||||
55.8 | 0.900807 | − | 2.08831i | 0 | −2.17708 | − | 2.30757i | 0.0341238 | + | 0.585883i | 0 | 3.70692 | + | 0.878555i | −2.50575 | + | 0.912019i | 0 | 1.25424 | + | 0.456507i | ||||||
109.1 | −1.31781 | − | 1.39680i | 0 | −0.0981285 | + | 1.68480i | −0.783127 | + | 0.0915344i | 0 | 1.06502 | + | 0.534872i | −0.459476 | + | 0.385546i | 0 | 1.15987 | + | 0.973243i | ||||||
109.2 | −0.936951 | − | 0.993110i | 0 | 0.00789919 | − | 0.135624i | 3.78436 | − | 0.442328i | 0 | 1.56116 | + | 0.784043i | −2.23391 | + | 1.87447i | 0 | −3.98504 | − | 3.34385i | ||||||
109.3 | −0.464338 | − | 0.492169i | 0 | 0.0896686 | − | 1.53955i | −0.936797 | + | 0.109496i | 0 | −1.30528 | − | 0.655538i | −1.83603 | + | 1.54061i | 0 | 0.488880 | + | 0.410219i | ||||||
109.4 | −0.217727 | − | 0.230777i | 0 | 0.110437 | − | 1.89612i | −2.10697 | + | 0.246269i | 0 | −2.27300 | − | 1.14154i | −0.947719 | + | 0.795231i | 0 | 0.515577 | + | 0.432621i | ||||||
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.g.d | 144 | |
3.b | odd | 2 | 1 | 729.2.g.a | 144 | ||
9.c | even | 3 | 1 | 81.2.g.a | ✓ | 144 | |
9.c | even | 3 | 1 | 729.2.g.c | 144 | ||
9.d | odd | 6 | 1 | 243.2.g.a | 144 | ||
9.d | odd | 6 | 1 | 729.2.g.b | 144 | ||
81.g | even | 27 | 1 | 81.2.g.a | ✓ | 144 | |
81.g | even | 27 | 1 | 729.2.g.c | 144 | ||
81.g | even | 27 | 1 | inner | 729.2.g.d | 144 | |
81.g | even | 27 | 1 | 6561.2.a.c | 72 | ||
81.h | odd | 54 | 1 | 243.2.g.a | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.a | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.b | 144 | ||
81.h | odd | 54 | 1 | 6561.2.a.d | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
81.2.g.a | ✓ | 144 | 9.c | even | 3 | 1 | |
81.2.g.a | ✓ | 144 | 81.g | even | 27 | 1 | |
243.2.g.a | 144 | 9.d | odd | 6 | 1 | ||
243.2.g.a | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.a | 144 | 3.b | odd | 2 | 1 | ||
729.2.g.a | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.b | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.b | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.c | 144 | 9.c | even | 3 | 1 | ||
729.2.g.c | 144 | 81.g | even | 27 | 1 | ||
729.2.g.d | 144 | 1.a | even | 1 | 1 | trivial | |
729.2.g.d | 144 | 81.g | even | 27 | 1 | inner | |
6561.2.a.c | 72 | 81.g | even | 27 | 1 | ||
6561.2.a.d | 72 | 81.h | odd | 54 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{144} - 9 T_{2}^{143} + 36 T_{2}^{142} - 75 T_{2}^{141} + 45 T_{2}^{140} + 306 T_{2}^{139} + \cdots + 13966276041 \) acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).