gp: [N,k,chi] = [729,2,Mod(28,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([44]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,45]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{144} - 9 T_{2}^{143} + 36 T_{2}^{142} - 75 T_{2}^{141} + 45 T_{2}^{140} + 306 T_{2}^{139} + \cdots + 13966276041 \)
T2^144 - 9*T2^143 + 36*T2^142 - 75*T2^141 + 45*T2^140 + 306*T2^139 - 1599*T2^138 + 4932*T2^137 - 10926*T2^136 + 13287*T2^135 + 27108*T2^134 - 227907*T2^133 + 766611*T2^132 - 1650564*T2^131 + 1950750*T2^130 + 2421738*T2^129 - 21360807*T2^128 + 60793686*T2^127 - 59765709*T2^126 - 225040788*T2^125 + 1093451751*T2^124 - 1993058199*T2^123 + 189786780*T2^122 + 9826913223*T2^121 - 34465238064*T2^120 + 65072688174*T2^119 - 20104832907*T2^118 - 310916617497*T2^117 + 1035345474576*T2^116 - 1599127218702*T2^115 + 909810782226*T2^114 - 323668808820*T2^113 + 10966697549613*T2^112 - 61892917835184*T2^111 + 195085966515210*T2^110 - 408479199437313*T2^109 + 627477815956698*T2^108 - 919349274586599*T2^107 + 1977012772721325*T2^106 - 4891209493816557*T2^105 + 11007310989190572*T2^104 - 21523191090750099*T2^103 + 32753015871459138*T2^102 - 41453165442193218*T2^101 + 86223811689736830*T2^100 - 334488175101096291*T2^99 + 924014576491262946*T2^98 - 1805837179902929667*T2^97 + 2947745907454592592*T2^96 - 5263678563560745912*T2^95 + 13211117715497886693*T2^94 - 34046980871418389853*T2^93 + 72851895251637844689*T2^92 - 111745506949510833234*T2^91 + 156819547404976134771*T2^90 - 324711593233389858294*T2^89 + 690824425154940231246*T2^88 - 822746053455243695334*T2^87 + 432208172959128854649*T2^86 - 855951161874981016536*T2^85 + 3239349358610852085636*T2^84 - 3208796447981567193369*T2^83 - 440222980251973625505*T2^82 - 2300100497818913515149*T2^81 + 11517633881754393098358*T2^80 - 17152819072266727424952*T2^79 - 9143243997969186115848*T2^78 + 49242372284722628208492*T2^77 - 13123477661264946824418*T2^76 - 83395359122760024018858*T2^75 + 138972176041969861817778*T2^74 - 142066558760023721839212*T2^73 + 465232057964680387219128*T2^72 + 159629563960918990135641*T2^71 + 409257015366581209404324*T2^70 - 5645022045919965727347456*T2^69 + 888134656519204329670083*T2^68 + 3655889078869158680161638*T2^67 + 13142673325631952266212755*T2^66 - 10738558096364524739436099*T2^65 + 12860027107588379823053931*T2^64 - 35064192626299889365826160*T2^63 + 7096005402948592477594713*T2^62 - 21876053467180535725418451*T2^61 + 72717677641152245246387751*T2^60 - 54040067743956267238148700*T2^59 + 120389982723560812636089711*T2^58 - 211814794729306030850892720*T2^57 + 271649108008021996620309771*T2^56 - 517387810798386540629010702*T2^55 + 813161698457547721407300918*T2^54 - 1210906022879533632757516053*T2^53 + 1900250914034204223028695855*T2^52 - 2602560446147286563236581357*T2^51 + 3568127906494623576411565803*T2^50 - 5156249910230872863296871516*T2^49 + 7464885896020246664402664369*T2^48 - 10575481300089483835411039584*T2^47 + 14373104401980480489856398765*T2^46 - 18328903940556375291431304066*T2^45 + 21938322738566138135174389494*T2^44 - 24022816253089068478441286277*T2^43 + 23756943161262056713620584850*T2^42 - 20801902841282662129401774723*T2^41 + 15347193855000439645239548688*T2^40 - 8415495975280140229043583882*T2^39 + 1378513284006383189720057817*T2^38 + 4254334791131978623047415905*T2^37 - 7424173568536790795477424153*T2^36 + 7909667648215028802118028628*T2^35 - 6370008330962492810685833850*T2^34 + 3958488302072384580544338246*T2^33 - 1701771404793186044572757820*T2^32 + 144852087063450300177512115*T2^31 + 666164583271185974142937128*T2^30 - 937775983799462742017014887*T2^29 + 904307131378938317859756729*T2^28 - 728685696878270307452454174*T2^27 + 509235999522185225869767846*T2^26 - 307683041314259006991020430*T2^25 + 158283691011545979907991646*T2^24 - 67868933484593224827328050*T2^23 + 23532924193041672011520513*T2^22 - 6274627413117896302776747*T2^21 + 1160520735789266788833930*T2^20 - 102236834672782329238722*T2^19 - 16014647105031337594902*T2^18 + 11055260999383687740699*T2^17 - 4946261039109406386387*T2^16 + 1957516581873910205655*T2^15 - 383220150463226685573*T2^14 - 103975499556972972675*T2^13 + 117222537417578934057*T2^12 - 52597141575027461604*T2^11 + 16526540090355413571*T2^10 - 4128646613916436119*T2^9 + 820686471902695287*T2^8 - 121380428032544844*T2^7 + 11965594258003194*T2^6 - 672941733749199*T2^5 + 55059807693222*T2^4 - 19992334465377*T2^3 + 3993668752419*T2^2 - 372264913611*T2 + 13966276041
acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).