Properties

Label 729.2.g.c.703.7
Level $729$
Weight $2$
Character 729.703
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,-63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 703.7
Character \(\chi\) \(=\) 729.703
Dual form 729.2.g.c.28.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.76769 + 1.16263i) q^{2} +(0.980860 + 2.27389i) q^{4} +(-2.67150 - 2.83162i) q^{5} +(3.31264 - 0.387192i) q^{7} +(-0.175036 + 0.992677i) q^{8} +(-1.43025 - 8.11138i) q^{10} +(-0.217034 - 0.724944i) q^{11} +(-0.144562 - 2.48203i) q^{13} +(6.30588 + 3.16693i) q^{14} +(1.93533 - 2.05133i) q^{16} +(-0.700932 - 0.255119i) q^{17} +(4.21736 - 1.53499i) q^{19} +(3.81843 - 8.85211i) q^{20} +(0.459191 - 1.53380i) q^{22} +(2.27126 + 0.265472i) q^{23} +(-0.590459 + 10.1378i) q^{25} +(2.63013 - 4.55552i) q^{26} +(4.12967 + 7.15280i) q^{28} +(0.414639 - 0.208240i) q^{29} +(-2.35407 + 3.16206i) q^{31} +(7.76762 - 1.84096i) q^{32} +(-0.942422 - 1.26589i) q^{34} +(-9.94610 - 8.34577i) q^{35} +(-3.64375 + 3.05747i) q^{37} +(9.23961 + 2.18983i) q^{38} +(3.27849 - 2.15630i) q^{40} +(-4.08763 + 2.68847i) q^{41} +(5.78094 + 1.37011i) q^{43} +(1.43556 - 1.20458i) q^{44} +(3.70623 + 3.10990i) q^{46} +(-6.42922 - 8.63594i) q^{47} +(4.01237 - 0.950949i) q^{49} +(-12.8302 + 17.2340i) q^{50} +(5.50206 - 2.76324i) q^{52} +(5.75294 + 9.96438i) q^{53} +(-1.47296 + 2.55124i) q^{55} +(-0.195474 + 3.35616i) q^{56} +(0.975058 + 0.113968i) q^{58} +(1.19000 - 3.97488i) q^{59} +(0.105839 - 0.245363i) q^{61} +(-7.83755 + 2.85264i) q^{62} +(10.5709 + 3.84748i) q^{64} +(-6.64196 + 7.04007i) q^{65} +(-1.71358 - 0.860594i) q^{67} +(-0.107405 - 1.84408i) q^{68} +(-7.87859 - 26.3163i) q^{70} +(1.17278 + 6.65118i) q^{71} +(1.37723 - 7.81064i) q^{73} +(-9.99572 + 1.16833i) q^{74} +(7.62705 + 8.08420i) q^{76} +(-0.999649 - 2.31745i) q^{77} +(-3.60662 - 2.37211i) q^{79} -10.9788 q^{80} -10.3513 q^{82} +(2.12790 + 1.39954i) q^{83} +(1.15014 + 2.66632i) q^{85} +(8.62597 + 9.14299i) q^{86} +(0.757624 - 0.0885535i) q^{88} +(-0.935549 + 5.30576i) q^{89} +(-1.43990 - 8.16609i) q^{91} +(1.62413 + 5.42498i) q^{92} +(-1.32448 - 22.7404i) q^{94} +(-15.6132 - 7.84124i) q^{95} +(-6.51132 + 6.90160i) q^{97} +(8.19821 + 2.98391i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.76769 + 1.16263i 1.24994 + 0.822101i 0.989660 0.143431i \(-0.0458135\pi\)
0.260284 + 0.965532i \(0.416184\pi\)
\(3\) 0 0
\(4\) 0.980860 + 2.27389i 0.490430 + 1.13694i
\(5\) −2.67150 2.83162i −1.19473 1.26634i −0.955371 0.295408i \(-0.904544\pi\)
−0.239359 0.970931i \(-0.576937\pi\)
\(6\) 0 0
\(7\) 3.31264 0.387192i 1.25206 0.146345i 0.535901 0.844281i \(-0.319972\pi\)
0.716160 + 0.697936i \(0.245898\pi\)
\(8\) −0.175036 + 0.992677i −0.0618845 + 0.350964i
\(9\) 0 0
\(10\) −1.43025 8.11138i −0.452286 2.56504i
\(11\) −0.217034 0.724944i −0.0654382 0.218579i 0.919016 0.394220i \(-0.128985\pi\)
−0.984454 + 0.175641i \(0.943800\pi\)
\(12\) 0 0
\(13\) −0.144562 2.48203i −0.0400942 0.688390i −0.957143 0.289615i \(-0.906473\pi\)
0.917049 0.398775i \(-0.130564\pi\)
\(14\) 6.30588 + 3.16693i 1.68532 + 0.846398i
\(15\) 0 0
\(16\) 1.93533 2.05133i 0.483831 0.512831i
\(17\) −0.700932 0.255119i −0.170001 0.0618753i 0.255617 0.966778i \(-0.417721\pi\)
−0.425619 + 0.904903i \(0.639943\pi\)
\(18\) 0 0
\(19\) 4.21736 1.53499i 0.967530 0.352152i 0.190550 0.981678i \(-0.438973\pi\)
0.776980 + 0.629526i \(0.216751\pi\)
\(20\) 3.81843 8.85211i 0.853827 1.97939i
\(21\) 0 0
\(22\) 0.459191 1.53380i 0.0978998 0.327008i
\(23\) 2.27126 + 0.265472i 0.473590 + 0.0553547i 0.349540 0.936921i \(-0.386338\pi\)
0.124049 + 0.992276i \(0.460412\pi\)
\(24\) 0 0
\(25\) −0.590459 + 10.1378i −0.118092 + 2.02756i
\(26\) 2.63013 4.55552i 0.515811 0.893410i
\(27\) 0 0
\(28\) 4.12967 + 7.15280i 0.780435 + 1.35175i
\(29\) 0.414639 0.208240i 0.0769966 0.0386691i −0.409884 0.912138i \(-0.634431\pi\)
0.486881 + 0.873468i \(0.338135\pi\)
\(30\) 0 0
\(31\) −2.35407 + 3.16206i −0.422803 + 0.567923i −0.961580 0.274526i \(-0.911479\pi\)
0.538777 + 0.842449i \(0.318887\pi\)
\(32\) 7.76762 1.84096i 1.37313 0.325439i
\(33\) 0 0
\(34\) −0.942422 1.26589i −0.161624 0.217099i
\(35\) −9.94610 8.34577i −1.68120 1.41069i
\(36\) 0 0
\(37\) −3.64375 + 3.05747i −0.599029 + 0.502645i −0.891134 0.453741i \(-0.850089\pi\)
0.292104 + 0.956387i \(0.405645\pi\)
\(38\) 9.23961 + 2.18983i 1.49886 + 0.355237i
\(39\) 0 0
\(40\) 3.27849 2.15630i 0.518375 0.340941i
\(41\) −4.08763 + 2.68847i −0.638380 + 0.419869i −0.827016 0.562178i \(-0.809964\pi\)
0.188636 + 0.982047i \(0.439593\pi\)
\(42\) 0 0
\(43\) 5.78094 + 1.37011i 0.881585 + 0.208939i 0.646388 0.763009i \(-0.276279\pi\)
0.235196 + 0.971948i \(0.424427\pi\)
\(44\) 1.43556 1.20458i 0.216419 0.181597i
\(45\) 0 0
\(46\) 3.70623 + 3.10990i 0.546454 + 0.458529i
\(47\) −6.42922 8.63594i −0.937798 1.25968i −0.965590 0.260067i \(-0.916255\pi\)
0.0277927 0.999614i \(-0.491152\pi\)
\(48\) 0 0
\(49\) 4.01237 0.950949i 0.573195 0.135850i
\(50\) −12.8302 + 17.2340i −1.81447 + 2.43725i
\(51\) 0 0
\(52\) 5.50206 2.76324i 0.762998 0.383192i
\(53\) 5.75294 + 9.96438i 0.790227 + 1.36871i 0.925826 + 0.377949i \(0.123371\pi\)
−0.135600 + 0.990764i \(0.543296\pi\)
\(54\) 0 0
\(55\) −1.47296 + 2.55124i −0.198614 + 0.344010i
\(56\) −0.195474 + 3.35616i −0.0261213 + 0.448485i
\(57\) 0 0
\(58\) 0.975058 + 0.113968i 0.128031 + 0.0149647i
\(59\) 1.19000 3.97488i 0.154925 0.517485i −0.844924 0.534887i \(-0.820354\pi\)
0.999849 + 0.0174017i \(0.00553943\pi\)
\(60\) 0 0
\(61\) 0.105839 0.245363i 0.0135513 0.0314155i −0.911306 0.411730i \(-0.864925\pi\)
0.924857 + 0.380314i \(0.124184\pi\)
\(62\) −7.83755 + 2.85264i −0.995370 + 0.362285i
\(63\) 0 0
\(64\) 10.5709 + 3.84748i 1.32136 + 0.480935i
\(65\) −6.64196 + 7.04007i −0.823834 + 0.873213i
\(66\) 0 0
\(67\) −1.71358 0.860594i −0.209348 0.105138i 0.341036 0.940050i \(-0.389222\pi\)
−0.550384 + 0.834912i \(0.685519\pi\)
\(68\) −0.107405 1.84408i −0.0130248 0.223627i
\(69\) 0 0
\(70\) −7.87859 26.3163i −0.941671 3.14540i
\(71\) 1.17278 + 6.65118i 0.139184 + 0.789350i 0.971855 + 0.235582i \(0.0756996\pi\)
−0.832671 + 0.553768i \(0.813189\pi\)
\(72\) 0 0
\(73\) 1.37723 7.81064i 0.161192 0.914167i −0.791712 0.610895i \(-0.790810\pi\)
0.952904 0.303272i \(-0.0980791\pi\)
\(74\) −9.99572 + 1.16833i −1.16198 + 0.135816i
\(75\) 0 0
\(76\) 7.62705 + 8.08420i 0.874883 + 0.927322i
\(77\) −0.999649 2.31745i −0.113921 0.264098i
\(78\) 0 0
\(79\) −3.60662 2.37211i −0.405777 0.266884i 0.330172 0.943921i \(-0.392893\pi\)
−0.735949 + 0.677037i \(0.763264\pi\)
\(80\) −10.9788 −1.22747
\(81\) 0 0
\(82\) −10.3513 −1.14311
\(83\) 2.12790 + 1.39954i 0.233567 + 0.153620i 0.660898 0.750476i \(-0.270176\pi\)
−0.427331 + 0.904095i \(0.640546\pi\)
\(84\) 0 0
\(85\) 1.15014 + 2.66632i 0.124750 + 0.289203i
\(86\) 8.62597 + 9.14299i 0.930162 + 0.985914i
\(87\) 0 0
\(88\) 0.757624 0.0885535i 0.0807630 0.00943984i
\(89\) −0.935549 + 5.30576i −0.0991680 + 0.562410i 0.894222 + 0.447623i \(0.147729\pi\)
−0.993390 + 0.114786i \(0.963382\pi\)
\(90\) 0 0
\(91\) −1.43990 8.16609i −0.150943 0.856039i
\(92\) 1.62413 + 5.42498i 0.169327 + 0.565593i
\(93\) 0 0
\(94\) −1.32448 22.7404i −0.136610 2.34550i
\(95\) −15.6132 7.84124i −1.60188 0.804495i
\(96\) 0 0
\(97\) −6.51132 + 6.90160i −0.661125 + 0.700751i −0.967986 0.251003i \(-0.919240\pi\)
0.306862 + 0.951754i \(0.400721\pi\)
\(98\) 8.19821 + 2.98391i 0.828145 + 0.301420i
\(99\) 0 0
\(100\) −23.6314 + 8.60112i −2.36314 + 0.860112i
\(101\) −4.87482 + 11.3011i −0.485063 + 1.12450i 0.483413 + 0.875392i \(0.339397\pi\)
−0.968475 + 0.249109i \(0.919862\pi\)
\(102\) 0 0
\(103\) −4.78109 + 15.9700i −0.471095 + 1.57357i 0.311001 + 0.950410i \(0.399336\pi\)
−0.782096 + 0.623158i \(0.785849\pi\)
\(104\) 2.48915 + 0.290940i 0.244081 + 0.0285290i
\(105\) 0 0
\(106\) −1.41546 + 24.3024i −0.137481 + 2.36046i
\(107\) 1.84694 3.19899i 0.178550 0.309258i −0.762834 0.646595i \(-0.776193\pi\)
0.941384 + 0.337336i \(0.109526\pi\)
\(108\) 0 0
\(109\) 8.66961 + 15.0162i 0.830398 + 1.43829i 0.897723 + 0.440561i \(0.145220\pi\)
−0.0673245 + 0.997731i \(0.521446\pi\)
\(110\) −5.56988 + 2.79730i −0.531067 + 0.266712i
\(111\) 0 0
\(112\) 5.61678 7.54465i 0.530736 0.712902i
\(113\) −10.0311 + 2.37743i −0.943651 + 0.223649i −0.673516 0.739173i \(-0.735217\pi\)
−0.270135 + 0.962822i \(0.587068\pi\)
\(114\) 0 0
\(115\) −5.31594 7.14055i −0.495714 0.665859i
\(116\) 0.880217 + 0.738590i 0.0817261 + 0.0685764i
\(117\) 0 0
\(118\) 6.72485 5.64282i 0.619072 0.519464i
\(119\) −2.42072 0.573721i −0.221907 0.0525929i
\(120\) 0 0
\(121\) 8.71193 5.72992i 0.791993 0.520902i
\(122\) 0.472356 0.310674i 0.0427651 0.0281271i
\(123\) 0 0
\(124\) −9.49919 2.25135i −0.853052 0.202177i
\(125\) 15.3730 12.8995i 1.37500 1.15376i
\(126\) 0 0
\(127\) −10.1217 8.49315i −0.898159 0.753645i 0.0716705 0.997428i \(-0.477167\pi\)
−0.969830 + 0.243783i \(0.921611\pi\)
\(128\) 4.67882 + 6.28474i 0.413553 + 0.555498i
\(129\) 0 0
\(130\) −19.9259 + 4.72252i −1.74762 + 0.414192i
\(131\) 6.00822 8.07044i 0.524940 0.705117i −0.458018 0.888943i \(-0.651441\pi\)
0.982959 + 0.183825i \(0.0588481\pi\)
\(132\) 0 0
\(133\) 13.3763 6.71782i 1.15987 0.582509i
\(134\) −2.02853 3.51352i −0.175238 0.303522i
\(135\) 0 0
\(136\) 0.375938 0.651145i 0.0322365 0.0558352i
\(137\) 0.550552 9.45261i 0.0470368 0.807591i −0.889481 0.456972i \(-0.848934\pi\)
0.936518 0.350619i \(-0.114029\pi\)
\(138\) 0 0
\(139\) 10.4293 + 1.21902i 0.884605 + 0.103396i 0.546249 0.837623i \(-0.316055\pi\)
0.338356 + 0.941018i \(0.390129\pi\)
\(140\) 9.22162 30.8024i 0.779369 2.60327i
\(141\) 0 0
\(142\) −5.65973 + 13.1207i −0.474954 + 1.10107i
\(143\) −1.76795 + 0.643483i −0.147844 + 0.0538107i
\(144\) 0 0
\(145\) −1.69736 0.617790i −0.140958 0.0513047i
\(146\) 11.5154 12.2056i 0.953019 1.01014i
\(147\) 0 0
\(148\) −10.5264 5.28654i −0.865262 0.434551i
\(149\) −0.722705 12.4084i −0.0592063 1.01653i −0.888838 0.458222i \(-0.848487\pi\)
0.829632 0.558311i \(-0.188551\pi\)
\(150\) 0 0
\(151\) 5.22757 + 17.4613i 0.425413 + 1.42098i 0.855317 + 0.518105i \(0.173362\pi\)
−0.429904 + 0.902875i \(0.641453\pi\)
\(152\) 0.785565 + 4.45516i 0.0637177 + 0.361361i
\(153\) 0 0
\(154\) 0.927258 5.25874i 0.0747206 0.423761i
\(155\) 15.2426 1.78161i 1.22432 0.143102i
\(156\) 0 0
\(157\) −16.0388 17.0001i −1.28003 1.35675i −0.902459 0.430775i \(-0.858240\pi\)
−0.377573 0.925980i \(-0.623241\pi\)
\(158\) −3.61750 8.38631i −0.287793 0.667179i
\(159\) 0 0
\(160\) −25.9641 17.0768i −2.05264 1.35004i
\(161\) 7.62665 0.601064
\(162\) 0 0
\(163\) 11.7238 0.918278 0.459139 0.888364i \(-0.348158\pi\)
0.459139 + 0.888364i \(0.348158\pi\)
\(164\) −10.1227 6.65780i −0.790449 0.519886i
\(165\) 0 0
\(166\) 2.13432 + 4.94790i 0.165655 + 0.384032i
\(167\) 16.6160 + 17.6119i 1.28579 + 1.36285i 0.897314 + 0.441393i \(0.145516\pi\)
0.388472 + 0.921461i \(0.373003\pi\)
\(168\) 0 0
\(169\) 6.77255 0.791597i 0.520965 0.0608921i
\(170\) −1.06685 + 6.05041i −0.0818237 + 0.464045i
\(171\) 0 0
\(172\) 2.55482 + 14.4891i 0.194803 + 1.10478i
\(173\) 4.44902 + 14.8608i 0.338253 + 1.12984i 0.942824 + 0.333292i \(0.108159\pi\)
−0.604571 + 0.796551i \(0.706655\pi\)
\(174\) 0 0
\(175\) 1.96930 + 33.8115i 0.148865 + 2.55591i
\(176\) −1.90713 0.957795i −0.143755 0.0721965i
\(177\) 0 0
\(178\) −7.82238 + 8.29124i −0.586312 + 0.621455i
\(179\) 6.75474 + 2.45852i 0.504873 + 0.183759i 0.581884 0.813271i \(-0.302316\pi\)
−0.0770114 + 0.997030i \(0.524538\pi\)
\(180\) 0 0
\(181\) 7.27112 2.64647i 0.540458 0.196711i −0.0573439 0.998354i \(-0.518263\pi\)
0.597802 + 0.801644i \(0.296041\pi\)
\(182\) 6.94882 16.1092i 0.515081 1.19409i
\(183\) 0 0
\(184\) −0.661079 + 2.20816i −0.0487354 + 0.162787i
\(185\) 18.3919 + 2.14970i 1.35220 + 0.158049i
\(186\) 0 0
\(187\) −0.0328205 + 0.563506i −0.00240007 + 0.0412077i
\(188\) 13.3310 23.0900i 0.972264 1.68401i
\(189\) 0 0
\(190\) −18.4828 32.0132i −1.34089 2.32248i
\(191\) −9.00617 + 4.52307i −0.651664 + 0.327278i −0.743735 0.668475i \(-0.766948\pi\)
0.0920711 + 0.995752i \(0.470651\pi\)
\(192\) 0 0
\(193\) −9.54993 + 12.8278i −0.687419 + 0.923364i −0.999645 0.0266441i \(-0.991518\pi\)
0.312226 + 0.950008i \(0.398925\pi\)
\(194\) −19.5340 + 4.62964i −1.40246 + 0.332389i
\(195\) 0 0
\(196\) 6.09793 + 8.19094i 0.435566 + 0.585067i
\(197\) 8.40349 + 7.05136i 0.598724 + 0.502389i 0.891035 0.453934i \(-0.149980\pi\)
−0.292311 + 0.956323i \(0.594424\pi\)
\(198\) 0 0
\(199\) 2.68937 2.25665i 0.190644 0.159970i −0.542470 0.840075i \(-0.682511\pi\)
0.733114 + 0.680106i \(0.238066\pi\)
\(200\) −9.96020 2.36061i −0.704293 0.166920i
\(201\) 0 0
\(202\) −21.7561 + 14.3092i −1.53075 + 1.00679i
\(203\) 1.29292 0.850369i 0.0907454 0.0596842i
\(204\) 0 0
\(205\) 18.5328 + 4.39236i 1.29439 + 0.306776i
\(206\) −27.0186 + 22.6713i −1.88247 + 1.57958i
\(207\) 0 0
\(208\) −5.37122 4.50698i −0.372427 0.312503i
\(209\) −2.02810 2.72421i −0.140286 0.188437i
\(210\) 0 0
\(211\) −7.47663 + 1.77199i −0.514712 + 0.121989i −0.479760 0.877400i \(-0.659276\pi\)
−0.0349525 + 0.999389i \(0.511128\pi\)
\(212\) −17.0151 + 22.8552i −1.16860 + 1.56970i
\(213\) 0 0
\(214\) 6.98404 3.50752i 0.477419 0.239769i
\(215\) −11.5641 20.0297i −0.788667 1.36601i
\(216\) 0 0
\(217\) −6.57386 + 11.3863i −0.446262 + 0.772949i
\(218\) −2.13308 + 36.6235i −0.144470 + 2.48046i
\(219\) 0 0
\(220\) −7.24602 0.846938i −0.488526 0.0571005i
\(221\) −0.531883 + 1.77661i −0.0357783 + 0.119508i
\(222\) 0 0
\(223\) 4.29520 9.95739i 0.287628 0.666796i −0.711737 0.702447i \(-0.752091\pi\)
0.999364 + 0.0356504i \(0.0113503\pi\)
\(224\) 25.0185 9.10600i 1.67162 0.608420i
\(225\) 0 0
\(226\) −20.4960 7.45993i −1.36337 0.496227i
\(227\) 7.45351 7.90026i 0.494707 0.524358i −0.431126 0.902292i \(-0.641884\pi\)
0.925833 + 0.377933i \(0.123365\pi\)
\(228\) 0 0
\(229\) 2.04594 + 1.02751i 0.135199 + 0.0678997i 0.515113 0.857122i \(-0.327750\pi\)
−0.379914 + 0.925022i \(0.624046\pi\)
\(230\) −1.09513 18.8027i −0.0722110 1.23981i
\(231\) 0 0
\(232\) 0.134138 + 0.448052i 0.00880659 + 0.0294161i
\(233\) 3.09286 + 17.5405i 0.202620 + 1.14912i 0.901141 + 0.433526i \(0.142731\pi\)
−0.698521 + 0.715590i \(0.746158\pi\)
\(234\) 0 0
\(235\) −7.27807 + 41.2760i −0.474769 + 2.69255i
\(236\) 10.2057 1.19287i 0.664332 0.0776493i
\(237\) 0 0
\(238\) −3.61205 3.82855i −0.234135 0.248168i
\(239\) −4.85842 11.2631i −0.314265 0.728548i −1.00000 0.000696435i \(-0.999778\pi\)
0.685735 0.727851i \(-0.259481\pi\)
\(240\) 0 0
\(241\) −14.6206 9.61612i −0.941795 0.619429i −0.0169845 0.999856i \(-0.505407\pi\)
−0.924811 + 0.380427i \(0.875777\pi\)
\(242\) 22.0617 1.41818
\(243\) 0 0
\(244\) 0.661742 0.0423637
\(245\) −13.4118 8.82105i −0.856846 0.563556i
\(246\) 0 0
\(247\) −4.41956 10.2457i −0.281210 0.651918i
\(248\) −2.72686 2.89030i −0.173156 0.183534i
\(249\) 0 0
\(250\) 42.1719 4.92919i 2.66719 0.311749i
\(251\) 3.26810 18.5343i 0.206281 1.16988i −0.689131 0.724637i \(-0.742008\pi\)
0.895412 0.445239i \(-0.146881\pi\)
\(252\) 0 0
\(253\) −0.300488 1.70415i −0.0188915 0.107139i
\(254\) −8.01772 26.7810i −0.503076 1.68039i
\(255\) 0 0
\(256\) −0.344295 5.91131i −0.0215184 0.369457i
\(257\) 15.4090 + 7.73869i 0.961187 + 0.482726i 0.858964 0.512035i \(-0.171108\pi\)
0.102222 + 0.994762i \(0.467405\pi\)
\(258\) 0 0
\(259\) −10.8866 + 11.5391i −0.676462 + 0.717008i
\(260\) −22.5232 8.19776i −1.39683 0.508404i
\(261\) 0 0
\(262\) 20.0036 7.28070i 1.23582 0.449803i
\(263\) −9.74813 + 22.5987i −0.601095 + 1.39350i 0.297502 + 0.954721i \(0.403846\pi\)
−0.898597 + 0.438774i \(0.855413\pi\)
\(264\) 0 0
\(265\) 12.8464 42.9100i 0.789148 2.63594i
\(266\) 31.4554 + 3.67661i 1.92865 + 0.225427i
\(267\) 0 0
\(268\) 0.276110 4.74062i 0.0168661 0.289580i
\(269\) −5.32448 + 9.22227i −0.324639 + 0.562292i −0.981439 0.191773i \(-0.938576\pi\)
0.656800 + 0.754065i \(0.271910\pi\)
\(270\) 0 0
\(271\) 2.35817 + 4.08447i 0.143249 + 0.248114i 0.928718 0.370786i \(-0.120912\pi\)
−0.785469 + 0.618900i \(0.787578\pi\)
\(272\) −1.87986 + 0.944103i −0.113983 + 0.0572447i
\(273\) 0 0
\(274\) 11.9631 16.0692i 0.722715 0.970775i
\(275\) 7.47748 1.77220i 0.450909 0.106867i
\(276\) 0 0
\(277\) −3.94818 5.30333i −0.237223 0.318646i 0.667529 0.744583i \(-0.267352\pi\)
−0.904753 + 0.425937i \(0.859944\pi\)
\(278\) 17.0186 + 14.2803i 1.02071 + 0.856474i
\(279\) 0 0
\(280\) 10.0256 8.41245i 0.599142 0.502740i
\(281\) −2.40945 0.571049i −0.143736 0.0340659i 0.158118 0.987420i \(-0.449457\pi\)
−0.301854 + 0.953354i \(0.597605\pi\)
\(282\) 0 0
\(283\) −0.774627 + 0.509480i −0.0460468 + 0.0302855i −0.572324 0.820028i \(-0.693958\pi\)
0.526277 + 0.850313i \(0.323588\pi\)
\(284\) −13.9737 + 9.19066i −0.829188 + 0.545365i
\(285\) 0 0
\(286\) −3.87332 0.917994i −0.229034 0.0542821i
\(287\) −12.4999 + 10.4887i −0.737845 + 0.619126i
\(288\) 0 0
\(289\) −12.5965 10.5697i −0.740973 0.621750i
\(290\) −2.28215 3.06546i −0.134012 0.180010i
\(291\) 0 0
\(292\) 19.1114 4.52949i 1.11841 0.265068i
\(293\) 1.40037 1.88103i 0.0818106 0.109891i −0.759334 0.650701i \(-0.774475\pi\)
0.841144 + 0.540811i \(0.181882\pi\)
\(294\) 0 0
\(295\) −14.4344 + 7.24925i −0.840405 + 0.422067i
\(296\) −2.39729 4.15224i −0.139340 0.241344i
\(297\) 0 0
\(298\) 13.1488 22.7744i 0.761688 1.31928i
\(299\) 0.330572 5.67569i 0.0191174 0.328234i
\(300\) 0 0
\(301\) 19.6807 + 2.30034i 1.13438 + 0.132589i
\(302\) −11.0603 + 36.9438i −0.636446 + 2.12588i
\(303\) 0 0
\(304\) 5.01320 11.6219i 0.287527 0.666562i
\(305\) −0.977524 + 0.355790i −0.0559729 + 0.0203725i
\(306\) 0 0
\(307\) 14.3376 + 5.21846i 0.818289 + 0.297833i 0.717043 0.697028i \(-0.245495\pi\)
0.101246 + 0.994861i \(0.467717\pi\)
\(308\) 4.28910 4.54618i 0.244394 0.259043i
\(309\) 0 0
\(310\) 29.0156 + 14.5722i 1.64797 + 0.827644i
\(311\) 0.973556 + 16.7153i 0.0552053 + 0.947838i 0.906249 + 0.422744i \(0.138933\pi\)
−0.851044 + 0.525094i \(0.824030\pi\)
\(312\) 0 0
\(313\) −9.34214 31.2049i −0.528049 1.76381i −0.638178 0.769889i \(-0.720312\pi\)
0.110129 0.993917i \(-0.464873\pi\)
\(314\) −8.58676 48.6979i −0.484579 2.74818i
\(315\) 0 0
\(316\) 1.85633 10.5278i 0.104427 0.592234i
\(317\) −21.5243 + 2.51583i −1.20893 + 0.141303i −0.696582 0.717477i \(-0.745297\pi\)
−0.512344 + 0.858780i \(0.671223\pi\)
\(318\) 0 0
\(319\) −0.240953 0.255395i −0.0134908 0.0142994i
\(320\) −17.3454 40.2112i −0.969639 2.24788i
\(321\) 0 0
\(322\) 13.4815 + 8.86695i 0.751297 + 0.494136i
\(323\) −3.34769 −0.186271
\(324\) 0 0
\(325\) 25.2476 1.40049
\(326\) 20.7240 + 13.6304i 1.14780 + 0.754917i
\(327\) 0 0
\(328\) −1.95331 4.52827i −0.107853 0.250032i
\(329\) −24.6415 26.1184i −1.35853 1.43996i
\(330\) 0 0
\(331\) −23.6512 + 2.76443i −1.29999 + 0.151947i −0.737775 0.675046i \(-0.764124\pi\)
−0.562212 + 0.826993i \(0.690050\pi\)
\(332\) −1.09523 + 6.21136i −0.0601086 + 0.340893i
\(333\) 0 0
\(334\) 8.89581 + 50.4507i 0.486757 + 2.76054i
\(335\) 2.14096 + 7.15130i 0.116973 + 0.390717i
\(336\) 0 0
\(337\) 1.06959 + 18.3641i 0.0582643 + 1.00036i 0.893100 + 0.449859i \(0.148526\pi\)
−0.834835 + 0.550500i \(0.814437\pi\)
\(338\) 12.8921 + 6.47465i 0.701237 + 0.352174i
\(339\) 0 0
\(340\) −4.93480 + 5.23058i −0.267627 + 0.283668i
\(341\) 2.80323 + 1.02029i 0.151803 + 0.0552519i
\(342\) 0 0
\(343\) −9.01506 + 3.28121i −0.486767 + 0.177169i
\(344\) −2.37194 + 5.49878i −0.127887 + 0.296475i
\(345\) 0 0
\(346\) −9.41304 + 31.4417i −0.506048 + 1.69032i
\(347\) 16.7968 + 1.96326i 0.901698 + 0.105393i 0.554293 0.832322i \(-0.312989\pi\)
0.347405 + 0.937715i \(0.387063\pi\)
\(348\) 0 0
\(349\) −0.474881 + 8.15340i −0.0254198 + 0.436441i 0.961456 + 0.274959i \(0.0886644\pi\)
−0.986876 + 0.161482i \(0.948373\pi\)
\(350\) −35.8291 + 62.0578i −1.91514 + 3.31713i
\(351\) 0 0
\(352\) −3.02043 5.23154i −0.160989 0.278842i
\(353\) 21.9963 11.0469i 1.17074 0.587969i 0.246264 0.969203i \(-0.420797\pi\)
0.924479 + 0.381234i \(0.124501\pi\)
\(354\) 0 0
\(355\) 15.7005 21.0895i 0.833298 1.11931i
\(356\) −12.9824 + 3.07688i −0.688064 + 0.163074i
\(357\) 0 0
\(358\) 9.08193 + 12.1991i 0.479995 + 0.644745i
\(359\) −9.68682 8.12821i −0.511251 0.428990i 0.350318 0.936631i \(-0.386073\pi\)
−0.861569 + 0.507640i \(0.830518\pi\)
\(360\) 0 0
\(361\) 0.875105 0.734300i 0.0460582 0.0386474i
\(362\) 15.9299 + 3.77546i 0.837258 + 0.198434i
\(363\) 0 0
\(364\) 17.1564 11.2840i 0.899242 0.591441i
\(365\) −25.7960 + 16.9663i −1.35023 + 0.888058i
\(366\) 0 0
\(367\) −10.2113 2.42012i −0.533025 0.126329i −0.0447153 0.999000i \(-0.514238\pi\)
−0.488309 + 0.872671i \(0.662386\pi\)
\(368\) 4.94019 4.14531i 0.257525 0.216089i
\(369\) 0 0
\(370\) 30.0118 + 25.1829i 1.56024 + 1.30920i
\(371\) 22.9156 + 30.7809i 1.18972 + 1.59807i
\(372\) 0 0
\(373\) 11.4784 2.72044i 0.594330 0.140859i 0.0775669 0.996987i \(-0.475285\pi\)
0.516763 + 0.856128i \(0.327137\pi\)
\(374\) −0.713164 + 0.957945i −0.0368768 + 0.0495342i
\(375\) 0 0
\(376\) 9.69804 4.87054i 0.500138 0.251179i
\(377\) −0.576797 0.999042i −0.0297066 0.0514533i
\(378\) 0 0
\(379\) −9.06853 + 15.7072i −0.465819 + 0.806823i −0.999238 0.0390286i \(-0.987574\pi\)
0.533419 + 0.845851i \(0.320907\pi\)
\(380\) 2.51576 43.1939i 0.129056 2.21580i
\(381\) 0 0
\(382\) −21.1787 2.47544i −1.08360 0.126655i
\(383\) −4.45051 + 14.8657i −0.227410 + 0.759603i 0.765780 + 0.643102i \(0.222353\pi\)
−0.993191 + 0.116501i \(0.962832\pi\)
\(384\) 0 0
\(385\) −3.89157 + 9.02168i −0.198333 + 0.459787i
\(386\) −31.7952 + 11.5725i −1.61833 + 0.589025i
\(387\) 0 0
\(388\) −22.0802 8.03653i −1.12095 0.407993i
\(389\) 10.5917 11.2265i 0.537019 0.569207i −0.400873 0.916133i \(-0.631293\pi\)
0.937892 + 0.346927i \(0.112775\pi\)
\(390\) 0 0
\(391\) −1.52427 0.765518i −0.0770857 0.0387139i
\(392\) 0.241677 + 4.14943i 0.0122065 + 0.209578i
\(393\) 0 0
\(394\) 6.65664 + 22.2347i 0.335357 + 1.12017i
\(395\) 2.91816 + 16.5497i 0.146828 + 0.832705i
\(396\) 0 0
\(397\) 0.354695 2.01157i 0.0178016 0.100958i −0.974612 0.223899i \(-0.928121\pi\)
0.992414 + 0.122941i \(0.0392326\pi\)
\(398\) 7.37761 0.862319i 0.369806 0.0432241i
\(399\) 0 0
\(400\) 19.6532 + 20.8312i 0.982659 + 1.04156i
\(401\) 5.92303 + 13.7311i 0.295782 + 0.685700i 0.999698 0.0245834i \(-0.00782592\pi\)
−0.703916 + 0.710284i \(0.748567\pi\)
\(402\) 0 0
\(403\) 8.18862 + 5.38574i 0.407904 + 0.268283i
\(404\) −30.4790 −1.51639
\(405\) 0 0
\(406\) 3.27415 0.162493
\(407\) 3.00731 + 1.97794i 0.149067 + 0.0980429i
\(408\) 0 0
\(409\) 4.11470 + 9.53894i 0.203459 + 0.471670i 0.989143 0.146958i \(-0.0469481\pi\)
−0.785684 + 0.618628i \(0.787689\pi\)
\(410\) 27.6536 + 29.3111i 1.36571 + 1.44757i
\(411\) 0 0
\(412\) −41.0035 + 4.79262i −2.02010 + 0.236116i
\(413\) 2.40300 13.6281i 0.118244 0.670595i
\(414\) 0 0
\(415\) −1.72170 9.76427i −0.0845151 0.479309i
\(416\) −5.69221 19.0133i −0.279083 0.932203i
\(417\) 0 0
\(418\) −0.417807 7.17347i −0.0204356 0.350866i
\(419\) 0.473719 + 0.237911i 0.0231427 + 0.0116227i 0.460333 0.887746i \(-0.347730\pi\)
−0.437190 + 0.899369i \(0.644026\pi\)
\(420\) 0 0
\(421\) 22.0048 23.3237i 1.07245 1.13673i 0.0823146 0.996606i \(-0.473769\pi\)
0.990134 0.140123i \(-0.0447497\pi\)
\(422\) −15.2765 5.56019i −0.743649 0.270666i
\(423\) 0 0
\(424\) −10.8984 + 3.96668i −0.529272 + 0.192639i
\(425\) 3.00021 6.95527i 0.145532 0.337380i
\(426\) 0 0
\(427\) 0.255605 0.853780i 0.0123696 0.0413173i
\(428\) 9.08574 + 1.06197i 0.439176 + 0.0513323i
\(429\) 0 0
\(430\) 2.84524 48.8510i 0.137210 2.35580i
\(431\) −2.69146 + 4.66175i −0.129643 + 0.224549i −0.923538 0.383506i \(-0.874717\pi\)
0.793895 + 0.608055i \(0.208050\pi\)
\(432\) 0 0
\(433\) −16.6465 28.8325i −0.799978 1.38560i −0.919630 0.392787i \(-0.871511\pi\)
0.119652 0.992816i \(-0.461822\pi\)
\(434\) −24.8585 + 12.4844i −1.19325 + 0.599270i
\(435\) 0 0
\(436\) −25.6415 + 34.4425i −1.22801 + 1.64950i
\(437\) 9.98622 2.36678i 0.477705 0.113218i
\(438\) 0 0
\(439\) −11.1561 14.9852i −0.532451 0.715206i 0.451773 0.892133i \(-0.350792\pi\)
−0.984224 + 0.176927i \(0.943384\pi\)
\(440\) −2.27474 1.90873i −0.108444 0.0909953i
\(441\) 0 0
\(442\) −3.00574 + 2.52212i −0.142968 + 0.119965i
\(443\) −18.3619 4.35184i −0.872398 0.206762i −0.230053 0.973178i \(-0.573890\pi\)
−0.642345 + 0.766416i \(0.722038\pi\)
\(444\) 0 0
\(445\) 17.5232 11.5252i 0.830681 0.546348i
\(446\) 19.1693 12.6078i 0.907693 0.596999i
\(447\) 0 0
\(448\) 36.5072 + 8.65237i 1.72480 + 0.408786i
\(449\) −5.33643 + 4.47780i −0.251842 + 0.211320i −0.759965 0.649964i \(-0.774784\pi\)
0.508123 + 0.861284i \(0.330339\pi\)
\(450\) 0 0
\(451\) 2.83615 + 2.37981i 0.133549 + 0.112061i
\(452\) −15.2452 20.4778i −0.717072 0.963195i
\(453\) 0 0
\(454\) 22.3605 5.29954i 1.04943 0.248720i
\(455\) −19.2766 + 25.8929i −0.903700 + 1.21388i
\(456\) 0 0
\(457\) 33.5985 16.8738i 1.57167 0.789324i 0.572148 0.820150i \(-0.306110\pi\)
0.999525 + 0.0308265i \(0.00981393\pi\)
\(458\) 2.42197 + 4.19498i 0.113171 + 0.196018i
\(459\) 0 0
\(460\) 11.0226 19.0917i 0.513932 0.890157i
\(461\) 1.60695 27.5903i 0.0748432 1.28501i −0.726652 0.687006i \(-0.758925\pi\)
0.801495 0.598002i \(-0.204038\pi\)
\(462\) 0 0
\(463\) −24.4012 2.85209i −1.13402 0.132548i −0.471694 0.881763i \(-0.656357\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(464\) 0.375295 1.25357i 0.0174226 0.0581956i
\(465\) 0 0
\(466\) −14.9258 + 34.6020i −0.691426 + 1.60291i
\(467\) −7.38677 + 2.68856i −0.341819 + 0.124412i −0.507225 0.861814i \(-0.669329\pi\)
0.165406 + 0.986226i \(0.447107\pi\)
\(468\) 0 0
\(469\) −6.00971 2.18735i −0.277503 0.101003i
\(470\) −60.8539 + 64.5014i −2.80698 + 2.97523i
\(471\) 0 0
\(472\) 3.73748 + 1.87703i 0.172031 + 0.0863974i
\(473\) −0.261409 4.48821i −0.0120196 0.206368i
\(474\) 0 0
\(475\) 13.0713 + 43.6611i 0.599752 + 2.00331i
\(476\) −1.06981 6.06719i −0.0490346 0.278089i
\(477\) 0 0
\(478\) 4.50659 25.5581i 0.206127 1.16900i
\(479\) 17.5918 2.05619i 0.803791 0.0939497i 0.295731 0.955271i \(-0.404437\pi\)
0.508060 + 0.861322i \(0.330363\pi\)
\(480\) 0 0
\(481\) 8.11547 + 8.60190i 0.370034 + 0.392213i
\(482\) −14.6647 33.9966i −0.667959 1.54850i
\(483\) 0 0
\(484\) 21.5744 + 14.1897i 0.980654 + 0.644987i
\(485\) 36.9377 1.67725
\(486\) 0 0
\(487\) −42.1146 −1.90840 −0.954198 0.299175i \(-0.903289\pi\)
−0.954198 + 0.299175i \(0.903289\pi\)
\(488\) 0.225040 + 0.148011i 0.0101871 + 0.00670016i
\(489\) 0 0
\(490\) −13.4522 31.1857i −0.607709 1.40883i
\(491\) 4.99416 + 5.29350i 0.225383 + 0.238892i 0.830191 0.557479i \(-0.188231\pi\)
−0.604808 + 0.796372i \(0.706750\pi\)
\(492\) 0 0
\(493\) −0.343760 + 0.0401798i −0.0154822 + 0.00180961i
\(494\) 4.09952 23.2495i 0.184446 1.04604i
\(495\) 0 0
\(496\) 1.93053 + 10.9486i 0.0866833 + 0.491606i
\(497\) 6.46030 + 21.5789i 0.289784 + 0.967946i
\(498\) 0 0
\(499\) −0.937877 16.1027i −0.0419851 0.720857i −0.951965 0.306205i \(-0.900941\pi\)
0.909980 0.414651i \(-0.136096\pi\)
\(500\) 44.4107 + 22.3039i 1.98611 + 0.997461i
\(501\) 0 0
\(502\) 27.3255 28.9633i 1.21960 1.29270i
\(503\) 34.7114 + 12.6339i 1.54771 + 0.563319i 0.967878 0.251421i \(-0.0808977\pi\)
0.579827 + 0.814739i \(0.303120\pi\)
\(504\) 0 0
\(505\) 45.0235 16.3872i 2.00352 0.729221i
\(506\) 1.45012 3.36176i 0.0644658 0.149449i
\(507\) 0 0
\(508\) 9.38447 31.3463i 0.416369 1.39077i
\(509\) −11.6029 1.35619i −0.514291 0.0601120i −0.145011 0.989430i \(-0.546322\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(510\) 0 0
\(511\) 1.53804 26.4071i 0.0680389 1.16818i
\(512\) 14.0992 24.4205i 0.623101 1.07924i
\(513\) 0 0
\(514\) 18.2411 + 31.5945i 0.804580 + 1.39357i
\(515\) 57.9936 29.1255i 2.55550 1.28342i
\(516\) 0 0
\(517\) −4.86521 + 6.53511i −0.213972 + 0.287414i
\(518\) −32.6599 + 7.74053i −1.43499 + 0.340099i
\(519\) 0 0
\(520\) −5.82593 7.82558i −0.255484 0.343175i
\(521\) −0.659940 0.553755i −0.0289125 0.0242605i 0.628217 0.778038i \(-0.283785\pi\)
−0.657129 + 0.753778i \(0.728229\pi\)
\(522\) 0 0
\(523\) −6.06895 + 5.09246i −0.265377 + 0.222678i −0.765760 0.643126i \(-0.777637\pi\)
0.500383 + 0.865804i \(0.333192\pi\)
\(524\) 24.2445 + 5.74605i 1.05913 + 0.251018i
\(525\) 0 0
\(526\) −43.5055 + 28.6140i −1.89693 + 1.24763i
\(527\) 2.45674 1.61582i 0.107017 0.0703864i
\(528\) 0 0
\(529\) −17.2919 4.09826i −0.751822 0.178185i
\(530\) 72.5967 60.9158i 3.15340 2.64601i
\(531\) 0 0
\(532\) 28.3958 + 23.8269i 1.23112 + 1.03303i
\(533\) 7.26378 + 9.75694i 0.314629 + 0.422620i
\(534\) 0 0
\(535\) −13.9924 + 3.31627i −0.604945 + 0.143375i
\(536\) 1.15423 1.55040i 0.0498552 0.0669671i
\(537\) 0 0
\(538\) −20.1341 + 10.1117i −0.868042 + 0.435947i
\(539\) −1.56020 2.70235i −0.0672028 0.116399i
\(540\) 0 0
\(541\) 6.01461 10.4176i 0.258588 0.447888i −0.707276 0.706938i \(-0.750076\pi\)
0.965864 + 0.259050i \(0.0834094\pi\)
\(542\) −0.580206 + 9.96175i −0.0249220 + 0.427894i
\(543\) 0 0
\(544\) −5.91424 0.691275i −0.253571 0.0296382i
\(545\) 19.3594 64.6648i 0.829265 2.76994i
\(546\) 0 0
\(547\) −2.52741 + 5.85920i −0.108064 + 0.250521i −0.963664 0.267116i \(-0.913929\pi\)
0.855600 + 0.517638i \(0.173188\pi\)
\(548\) 22.0342 8.01980i 0.941255 0.342589i
\(549\) 0 0
\(550\) 15.2783 + 5.56083i 0.651467 + 0.237115i
\(551\) 1.42904 1.51469i 0.0608791 0.0645280i
\(552\) 0 0
\(553\) −12.8659 6.46151i −0.547115 0.274771i
\(554\) −0.813362 13.9649i −0.0345565 0.593311i
\(555\) 0 0
\(556\) 7.45782 + 24.9109i 0.316282 + 1.05646i
\(557\) −6.99671 39.6803i −0.296460 1.68131i −0.661207 0.750203i \(-0.729956\pi\)
0.364747 0.931107i \(-0.381156\pi\)
\(558\) 0 0
\(559\) 2.56494 14.5465i 0.108485 0.615251i
\(560\) −36.3688 + 4.25091i −1.53686 + 0.179634i
\(561\) 0 0
\(562\) −3.59523 3.81072i −0.151656 0.160746i
\(563\) −0.628050 1.45598i −0.0264692 0.0613624i 0.904469 0.426540i \(-0.140268\pi\)
−0.930938 + 0.365177i \(0.881008\pi\)
\(564\) 0 0
\(565\) 33.5302 + 22.0531i 1.41062 + 0.927782i
\(566\) −1.96163 −0.0824536
\(567\) 0 0
\(568\) −6.80775 −0.285647
\(569\) −9.22728 6.06888i −0.386828 0.254421i 0.341168 0.940002i \(-0.389178\pi\)
−0.727996 + 0.685582i \(0.759548\pi\)
\(570\) 0 0
\(571\) 3.13218 + 7.26120i 0.131078 + 0.303872i 0.971097 0.238684i \(-0.0767160\pi\)
−0.840020 + 0.542556i \(0.817457\pi\)
\(572\) −3.19733 3.38897i −0.133687 0.141700i
\(573\) 0 0
\(574\) −34.2903 + 4.00796i −1.43125 + 0.167289i
\(575\) −4.03238 + 22.8688i −0.168162 + 0.953695i
\(576\) 0 0
\(577\) −8.01656 45.4642i −0.333734 1.89270i −0.439392 0.898295i \(-0.644806\pi\)
0.105658 0.994402i \(-0.466305\pi\)
\(578\) −9.97807 33.3291i −0.415033 1.38631i
\(579\) 0 0
\(580\) −0.260091 4.46558i −0.0107997 0.185423i
\(581\) 7.59086 + 3.81227i 0.314922 + 0.158160i
\(582\) 0 0
\(583\) 5.97503 6.33317i 0.247461 0.262293i
\(584\) 7.51238 + 2.73428i 0.310865 + 0.113145i
\(585\) 0 0
\(586\) 4.66235 1.69696i 0.192600 0.0701007i
\(587\) 14.5601 33.7540i 0.600959 1.39318i −0.297755 0.954642i \(-0.596238\pi\)
0.898713 0.438536i \(-0.144503\pi\)
\(588\) 0 0
\(589\) −5.07421 + 16.9490i −0.209079 + 0.698373i
\(590\) −33.9437 3.96745i −1.39744 0.163337i
\(591\) 0 0
\(592\) −0.779979 + 13.3917i −0.0320570 + 0.550397i
\(593\) −7.17407 + 12.4258i −0.294604 + 0.510268i −0.974893 0.222676i \(-0.928521\pi\)
0.680289 + 0.732944i \(0.261854\pi\)
\(594\) 0 0
\(595\) 4.84238 + 8.38725i 0.198518 + 0.343844i
\(596\) 27.5064 13.8142i 1.12671 0.565853i
\(597\) 0 0
\(598\) 7.18306 9.64853i 0.293737 0.394558i
\(599\) −12.6650 + 3.00166i −0.517479 + 0.122645i −0.481053 0.876692i \(-0.659745\pi\)
−0.0364259 + 0.999336i \(0.511597\pi\)
\(600\) 0 0
\(601\) −3.76081 5.05165i −0.153407 0.206061i 0.718775 0.695242i \(-0.244703\pi\)
−0.872182 + 0.489181i \(0.837296\pi\)
\(602\) 32.1148 + 26.9476i 1.30890 + 1.09830i
\(603\) 0 0
\(604\) −34.5775 + 29.0140i −1.40694 + 1.18056i
\(605\) −39.4989 9.36140i −1.60586 0.380595i
\(606\) 0 0
\(607\) −10.9863 + 7.22582i −0.445921 + 0.293287i −0.752542 0.658545i \(-0.771172\pi\)
0.306620 + 0.951832i \(0.400802\pi\)
\(608\) 29.9330 19.6872i 1.21394 0.798423i
\(609\) 0 0
\(610\) −2.14161 0.507571i −0.0867112 0.0205509i
\(611\) −20.5052 + 17.2059i −0.829552 + 0.696076i
\(612\) 0 0
\(613\) −28.3321 23.7734i −1.14432 0.960200i −0.144750 0.989468i \(-0.546238\pi\)
−0.999572 + 0.0292684i \(0.990682\pi\)
\(614\) 19.2773 + 25.8939i 0.777967 + 1.04499i
\(615\) 0 0
\(616\) 2.47545 0.586692i 0.0997387 0.0236385i
\(617\) 19.3944 26.0512i 0.780789 1.04878i −0.216579 0.976265i \(-0.569490\pi\)
0.997367 0.0725160i \(-0.0231028\pi\)
\(618\) 0 0
\(619\) −38.3557 + 19.2630i −1.54165 + 0.774243i −0.997885 0.0649972i \(-0.979296\pi\)
−0.543760 + 0.839241i \(0.683000\pi\)
\(620\) 19.0021 + 32.9126i 0.763142 + 1.32180i
\(621\) 0 0
\(622\) −17.7127 + 30.6793i −0.710215 + 1.23013i
\(623\) −1.04479 + 17.9383i −0.0418586 + 0.718684i
\(624\) 0 0
\(625\) −27.1638 3.17499i −1.08655 0.126999i
\(626\) 19.7657 66.0220i 0.789995 2.63877i
\(627\) 0 0
\(628\) 22.9245 53.1451i 0.914789 2.12072i
\(629\) 3.33404 1.21349i 0.132937 0.0483851i
\(630\) 0 0
\(631\) 13.0635 + 4.75472i 0.520049 + 0.189282i 0.588690 0.808359i \(-0.299644\pi\)
−0.0686408 + 0.997641i \(0.521866\pi\)
\(632\) 2.98603 3.16501i 0.118778 0.125897i
\(633\) 0 0
\(634\) −40.9732 20.5775i −1.62725 0.817238i
\(635\) 2.99082 + 51.3504i 0.118687 + 2.03778i
\(636\) 0 0
\(637\) −2.94031 9.82133i −0.116499 0.389135i
\(638\) −0.129000 0.731597i −0.00510717 0.0289642i
\(639\) 0 0
\(640\) 5.29656 30.0383i 0.209365 1.18737i
\(641\) 2.60191 0.304120i 0.102769 0.0120120i −0.0645528 0.997914i \(-0.520562\pi\)
0.167322 + 0.985902i \(0.446488\pi\)
\(642\) 0 0
\(643\) 0.0703439 + 0.0745602i 0.00277409 + 0.00294037i 0.728759 0.684770i \(-0.240097\pi\)
−0.725985 + 0.687710i \(0.758616\pi\)
\(644\) 7.48068 + 17.3422i 0.294780 + 0.683377i
\(645\) 0 0
\(646\) −5.91768 3.89212i −0.232828 0.153133i
\(647\) −25.1564 −0.988998 −0.494499 0.869178i \(-0.664649\pi\)
−0.494499 + 0.869178i \(0.664649\pi\)
\(648\) 0 0
\(649\) −3.13983 −0.123249
\(650\) 44.6299 + 29.3536i 1.75053 + 1.15134i
\(651\) 0 0
\(652\) 11.4994 + 26.6586i 0.450351 + 1.04403i
\(653\) 5.11903 + 5.42585i 0.200323 + 0.212330i 0.819746 0.572728i \(-0.194115\pi\)
−0.619423 + 0.785058i \(0.712633\pi\)
\(654\) 0 0
\(655\) −38.9034 + 4.54715i −1.52008 + 0.177672i
\(656\) −2.39595 + 13.5881i −0.0935463 + 0.530527i
\(657\) 0 0
\(658\) −13.1924 74.8181i −0.514295 2.91671i
\(659\) −4.66341 15.5769i −0.181661 0.606789i −0.999508 0.0313543i \(-0.990018\pi\)
0.817848 0.575435i \(-0.195167\pi\)
\(660\) 0 0
\(661\) −1.09720 18.8381i −0.0426760 0.732718i −0.949993 0.312271i \(-0.898910\pi\)
0.907317 0.420447i \(-0.138127\pi\)
\(662\) −45.0219 22.6109i −1.74983 0.878796i
\(663\) 0 0
\(664\) −1.76175 + 1.86735i −0.0683691 + 0.0724670i
\(665\) −54.7570 19.9299i −2.12339 0.772849i
\(666\) 0 0
\(667\) 0.997034 0.362891i 0.0386053 0.0140512i
\(668\) −23.7496 + 55.0578i −0.918901 + 2.13025i
\(669\) 0 0
\(670\) −4.52974 + 15.1304i −0.174999 + 0.584538i
\(671\) −0.200845 0.0234754i −0.00775354 0.000906259i
\(672\) 0 0
\(673\) 0.475690 8.16727i 0.0183365 0.314825i −0.976651 0.214830i \(-0.931080\pi\)
0.994988 0.0999952i \(-0.0318827\pi\)
\(674\) −19.4599 + 33.7056i −0.749569 + 1.29829i
\(675\) 0 0
\(676\) 8.44293 + 14.6236i 0.324728 + 0.562445i
\(677\) −20.6357 + 10.3637i −0.793096 + 0.398308i −0.798740 0.601676i \(-0.794500\pi\)
0.00564403 + 0.999984i \(0.498203\pi\)
\(678\) 0 0
\(679\) −18.8974 + 25.3837i −0.725217 + 0.974136i
\(680\) −2.84811 + 0.675015i −0.109220 + 0.0258857i
\(681\) 0 0
\(682\) 3.76902 + 5.06267i 0.144323 + 0.193860i
\(683\) −14.3566 12.0466i −0.549340 0.460951i 0.325378 0.945584i \(-0.394509\pi\)
−0.874717 + 0.484633i \(0.838953\pi\)
\(684\) 0 0
\(685\) −28.2370 + 23.6937i −1.07888 + 0.905289i
\(686\) −19.7506 4.68099i −0.754083 0.178721i
\(687\) 0 0
\(688\) 13.9985 9.20698i 0.533689 0.351013i
\(689\) 23.9002 15.7194i 0.910525 0.598862i
\(690\) 0 0
\(691\) −6.47006 1.53343i −0.246133 0.0583345i 0.105698 0.994398i \(-0.466292\pi\)
−0.351830 + 0.936064i \(0.614441\pi\)
\(692\) −29.4279 + 24.6929i −1.11868 + 0.938684i
\(693\) 0 0
\(694\) 27.4089 + 22.9988i 1.04043 + 0.873023i
\(695\) −24.4102 32.7885i −0.925931 1.24374i
\(696\) 0 0
\(697\) 3.55103 0.841610i 0.134505 0.0318782i
\(698\) −10.3188 + 13.8605i −0.390572 + 0.524630i
\(699\) 0 0
\(700\) −74.9521 + 37.6423i −2.83292 + 1.42275i
\(701\) 12.1477 + 21.0405i 0.458813 + 0.794687i 0.998899 0.0469230i \(-0.0149415\pi\)
−0.540086 + 0.841610i \(0.681608\pi\)
\(702\) 0 0
\(703\) −10.6738 + 18.4876i −0.402571 + 0.697274i
\(704\) 0.494971 8.49832i 0.0186549 0.320292i
\(705\) 0 0
\(706\) 51.7260 + 6.04590i 1.94673 + 0.227540i
\(707\) −11.7728 + 39.3240i −0.442763 + 1.47893i
\(708\) 0 0
\(709\) 11.8515 27.4749i 0.445093 1.03184i −0.537024 0.843567i \(-0.680451\pi\)
0.982117 0.188274i \(-0.0602893\pi\)
\(710\) 52.2729 19.0258i 1.96177 0.714024i
\(711\) 0 0
\(712\) −5.10315 1.85740i −0.191249 0.0696089i
\(713\) −6.18613 + 6.55691i −0.231672 + 0.245558i
\(714\) 0 0
\(715\) 6.54519 + 3.28712i 0.244776 + 0.122931i
\(716\) 1.03504 + 17.7710i 0.0386814 + 0.664134i
\(717\) 0 0
\(718\) −7.67320 25.6303i −0.286361 0.956514i
\(719\) −2.12889 12.0735i −0.0793943 0.450267i −0.998426 0.0560838i \(-0.982139\pi\)
0.919032 0.394183i \(-0.128973\pi\)
\(720\) 0 0
\(721\) −9.65461 + 54.7540i −0.359556 + 2.03915i
\(722\) 2.40063 0.280593i 0.0893422 0.0104426i
\(723\) 0 0
\(724\) 13.1497 + 13.9379i 0.488706 + 0.517998i
\(725\) 1.86626 + 4.32649i 0.0693113 + 0.160682i
\(726\) 0 0
\(727\) 40.9555 + 26.9369i 1.51896 + 0.999033i 0.988483 + 0.151331i \(0.0483560\pi\)
0.530473 + 0.847702i \(0.322014\pi\)
\(728\) 8.35832 0.309780
\(729\) 0 0
\(730\) −65.3249 −2.41778
\(731\) −3.70251 2.43518i −0.136942 0.0900683i
\(732\) 0 0
\(733\) −8.00055 18.5474i −0.295507 0.685063i 0.704181 0.710020i \(-0.251314\pi\)
−0.999689 + 0.0249576i \(0.992055\pi\)
\(734\) −15.2367 16.1499i −0.562396 0.596104i
\(735\) 0 0
\(736\) 18.1310 2.11921i 0.668317 0.0781150i
\(737\) −0.251977 + 1.42903i −0.00928168 + 0.0526390i
\(738\) 0 0
\(739\) 0.349401 + 1.98155i 0.0128529 + 0.0728925i 0.990560 0.137083i \(-0.0437727\pi\)
−0.977707 + 0.209975i \(0.932662\pi\)
\(740\) 13.1517 + 43.9297i 0.483465 + 1.61489i
\(741\) 0 0
\(742\) 4.72082 + 81.0533i 0.173307 + 2.97556i
\(743\) 19.2775 + 9.68153i 0.707223 + 0.355181i 0.765779 0.643103i \(-0.222353\pi\)
−0.0585563 + 0.998284i \(0.518650\pi\)
\(744\) 0 0
\(745\) −33.2051 + 35.1953i −1.21654 + 1.28946i
\(746\) 23.4531 + 8.53624i 0.858680 + 0.312534i
\(747\) 0 0
\(748\) −1.31354 + 0.478091i −0.0480279 + 0.0174807i
\(749\) 4.87962 11.3122i 0.178298 0.413340i
\(750\) 0 0
\(751\) 4.15221 13.8693i 0.151516 0.506099i −0.848206 0.529666i \(-0.822317\pi\)
0.999722 + 0.0235670i \(0.00750231\pi\)
\(752\) −30.1577 3.52494i −1.09974 0.128541i
\(753\) 0 0
\(754\) 0.141915 2.43659i 0.00516826 0.0887355i
\(755\) 35.4783 61.4503i 1.29119 2.23640i
\(756\) 0 0
\(757\) −5.26451 9.11840i −0.191342 0.331414i 0.754353 0.656469i \(-0.227951\pi\)
−0.945695 + 0.325055i \(0.894617\pi\)
\(758\) −34.2919 + 17.2220i −1.24554 + 0.625533i
\(759\) 0 0
\(760\) 10.5167 14.1264i 0.381480 0.512417i
\(761\) −41.1358 + 9.74936i −1.49117 + 0.353414i −0.893769 0.448528i \(-0.851949\pi\)
−0.597402 + 0.801942i \(0.703800\pi\)
\(762\) 0 0
\(763\) 34.5335 + 46.3865i 1.25020 + 1.67930i
\(764\) −19.1188 16.0425i −0.691693 0.580399i
\(765\) 0 0
\(766\) −25.1504 + 21.1037i −0.908721 + 0.762507i
\(767\) −10.0378 2.37900i −0.362443 0.0859006i
\(768\) 0 0
\(769\) 7.53547 4.95616i 0.271736 0.178724i −0.406326 0.913728i \(-0.633190\pi\)
0.678062 + 0.735005i \(0.262820\pi\)
\(770\) −17.3679 + 11.4231i −0.625897 + 0.411659i
\(771\) 0 0
\(772\) −38.5361 9.13322i −1.38694 0.328712i
\(773\) 0.551231 0.462537i 0.0198264 0.0166363i −0.632821 0.774298i \(-0.718103\pi\)
0.652647 + 0.757662i \(0.273658\pi\)
\(774\) 0 0
\(775\) −30.6663 25.7321i −1.10157 0.924325i
\(776\) −5.71134 7.67167i −0.205025 0.275397i
\(777\) 0 0
\(778\) 31.7750 7.53081i 1.13919 0.269993i
\(779\) −13.1122 + 17.6128i −0.469794 + 0.631043i
\(780\) 0 0
\(781\) 4.56720 2.29373i 0.163427 0.0820763i
\(782\) −1.80442 3.12535i −0.0645261 0.111762i
\(783\) 0 0
\(784\) 5.81453 10.0711i 0.207662 0.359681i
\(785\) −5.29033 + 90.8314i −0.188820 + 3.24191i
\(786\) 0 0
\(787\) −15.3231 1.79102i −0.546210 0.0638428i −0.161487 0.986875i \(-0.551629\pi\)
−0.384723 + 0.923032i \(0.625703\pi\)
\(788\) −7.79138 + 26.0250i −0.277556 + 0.927102i
\(789\) 0 0
\(790\) −14.0827 + 32.6474i −0.501041 + 1.16154i
\(791\) −32.3091 + 11.7595i −1.14878 + 0.418121i
\(792\) 0 0
\(793\) −0.624297 0.227226i −0.0221695 0.00806902i
\(794\) 2.96570 3.14346i 0.105249 0.111557i
\(795\) 0 0
\(796\) 7.76927 + 3.90187i 0.275374 + 0.138298i
\(797\) −0.809987 13.9069i −0.0286912 0.492609i −0.981792 0.189957i \(-0.939165\pi\)
0.953101 0.302652i \(-0.0978719\pi\)
\(798\) 0 0
\(799\) 2.30326 + 7.69342i 0.0814835 + 0.272174i
\(800\) 14.0768 + 79.8335i 0.497690 + 2.82254i
\(801\) 0 0
\(802\) −5.49411 + 31.1586i −0.194004 + 1.10025i
\(803\) −5.96118 + 0.696763i −0.210366 + 0.0245882i
\(804\) 0 0
\(805\) −20.3746 21.5958i −0.718109 0.761152i
\(806\) 8.21332 + 19.0406i 0.289302 + 0.670677i
\(807\) 0 0
\(808\) −10.3651 6.81721i −0.364642 0.239829i
\(809\) −40.8781 −1.43720 −0.718599 0.695424i \(-0.755216\pi\)
−0.718599 + 0.695424i \(0.755216\pi\)
\(810\) 0 0
\(811\) 51.1039 1.79450 0.897250 0.441524i \(-0.145562\pi\)
0.897250 + 0.441524i \(0.145562\pi\)
\(812\) 3.20182 + 2.10587i 0.112362 + 0.0739016i
\(813\) 0 0
\(814\) 3.01639 + 6.99277i 0.105724 + 0.245096i
\(815\) −31.3201 33.1973i −1.09709 1.16285i
\(816\) 0 0
\(817\) 26.4834 3.09547i 0.926538 0.108297i
\(818\) −3.81673 + 21.6457i −0.133449 + 0.756825i
\(819\) 0 0
\(820\) 8.19037 + 46.4499i 0.286020 + 1.62210i
\(821\) 13.9304 + 46.5308i 0.486174 + 1.62393i 0.751470 + 0.659768i \(0.229345\pi\)
−0.265296 + 0.964167i \(0.585470\pi\)
\(822\) 0 0
\(823\) −1.57149 26.9814i −0.0547787 0.940513i −0.908002 0.418967i \(-0.862392\pi\)
0.853223 0.521546i \(-0.174645\pi\)
\(824\) −15.0162 7.54139i −0.523112 0.262717i
\(825\) 0 0
\(826\) 20.0922 21.2964i 0.699096 0.740998i
\(827\) −14.9793 5.45201i −0.520880 0.189585i 0.0681816 0.997673i \(-0.478280\pi\)
−0.589062 + 0.808088i \(0.700503\pi\)
\(828\) 0 0
\(829\) 1.59698 0.581253i 0.0554654 0.0201877i −0.314138 0.949377i \(-0.601716\pi\)
0.369604 + 0.929189i \(0.379493\pi\)
\(830\) 8.30876 19.2619i 0.288401 0.668590i
\(831\) 0 0
\(832\) 8.02140 26.7933i 0.278092 0.928892i
\(833\) −3.05500 0.357079i −0.105850 0.0123720i
\(834\) 0 0
\(835\) 5.48073 94.1005i 0.189669 3.25648i
\(836\) 4.20527 7.28373i 0.145442 0.251913i
\(837\) 0 0
\(838\) 0.560786 + 0.971310i 0.0193720 + 0.0335534i
\(839\) −41.4212 + 20.8025i −1.43002 + 0.718183i −0.984220 0.176949i \(-0.943377\pi\)
−0.445800 + 0.895132i \(0.647081\pi\)
\(840\) 0 0
\(841\) −17.1890 + 23.0889i −0.592725 + 0.796168i
\(842\) 66.0144 15.6457i 2.27501 0.539187i
\(843\) 0 0
\(844\) −11.3628 15.2629i −0.391125 0.525372i
\(845\) −20.3343 17.0625i −0.699523 0.586969i
\(846\) 0 0
\(847\) 26.6409 22.3544i 0.915393 0.768106i
\(848\) 31.5740 + 7.48317i 1.08426 + 0.256973i
\(849\) 0 0
\(850\) 13.3898 8.80663i 0.459267 0.302065i
\(851\) −9.08757 + 5.97699i −0.311518 + 0.204889i
\(852\) 0 0
\(853\) −23.5426 5.57970i −0.806083 0.191045i −0.193139 0.981171i \(-0.561867\pi\)
−0.612944 + 0.790126i \(0.710015\pi\)
\(854\) 1.44446 1.21204i 0.0494283 0.0414753i
\(855\) 0 0
\(856\) 2.85228 + 2.39335i 0.0974891 + 0.0818031i
\(857\) −7.66072 10.2901i −0.261685 0.351504i 0.651789 0.758400i \(-0.274019\pi\)
−0.913475 + 0.406896i \(0.866611\pi\)
\(858\) 0 0
\(859\) 19.9669 4.73224i 0.681262 0.161462i 0.124607 0.992206i \(-0.460233\pi\)
0.556654 + 0.830744i \(0.312085\pi\)
\(860\) 34.2024 45.9419i 1.16629 1.56660i
\(861\) 0 0
\(862\) −10.1775 + 5.11136i −0.346649 + 0.174093i
\(863\) 18.5110 + 32.0620i 0.630121 + 1.09140i 0.987527 + 0.157453i \(0.0503282\pi\)
−0.357405 + 0.933949i \(0.616338\pi\)
\(864\) 0 0
\(865\) 30.1945 52.2984i 1.02664 1.77820i
\(866\) 4.09570 70.3205i 0.139178 2.38959i
\(867\) 0 0
\(868\) −32.3391 3.77990i −1.09766 0.128298i
\(869\) −0.936890 + 3.12943i −0.0317818 + 0.106159i
\(870\) 0 0
\(871\) −1.88830 + 4.37757i −0.0639826 + 0.148328i
\(872\) −16.4237 + 5.97775i −0.556178 + 0.202432i
\(873\) 0 0
\(874\) 20.4042 + 7.42652i 0.690182 + 0.251206i
\(875\) 45.9306 48.6836i 1.55274 1.64581i
\(876\) 0 0
\(877\) 38.7549 + 19.4634i 1.30866 + 0.657233i 0.959996 0.280015i \(-0.0903394\pi\)
0.348663 + 0.937248i \(0.386636\pi\)
\(878\) −2.29826 39.4596i −0.0775625 1.33170i
\(879\) 0 0
\(880\) 2.38277 + 7.95901i 0.0803232 + 0.268298i
\(881\) 1.78531 + 10.1250i 0.0601486 + 0.341120i 1.00000 0.000464198i \(-0.000147759\pi\)
−0.939851 + 0.341584i \(0.889037\pi\)
\(882\) 0 0
\(883\) 1.36337 7.73205i 0.0458810 0.260204i −0.953236 0.302228i \(-0.902269\pi\)
0.999117 + 0.0420240i \(0.0133806\pi\)
\(884\) −4.56152 + 0.533166i −0.153421 + 0.0179323i
\(885\) 0 0
\(886\) −27.3985 29.0407i −0.920469 0.975640i
\(887\) −13.8603 32.1317i −0.465382 1.07888i −0.975744 0.218917i \(-0.929748\pi\)
0.510362 0.859960i \(-0.329512\pi\)
\(888\) 0 0
\(889\) −36.8182 24.2157i −1.23484 0.812169i
\(890\) 44.3751 1.48746
\(891\) 0 0
\(892\) 26.8550 0.899172
\(893\) −40.3705 26.5521i −1.35095 0.888531i
\(894\) 0 0
\(895\) −11.0837 25.6948i −0.370486 0.858883i
\(896\) 17.9327 + 19.0075i 0.599088 + 0.634996i
\(897\) 0 0
\(898\) −14.6391 + 1.71107i −0.488515 + 0.0570992i
\(899\) −0.317622 + 1.80133i −0.0105933 + 0.0600776i
\(900\) 0 0
\(901\) −1.49032 8.45204i −0.0496498 0.281578i
\(902\) 2.24659 + 7.50414i 0.0748034 + 0.249861i
\(903\) 0 0
\(904\) −0.604206 10.3738i −0.0200956 0.345028i
\(905\) −26.9186 13.5190i −0.894804 0.449387i
\(906\) 0 0
\(907\) 34.4760 36.5424i 1.14476 1.21337i 0.171124 0.985250i \(-0.445260\pi\)
0.973633 0.228122i \(-0.0732584\pi\)
\(908\) 25.2752 + 9.19941i 0.838786 + 0.305293i
\(909\) 0 0
\(910\) −64.1788 + 23.3592i −2.12751 + 0.774349i
\(911\) −9.76794 + 22.6446i −0.323626 + 0.750250i 0.676281 + 0.736643i \(0.263590\pi\)
−0.999907 + 0.0136062i \(0.995669\pi\)
\(912\) 0 0
\(913\) 0.552762 1.84635i 0.0182938 0.0611054i
\(914\) 79.0097 + 9.23490i 2.61341 + 0.305463i
\(915\) 0 0
\(916\) −0.329662 + 5.66008i −0.0108923 + 0.187014i
\(917\) 16.7783 29.0608i 0.554067 0.959672i
\(918\) 0 0
\(919\) −4.12738 7.14883i −0.136150 0.235818i 0.789886 0.613253i \(-0.210139\pi\)
−0.926036 + 0.377435i \(0.876806\pi\)
\(920\) 8.01873 4.02716i 0.264370 0.132772i
\(921\) 0 0
\(922\) 34.9178 46.9027i 1.14996 1.54466i
\(923\) 16.3389 3.87238i 0.537800 0.127461i
\(924\) 0 0
\(925\) −28.8445 38.7449i −0.948403 1.27393i
\(926\) −39.8178 33.4111i −1.30849 1.09796i
\(927\) 0 0
\(928\) 2.83740 2.38086i 0.0931422 0.0781556i
\(929\) −9.54344 2.26184i −0.313110 0.0742085i 0.0710563 0.997472i \(-0.477363\pi\)
−0.384166 + 0.923264i \(0.625511\pi\)
\(930\) 0 0
\(931\) 15.4619 10.1695i 0.506744 0.333291i
\(932\) −36.8515 + 24.2376i −1.20711 + 0.793929i
\(933\) 0 0
\(934\) −16.1833 3.83551i −0.529534 0.125502i
\(935\) 1.68332 1.41247i 0.0550503 0.0461927i
\(936\) 0 0
\(937\) 33.8490 + 28.4027i 1.10580 + 0.927875i 0.997801 0.0662763i \(-0.0211119\pi\)
0.107997 + 0.994151i \(0.465556\pi\)
\(938\) −8.08021 10.8536i −0.263828 0.354383i
\(939\) 0 0
\(940\) −100.996 + 23.9365i −3.29412 + 0.780721i
\(941\) −6.35395 + 8.53483i −0.207133 + 0.278228i −0.893534 0.448995i \(-0.851782\pi\)
0.686401 + 0.727223i \(0.259189\pi\)
\(942\) 0 0
\(943\) −9.99777 + 5.02107i −0.325572 + 0.163508i
\(944\) −5.85073 10.1338i −0.190425 0.329826i
\(945\) 0 0
\(946\) 4.75603 8.23768i 0.154632 0.267830i
\(947\) 0.639255 10.9756i 0.0207730 0.356659i −0.971865 0.235539i \(-0.924314\pi\)
0.992638 0.121120i \(-0.0386485\pi\)
\(948\) 0 0
\(949\) −19.5853 2.28919i −0.635766 0.0743104i
\(950\) −27.6556 + 92.3763i −0.897267 + 2.99708i
\(951\) 0 0
\(952\) 0.993232 2.30257i 0.0321908 0.0746267i
\(953\) 39.7723 14.4759i 1.28835 0.468921i 0.395165 0.918610i \(-0.370687\pi\)
0.893185 + 0.449689i \(0.148465\pi\)
\(954\) 0 0
\(955\) 36.8676 + 13.4187i 1.19301 + 0.434219i
\(956\) 20.8456 22.0950i 0.674194 0.714604i
\(957\) 0 0
\(958\) 33.4874 + 16.8180i 1.08193 + 0.543366i
\(959\) −1.83620 31.5263i −0.0592939 1.01804i
\(960\) 0 0
\(961\) 4.43390 + 14.8103i 0.143029 + 0.477751i
\(962\) 4.34483 + 24.6407i 0.140083 + 0.794449i
\(963\) 0 0
\(964\) 7.52523 42.6777i 0.242371 1.37456i
\(965\) 61.8360 7.22759i 1.99057 0.232664i
\(966\) 0 0
\(967\) 5.70365 + 6.04552i 0.183417 + 0.194411i 0.812558 0.582881i \(-0.198075\pi\)
−0.629141 + 0.777291i \(0.716593\pi\)
\(968\) 4.16306 + 9.65107i 0.133806 + 0.310197i
\(969\) 0 0
\(970\) 65.2943 + 42.9448i 2.09647 + 1.37887i
\(971\) −17.9539 −0.576169 −0.288084 0.957605i \(-0.593018\pi\)
−0.288084 + 0.957605i \(0.593018\pi\)
\(972\) 0 0
\(973\) 35.0207 1.12271
\(974\) −74.4455 48.9636i −2.38539 1.56890i
\(975\) 0 0
\(976\) −0.298486 0.691968i −0.00955430 0.0221494i
\(977\) 16.7513 + 17.7553i 0.535922 + 0.568044i 0.937591 0.347741i \(-0.113051\pi\)
−0.401669 + 0.915785i \(0.631570\pi\)
\(978\) 0 0
\(979\) 4.04943 0.473310i 0.129420 0.0151271i
\(980\) 6.90304 39.1491i 0.220509 1.25057i
\(981\) 0 0
\(982\) 2.67375 + 15.1636i 0.0853228 + 0.483890i
\(983\) −13.3688 44.6549i −0.426399 1.42427i −0.853986 0.520297i \(-0.825821\pi\)
0.427587 0.903974i \(-0.359364\pi\)
\(984\) 0 0
\(985\) −2.48310 42.6332i −0.0791182 1.35841i
\(986\) −0.654375 0.328639i −0.0208395 0.0104660i
\(987\) 0 0
\(988\) 18.9626 20.0992i 0.603281 0.639441i
\(989\) 12.7663 + 4.64654i 0.405944 + 0.147751i
\(990\) 0 0
\(991\) −55.3339 + 20.1399i −1.75774 + 0.639765i −0.999919 0.0126995i \(-0.995958\pi\)
−0.757820 + 0.652464i \(0.773735\pi\)
\(992\) −12.4643 + 28.8954i −0.395741 + 0.917430i
\(993\) 0 0
\(994\) −13.6684 + 45.6557i −0.433536 + 1.44811i
\(995\) −13.5746 1.58665i −0.430344 0.0503001i
\(996\) 0 0
\(997\) −3.50559 + 60.1886i −0.111023 + 1.90619i 0.241517 + 0.970397i \(0.422355\pi\)
−0.352540 + 0.935797i \(0.614682\pi\)
\(998\) 17.0636 29.5550i 0.540138 0.935547i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.c.703.7 144
3.2 odd 2 729.2.g.b.703.2 144
9.2 odd 6 729.2.g.a.217.2 144
9.4 even 3 81.2.g.a.25.2 yes 144
9.5 odd 6 243.2.g.a.73.7 144
9.7 even 3 729.2.g.d.217.7 144
81.13 even 27 729.2.g.d.514.7 144
81.14 odd 54 729.2.g.b.28.2 144
81.38 odd 54 6561.2.a.d.1.61 72
81.40 even 27 81.2.g.a.13.2 144
81.41 odd 54 243.2.g.a.10.7 144
81.43 even 27 6561.2.a.c.1.12 72
81.67 even 27 inner 729.2.g.c.28.7 144
81.68 odd 54 729.2.g.a.514.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.2 144 81.40 even 27
81.2.g.a.25.2 yes 144 9.4 even 3
243.2.g.a.10.7 144 81.41 odd 54
243.2.g.a.73.7 144 9.5 odd 6
729.2.g.a.217.2 144 9.2 odd 6
729.2.g.a.514.2 144 81.68 odd 54
729.2.g.b.28.2 144 81.14 odd 54
729.2.g.b.703.2 144 3.2 odd 2
729.2.g.c.28.7 144 81.67 even 27 inner
729.2.g.c.703.7 144 1.1 even 1 trivial
729.2.g.d.217.7 144 9.7 even 3
729.2.g.d.514.7 144 81.13 even 27
6561.2.a.c.1.12 72 81.43 even 27
6561.2.a.d.1.61 72 81.38 odd 54