Properties

Label 729.2.g.c.55.8
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.8
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.c.676.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03275 - 2.39419i) q^{2} +(-3.29308 - 3.49047i) q^{4} +(-0.0188451 - 0.323558i) q^{5} +(-3.75109 - 0.889024i) q^{7} +(-6.85740 + 2.49589i) q^{8} +O(q^{10})\) \(q+(1.03275 - 2.39419i) q^{2} +(-3.29308 - 3.49047i) q^{4} +(-0.0188451 - 0.323558i) q^{5} +(-3.75109 - 0.889024i) q^{7} +(-6.85740 + 2.49589i) q^{8} +(-0.794122 - 0.289037i) q^{10} +(-1.05229 - 0.692099i) q^{11} +(3.90613 + 0.456561i) q^{13} +(-6.00244 + 8.06268i) q^{14} +(-0.548323 + 9.41435i) q^{16} +(-3.68665 + 3.09347i) q^{17} +(-3.47862 - 2.91891i) q^{19} +(-1.06731 + 1.13128i) q^{20} +(-2.74377 + 1.80460i) q^{22} +(-0.546542 + 0.129533i) q^{23} +(4.86186 - 0.568270i) q^{25} +(5.12716 - 8.88050i) q^{26} +(9.24954 + 16.0207i) q^{28} +(-1.27398 - 1.71125i) q^{29} +(-1.09026 + 3.64174i) q^{31} +(8.93090 + 4.48526i) q^{32} +(3.59895 + 12.0213i) q^{34} +(-0.216961 + 1.23045i) q^{35} +(-0.248079 - 1.40693i) q^{37} +(-10.5810 + 5.31397i) q^{38} +(0.936794 + 2.17173i) q^{40} +(-3.74004 - 8.67039i) q^{41} +(-3.23349 + 1.62392i) q^{43} +(1.04952 + 5.95211i) q^{44} +(-0.254317 + 1.44230i) q^{46} +(-1.09079 - 3.64349i) q^{47} +(7.02487 + 3.52802i) q^{49} +(3.66055 - 12.2271i) q^{50} +(-11.2696 - 15.1377i) q^{52} +(-3.57369 - 6.18982i) q^{53} +(-0.204104 + 0.353518i) q^{55} +(27.9416 - 3.26591i) q^{56} +(-5.41276 + 1.28285i) q^{58} +(-4.88395 + 3.21222i) q^{59} +(6.33580 - 6.71556i) q^{61} +(7.59304 + 6.37131i) q^{62} +(5.51392 - 4.62673i) q^{64} +(0.0741126 - 1.27246i) q^{65} +(0.128801 - 0.173010i) q^{67} +(22.9381 + 2.68108i) q^{68} +(2.72186 + 1.79020i) q^{70} +(-11.2063 - 4.07874i) q^{71} +(7.37938 - 2.68588i) q^{73} +(-3.62465 - 0.859058i) q^{74} +(1.26704 + 21.7542i) q^{76} +(3.33192 + 3.53163i) q^{77} +(3.30367 - 7.65876i) q^{79} +3.05642 q^{80} -24.6211 q^{82} +(0.262659 - 0.608912i) q^{83} +(1.07039 + 1.13455i) q^{85} +(0.548576 + 9.41868i) q^{86} +(8.94335 + 2.11961i) q^{88} +(1.56940 - 0.571214i) q^{89} +(-14.2463 - 5.18524i) q^{91} +(2.25194 + 1.48112i) q^{92} +(-9.84973 - 1.15127i) q^{94} +(-0.878882 + 1.18054i) q^{95} +(0.937298 - 16.0928i) q^{97} +(15.7017 - 13.1753i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03275 2.39419i 0.730266 1.69295i 0.00932059 0.999957i \(-0.497033\pi\)
0.720946 0.692991i \(-0.243708\pi\)
\(3\) 0 0
\(4\) −3.29308 3.49047i −1.64654 1.74523i
\(5\) −0.0188451 0.323558i −0.00842779 0.144700i −0.999897 0.0143579i \(-0.995430\pi\)
0.991469 0.130342i \(-0.0416074\pi\)
\(6\) 0 0
\(7\) −3.75109 0.889024i −1.41778 0.336020i −0.550913 0.834563i \(-0.685720\pi\)
−0.866865 + 0.498543i \(0.833869\pi\)
\(8\) −6.85740 + 2.49589i −2.42446 + 0.882430i
\(9\) 0 0
\(10\) −0.794122 0.289037i −0.251123 0.0914014i
\(11\) −1.05229 0.692099i −0.317276 0.208676i 0.380874 0.924627i \(-0.375623\pi\)
−0.698151 + 0.715951i \(0.745993\pi\)
\(12\) 0 0
\(13\) 3.90613 + 0.456561i 1.08337 + 0.126627i 0.638991 0.769214i \(-0.279352\pi\)
0.444374 + 0.895841i \(0.353426\pi\)
\(14\) −6.00244 + 8.06268i −1.60422 + 2.15484i
\(15\) 0 0
\(16\) −0.548323 + 9.41435i −0.137081 + 2.35359i
\(17\) −3.68665 + 3.09347i −0.894145 + 0.750277i −0.969037 0.246915i \(-0.920583\pi\)
0.0748921 + 0.997192i \(0.476139\pi\)
\(18\) 0 0
\(19\) −3.47862 2.91891i −0.798050 0.669644i 0.149673 0.988735i \(-0.452178\pi\)
−0.947724 + 0.319092i \(0.896622\pi\)
\(20\) −1.06731 + 1.13128i −0.238658 + 0.252962i
\(21\) 0 0
\(22\) −2.74377 + 1.80460i −0.584973 + 0.384743i
\(23\) −0.546542 + 0.129533i −0.113962 + 0.0270095i −0.287201 0.957870i \(-0.592725\pi\)
0.173239 + 0.984880i \(0.444577\pi\)
\(24\) 0 0
\(25\) 4.86186 0.568270i 0.972371 0.113654i
\(26\) 5.12716 8.88050i 1.00552 1.74161i
\(27\) 0 0
\(28\) 9.24954 + 16.0207i 1.74800 + 3.02762i
\(29\) −1.27398 1.71125i −0.236572 0.317771i 0.667944 0.744212i \(-0.267175\pi\)
−0.904516 + 0.426441i \(0.859767\pi\)
\(30\) 0 0
\(31\) −1.09026 + 3.64174i −0.195817 + 0.654075i 0.802530 + 0.596611i \(0.203487\pi\)
−0.998348 + 0.0574639i \(0.981699\pi\)
\(32\) 8.93090 + 4.48526i 1.57877 + 0.792890i
\(33\) 0 0
\(34\) 3.59895 + 12.0213i 0.617215 + 2.06164i
\(35\) −0.216961 + 1.23045i −0.0366732 + 0.207984i
\(36\) 0 0
\(37\) −0.248079 1.40693i −0.0407839 0.231297i 0.957602 0.288095i \(-0.0930220\pi\)
−0.998386 + 0.0567981i \(0.981911\pi\)
\(38\) −10.5810 + 5.31397i −1.71646 + 0.862039i
\(39\) 0 0
\(40\) 0.936794 + 2.17173i 0.148120 + 0.343381i
\(41\) −3.74004 8.67039i −0.584096 1.35409i −0.912317 0.409486i \(-0.865708\pi\)
0.328221 0.944601i \(-0.393551\pi\)
\(42\) 0 0
\(43\) −3.23349 + 1.62392i −0.493102 + 0.247645i −0.677931 0.735126i \(-0.737123\pi\)
0.184829 + 0.982771i \(0.440827\pi\)
\(44\) 1.04952 + 5.95211i 0.158221 + 0.897314i
\(45\) 0 0
\(46\) −0.254317 + 1.44230i −0.0374969 + 0.212656i
\(47\) −1.09079 3.64349i −0.159108 0.531458i 0.840844 0.541278i \(-0.182059\pi\)
−0.999952 + 0.00982012i \(0.996874\pi\)
\(48\) 0 0
\(49\) 7.02487 + 3.52802i 1.00355 + 0.504003i
\(50\) 3.66055 12.2271i 0.517680 1.72917i
\(51\) 0 0
\(52\) −11.2696 15.1377i −1.56281 2.09922i
\(53\) −3.57369 6.18982i −0.490884 0.850237i 0.509061 0.860731i \(-0.329993\pi\)
−0.999945 + 0.0104941i \(0.996660\pi\)
\(54\) 0 0
\(55\) −0.204104 + 0.353518i −0.0275214 + 0.0476684i
\(56\) 27.9416 3.26591i 3.73386 0.436425i
\(57\) 0 0
\(58\) −5.41276 + 1.28285i −0.710731 + 0.168446i
\(59\) −4.88395 + 3.21222i −0.635836 + 0.418196i −0.826089 0.563539i \(-0.809439\pi\)
0.190254 + 0.981735i \(0.439069\pi\)
\(60\) 0 0
\(61\) 6.33580 6.71556i 0.811216 0.859839i −0.181113 0.983462i \(-0.557970\pi\)
0.992329 + 0.123623i \(0.0394514\pi\)
\(62\) 7.59304 + 6.37131i 0.964317 + 0.809158i
\(63\) 0 0
\(64\) 5.51392 4.62673i 0.689240 0.578341i
\(65\) 0.0741126 1.27246i 0.00919253 0.157830i
\(66\) 0 0
\(67\) 0.128801 0.173010i 0.0157355 0.0211365i −0.794186 0.607675i \(-0.792102\pi\)
0.809921 + 0.586539i \(0.199510\pi\)
\(68\) 22.9381 + 2.68108i 2.78165 + 0.325129i
\(69\) 0 0
\(70\) 2.72186 + 1.79020i 0.325325 + 0.213969i
\(71\) −11.2063 4.07874i −1.32994 0.484058i −0.423308 0.905986i \(-0.639131\pi\)
−0.906629 + 0.421928i \(0.861354\pi\)
\(72\) 0 0
\(73\) 7.37938 2.68588i 0.863691 0.314358i 0.128082 0.991764i \(-0.459118\pi\)
0.735610 + 0.677406i \(0.236896\pi\)
\(74\) −3.62465 0.859058i −0.421357 0.0998635i
\(75\) 0 0
\(76\) 1.26704 + 21.7542i 0.145339 + 2.49538i
\(77\) 3.33192 + 3.53163i 0.379708 + 0.402467i
\(78\) 0 0
\(79\) 3.30367 7.65876i 0.371691 0.861678i −0.625017 0.780611i \(-0.714908\pi\)
0.996709 0.0810667i \(-0.0258327\pi\)
\(80\) 3.05642 0.341718
\(81\) 0 0
\(82\) −24.6211 −2.71894
\(83\) 0.262659 0.608912i 0.0288306 0.0668367i −0.903192 0.429236i \(-0.858783\pi\)
0.932023 + 0.362399i \(0.118042\pi\)
\(84\) 0 0
\(85\) 1.07039 + 1.13455i 0.116100 + 0.123059i
\(86\) 0.548576 + 9.41868i 0.0591545 + 1.01564i
\(87\) 0 0
\(88\) 8.94335 + 2.11961i 0.953364 + 0.225951i
\(89\) 1.56940 0.571214i 0.166356 0.0605486i −0.257500 0.966278i \(-0.582899\pi\)
0.423856 + 0.905730i \(0.360676\pi\)
\(90\) 0 0
\(91\) −14.2463 5.18524i −1.49342 0.543561i
\(92\) 2.25194 + 1.48112i 0.234781 + 0.154418i
\(93\) 0 0
\(94\) −9.84973 1.15127i −1.01592 0.118744i
\(95\) −0.878882 + 1.18054i −0.0901714 + 0.121121i
\(96\) 0 0
\(97\) 0.937298 16.0928i 0.0951682 1.63397i −0.526133 0.850403i \(-0.676358\pi\)
0.621301 0.783572i \(-0.286605\pi\)
\(98\) 15.7017 13.1753i 1.58611 1.33091i
\(99\) 0 0
\(100\) −17.9940 15.0988i −1.79940 1.50988i
\(101\) −2.37235 + 2.51454i −0.236057 + 0.250206i −0.834563 0.550912i \(-0.814280\pi\)
0.598506 + 0.801118i \(0.295761\pi\)
\(102\) 0 0
\(103\) 5.19032 3.41373i 0.511417 0.336364i −0.267431 0.963577i \(-0.586175\pi\)
0.778848 + 0.627213i \(0.215804\pi\)
\(104\) −27.9254 + 6.61845i −2.73831 + 0.648992i
\(105\) 0 0
\(106\) −18.5103 + 2.16355i −1.79788 + 0.210142i
\(107\) −0.773565 + 1.33985i −0.0747833 + 0.129529i −0.900992 0.433836i \(-0.857160\pi\)
0.826209 + 0.563364i \(0.190493\pi\)
\(108\) 0 0
\(109\) 6.28071 + 10.8785i 0.601583 + 1.04197i 0.992581 + 0.121581i \(0.0387965\pi\)
−0.390998 + 0.920391i \(0.627870\pi\)
\(110\) 0.635601 + 0.853760i 0.0606022 + 0.0814029i
\(111\) 0 0
\(112\) 10.4264 34.8266i 0.985201 3.29080i
\(113\) 17.4823 + 8.77994i 1.64460 + 0.825947i 0.998007 + 0.0631087i \(0.0201015\pi\)
0.646589 + 0.762838i \(0.276195\pi\)
\(114\) 0 0
\(115\) 0.0522110 + 0.174397i 0.00486871 + 0.0162626i
\(116\) −1.77774 + 10.0821i −0.165059 + 0.936097i
\(117\) 0 0
\(118\) 2.64676 + 15.0105i 0.243654 + 1.38183i
\(119\) 16.5791 8.32636i 1.51981 0.763276i
\(120\) 0 0
\(121\) −3.72857 8.64381i −0.338961 0.785800i
\(122\) −9.53500 22.1046i −0.863259 2.00126i
\(123\) 0 0
\(124\) 16.3017 8.18702i 1.46393 0.735216i
\(125\) −0.556893 3.15830i −0.0498100 0.282487i
\(126\) 0 0
\(127\) 0.0822160 0.466270i 0.00729549 0.0413748i −0.980943 0.194297i \(-0.937757\pi\)
0.988238 + 0.152922i \(0.0488685\pi\)
\(128\) 0.349827 + 1.16850i 0.0309206 + 0.103282i
\(129\) 0 0
\(130\) −2.96998 1.49158i −0.260484 0.130820i
\(131\) 2.00931 6.71155i 0.175554 0.586391i −0.824243 0.566236i \(-0.808399\pi\)
0.999797 0.0201544i \(-0.00641578\pi\)
\(132\) 0 0
\(133\) 10.4536 + 14.0417i 0.906445 + 1.21757i
\(134\) −0.281198 0.487050i −0.0242918 0.0420747i
\(135\) 0 0
\(136\) 17.5599 30.4146i 1.50575 2.60803i
\(137\) −19.7273 + 2.30579i −1.68541 + 0.196997i −0.904153 0.427208i \(-0.859497\pi\)
−0.781261 + 0.624205i \(0.785423\pi\)
\(138\) 0 0
\(139\) 15.0469 3.56618i 1.27626 0.302479i 0.464032 0.885818i \(-0.346402\pi\)
0.812229 + 0.583339i \(0.198254\pi\)
\(140\) 5.00931 3.29468i 0.423364 0.278451i
\(141\) 0 0
\(142\) −21.3386 + 22.6176i −1.79069 + 1.89802i
\(143\) −3.79438 3.18386i −0.317302 0.266248i
\(144\) 0 0
\(145\) −0.529681 + 0.444455i −0.0439876 + 0.0369100i
\(146\) 1.19058 20.4415i 0.0985332 1.69175i
\(147\) 0 0
\(148\) −4.09388 + 5.49904i −0.336515 + 0.452018i
\(149\) −8.59010 1.00404i −0.703728 0.0822541i −0.243300 0.969951i \(-0.578230\pi\)
−0.460428 + 0.887697i \(0.652304\pi\)
\(150\) 0 0
\(151\) 2.53151 + 1.66500i 0.206011 + 0.135496i 0.648322 0.761366i \(-0.275471\pi\)
−0.442311 + 0.896862i \(0.645841\pi\)
\(152\) 31.1396 + 11.3339i 2.52575 + 0.919299i
\(153\) 0 0
\(154\) 11.8965 4.32995i 0.958643 0.348918i
\(155\) 1.19886 + 0.284135i 0.0962947 + 0.0228223i
\(156\) 0 0
\(157\) −0.540951 9.28776i −0.0431726 0.741244i −0.948548 0.316633i \(-0.897448\pi\)
0.905376 0.424612i \(-0.139589\pi\)
\(158\) −14.9247 15.8192i −1.18734 1.25851i
\(159\) 0 0
\(160\) 1.28294 2.97419i 0.101425 0.235130i
\(161\) 2.16529 0.170648
\(162\) 0 0
\(163\) 2.41567 0.189210 0.0946048 0.995515i \(-0.469841\pi\)
0.0946048 + 0.995515i \(0.469841\pi\)
\(164\) −17.9474 + 41.6068i −1.40146 + 3.24894i
\(165\) 0 0
\(166\) −1.18659 1.25771i −0.0920971 0.0976173i
\(167\) −0.0292845 0.502796i −0.00226611 0.0389075i 0.996986 0.0775876i \(-0.0247217\pi\)
−0.999252 + 0.0386800i \(0.987685\pi\)
\(168\) 0 0
\(169\) 2.39981 + 0.568765i 0.184601 + 0.0437512i
\(170\) 3.82178 1.39101i 0.293117 0.106686i
\(171\) 0 0
\(172\) 16.3164 + 5.93867i 1.24411 + 0.452820i
\(173\) 4.45986 + 2.93329i 0.339077 + 0.223014i 0.707615 0.706598i \(-0.249771\pi\)
−0.368538 + 0.929613i \(0.620142\pi\)
\(174\) 0 0
\(175\) −18.7425 2.19068i −1.41680 0.165600i
\(176\) 7.09265 9.52709i 0.534629 0.718131i
\(177\) 0 0
\(178\) 0.253205 4.34736i 0.0189785 0.325848i
\(179\) −13.8827 + 11.6490i −1.03764 + 0.870683i −0.991740 0.128263i \(-0.959060\pi\)
−0.0458999 + 0.998946i \(0.514616\pi\)
\(180\) 0 0
\(181\) 8.98433 + 7.53875i 0.667800 + 0.560351i 0.912413 0.409270i \(-0.134217\pi\)
−0.244613 + 0.969621i \(0.578661\pi\)
\(182\) −27.1274 + 28.7534i −2.01082 + 2.13134i
\(183\) 0 0
\(184\) 3.42456 2.25237i 0.252462 0.166047i
\(185\) −0.450547 + 0.106782i −0.0331249 + 0.00785074i
\(186\) 0 0
\(187\) 6.02040 0.703684i 0.440255 0.0514585i
\(188\) −9.12542 + 15.8057i −0.665539 + 1.15275i
\(189\) 0 0
\(190\) 1.91878 + 3.32342i 0.139203 + 0.241106i
\(191\) −11.8767 15.9532i −0.859367 1.15433i −0.986713 0.162472i \(-0.948053\pi\)
0.127346 0.991858i \(-0.459354\pi\)
\(192\) 0 0
\(193\) −4.57679 + 15.2875i −0.329444 + 1.10042i 0.619505 + 0.784993i \(0.287333\pi\)
−0.948950 + 0.315428i \(0.897852\pi\)
\(194\) −37.5612 18.8639i −2.69674 1.35435i
\(195\) 0 0
\(196\) −10.8190 36.1381i −0.772789 2.58130i
\(197\) −1.15341 + 6.54129i −0.0821768 + 0.466048i 0.915753 + 0.401741i \(0.131595\pi\)
−0.997930 + 0.0643070i \(0.979516\pi\)
\(198\) 0 0
\(199\) −0.983166 5.57581i −0.0696948 0.395259i −0.999621 0.0275137i \(-0.991241\pi\)
0.929927 0.367745i \(-0.119870\pi\)
\(200\) −31.9214 + 16.0315i −2.25718 + 1.13360i
\(201\) 0 0
\(202\) 3.57024 + 8.27674i 0.251201 + 0.582350i
\(203\) 3.25746 + 7.55165i 0.228629 + 0.530022i
\(204\) 0 0
\(205\) −2.73489 + 1.37351i −0.191013 + 0.0959304i
\(206\) −2.81279 15.9521i −0.195977 1.11144i
\(207\) 0 0
\(208\) −6.44004 + 36.5233i −0.446537 + 2.53244i
\(209\) 1.64033 + 5.47908i 0.113464 + 0.378996i
\(210\) 0 0
\(211\) 13.6528 + 6.85671i 0.939899 + 0.472035i 0.851678 0.524066i \(-0.175585\pi\)
0.0882216 + 0.996101i \(0.471882\pi\)
\(212\) −9.83687 + 32.8574i −0.675599 + 2.25666i
\(213\) 0 0
\(214\) 2.40896 + 3.23580i 0.164673 + 0.221195i
\(215\) 0.586367 + 1.01562i 0.0399899 + 0.0692645i
\(216\) 0 0
\(217\) 7.32727 12.6912i 0.497408 0.861535i
\(218\) 32.5317 3.80241i 2.20332 0.257531i
\(219\) 0 0
\(220\) 1.90607 0.451748i 0.128508 0.0304568i
\(221\) −15.8129 + 10.4003i −1.06369 + 0.699601i
\(222\) 0 0
\(223\) −13.9427 + 14.7784i −0.933674 + 0.989637i −0.999967 0.00816311i \(-0.997402\pi\)
0.0662922 + 0.997800i \(0.478883\pi\)
\(224\) −29.5131 24.7644i −1.97192 1.65464i
\(225\) 0 0
\(226\) 39.0757 32.7884i 2.59928 2.18105i
\(227\) 0.0586242 1.00654i 0.00389103 0.0668063i −0.995804 0.0915154i \(-0.970829\pi\)
0.999695 + 0.0247091i \(0.00786595\pi\)
\(228\) 0 0
\(229\) −6.05300 + 8.13059i −0.399994 + 0.537285i −0.955796 0.294030i \(-0.905004\pi\)
0.555803 + 0.831314i \(0.312411\pi\)
\(230\) 0.471461 + 0.0551059i 0.0310872 + 0.00363357i
\(231\) 0 0
\(232\) 13.0073 + 8.55502i 0.853969 + 0.561664i
\(233\) 18.4171 + 6.70328i 1.20654 + 0.439146i 0.865504 0.500902i \(-0.166998\pi\)
0.341040 + 0.940049i \(0.389221\pi\)
\(234\) 0 0
\(235\) −1.15832 + 0.421596i −0.0755608 + 0.0275019i
\(236\) 27.2954 + 6.46913i 1.77678 + 0.421104i
\(237\) 0 0
\(238\) −2.81273 48.2927i −0.182322 3.13035i
\(239\) 19.5911 + 20.7654i 1.26725 + 1.34320i 0.912951 + 0.408068i \(0.133798\pi\)
0.354295 + 0.935134i \(0.384721\pi\)
\(240\) 0 0
\(241\) −4.81958 + 11.1731i −0.310457 + 0.719719i −0.999990 0.00453476i \(-0.998557\pi\)
0.689533 + 0.724254i \(0.257816\pi\)
\(242\) −24.5456 −1.57785
\(243\) 0 0
\(244\) −44.3047 −2.83632
\(245\) 1.00914 2.33944i 0.0644713 0.149461i
\(246\) 0 0
\(247\) −12.2553 12.9898i −0.779785 0.826524i
\(248\) −1.61299 27.6940i −0.102425 1.75857i
\(249\) 0 0
\(250\) −8.13670 1.92843i −0.514610 0.121965i
\(251\) 4.11036 1.49605i 0.259444 0.0944298i −0.209024 0.977911i \(-0.567029\pi\)
0.468467 + 0.883481i \(0.344806\pi\)
\(252\) 0 0
\(253\) 0.664768 + 0.241956i 0.0417936 + 0.0152116i
\(254\) −1.03143 0.678382i −0.0647177 0.0425655i
\(255\) 0 0
\(256\) 17.4574 + 2.04048i 1.09109 + 0.127530i
\(257\) 15.4931 20.8108i 0.966432 1.29814i 0.0119333 0.999929i \(-0.496201\pi\)
0.954499 0.298215i \(-0.0963912\pi\)
\(258\) 0 0
\(259\) −0.320225 + 5.49805i −0.0198978 + 0.341632i
\(260\) −4.68555 + 3.93164i −0.290585 + 0.243830i
\(261\) 0 0
\(262\) −13.9936 11.7420i −0.864528 0.725425i
\(263\) 19.5406 20.7118i 1.20492 1.27714i 0.254182 0.967157i \(-0.418194\pi\)
0.950741 0.309987i \(-0.100325\pi\)
\(264\) 0 0
\(265\) −1.93542 + 1.27294i −0.118892 + 0.0781964i
\(266\) 44.4144 10.5264i 2.72322 0.645416i
\(267\) 0 0
\(268\) −1.02804 + 0.120160i −0.0627973 + 0.00733995i
\(269\) 14.0246 24.2913i 0.855093 1.48106i −0.0214661 0.999770i \(-0.506833\pi\)
0.876559 0.481295i \(-0.159833\pi\)
\(270\) 0 0
\(271\) 5.55847 + 9.62755i 0.337653 + 0.584832i 0.983991 0.178219i \(-0.0570337\pi\)
−0.646338 + 0.763051i \(0.723700\pi\)
\(272\) −27.1015 36.4037i −1.64327 2.20730i
\(273\) 0 0
\(274\) −14.8529 + 49.6121i −0.897296 + 2.99718i
\(275\) −5.50936 2.76691i −0.332227 0.166851i
\(276\) 0 0
\(277\) −3.13137 10.4595i −0.188146 0.628450i −0.999063 0.0432889i \(-0.986216\pi\)
0.810917 0.585161i \(-0.198969\pi\)
\(278\) 7.00161 39.7081i 0.419929 2.38153i
\(279\) 0 0
\(280\) −1.58327 8.97919i −0.0946187 0.536609i
\(281\) −4.19170 + 2.10515i −0.250056 + 0.125583i −0.569413 0.822052i \(-0.692829\pi\)
0.319357 + 0.947634i \(0.396533\pi\)
\(282\) 0 0
\(283\) −12.8119 29.7014i −0.761590 1.76556i −0.633414 0.773813i \(-0.718347\pi\)
−0.128177 0.991751i \(-0.540912\pi\)
\(284\) 22.6664 + 52.5467i 1.34500 + 3.11807i
\(285\) 0 0
\(286\) −11.5414 + 5.79632i −0.682459 + 0.342744i
\(287\) 6.32103 + 35.8484i 0.373119 + 2.11606i
\(288\) 0 0
\(289\) 1.06984 6.06738i 0.0629319 0.356905i
\(290\) 0.517080 + 1.72717i 0.0303640 + 0.101423i
\(291\) 0 0
\(292\) −33.6759 16.9127i −1.97073 0.989739i
\(293\) −5.74127 + 19.1772i −0.335409 + 1.12034i 0.609439 + 0.792833i \(0.291395\pi\)
−0.944848 + 0.327510i \(0.893791\pi\)
\(294\) 0 0
\(295\) 1.13138 + 1.51971i 0.0658714 + 0.0884807i
\(296\) 5.21271 + 9.02868i 0.302983 + 0.524781i
\(297\) 0 0
\(298\) −11.2753 + 19.5294i −0.653161 + 1.13131i
\(299\) −2.19400 + 0.256442i −0.126882 + 0.0148304i
\(300\) 0 0
\(301\) 13.5728 3.21681i 0.782323 0.185414i
\(302\) 6.60074 4.34137i 0.379830 0.249818i
\(303\) 0 0
\(304\) 29.3870 31.1484i 1.68546 1.78649i
\(305\) −2.29227 1.92344i −0.131255 0.110136i
\(306\) 0 0
\(307\) −4.16550 + 3.49527i −0.237738 + 0.199486i −0.753871 0.657023i \(-0.771816\pi\)
0.516133 + 0.856509i \(0.327371\pi\)
\(308\) 1.35474 23.2599i 0.0771933 1.32536i
\(309\) 0 0
\(310\) 1.91840 2.57686i 0.108958 0.146356i
\(311\) −10.9151 1.27580i −0.618941 0.0723438i −0.199157 0.979968i \(-0.563820\pi\)
−0.419784 + 0.907624i \(0.637894\pi\)
\(312\) 0 0
\(313\) −20.7180 13.6264i −1.17105 0.770211i −0.193538 0.981093i \(-0.561996\pi\)
−0.977512 + 0.210882i \(0.932367\pi\)
\(314\) −22.7953 8.29683i −1.28642 0.468217i
\(315\) 0 0
\(316\) −37.6119 + 13.6896i −2.11583 + 0.770100i
\(317\) 22.7525 + 5.39244i 1.27791 + 0.302870i 0.812882 0.582428i \(-0.197897\pi\)
0.465025 + 0.885298i \(0.346045\pi\)
\(318\) 0 0
\(319\) 0.156235 + 2.68244i 0.00874746 + 0.150188i
\(320\) −1.60093 1.69688i −0.0894945 0.0948586i
\(321\) 0 0
\(322\) 2.23620 5.18410i 0.124619 0.288899i
\(323\) 21.8540 1.21599
\(324\) 0 0
\(325\) 19.2505 1.06783
\(326\) 2.49479 5.78357i 0.138173 0.320322i
\(327\) 0 0
\(328\) 47.2873 + 50.1216i 2.61100 + 2.76750i
\(329\) 0.852496 + 14.6368i 0.0469996 + 0.806953i
\(330\) 0 0
\(331\) −15.2535 3.61514i −0.838406 0.198706i −0.211086 0.977467i \(-0.567700\pi\)
−0.627320 + 0.778761i \(0.715848\pi\)
\(332\) −2.99034 + 1.08840i −0.164116 + 0.0597335i
\(333\) 0 0
\(334\) −1.23403 0.449151i −0.0675233 0.0245765i
\(335\) −0.0584059 0.0384142i −0.00319106 0.00209879i
\(336\) 0 0
\(337\) 9.56786 + 1.11832i 0.521195 + 0.0609189i 0.372623 0.927983i \(-0.378458\pi\)
0.148572 + 0.988902i \(0.452532\pi\)
\(338\) 3.84014 5.15821i 0.208876 0.280569i
\(339\) 0 0
\(340\) 0.435214 7.47234i 0.0236028 0.405244i
\(341\) 3.66771 3.07758i 0.198618 0.166660i
\(342\) 0 0
\(343\) −2.54270 2.13358i −0.137293 0.115203i
\(344\) 18.1202 19.2063i 0.976975 1.03553i
\(345\) 0 0
\(346\) 11.6288 7.64838i 0.625168 0.411179i
\(347\) 20.8248 4.93558i 1.11794 0.264956i 0.370200 0.928952i \(-0.379289\pi\)
0.747736 + 0.663996i \(0.231141\pi\)
\(348\) 0 0
\(349\) 30.6431 3.58167i 1.64029 0.191722i 0.754661 0.656115i \(-0.227802\pi\)
0.885629 + 0.464393i \(0.153728\pi\)
\(350\) −24.6012 + 42.6106i −1.31499 + 2.27763i
\(351\) 0 0
\(352\) −6.29361 10.9008i −0.335450 0.581017i
\(353\) 12.0041 + 16.1243i 0.638915 + 0.858211i 0.997152 0.0754191i \(-0.0240295\pi\)
−0.358237 + 0.933631i \(0.616622\pi\)
\(354\) 0 0
\(355\) −1.10853 + 3.70274i −0.0588345 + 0.196521i
\(356\) −7.16196 3.59687i −0.379583 0.190634i
\(357\) 0 0
\(358\) 13.5524 + 45.2683i 0.716268 + 2.39250i
\(359\) −2.90565 + 16.4788i −0.153354 + 0.869715i 0.806921 + 0.590660i \(0.201132\pi\)
−0.960275 + 0.279056i \(0.909979\pi\)
\(360\) 0 0
\(361\) 0.281455 + 1.59621i 0.0148134 + 0.0840111i
\(362\) 27.3278 13.7245i 1.43632 0.721345i
\(363\) 0 0
\(364\) 28.8155 + 66.8018i 1.51034 + 3.50137i
\(365\) −1.00810 2.33704i −0.0527665 0.122326i
\(366\) 0 0
\(367\) 21.8093 10.9531i 1.13844 0.571745i 0.223246 0.974762i \(-0.428335\pi\)
0.915193 + 0.403017i \(0.132038\pi\)
\(368\) −0.919785 5.21636i −0.0479471 0.271922i
\(369\) 0 0
\(370\) −0.209648 + 1.18897i −0.0108991 + 0.0618118i
\(371\) 7.90234 + 26.3956i 0.410269 + 1.37039i
\(372\) 0 0
\(373\) 11.5800 + 5.81569i 0.599589 + 0.301125i 0.722585 0.691282i \(-0.242954\pi\)
−0.122996 + 0.992407i \(0.539250\pi\)
\(374\) 4.53283 15.1407i 0.234387 0.782908i
\(375\) 0 0
\(376\) 16.5737 + 22.2624i 0.854725 + 1.14809i
\(377\) −4.19503 7.26601i −0.216055 0.374219i
\(378\) 0 0
\(379\) 5.56867 9.64522i 0.286043 0.495442i −0.686818 0.726829i \(-0.740993\pi\)
0.972862 + 0.231387i \(0.0743265\pi\)
\(380\) 7.01488 0.819921i 0.359856 0.0420611i
\(381\) 0 0
\(382\) −50.4606 + 11.9594i −2.58179 + 0.611895i
\(383\) 26.5219 17.4437i 1.35521 0.891333i 0.356136 0.934434i \(-0.384094\pi\)
0.999071 + 0.0431010i \(0.0137237\pi\)
\(384\) 0 0
\(385\) 1.07990 1.14462i 0.0550367 0.0583355i
\(386\) 31.8746 + 26.7459i 1.62237 + 1.36133i
\(387\) 0 0
\(388\) −59.2579 + 49.7233i −3.00836 + 2.52432i
\(389\) −0.398874 + 6.84840i −0.0202237 + 0.347228i 0.972984 + 0.230873i \(0.0741581\pi\)
−0.993208 + 0.116355i \(0.962879\pi\)
\(390\) 0 0
\(391\) 1.61421 2.16825i 0.0816339 0.109653i
\(392\) −56.9779 6.65976i −2.87782 0.336369i
\(393\) 0 0
\(394\) 14.4699 + 9.51701i 0.728984 + 0.479460i
\(395\) −2.54031 0.924598i −0.127817 0.0465216i
\(396\) 0 0
\(397\) 3.49386 1.27166i 0.175352 0.0638229i −0.252852 0.967505i \(-0.581369\pi\)
0.428204 + 0.903682i \(0.359146\pi\)
\(398\) −14.3649 3.40455i −0.720048 0.170655i
\(399\) 0 0
\(400\) 2.68402 + 46.0828i 0.134201 + 2.30414i
\(401\) −22.7501 24.1137i −1.13609 1.20418i −0.976160 0.217052i \(-0.930356\pi\)
−0.159926 0.987129i \(-0.551126\pi\)
\(402\) 0 0
\(403\) −5.92139 + 13.7273i −0.294965 + 0.683807i
\(404\) 16.5892 0.825346
\(405\) 0 0
\(406\) 21.4442 1.06426
\(407\) −0.712682 + 1.65218i −0.0353263 + 0.0818957i
\(408\) 0 0
\(409\) −16.6863 17.6865i −0.825087 0.874541i 0.168720 0.985664i \(-0.446037\pi\)
−0.993807 + 0.111123i \(0.964555\pi\)
\(410\) 0.463987 + 7.96635i 0.0229147 + 0.393430i
\(411\) 0 0
\(412\) −29.0076 6.87494i −1.42910 0.338704i
\(413\) 21.1759 7.70738i 1.04200 0.379255i
\(414\) 0 0
\(415\) −0.201968 0.0735104i −0.00991423 0.00360848i
\(416\) 32.8374 + 21.5975i 1.60999 + 1.05891i
\(417\) 0 0
\(418\) 14.8120 + 1.73128i 0.724479 + 0.0846794i
\(419\) 3.36853 4.52473i 0.164564 0.221047i −0.712190 0.701986i \(-0.752297\pi\)
0.876754 + 0.480939i \(0.159704\pi\)
\(420\) 0 0
\(421\) −1.89250 + 32.4930i −0.0922348 + 1.58361i 0.561882 + 0.827218i \(0.310078\pi\)
−0.654117 + 0.756394i \(0.726959\pi\)
\(422\) 30.5163 25.6062i 1.48551 1.24649i
\(423\) 0 0
\(424\) 39.9553 + 33.5265i 1.94040 + 1.62819i
\(425\) −16.1661 + 17.1350i −0.784169 + 0.831171i
\(426\) 0 0
\(427\) −29.7364 + 19.5580i −1.43905 + 0.946476i
\(428\) 7.22413 1.71215i 0.349191 0.0827599i
\(429\) 0 0
\(430\) 3.03715 0.354992i 0.146465 0.0171193i
\(431\) −0.705902 + 1.22266i −0.0340021 + 0.0588934i −0.882526 0.470264i \(-0.844159\pi\)
0.848524 + 0.529158i \(0.177492\pi\)
\(432\) 0 0
\(433\) −3.07047 5.31820i −0.147557 0.255576i 0.782767 0.622315i \(-0.213808\pi\)
−0.930324 + 0.366739i \(0.880474\pi\)
\(434\) −22.8179 30.6498i −1.09529 1.47124i
\(435\) 0 0
\(436\) 17.2882 57.7465i 0.827953 2.76555i
\(437\) 2.27931 + 1.14471i 0.109034 + 0.0547590i
\(438\) 0 0
\(439\) 3.81709 + 12.7500i 0.182180 + 0.608523i 0.999478 + 0.0323082i \(0.0102858\pi\)
−0.817298 + 0.576215i \(0.804529\pi\)
\(440\) 0.517279 2.93364i 0.0246603 0.139856i
\(441\) 0 0
\(442\) 8.56950 + 48.6000i 0.407610 + 2.31167i
\(443\) −3.90497 + 1.96115i −0.185531 + 0.0931770i −0.539140 0.842216i \(-0.681251\pi\)
0.353609 + 0.935393i \(0.384954\pi\)
\(444\) 0 0
\(445\) −0.214396 0.497027i −0.0101634 0.0235613i
\(446\) 20.9830 + 48.6440i 0.993573 + 2.30336i
\(447\) 0 0
\(448\) −24.7965 + 12.4533i −1.17152 + 0.588361i
\(449\) −5.92614 33.6088i −0.279672 1.58610i −0.723719 0.690095i \(-0.757569\pi\)
0.444047 0.896003i \(-0.353542\pi\)
\(450\) 0 0
\(451\) −2.06518 + 11.7122i −0.0972454 + 0.551506i
\(452\) −26.9246 89.9344i −1.26643 4.23016i
\(453\) 0 0
\(454\) −2.34930 1.17986i −0.110258 0.0553737i
\(455\) −1.40925 + 4.70724i −0.0660668 + 0.220679i
\(456\) 0 0
\(457\) 1.56049 + 2.09610i 0.0729966 + 0.0980515i 0.837122 0.547016i \(-0.184236\pi\)
−0.764125 + 0.645068i \(0.776829\pi\)
\(458\) 13.2149 + 22.8889i 0.617493 + 1.06953i
\(459\) 0 0
\(460\) 0.436791 0.756545i 0.0203655 0.0352741i
\(461\) −5.83610 + 0.682142i −0.271814 + 0.0317705i −0.250908 0.968011i \(-0.580729\pi\)
−0.0209061 + 0.999781i \(0.506655\pi\)
\(462\) 0 0
\(463\) 24.7970 5.87700i 1.15241 0.273127i 0.390374 0.920657i \(-0.372346\pi\)
0.762040 + 0.647529i \(0.224198\pi\)
\(464\) 16.8089 11.0554i 0.780331 0.513232i
\(465\) 0 0
\(466\) 35.0692 37.1712i 1.62455 1.72192i
\(467\) −20.6922 17.3628i −0.957522 0.803456i 0.0230263 0.999735i \(-0.492670\pi\)
−0.980548 + 0.196279i \(0.937114\pi\)
\(468\) 0 0
\(469\) −0.636953 + 0.534467i −0.0294118 + 0.0246794i
\(470\) −0.186883 + 3.20865i −0.00862026 + 0.148004i
\(471\) 0 0
\(472\) 25.4738 34.2173i 1.17253 1.57498i
\(473\) 4.52646 + 0.529068i 0.208127 + 0.0243266i
\(474\) 0 0
\(475\) −18.5713 12.2145i −0.852109 0.560441i
\(476\) −83.6593 30.4495i −3.83452 1.39565i
\(477\) 0 0
\(478\) 69.9491 25.4594i 3.19940 1.16449i
\(479\) −25.3313 6.00363i −1.15742 0.274313i −0.393312 0.919405i \(-0.628671\pi\)
−0.764105 + 0.645092i \(0.776819\pi\)
\(480\) 0 0
\(481\) −0.326681 5.60890i −0.0148954 0.255744i
\(482\) 21.7730 + 23.0780i 0.991731 + 1.05117i
\(483\) 0 0
\(484\) −17.8924 + 41.4792i −0.813291 + 1.88542i
\(485\) −5.22461 −0.237238
\(486\) 0 0
\(487\) −7.41759 −0.336123 −0.168061 0.985777i \(-0.553751\pi\)
−0.168061 + 0.985777i \(0.553751\pi\)
\(488\) −26.6858 + 61.8647i −1.20801 + 2.80048i
\(489\) 0 0
\(490\) −4.55888 4.83213i −0.205949 0.218293i
\(491\) 0.974800 + 16.7367i 0.0439921 + 0.755315i 0.946114 + 0.323834i \(0.104972\pi\)
−0.902122 + 0.431481i \(0.857991\pi\)
\(492\) 0 0
\(493\) 9.99042 + 2.36777i 0.449946 + 0.106639i
\(494\) −43.7568 + 15.9262i −1.96871 + 0.716553i
\(495\) 0 0
\(496\) −33.6868 12.2610i −1.51258 0.550534i
\(497\) 38.4095 + 25.2624i 1.72290 + 1.13317i
\(498\) 0 0
\(499\) −18.1347 2.11964i −0.811821 0.0948882i −0.299955 0.953953i \(-0.596972\pi\)
−0.511866 + 0.859065i \(0.671046\pi\)
\(500\) −9.19003 + 12.3444i −0.410991 + 0.552056i
\(501\) 0 0
\(502\) 0.663161 11.3860i 0.0295983 0.508184i
\(503\) −20.5047 + 17.2055i −0.914261 + 0.767156i −0.972925 0.231121i \(-0.925761\pi\)
0.0586635 + 0.998278i \(0.481316\pi\)
\(504\) 0 0
\(505\) 0.858307 + 0.720205i 0.0381942 + 0.0320487i
\(506\) 1.26583 1.34170i 0.0562730 0.0596459i
\(507\) 0 0
\(508\) −1.89824 + 1.24849i −0.0842209 + 0.0553930i
\(509\) −28.5748 + 6.77235i −1.26656 + 0.300179i −0.808369 0.588677i \(-0.799649\pi\)
−0.458187 + 0.888856i \(0.651501\pi\)
\(510\) 0 0
\(511\) −30.0685 + 3.51451i −1.33015 + 0.155473i
\(512\) 21.6947 37.5763i 0.958780 1.66066i
\(513\) 0 0
\(514\) −33.8245 58.5858i −1.49194 2.58411i
\(515\) −1.20235 1.61504i −0.0529819 0.0711670i
\(516\) 0 0
\(517\) −1.37383 + 4.58893i −0.0604212 + 0.201821i
\(518\) 12.8327 + 6.44481i 0.563835 + 0.283169i
\(519\) 0 0
\(520\) 2.66771 + 8.91077i 0.116987 + 0.390763i
\(521\) −1.78086 + 10.0998i −0.0780209 + 0.442479i 0.920625 + 0.390449i \(0.127680\pi\)
−0.998646 + 0.0520298i \(0.983431\pi\)
\(522\) 0 0
\(523\) −5.81644 32.9867i −0.254335 1.44241i −0.797774 0.602957i \(-0.793989\pi\)
0.543439 0.839449i \(-0.317122\pi\)
\(524\) −30.0432 + 15.0883i −1.31244 + 0.659134i
\(525\) 0 0
\(526\) −29.4074 68.1740i −1.28222 2.97253i
\(527\) −7.24618 16.7985i −0.315648 0.731755i
\(528\) 0 0
\(529\) −20.2716 + 10.1808i −0.881375 + 0.442643i
\(530\) 1.04886 + 5.94840i 0.0455597 + 0.258382i
\(531\) 0 0
\(532\) 14.5873 82.7284i 0.632438 3.58673i
\(533\) −10.6505 35.5752i −0.461325 1.54093i
\(534\) 0 0
\(535\) 0.448098 + 0.225043i 0.0193730 + 0.00972948i
\(536\) −0.451426 + 1.50787i −0.0194986 + 0.0651300i
\(537\) 0 0
\(538\) −43.6740 58.6643i −1.88292 2.52920i
\(539\) −4.95043 8.57440i −0.213230 0.369325i
\(540\) 0 0
\(541\) −19.3141 + 33.4530i −0.830377 + 1.43826i 0.0673627 + 0.997729i \(0.478542\pi\)
−0.897740 + 0.440526i \(0.854792\pi\)
\(542\) 28.7907 3.36515i 1.23667 0.144546i
\(543\) 0 0
\(544\) −46.8002 + 11.0918i −2.00654 + 0.475559i
\(545\) 3.40147 2.23718i 0.145703 0.0958304i
\(546\) 0 0
\(547\) 7.78178 8.24821i 0.332725 0.352668i −0.539314 0.842105i \(-0.681316\pi\)
0.872039 + 0.489437i \(0.162798\pi\)
\(548\) 73.0118 + 61.2642i 3.11891 + 2.61708i
\(549\) 0 0
\(550\) −12.3143 + 10.3329i −0.525084 + 0.440598i
\(551\) −0.563296 + 9.67142i −0.0239972 + 0.412016i
\(552\) 0 0
\(553\) −19.2012 + 25.7916i −0.816517 + 1.09677i
\(554\) −28.2759 3.30498i −1.20133 0.140415i
\(555\) 0 0
\(556\) −61.9983 40.7769i −2.62931 1.72933i
\(557\) 11.1013 + 4.04055i 0.470377 + 0.171203i 0.566323 0.824183i \(-0.308365\pi\)
−0.0959459 + 0.995387i \(0.530588\pi\)
\(558\) 0 0
\(559\) −13.3718 + 4.86695i −0.565568 + 0.205850i
\(560\) −11.4649 2.71723i −0.484481 0.114824i
\(561\) 0 0
\(562\) 0.711141 + 12.2098i 0.0299977 + 0.515040i
\(563\) −14.0789 14.9227i −0.593354 0.628918i 0.359210 0.933257i \(-0.383046\pi\)
−0.952564 + 0.304338i \(0.901565\pi\)
\(564\) 0 0
\(565\) 2.51136 5.82200i 0.105654 0.244933i
\(566\) −84.3423 −3.54517
\(567\) 0 0
\(568\) 87.0259 3.65152
\(569\) −6.45233 + 14.9582i −0.270496 + 0.627080i −0.998274 0.0587332i \(-0.981294\pi\)
0.727778 + 0.685813i \(0.240553\pi\)
\(570\) 0 0
\(571\) −13.8809 14.7129i −0.580898 0.615716i 0.368562 0.929603i \(-0.379850\pi\)
−0.949460 + 0.313887i \(0.898369\pi\)
\(572\) 1.38205 + 23.7289i 0.0577864 + 0.992154i
\(573\) 0 0
\(574\) 92.3559 + 21.8887i 3.85486 + 0.913618i
\(575\) −2.58360 + 0.940353i −0.107744 + 0.0392154i
\(576\) 0 0
\(577\) 3.36027 + 1.22304i 0.139890 + 0.0509157i 0.411016 0.911628i \(-0.365174\pi\)
−0.271126 + 0.962544i \(0.587396\pi\)
\(578\) −13.4216 8.82751i −0.558264 0.367176i
\(579\) 0 0
\(580\) 3.29564 + 0.385205i 0.136844 + 0.0159948i
\(581\) −1.52659 + 2.05057i −0.0633338 + 0.0850720i
\(582\) 0 0
\(583\) −0.523422 + 8.98680i −0.0216779 + 0.372195i
\(584\) −43.8997 + 36.8362i −1.81658 + 1.52429i
\(585\) 0 0
\(586\) 39.9845 + 33.5510i 1.65174 + 1.38598i
\(587\) 5.44859 5.77516i 0.224887 0.238367i −0.605099 0.796150i \(-0.706867\pi\)
0.829986 + 0.557784i \(0.188348\pi\)
\(588\) 0 0
\(589\) 14.4225 9.48584i 0.594269 0.390857i
\(590\) 4.80690 1.13926i 0.197897 0.0469024i
\(591\) 0 0
\(592\) 13.3813 1.56405i 0.549969 0.0642821i
\(593\) −13.0180 + 22.5478i −0.534584 + 0.925926i 0.464599 + 0.885521i \(0.346198\pi\)
−0.999183 + 0.0404055i \(0.987135\pi\)
\(594\) 0 0
\(595\) −3.00650 5.20740i −0.123254 0.213483i
\(596\) 24.7834 + 33.2898i 1.01517 + 1.36360i
\(597\) 0 0
\(598\) −1.65189 + 5.51770i −0.0675509 + 0.225636i
\(599\) 16.8175 + 8.44609i 0.687146 + 0.345098i 0.757877 0.652398i \(-0.226237\pi\)
−0.0707306 + 0.997495i \(0.522533\pi\)
\(600\) 0 0
\(601\) −2.30500 7.69924i −0.0940230 0.314059i 0.898021 0.439953i \(-0.145005\pi\)
−0.992044 + 0.125895i \(0.959820\pi\)
\(602\) 6.31568 35.8180i 0.257408 1.45983i
\(603\) 0 0
\(604\) −2.52485 14.3191i −0.102734 0.582636i
\(605\) −2.72651 + 1.36930i −0.110848 + 0.0556701i
\(606\) 0 0
\(607\) 7.68029 + 17.8049i 0.311734 + 0.722680i 0.999996 0.00278207i \(-0.000885561\pi\)
−0.688263 + 0.725462i \(0.741626\pi\)
\(608\) −17.9751 41.6710i −0.728987 1.68998i
\(609\) 0 0
\(610\) −6.97244 + 3.50169i −0.282306 + 0.141779i
\(611\) −2.59729 14.7300i −0.105075 0.595910i
\(612\) 0 0
\(613\) −2.54229 + 14.4180i −0.102682 + 0.582339i 0.889439 + 0.457054i \(0.151095\pi\)
−0.992121 + 0.125284i \(0.960016\pi\)
\(614\) 4.06641 + 13.5828i 0.164107 + 0.548156i
\(615\) 0 0
\(616\) −31.6629 15.9017i −1.27573 0.640698i
\(617\) 5.94031 19.8420i 0.239148 0.798809i −0.751184 0.660092i \(-0.770517\pi\)
0.990332 0.138717i \(-0.0442977\pi\)
\(618\) 0 0
\(619\) −15.4730 20.7838i −0.621912 0.835373i 0.373836 0.927495i \(-0.378042\pi\)
−0.995748 + 0.0921222i \(0.970635\pi\)
\(620\) −2.95618 5.12026i −0.118723 0.205635i
\(621\) 0 0
\(622\) −14.3271 + 24.8154i −0.574466 + 0.995005i
\(623\) −6.39477 + 0.747442i −0.256201 + 0.0299456i
\(624\) 0 0
\(625\) 22.8037 5.40457i 0.912146 0.216183i
\(626\) −54.0208 + 35.5300i −2.15911 + 1.42007i
\(627\) 0 0
\(628\) −30.6372 + 32.4736i −1.22256 + 1.29584i
\(629\) 5.26686 + 4.41942i 0.210004 + 0.176214i
\(630\) 0 0
\(631\) −13.6194 + 11.4280i −0.542180 + 0.454943i −0.872283 0.489002i \(-0.837361\pi\)
0.330102 + 0.943945i \(0.392917\pi\)
\(632\) −3.53914 + 60.7648i −0.140780 + 2.41709i
\(633\) 0 0
\(634\) 36.4082 48.9047i 1.44596 1.94225i
\(635\) −0.152415 0.0178147i −0.00604840 0.000706956i
\(636\) 0 0
\(637\) 25.8293 + 16.9882i 1.02339 + 0.673097i
\(638\) 6.58363 + 2.39625i 0.260648 + 0.0948683i
\(639\) 0 0
\(640\) 0.371486 0.135210i 0.0146843 0.00534464i
\(641\) −4.60209 1.09071i −0.181771 0.0430806i 0.138722 0.990331i \(-0.455701\pi\)
−0.320493 + 0.947251i \(0.603849\pi\)
\(642\) 0 0
\(643\) 0.490195 + 8.41632i 0.0193314 + 0.331907i 0.994084 + 0.108618i \(0.0346425\pi\)
−0.974752 + 0.223289i \(0.928321\pi\)
\(644\) −7.13047 7.55785i −0.280980 0.297821i
\(645\) 0 0
\(646\) 22.5698 52.3227i 0.887997 2.05861i
\(647\) 23.1964 0.911943 0.455971 0.889994i \(-0.349292\pi\)
0.455971 + 0.889994i \(0.349292\pi\)
\(648\) 0 0
\(649\) 7.36248 0.289003
\(650\) 19.8810 46.0893i 0.779797 1.80777i
\(651\) 0 0
\(652\) −7.95500 8.43180i −0.311542 0.330215i
\(653\) −2.10012 36.0577i −0.0821841 1.41105i −0.747390 0.664386i \(-0.768693\pi\)
0.665206 0.746660i \(-0.268344\pi\)
\(654\) 0 0
\(655\) −2.20944 0.523647i −0.0863300 0.0204606i
\(656\) 83.6768 30.4559i 3.26703 1.18910i
\(657\) 0 0
\(658\) 35.9237 + 13.0752i 1.40045 + 0.509722i
\(659\) −25.3331 16.6619i −0.986839 0.649054i −0.0499756 0.998750i \(-0.515914\pi\)
−0.936863 + 0.349696i \(0.886285\pi\)
\(660\) 0 0
\(661\) 12.8043 + 1.49661i 0.498030 + 0.0582114i 0.361400 0.932411i \(-0.382299\pi\)
0.136630 + 0.990622i \(0.456373\pi\)
\(662\) −24.4084 + 32.7862i −0.948659 + 1.27427i
\(663\) 0 0
\(664\) −0.281381 + 4.83112i −0.0109197 + 0.187484i
\(665\) 4.34629 3.64697i 0.168542 0.141424i
\(666\) 0 0
\(667\) 0.917946 + 0.770248i 0.0355430 + 0.0298241i
\(668\) −1.65856 + 1.75797i −0.0641715 + 0.0680178i
\(669\) 0 0
\(670\) −0.152290 + 0.100163i −0.00588346 + 0.00386962i
\(671\) −11.3149 + 2.68168i −0.436807 + 0.103525i
\(672\) 0 0
\(673\) −6.41242 + 0.749505i −0.247181 + 0.0288913i −0.238781 0.971073i \(-0.576748\pi\)
−0.00839975 + 0.999965i \(0.502674\pi\)
\(674\) 12.5587 21.7523i 0.483744 0.837869i
\(675\) 0 0
\(676\) −5.91752 10.2494i −0.227597 0.394209i
\(677\) 10.4833 + 14.0815i 0.402905 + 0.541196i 0.956554 0.291554i \(-0.0941724\pi\)
−0.553649 + 0.832750i \(0.686765\pi\)
\(678\) 0 0
\(679\) −17.8228 + 59.5322i −0.683975 + 2.28464i
\(680\) −10.1718 5.10848i −0.390072 0.195901i
\(681\) 0 0
\(682\) −3.58046 11.9596i −0.137103 0.457956i
\(683\) 3.16828 17.9682i 0.121231 0.687535i −0.862244 0.506492i \(-0.830942\pi\)
0.983475 0.181042i \(-0.0579471\pi\)
\(684\) 0 0
\(685\) 1.11782 + 6.33946i 0.0427097 + 0.242218i
\(686\) −7.73418 + 3.88425i −0.295292 + 0.148301i
\(687\) 0 0
\(688\) −13.5151 31.3316i −0.515259 1.19451i
\(689\) −11.1333 25.8098i −0.424144 0.983276i
\(690\) 0 0
\(691\) −36.4273 + 18.2945i −1.38576 + 0.695954i −0.976309 0.216379i \(-0.930575\pi\)
−0.409449 + 0.912333i \(0.634279\pi\)
\(692\) −4.44812 25.2266i −0.169092 0.958970i
\(693\) 0 0
\(694\) 9.69020 54.9559i 0.367835 2.08610i
\(695\) −1.43743 4.80134i −0.0545247 0.182125i
\(696\) 0 0
\(697\) 40.6098 + 20.3950i 1.53821 + 0.772516i
\(698\) 23.0716 77.0645i 0.873273 2.91693i
\(699\) 0 0
\(700\) 54.0740 + 72.6340i 2.04381 + 2.74531i
\(701\) 21.5739 + 37.3671i 0.814834 + 1.41133i 0.909447 + 0.415820i \(0.136505\pi\)
−0.0946129 + 0.995514i \(0.530161\pi\)
\(702\) 0 0
\(703\) −3.24372 + 5.61828i −0.122339 + 0.211897i
\(704\) −9.00438 + 1.05246i −0.339365 + 0.0396661i
\(705\) 0 0
\(706\) 51.0020 12.0877i 1.91949 0.454926i
\(707\) 11.1344 7.32319i 0.418751 0.275417i
\(708\) 0 0
\(709\) 6.46423 6.85169i 0.242769 0.257321i −0.594520 0.804081i \(-0.702658\pi\)
0.837289 + 0.546761i \(0.184139\pi\)
\(710\) 7.72023 + 6.47804i 0.289735 + 0.243116i
\(711\) 0 0
\(712\) −9.33630 + 7.83409i −0.349893 + 0.293595i
\(713\) 0.124151 2.13159i 0.00464949 0.0798286i
\(714\) 0 0
\(715\) −0.958659 + 1.28770i −0.0358518 + 0.0481573i
\(716\) 86.3771 + 10.0960i 3.22806 + 0.377306i
\(717\) 0 0
\(718\) 36.4525 + 23.9752i 1.36039 + 0.894745i
\(719\) 20.4128 + 7.42965i 0.761268 + 0.277079i 0.693339 0.720611i \(-0.256139\pi\)
0.0679289 + 0.997690i \(0.478361\pi\)
\(720\) 0 0
\(721\) −22.5042 + 8.19087i −0.838101 + 0.305044i
\(722\) 4.11231 + 0.974635i 0.153044 + 0.0362721i
\(723\) 0 0
\(724\) −3.27242 56.1852i −0.121618 2.08811i
\(725\) −7.16635 7.59589i −0.266152 0.282104i
\(726\) 0 0
\(727\) 8.91954 20.6778i 0.330807 0.766898i −0.668915 0.743339i \(-0.733241\pi\)
0.999722 0.0235590i \(-0.00749975\pi\)
\(728\) 110.635 4.10039
\(729\) 0 0
\(730\) −6.63645 −0.245626
\(731\) 6.89720 15.9895i 0.255102 0.591394i
\(732\) 0 0
\(733\) −18.7053 19.8264i −0.690895 0.732306i 0.283046 0.959106i \(-0.408655\pi\)
−0.973941 + 0.226801i \(0.927173\pi\)
\(734\) −3.70006 63.5275i −0.136572 2.34484i
\(735\) 0 0
\(736\) −5.46210 1.29454i −0.201336 0.0477174i
\(737\) −0.255275 + 0.0929125i −0.00940318 + 0.00342248i
\(738\) 0 0
\(739\) −29.4451 10.7172i −1.08316 0.394237i −0.262075 0.965048i \(-0.584407\pi\)
−0.821082 + 0.570811i \(0.806629\pi\)
\(740\) 1.85641 + 1.22098i 0.0682429 + 0.0448841i
\(741\) 0 0
\(742\) 71.3573 + 8.34048i 2.61961 + 0.306189i
\(743\) −25.9930 + 34.9147i −0.953592 + 1.28090i 0.00614072 + 0.999981i \(0.498045\pi\)
−0.959733 + 0.280915i \(0.909362\pi\)
\(744\) 0 0
\(745\) −0.162983 + 2.79832i −0.00597125 + 0.102522i
\(746\) 25.8831 21.7185i 0.947648 0.795171i
\(747\) 0 0
\(748\) −22.2819 18.6967i −0.814706 0.683620i
\(749\) 4.09287 4.33819i 0.149550 0.158514i
\(750\) 0 0
\(751\) −42.8341 + 28.1724i −1.56304 + 1.02803i −0.587224 + 0.809425i \(0.699779\pi\)
−0.975814 + 0.218601i \(0.929851\pi\)
\(752\) 34.8992 8.27126i 1.27264 0.301622i
\(753\) 0 0
\(754\) −21.7286 + 2.53971i −0.791311 + 0.0924909i
\(755\) 0.491017 0.850466i 0.0178699 0.0309516i
\(756\) 0 0
\(757\) −6.51051 11.2765i −0.236629 0.409853i 0.723116 0.690727i \(-0.242709\pi\)
−0.959745 + 0.280874i \(0.909376\pi\)
\(758\) −17.3414 23.2936i −0.629869 0.846061i
\(759\) 0 0
\(760\) 3.08034 10.2890i 0.111736 0.373223i
\(761\) −21.1840 10.6390i −0.767918 0.385663i 0.0213023 0.999773i \(-0.493219\pi\)
−0.789220 + 0.614110i \(0.789515\pi\)
\(762\) 0 0
\(763\) −13.8882 46.3900i −0.502788 1.67943i
\(764\) −16.5730 + 93.9902i −0.599591 + 3.40045i
\(765\) 0 0
\(766\) −14.3730 81.5136i −0.519319 2.94520i
\(767\) −20.5439 + 10.3175i −0.741797 + 0.372545i
\(768\) 0 0
\(769\) 15.9106 + 36.8849i 0.573750 + 1.33010i 0.919985 + 0.391954i \(0.128201\pi\)
−0.346235 + 0.938148i \(0.612540\pi\)
\(770\) −1.62518 3.76760i −0.0585675 0.135775i
\(771\) 0 0
\(772\) 68.4323 34.3680i 2.46293 1.23693i
\(773\) −0.721794 4.09350i −0.0259611 0.147233i 0.969072 0.246779i \(-0.0793721\pi\)
−0.995033 + 0.0995459i \(0.968261\pi\)
\(774\) 0 0
\(775\) −3.23122 + 18.3252i −0.116069 + 0.658259i
\(776\) 33.7384 + 112.694i 1.21114 + 4.04548i
\(777\) 0 0
\(778\) 15.9844 + 8.02768i 0.573069 + 0.287806i
\(779\) −12.2979 + 41.0778i −0.440618 + 1.47177i
\(780\) 0 0
\(781\) 8.96929 + 12.0478i 0.320946 + 0.431106i