Properties

Label 729.2.g.c.55.7
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.7
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.c.676.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.614147 - 1.42375i) q^{2} +(-0.277410 - 0.294037i) q^{4} +(-0.184768 - 3.17234i) q^{5} +(0.284960 + 0.0675368i) q^{7} +(2.32510 - 0.846267i) q^{8} +O(q^{10})\) \(q+(0.614147 - 1.42375i) q^{2} +(-0.277410 - 0.294037i) q^{4} +(-0.184768 - 3.17234i) q^{5} +(0.284960 + 0.0675368i) q^{7} +(2.32510 - 0.846267i) q^{8} +(-4.63010 - 1.68522i) q^{10} +(4.85926 + 3.19599i) q^{11} +(-0.249784 - 0.0291955i) q^{13} +(0.271163 - 0.364235i) q^{14} +(0.270087 - 4.63722i) q^{16} +(3.14189 - 2.63636i) q^{17} +(-3.55906 - 2.98641i) q^{19} +(-0.881528 + 0.934365i) q^{20} +(7.53459 - 4.95558i) q^{22} +(-4.46184 + 1.05748i) q^{23} +(-5.06339 + 0.591826i) q^{25} +(-0.194971 + 0.337700i) q^{26} +(-0.0591924 - 0.102524i) q^{28} +(-3.05471 - 4.10319i) q^{29} +(-1.69894 + 5.67485i) q^{31} +(-2.01411 - 1.01152i) q^{32} +(-1.82394 - 6.09239i) q^{34} +(0.161598 - 0.916469i) q^{35} +(0.850864 + 4.82549i) q^{37} +(-6.43769 + 3.23313i) q^{38} +(-3.11425 - 7.21964i) q^{40} +(-0.721490 - 1.67260i) q^{41} +(1.95203 - 0.980348i) q^{43} +(-0.408268 - 2.31540i) q^{44} +(-1.23464 + 7.00200i) q^{46} +(2.19683 + 7.33791i) q^{47} +(-6.17879 - 3.10310i) q^{49} +(-2.26705 + 7.57248i) q^{50} +(0.0607078 + 0.0815448i) q^{52} +(-3.52502 - 6.10552i) q^{53} +(9.24092 - 16.0057i) q^{55} +(0.719715 - 0.0841226i) q^{56} +(-7.71797 + 1.82919i) q^{58} +(7.68465 - 5.05427i) q^{59} +(2.13742 - 2.26554i) q^{61} +(7.03618 + 5.90406i) q^{62} +(4.43955 - 3.72523i) q^{64} +(-0.0464661 + 0.797793i) q^{65} +(-4.08333 + 5.48486i) q^{67} +(-1.64678 - 0.192481i) q^{68} +(-1.20558 - 0.792922i) q^{70} +(4.71278 + 1.71531i) q^{71} +(-1.71510 + 0.624247i) q^{73} +(7.39286 + 1.75214i) q^{74} +(0.109204 + 1.87495i) q^{76} +(1.16885 + 1.23891i) q^{77} +(-4.28100 + 9.92448i) q^{79} -14.7607 q^{80} -2.82447 q^{82} +(-3.99948 + 9.27184i) q^{83} +(-8.94395 - 9.48003i) q^{85} +(-0.196938 - 3.38129i) q^{86} +(14.0029 + 3.31875i) q^{88} +(9.79723 - 3.56590i) q^{89} +(-0.0692067 - 0.0251892i) q^{91} +(1.54869 + 1.01859i) q^{92} +(11.7965 + 1.37882i) q^{94} +(-8.81629 + 11.8423i) q^{95} +(-0.379561 + 6.51682i) q^{97} +(-8.21273 + 6.89130i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.614147 1.42375i 0.434267 1.00674i −0.550810 0.834631i \(-0.685681\pi\)
0.985077 0.172114i \(-0.0550597\pi\)
\(3\) 0 0
\(4\) −0.277410 0.294037i −0.138705 0.147018i
\(5\) −0.184768 3.17234i −0.0826306 1.41871i −0.743763 0.668443i \(-0.766961\pi\)
0.661133 0.750269i \(-0.270076\pi\)
\(6\) 0 0
\(7\) 0.284960 + 0.0675368i 0.107705 + 0.0255265i 0.284115 0.958790i \(-0.408300\pi\)
−0.176410 + 0.984317i \(0.556448\pi\)
\(8\) 2.32510 0.846267i 0.822047 0.299200i
\(9\) 0 0
\(10\) −4.63010 1.68522i −1.46416 0.532912i
\(11\) 4.85926 + 3.19599i 1.46512 + 0.963626i 0.996789 + 0.0800749i \(0.0255159\pi\)
0.468334 + 0.883552i \(0.344854\pi\)
\(12\) 0 0
\(13\) −0.249784 0.0291955i −0.0692776 0.00809739i 0.0813835 0.996683i \(-0.474066\pi\)
−0.150661 + 0.988585i \(0.548140\pi\)
\(14\) 0.271163 0.364235i 0.0724714 0.0973460i
\(15\) 0 0
\(16\) 0.270087 4.63722i 0.0675218 1.15930i
\(17\) 3.14189 2.63636i 0.762021 0.639411i −0.176631 0.984277i \(-0.556520\pi\)
0.938652 + 0.344866i \(0.112076\pi\)
\(18\) 0 0
\(19\) −3.55906 2.98641i −0.816505 0.685129i 0.135646 0.990757i \(-0.456689\pi\)
−0.952151 + 0.305629i \(0.901133\pi\)
\(20\) −0.881528 + 0.934365i −0.197116 + 0.208930i
\(21\) 0 0
\(22\) 7.53459 4.95558i 1.60638 1.05653i
\(23\) −4.46184 + 1.05748i −0.930358 + 0.220499i −0.667735 0.744399i \(-0.732736\pi\)
−0.262624 + 0.964898i \(0.584588\pi\)
\(24\) 0 0
\(25\) −5.06339 + 0.591826i −1.01268 + 0.118365i
\(26\) −0.194971 + 0.337700i −0.0382370 + 0.0662284i
\(27\) 0 0
\(28\) −0.0591924 0.102524i −0.0111863 0.0193753i
\(29\) −3.05471 4.10319i −0.567246 0.761944i 0.422254 0.906478i \(-0.361239\pi\)
−0.989500 + 0.144534i \(0.953832\pi\)
\(30\) 0 0
\(31\) −1.69894 + 5.67485i −0.305139 + 1.01923i 0.658624 + 0.752472i \(0.271139\pi\)
−0.963763 + 0.266762i \(0.914046\pi\)
\(32\) −2.01411 1.01152i −0.356047 0.178814i
\(33\) 0 0
\(34\) −1.82394 6.09239i −0.312803 1.04484i
\(35\) 0.161598 0.916469i 0.0273151 0.154912i
\(36\) 0 0
\(37\) 0.850864 + 4.82549i 0.139881 + 0.793306i 0.971336 + 0.237713i \(0.0763977\pi\)
−0.831454 + 0.555593i \(0.812491\pi\)
\(38\) −6.43769 + 3.23313i −1.04433 + 0.524483i
\(39\) 0 0
\(40\) −3.11425 7.21964i −0.492406 1.14152i
\(41\) −0.721490 1.67260i −0.112678 0.261217i 0.852541 0.522661i \(-0.175061\pi\)
−0.965219 + 0.261444i \(0.915801\pi\)
\(42\) 0 0
\(43\) 1.95203 0.980348i 0.297682 0.149502i −0.293689 0.955901i \(-0.594883\pi\)
0.591371 + 0.806399i \(0.298587\pi\)
\(44\) −0.408268 2.31540i −0.0615486 0.349060i
\(45\) 0 0
\(46\) −1.23464 + 7.00200i −0.182038 + 1.03239i
\(47\) 2.19683 + 7.33791i 0.320440 + 1.07034i 0.954786 + 0.297295i \(0.0960844\pi\)
−0.634346 + 0.773050i \(0.718730\pi\)
\(48\) 0 0
\(49\) −6.17879 3.10310i −0.882684 0.443301i
\(50\) −2.26705 + 7.57248i −0.320610 + 1.07091i
\(51\) 0 0
\(52\) 0.0607078 + 0.0815448i 0.00841866 + 0.0113082i
\(53\) −3.52502 6.10552i −0.484199 0.838657i 0.515636 0.856808i \(-0.327556\pi\)
−0.999835 + 0.0181502i \(0.994222\pi\)
\(54\) 0 0
\(55\) 9.24092 16.0057i 1.24604 2.15821i
\(56\) 0.719715 0.0841226i 0.0961760 0.0112414i
\(57\) 0 0
\(58\) −7.71797 + 1.82919i −1.01342 + 0.240185i
\(59\) 7.68465 5.05427i 1.00046 0.658010i 0.0600966 0.998193i \(-0.480859\pi\)
0.940360 + 0.340182i \(0.110489\pi\)
\(60\) 0 0
\(61\) 2.13742 2.26554i 0.273669 0.290072i −0.575933 0.817497i \(-0.695361\pi\)
0.849602 + 0.527425i \(0.176842\pi\)
\(62\) 7.03618 + 5.90406i 0.893596 + 0.749816i
\(63\) 0 0
\(64\) 4.43955 3.72523i 0.554944 0.465653i
\(65\) −0.0464661 + 0.797793i −0.00576342 + 0.0989540i
\(66\) 0 0
\(67\) −4.08333 + 5.48486i −0.498858 + 0.670083i −0.978229 0.207530i \(-0.933458\pi\)
0.479371 + 0.877613i \(0.340865\pi\)
\(68\) −1.64678 0.192481i −0.199701 0.0233417i
\(69\) 0 0
\(70\) −1.20558 0.792922i −0.144094 0.0947723i
\(71\) 4.71278 + 1.71531i 0.559304 + 0.203570i 0.606175 0.795331i \(-0.292703\pi\)
−0.0468717 + 0.998901i \(0.514925\pi\)
\(72\) 0 0
\(73\) −1.71510 + 0.624247i −0.200738 + 0.0730626i −0.440432 0.897786i \(-0.645175\pi\)
0.239695 + 0.970848i \(0.422953\pi\)
\(74\) 7.39286 + 1.75214i 0.859402 + 0.203682i
\(75\) 0 0
\(76\) 0.109204 + 1.87495i 0.0125265 + 0.215072i
\(77\) 1.16885 + 1.23891i 0.133203 + 0.141187i
\(78\) 0 0
\(79\) −4.28100 + 9.92448i −0.481650 + 1.11659i 0.488165 + 0.872751i \(0.337666\pi\)
−0.969816 + 0.243840i \(0.921593\pi\)
\(80\) −14.7607 −1.65030
\(81\) 0 0
\(82\) −2.82447 −0.311911
\(83\) −3.99948 + 9.27184i −0.439000 + 1.01772i 0.544819 + 0.838553i \(0.316598\pi\)
−0.983819 + 0.179163i \(0.942661\pi\)
\(84\) 0 0
\(85\) −8.94395 9.48003i −0.970107 1.02825i
\(86\) −0.196938 3.38129i −0.0212363 0.364614i
\(87\) 0 0
\(88\) 14.0029 + 3.31875i 1.49272 + 0.353780i
\(89\) 9.79723 3.56590i 1.03850 0.377985i 0.234192 0.972190i \(-0.424756\pi\)
0.804313 + 0.594206i \(0.202533\pi\)
\(90\) 0 0
\(91\) −0.0692067 0.0251892i −0.00725483 0.00264054i
\(92\) 1.54869 + 1.01859i 0.161463 + 0.106196i
\(93\) 0 0
\(94\) 11.7965 + 1.37882i 1.21672 + 0.142214i
\(95\) −8.81629 + 11.8423i −0.904532 + 1.21500i
\(96\) 0 0
\(97\) −0.379561 + 6.51682i −0.0385386 + 0.661683i 0.922624 + 0.385700i \(0.126040\pi\)
−0.961163 + 0.275982i \(0.910997\pi\)
\(98\) −8.21273 + 6.89130i −0.829611 + 0.696126i
\(99\) 0 0
\(100\) 1.57865 + 1.32465i 0.157865 + 0.132465i
\(101\) −0.212738 + 0.225489i −0.0211683 + 0.0224370i −0.737871 0.674941i \(-0.764169\pi\)
0.716703 + 0.697379i \(0.245650\pi\)
\(102\) 0 0
\(103\) 8.06674 5.30558i 0.794840 0.522774i −0.0859399 0.996300i \(-0.527389\pi\)
0.880780 + 0.473526i \(0.157019\pi\)
\(104\) −0.605479 + 0.143501i −0.0593721 + 0.0140715i
\(105\) 0 0
\(106\) −10.8576 + 1.26907i −1.05459 + 0.123263i
\(107\) −5.31399 + 9.20410i −0.513723 + 0.889794i 0.486150 + 0.873875i \(0.338401\pi\)
−0.999873 + 0.0159189i \(0.994933\pi\)
\(108\) 0 0
\(109\) 8.57766 + 14.8569i 0.821590 + 1.42304i 0.904497 + 0.426479i \(0.140246\pi\)
−0.0829070 + 0.996557i \(0.526420\pi\)
\(110\) −17.1129 22.9866i −1.63165 2.19169i
\(111\) 0 0
\(112\) 0.390147 1.30318i 0.0368654 0.123139i
\(113\) 9.46527 + 4.75364i 0.890418 + 0.447185i 0.834345 0.551242i \(-0.185846\pi\)
0.0560723 + 0.998427i \(0.482142\pi\)
\(114\) 0 0
\(115\) 4.17907 + 13.9591i 0.389701 + 1.30169i
\(116\) −0.359083 + 2.03646i −0.0333401 + 0.189081i
\(117\) 0 0
\(118\) −2.47653 14.0451i −0.227983 1.29296i
\(119\) 1.07337 0.539065i 0.0983953 0.0494160i
\(120\) 0 0
\(121\) 9.04122 + 20.9599i 0.821929 + 1.90545i
\(122\) −1.91287 4.43453i −0.173183 0.401484i
\(123\) 0 0
\(124\) 2.13992 1.07471i 0.192170 0.0965116i
\(125\) 0.0540020 + 0.306261i 0.00483008 + 0.0273928i
\(126\) 0 0
\(127\) −2.51136 + 14.2427i −0.222848 + 1.26383i 0.643910 + 0.765101i \(0.277311\pi\)
−0.866757 + 0.498730i \(0.833800\pi\)
\(128\) −3.87008 12.9270i −0.342070 1.14259i
\(129\) 0 0
\(130\) 1.10732 + 0.556118i 0.0971186 + 0.0487748i
\(131\) 1.09756 3.66609i 0.0958939 0.320308i −0.896561 0.442921i \(-0.853942\pi\)
0.992455 + 0.122613i \(0.0391274\pi\)
\(132\) 0 0
\(133\) −0.812499 1.09138i −0.0704526 0.0946342i
\(134\) 5.30132 + 9.18216i 0.457964 + 0.793217i
\(135\) 0 0
\(136\) 5.07415 8.78868i 0.435104 0.753623i
\(137\) 14.1689 1.65610i 1.21053 0.141490i 0.513217 0.858259i \(-0.328454\pi\)
0.697311 + 0.716768i \(0.254380\pi\)
\(138\) 0 0
\(139\) 5.73451 1.35910i 0.486395 0.115278i 0.0199006 0.999802i \(-0.493665\pi\)
0.466494 + 0.884524i \(0.345517\pi\)
\(140\) −0.314305 + 0.206721i −0.0265636 + 0.0174711i
\(141\) 0 0
\(142\) 5.33651 5.65637i 0.447830 0.474672i
\(143\) −1.12046 0.940175i −0.0936973 0.0786213i
\(144\) 0 0
\(145\) −12.4523 + 10.4487i −1.03411 + 0.867719i
\(146\) −0.164553 + 2.82526i −0.0136185 + 0.233820i
\(147\) 0 0
\(148\) 1.18283 1.58882i 0.0972284 0.130600i
\(149\) −13.9939 1.63565i −1.14642 0.133998i −0.478402 0.878141i \(-0.658784\pi\)
−0.668020 + 0.744143i \(0.732858\pi\)
\(150\) 0 0
\(151\) −1.32326 0.870321i −0.107685 0.0708257i 0.494524 0.869164i \(-0.335342\pi\)
−0.602209 + 0.798338i \(0.705713\pi\)
\(152\) −10.8025 3.93178i −0.876196 0.318909i
\(153\) 0 0
\(154\) 2.48174 0.903281i 0.199985 0.0727884i
\(155\) 18.3165 + 4.34108i 1.47121 + 0.348684i
\(156\) 0 0
\(157\) −0.297956 5.11570i −0.0237794 0.408277i −0.989103 0.147222i \(-0.952967\pi\)
0.965324 0.261055i \(-0.0840703\pi\)
\(158\) 11.5008 + 12.1902i 0.914957 + 0.969797i
\(159\) 0 0
\(160\) −2.83675 + 6.57633i −0.224265 + 0.519904i
\(161\) −1.34287 −0.105833
\(162\) 0 0
\(163\) −17.6764 −1.38452 −0.692262 0.721646i \(-0.743386\pi\)
−0.692262 + 0.721646i \(0.743386\pi\)
\(164\) −0.291659 + 0.676141i −0.0227747 + 0.0527977i
\(165\) 0 0
\(166\) 10.7445 + 11.3885i 0.833937 + 0.883922i
\(167\) −0.0801450 1.37604i −0.00620181 0.106481i 0.993787 0.111303i \(-0.0355023\pi\)
−0.999988 + 0.00482161i \(0.998465\pi\)
\(168\) 0 0
\(169\) −12.5880 2.98342i −0.968311 0.229494i
\(170\) −18.9901 + 6.91183i −1.45647 + 0.530113i
\(171\) 0 0
\(172\) −0.829771 0.302012i −0.0632695 0.0230282i
\(173\) −10.8612 7.14352i −0.825762 0.543112i 0.0648402 0.997896i \(-0.479346\pi\)
−0.890602 + 0.454784i \(0.849717\pi\)
\(174\) 0 0
\(175\) −1.48284 0.173319i −0.112092 0.0131017i
\(176\) 16.1329 21.6703i 1.21606 1.63346i
\(177\) 0 0
\(178\) 0.939979 16.1388i 0.0704544 1.20966i
\(179\) 19.1637 16.0803i 1.43237 1.20190i 0.488067 0.872806i \(-0.337702\pi\)
0.944298 0.329091i \(-0.106742\pi\)
\(180\) 0 0
\(181\) 3.52910 + 2.96126i 0.262316 + 0.220109i 0.764454 0.644678i \(-0.223009\pi\)
−0.502138 + 0.864787i \(0.667453\pi\)
\(182\) −0.0783662 + 0.0830633i −0.00580889 + 0.00615706i
\(183\) 0 0
\(184\) −9.47932 + 6.23464i −0.698824 + 0.459624i
\(185\) 15.1509 3.59082i 1.11391 0.264003i
\(186\) 0 0
\(187\) 23.6931 2.76932i 1.73261 0.202513i
\(188\) 1.54820 2.68156i 0.112914 0.195573i
\(189\) 0 0
\(190\) 11.4460 + 19.8251i 0.830384 + 1.43827i
\(191\) 1.60520 + 2.15616i 0.116148 + 0.156014i 0.856395 0.516321i \(-0.172699\pi\)
−0.740247 + 0.672335i \(0.765291\pi\)
\(192\) 0 0
\(193\) −1.89464 + 6.32854i −0.136379 + 0.455538i −0.998708 0.0508098i \(-0.983820\pi\)
0.862329 + 0.506348i \(0.169005\pi\)
\(194\) 9.04522 + 4.54268i 0.649409 + 0.326146i
\(195\) 0 0
\(196\) 0.801628 + 2.67762i 0.0572591 + 0.191259i
\(197\) −2.65657 + 15.0662i −0.189273 + 1.07342i 0.731068 + 0.682304i \(0.239022\pi\)
−0.920341 + 0.391116i \(0.872089\pi\)
\(198\) 0 0
\(199\) 2.44426 + 13.8621i 0.173269 + 0.982657i 0.940123 + 0.340835i \(0.110710\pi\)
−0.766854 + 0.641821i \(0.778179\pi\)
\(200\) −11.2721 + 5.66104i −0.797054 + 0.400296i
\(201\) 0 0
\(202\) 0.190388 + 0.441370i 0.0133957 + 0.0310547i
\(203\) −0.593356 1.37555i −0.0416454 0.0965449i
\(204\) 0 0
\(205\) −5.17275 + 2.59785i −0.361281 + 0.181442i
\(206\) −2.59967 14.7434i −0.181127 1.02722i
\(207\) 0 0
\(208\) −0.202849 + 1.15042i −0.0140651 + 0.0797670i
\(209\) −7.74989 25.8864i −0.536071 1.79060i
\(210\) 0 0
\(211\) 13.8113 + 6.93632i 0.950812 + 0.477516i 0.855426 0.517924i \(-0.173295\pi\)
0.0953860 + 0.995440i \(0.469591\pi\)
\(212\) −0.817373 + 2.73022i −0.0561374 + 0.187512i
\(213\) 0 0
\(214\) 9.84079 + 13.2185i 0.672702 + 0.903596i
\(215\) −3.47067 6.01137i −0.236698 0.409972i
\(216\) 0 0
\(217\) −0.867392 + 1.50237i −0.0588824 + 0.101987i
\(218\) 26.4205 3.08812i 1.78942 0.209154i
\(219\) 0 0
\(220\) −7.26980 + 1.72297i −0.490130 + 0.116163i
\(221\) −0.861764 + 0.566791i −0.0579685 + 0.0381265i
\(222\) 0 0
\(223\) −3.33129 + 3.53096i −0.223080 + 0.236451i −0.829241 0.558891i \(-0.811227\pi\)
0.606161 + 0.795342i \(0.292709\pi\)
\(224\) −0.505626 0.424270i −0.0337836 0.0283478i
\(225\) 0 0
\(226\) 12.5811 10.5568i 0.836880 0.702225i
\(227\) 1.12523 19.3195i 0.0746844 1.28228i −0.727875 0.685710i \(-0.759492\pi\)
0.802559 0.596572i \(-0.203471\pi\)
\(228\) 0 0
\(229\) −2.19967 + 2.95467i −0.145358 + 0.195250i −0.868839 0.495094i \(-0.835133\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(230\) 22.4408 + 2.62296i 1.47970 + 0.172953i
\(231\) 0 0
\(232\) −10.5749 6.95523i −0.694277 0.456633i
\(233\) −1.43618 0.522727i −0.0940872 0.0342450i 0.294548 0.955637i \(-0.404831\pi\)
−0.388635 + 0.921392i \(0.627053\pi\)
\(234\) 0 0
\(235\) 22.8724 8.32488i 1.49203 0.543056i
\(236\) −3.61794 0.857467i −0.235508 0.0558164i
\(237\) 0 0
\(238\) −0.108290 1.85927i −0.00701941 0.120519i
\(239\) −3.26580 3.46154i −0.211247 0.223909i 0.613083 0.790019i \(-0.289929\pi\)
−0.824330 + 0.566110i \(0.808448\pi\)
\(240\) 0 0
\(241\) 10.0224 23.2345i 0.645598 1.49666i −0.209291 0.977853i \(-0.567116\pi\)
0.854889 0.518811i \(-0.173625\pi\)
\(242\) 35.3943 2.27523
\(243\) 0 0
\(244\) −1.25909 −0.0806052
\(245\) −8.70245 + 20.1746i −0.555979 + 1.28890i
\(246\) 0 0
\(247\) 0.801806 + 0.849865i 0.0510177 + 0.0540756i
\(248\) 0.852237 + 14.6324i 0.0541171 + 0.929155i
\(249\) 0 0
\(250\) 0.469204 + 0.111203i 0.0296751 + 0.00703312i
\(251\) −2.06755 + 0.752528i −0.130503 + 0.0474991i −0.406446 0.913675i \(-0.633232\pi\)
0.275943 + 0.961174i \(0.411010\pi\)
\(252\) 0 0
\(253\) −25.0609 9.12143i −1.57557 0.573460i
\(254\) 18.7357 + 12.3226i 1.17558 + 0.773191i
\(255\) 0 0
\(256\) −9.26912 1.08340i −0.579320 0.0677128i
\(257\) −6.13071 + 8.23498i −0.382423 + 0.513684i −0.951102 0.308876i \(-0.900047\pi\)
0.568679 + 0.822560i \(0.307455\pi\)
\(258\) 0 0
\(259\) −0.0834358 + 1.43254i −0.00518445 + 0.0890136i
\(260\) 0.247471 0.207653i 0.0153475 0.0128781i
\(261\) 0 0
\(262\) −4.54554 3.81416i −0.280825 0.235640i
\(263\) −1.08901 + 1.15428i −0.0671512 + 0.0711761i −0.760078 0.649832i \(-0.774839\pi\)
0.692927 + 0.721008i \(0.256321\pi\)
\(264\) 0 0
\(265\) −18.7175 + 12.3107i −1.14980 + 0.756238i
\(266\) −2.05284 + 0.486532i −0.125868 + 0.0298312i
\(267\) 0 0
\(268\) 2.74551 0.320904i 0.167709 0.0196023i
\(269\) 2.49753 4.32585i 0.152277 0.263752i −0.779787 0.626045i \(-0.784673\pi\)
0.932064 + 0.362293i \(0.118006\pi\)
\(270\) 0 0
\(271\) −4.63580 8.02944i −0.281605 0.487754i 0.690175 0.723642i \(-0.257533\pi\)
−0.971780 + 0.235888i \(0.924200\pi\)
\(272\) −11.3768 15.2817i −0.689819 0.926588i
\(273\) 0 0
\(274\) 6.34388 21.1900i 0.383248 1.28014i
\(275\) −26.4958 13.3067i −1.59776 0.802425i
\(276\) 0 0
\(277\) 7.41215 + 24.7583i 0.445353 + 1.48758i 0.826430 + 0.563039i \(0.190368\pi\)
−0.381077 + 0.924543i \(0.624447\pi\)
\(278\) 1.58680 8.99921i 0.0951701 0.539737i
\(279\) 0 0
\(280\) −0.399845 2.26764i −0.0238953 0.135517i
\(281\) −25.8792 + 12.9970i −1.54382 + 0.775336i −0.998039 0.0625905i \(-0.980064\pi\)
−0.545782 + 0.837927i \(0.683767\pi\)
\(282\) 0 0
\(283\) 0.408756 + 0.947602i 0.0242980 + 0.0563291i 0.929933 0.367729i \(-0.119865\pi\)
−0.905635 + 0.424058i \(0.860605\pi\)
\(284\) −0.803005 1.86157i −0.0476496 0.110464i
\(285\) 0 0
\(286\) −2.02670 + 1.01785i −0.119841 + 0.0601865i
\(287\) −0.0926338 0.525353i −0.00546800 0.0310106i
\(288\) 0 0
\(289\) −0.0309285 + 0.175404i −0.00181932 + 0.0103179i
\(290\) 7.22885 + 24.1460i 0.424492 + 1.41790i
\(291\) 0 0
\(292\) 0.659338 + 0.331132i 0.0385848 + 0.0193780i
\(293\) −1.99047 + 6.64865i −0.116285 + 0.388418i −0.996240 0.0866389i \(-0.972387\pi\)
0.879955 + 0.475057i \(0.157573\pi\)
\(294\) 0 0
\(295\) −17.4537 23.4444i −1.01620 1.36499i
\(296\) 6.06200 + 10.4997i 0.352346 + 0.610282i
\(297\) 0 0
\(298\) −10.9230 + 18.9193i −0.632755 + 1.09596i
\(299\) 1.14537 0.133874i 0.0662384 0.00774216i
\(300\) 0 0
\(301\) 0.622462 0.147526i 0.0358781 0.00850326i
\(302\) −2.05180 + 1.34949i −0.118068 + 0.0776543i
\(303\) 0 0
\(304\) −14.8099 + 15.6975i −0.849404 + 0.900316i
\(305\) −7.58197 6.36203i −0.434143 0.364289i
\(306\) 0 0
\(307\) 14.0395 11.7805i 0.801275 0.672350i −0.147233 0.989102i \(-0.547037\pi\)
0.948508 + 0.316752i \(0.102592\pi\)
\(308\) 0.0400348 0.687370i 0.00228119 0.0391666i
\(309\) 0 0
\(310\) 17.4296 23.4120i 0.989935 1.32971i
\(311\) −14.5964 1.70608i −0.827686 0.0967427i −0.308307 0.951287i \(-0.599763\pi\)
−0.519379 + 0.854544i \(0.673837\pi\)
\(312\) 0 0
\(313\) −4.72821 3.10979i −0.267254 0.175776i 0.408808 0.912620i \(-0.365945\pi\)
−0.676062 + 0.736845i \(0.736315\pi\)
\(314\) −7.46647 2.71757i −0.421358 0.153362i
\(315\) 0 0
\(316\) 4.10575 1.49437i 0.230967 0.0840650i
\(317\) −22.2986 5.28486i −1.25241 0.296827i −0.449693 0.893183i \(-0.648467\pi\)
−0.802720 + 0.596356i \(0.796615\pi\)
\(318\) 0 0
\(319\) −1.72990 29.7013i −0.0968561 1.66295i
\(320\) −12.6380 13.3955i −0.706484 0.748829i
\(321\) 0 0
\(322\) −0.824717 + 1.91191i −0.0459597 + 0.106546i
\(323\) −19.0554 −1.06027
\(324\) 0 0
\(325\) 1.28203 0.0711144
\(326\) −10.8559 + 25.1668i −0.601253 + 1.39386i
\(327\) 0 0
\(328\) −3.09300 3.27839i −0.170783 0.181019i
\(329\) 0.130429 + 2.23938i 0.00719079 + 0.123461i
\(330\) 0 0
\(331\) 2.99454 + 0.709719i 0.164595 + 0.0390097i 0.312087 0.950054i \(-0.398972\pi\)
−0.147492 + 0.989063i \(0.547120\pi\)
\(332\) 3.83576 1.39610i 0.210515 0.0766210i
\(333\) 0 0
\(334\) −2.00836 0.730982i −0.109892 0.0399975i
\(335\) 18.1543 + 11.9403i 0.991876 + 0.652367i
\(336\) 0 0
\(337\) 4.08195 + 0.477112i 0.222358 + 0.0259899i 0.226542 0.974001i \(-0.427258\pi\)
−0.00418429 + 0.999991i \(0.501332\pi\)
\(338\) −11.9786 + 16.0900i −0.651547 + 0.875180i
\(339\) 0 0
\(340\) −0.306343 + 5.25970i −0.0166138 + 0.285247i
\(341\) −26.3924 + 22.1458i −1.42923 + 1.19926i
\(342\) 0 0
\(343\) −3.12151 2.61926i −0.168546 0.141427i
\(344\) 3.70903 3.93135i 0.199978 0.211964i
\(345\) 0 0
\(346\) −16.8410 + 11.0765i −0.905376 + 0.595475i
\(347\) −8.70882 + 2.06403i −0.467514 + 0.110803i −0.457619 0.889148i \(-0.651298\pi\)
−0.00989464 + 0.999951i \(0.503150\pi\)
\(348\) 0 0
\(349\) −4.92593 + 0.575758i −0.263679 + 0.0308196i −0.246905 0.969040i \(-0.579414\pi\)
−0.0167738 + 0.999859i \(0.505340\pi\)
\(350\) −1.15744 + 2.00475i −0.0618679 + 0.107158i
\(351\) 0 0
\(352\) −6.55427 11.3523i −0.349344 0.605081i
\(353\) 12.1208 + 16.2811i 0.645125 + 0.866554i 0.997598 0.0692685i \(-0.0220665\pi\)
−0.352473 + 0.935822i \(0.614659\pi\)
\(354\) 0 0
\(355\) 4.57077 15.2675i 0.242592 0.810312i
\(356\) −3.76635 1.89153i −0.199616 0.100251i
\(357\) 0 0
\(358\) −11.1250 37.1601i −0.587974 1.96397i
\(359\) −1.35166 + 7.66566i −0.0713380 + 0.404578i 0.928139 + 0.372234i \(0.121408\pi\)
−0.999477 + 0.0323438i \(0.989703\pi\)
\(360\) 0 0
\(361\) 0.448974 + 2.54626i 0.0236302 + 0.134014i
\(362\) 6.38349 3.20591i 0.335509 0.168499i
\(363\) 0 0
\(364\) 0.0117920 + 0.0273370i 0.000618071 + 0.00143285i
\(365\) 2.29722 + 5.32555i 0.120242 + 0.278752i
\(366\) 0 0
\(367\) −0.173614 + 0.0871922i −0.00906258 + 0.00455140i −0.453325 0.891345i \(-0.649762\pi\)
0.444262 + 0.895897i \(0.353466\pi\)
\(368\) 3.69866 + 20.9761i 0.192806 + 1.09346i
\(369\) 0 0
\(370\) 4.19242 23.7764i 0.217953 1.23607i
\(371\) −0.592144 1.97790i −0.0307426 0.102687i
\(372\) 0 0
\(373\) 2.04320 + 1.02613i 0.105793 + 0.0531312i 0.500909 0.865500i \(-0.332999\pi\)
−0.395116 + 0.918631i \(0.629296\pi\)
\(374\) 10.6082 35.4338i 0.548536 1.83224i
\(375\) 0 0
\(376\) 11.3177 + 15.2023i 0.583664 + 0.783997i
\(377\) 0.643223 + 1.11409i 0.0331277 + 0.0573788i
\(378\) 0 0
\(379\) 3.62704 6.28222i 0.186309 0.322696i −0.757708 0.652594i \(-0.773681\pi\)
0.944017 + 0.329898i \(0.107014\pi\)
\(380\) 5.92781 0.692861i 0.304090 0.0355430i
\(381\) 0 0
\(382\) 4.05567 0.961210i 0.207506 0.0491798i
\(383\) −22.6113 + 14.8717i −1.15538 + 0.759907i −0.974674 0.223630i \(-0.928209\pi\)
−0.180708 + 0.983537i \(0.557839\pi\)
\(384\) 0 0
\(385\) 3.71427 3.93690i 0.189297 0.200643i
\(386\) 7.84669 + 6.58415i 0.399386 + 0.335124i
\(387\) 0 0
\(388\) 2.02148 1.69622i 0.102625 0.0861126i
\(389\) 1.33071 22.8473i 0.0674694 1.15841i −0.779372 0.626561i \(-0.784462\pi\)
0.846842 0.531845i \(-0.178501\pi\)
\(390\) 0 0
\(391\) −11.2307 + 15.0855i −0.567963 + 0.762906i
\(392\) −16.9923 1.98612i −0.858243 0.100314i
\(393\) 0 0
\(394\) 19.8190 + 13.0351i 0.998465 + 0.656701i
\(395\) 32.2748 + 11.7471i 1.62392 + 0.591059i
\(396\) 0 0
\(397\) −16.8844 + 6.14542i −0.847403 + 0.308430i −0.728981 0.684534i \(-0.760006\pi\)
−0.118422 + 0.992963i \(0.537784\pi\)
\(398\) 21.2373 + 5.03333i 1.06453 + 0.252298i
\(399\) 0 0
\(400\) 1.37687 + 23.6399i 0.0688434 + 1.18200i
\(401\) 0.985267 + 1.04432i 0.0492019 + 0.0521509i 0.751507 0.659725i \(-0.229327\pi\)
−0.702305 + 0.711876i \(0.747846\pi\)
\(402\) 0 0
\(403\) 0.590048 1.36789i 0.0293924 0.0681392i
\(404\) 0.125318 0.00623480
\(405\) 0 0
\(406\) −2.32285 −0.115281
\(407\) −11.2876 + 26.1677i −0.559507 + 1.29708i
\(408\) 0 0
\(409\) −8.94258 9.47858i −0.442182 0.468686i 0.467499 0.883994i \(-0.345155\pi\)
−0.909681 + 0.415308i \(0.863674\pi\)
\(410\) 0.521871 + 8.96018i 0.0257734 + 0.442512i
\(411\) 0 0
\(412\) −3.79783 0.900102i −0.187106 0.0443448i
\(413\) 2.53117 0.921270i 0.124551 0.0453328i
\(414\) 0 0
\(415\) 30.1524 + 10.9746i 1.48012 + 0.538720i
\(416\) 0.473560 + 0.311465i 0.0232182 + 0.0152708i
\(417\) 0 0
\(418\) −41.6154 4.86415i −2.03548 0.237913i
\(419\) 17.8833 24.0214i 0.873655 1.17352i −0.110084 0.993922i \(-0.535112\pi\)
0.983740 0.179600i \(-0.0574805\pi\)
\(420\) 0 0
\(421\) −1.87836 + 32.2502i −0.0915458 + 1.57178i 0.569853 + 0.821746i \(0.307000\pi\)
−0.661399 + 0.750034i \(0.730037\pi\)
\(422\) 18.3578 15.4040i 0.893643 0.749856i
\(423\) 0 0
\(424\) −13.3629 11.2128i −0.648961 0.544543i
\(425\) −14.3484 + 15.2084i −0.695998 + 0.737715i
\(426\) 0 0
\(427\) 0.762088 0.501233i 0.0368800 0.0242564i
\(428\) 4.18050 0.990796i 0.202072 0.0478919i
\(429\) 0 0
\(430\) −10.6902 + 1.24951i −0.515527 + 0.0602565i
\(431\) 15.3414 26.5721i 0.738970 1.27993i −0.213989 0.976836i \(-0.568646\pi\)
0.952960 0.303098i \(-0.0980208\pi\)
\(432\) 0 0
\(433\) −19.2517 33.3449i −0.925176 1.60245i −0.791277 0.611457i \(-0.790584\pi\)
−0.133899 0.990995i \(-0.542750\pi\)
\(434\) 1.60629 + 2.15762i 0.0771045 + 0.103569i
\(435\) 0 0
\(436\) 1.98896 6.64360i 0.0952541 0.318171i
\(437\) 19.0380 + 9.56125i 0.910712 + 0.457377i
\(438\) 0 0
\(439\) −11.3520 37.9182i −0.541800 1.80974i −0.585471 0.810693i \(-0.699090\pi\)
0.0436707 0.999046i \(-0.486095\pi\)
\(440\) 7.94092 45.0352i 0.378569 2.14697i
\(441\) 0 0
\(442\) 0.277720 + 1.57503i 0.0132098 + 0.0749166i
\(443\) 5.39874 2.71135i 0.256502 0.128820i −0.315902 0.948792i \(-0.602307\pi\)
0.572404 + 0.819972i \(0.306011\pi\)
\(444\) 0 0
\(445\) −13.1225 30.4213i −0.622064 1.44211i
\(446\) 2.98131 + 6.91146i 0.141169 + 0.327267i
\(447\) 0 0
\(448\) 1.51669 0.761709i 0.0716567 0.0359873i
\(449\) −0.417057 2.36525i −0.0196821 0.111623i 0.973384 0.229181i \(-0.0736046\pi\)
−0.993066 + 0.117558i \(0.962494\pi\)
\(450\) 0 0
\(451\) 1.83971 10.4335i 0.0866284 0.491294i
\(452\) −1.22801 4.10184i −0.0577608 0.192934i
\(453\) 0 0
\(454\) −26.8152 13.4671i −1.25850 0.632041i
\(455\) −0.0671214 + 0.224201i −0.00314670 + 0.0105107i
\(456\) 0 0
\(457\) −7.70284 10.3467i −0.360323 0.483998i 0.584585 0.811332i \(-0.301257\pi\)
−0.944909 + 0.327334i \(0.893850\pi\)
\(458\) 2.85579 + 4.94638i 0.133442 + 0.231129i
\(459\) 0 0
\(460\) 2.94517 5.10118i 0.137319 0.237844i
\(461\) 29.3843 3.43453i 1.36856 0.159962i 0.600135 0.799899i \(-0.295113\pi\)
0.768428 + 0.639937i \(0.221039\pi\)
\(462\) 0 0
\(463\) 33.6433 7.97361i 1.56354 0.370565i 0.644458 0.764639i \(-0.277083\pi\)
0.919079 + 0.394074i \(0.128935\pi\)
\(464\) −19.8524 + 13.0572i −0.921626 + 0.606163i
\(465\) 0 0
\(466\) −1.62626 + 1.72373i −0.0753349 + 0.0798503i
\(467\) −24.0070 20.1443i −1.11091 0.932165i −0.112801 0.993618i \(-0.535982\pi\)
−0.998110 + 0.0614529i \(0.980427\pi\)
\(468\) 0 0
\(469\) −1.53402 + 1.28719i −0.0708343 + 0.0594371i
\(470\) 2.19446 37.6774i 0.101223 1.73793i
\(471\) 0 0
\(472\) 13.5903 18.2549i 0.625545 0.840252i
\(473\) 12.6186 + 1.47491i 0.580205 + 0.0678162i
\(474\) 0 0
\(475\) 19.7884 + 13.0150i 0.907952 + 0.597170i
\(476\) −0.456267 0.166068i −0.0209130 0.00761170i
\(477\) 0 0
\(478\) −6.93405 + 2.52379i −0.317156 + 0.115435i
\(479\) −9.22501 2.18637i −0.421502 0.0998977i 0.0143909 0.999896i \(-0.495419\pi\)
−0.435893 + 0.899999i \(0.643567\pi\)
\(480\) 0 0
\(481\) −0.0716493 1.23017i −0.00326693 0.0560910i
\(482\) −26.9249 28.5388i −1.22640 1.29990i
\(483\) 0 0
\(484\) 3.65487 8.47293i 0.166130 0.385133i
\(485\) 20.7437 0.941922
\(486\) 0 0
\(487\) −16.8494 −0.763520 −0.381760 0.924261i \(-0.624682\pi\)
−0.381760 + 0.924261i \(0.624682\pi\)
\(488\) 3.05247 7.07643i 0.138179 0.320335i
\(489\) 0 0
\(490\) 23.3790 + 24.7803i 1.05615 + 1.11946i
\(491\) −0.904688 15.5329i −0.0408280 0.700989i −0.955172 0.296051i \(-0.904330\pi\)
0.914344 0.404938i \(-0.132707\pi\)
\(492\) 0 0
\(493\) −20.4151 4.83846i −0.919449 0.217913i
\(494\) 1.70242 0.619631i 0.0765956 0.0278785i
\(495\) 0 0
\(496\) 25.8567 + 9.41106i 1.16100 + 0.422569i
\(497\) 1.22711 + 0.807081i 0.0550433 + 0.0362025i
\(498\) 0 0
\(499\) 18.1512 + 2.12157i 0.812559 + 0.0949745i 0.512216 0.858857i \(-0.328825\pi\)
0.300343 + 0.953831i \(0.402899\pi\)
\(500\) 0.0750712 0.100838i 0.00335729 0.00450962i
\(501\) 0 0
\(502\) −0.198368 + 3.40584i −0.00885359 + 0.152010i
\(503\) −22.0539 + 18.5054i −0.983333 + 0.825114i −0.984589 0.174885i \(-0.944045\pi\)
0.00125604 + 0.999999i \(0.499600\pi\)
\(504\) 0 0
\(505\) 0.754636 + 0.633215i 0.0335808 + 0.0281777i
\(506\) −28.3777 + 30.0787i −1.26154 + 1.33716i
\(507\) 0 0
\(508\) 4.88454 3.21262i 0.216717 0.142537i
\(509\) 9.00835 2.13502i 0.399288 0.0946330i −0.0260655 0.999660i \(-0.508298\pi\)
0.425354 + 0.905027i \(0.360150\pi\)
\(510\) 0 0
\(511\) −0.530896 + 0.0620529i −0.0234855 + 0.00274506i
\(512\) 6.25876 10.8405i 0.276601 0.479086i
\(513\) 0 0
\(514\) 7.95941 + 13.7861i 0.351074 + 0.608079i
\(515\) −18.3216 24.6101i −0.807345 1.08445i
\(516\) 0 0
\(517\) −12.7769 + 42.6779i −0.561928 + 1.87697i
\(518\) 1.98834 + 0.998580i 0.0873625 + 0.0438751i
\(519\) 0 0
\(520\) 0.567107 + 1.89427i 0.0248693 + 0.0830692i
\(521\) −0.982915 + 5.57439i −0.0430623 + 0.244218i −0.998739 0.0501990i \(-0.984014\pi\)
0.955677 + 0.294417i \(0.0951256\pi\)
\(522\) 0 0
\(523\) 2.68166 + 15.2084i 0.117261 + 0.665018i 0.985606 + 0.169058i \(0.0540726\pi\)
−0.868345 + 0.495960i \(0.834816\pi\)
\(524\) −1.38244 + 0.694287i −0.0603921 + 0.0303301i
\(525\) 0 0
\(526\) 0.974600 + 2.25938i 0.0424946 + 0.0985135i
\(527\) 9.62308 + 22.3088i 0.419188 + 0.971787i
\(528\) 0 0
\(529\) −1.76378 + 0.885804i −0.0766861 + 0.0385132i
\(530\) 6.03207 + 34.2096i 0.262016 + 1.48597i
\(531\) 0 0
\(532\) −0.0955097 + 0.541662i −0.00414087 + 0.0234840i
\(533\) 0.131384 + 0.438853i 0.00569088 + 0.0190088i
\(534\) 0 0
\(535\) 30.1804 + 15.1572i 1.30481 + 0.655301i
\(536\) −4.85249 + 16.2084i −0.209596 + 0.700098i
\(537\) 0 0
\(538\) −4.62508 6.21257i −0.199402 0.267843i
\(539\) −20.1069 34.8261i −0.866064 1.50007i
\(540\) 0 0
\(541\) −19.5695 + 33.8953i −0.841357 + 1.45727i 0.0473898 + 0.998876i \(0.484910\pi\)
−0.888747 + 0.458397i \(0.848424\pi\)
\(542\) −14.2790 + 1.66898i −0.613335 + 0.0716886i
\(543\) 0 0
\(544\) −8.99485 + 2.13182i −0.385651 + 0.0914010i
\(545\) 45.5463 29.9563i 1.95099 1.28319i
\(546\) 0 0
\(547\) 14.5580 15.4305i 0.622453 0.659762i −0.337041 0.941490i \(-0.609426\pi\)
0.959494 + 0.281728i \(0.0909076\pi\)
\(548\) −4.41754 3.70675i −0.188708 0.158345i
\(549\) 0 0
\(550\) −35.2178 + 29.5512i −1.50169 + 1.26007i
\(551\) −1.38189 + 23.7261i −0.0588705 + 1.01077i
\(552\) 0 0
\(553\) −1.89018 + 2.53896i −0.0803788 + 0.107967i
\(554\) 39.8018 + 4.65217i 1.69102 + 0.197652i
\(555\) 0 0
\(556\) −1.99043 1.30913i −0.0844132 0.0555195i
\(557\) 2.55364 + 0.929451i 0.108201 + 0.0393821i 0.395554 0.918443i \(-0.370553\pi\)
−0.287352 + 0.957825i \(0.592775\pi\)
\(558\) 0 0
\(559\) −0.516208 + 0.187884i −0.0218333 + 0.00794666i
\(560\) −4.20622 0.996892i −0.177745 0.0421264i
\(561\) 0 0
\(562\) 2.61091 + 44.8276i 0.110135 + 1.89094i
\(563\) 12.5763 + 13.3301i 0.530028 + 0.561797i 0.935960 0.352106i \(-0.114535\pi\)
−0.405932 + 0.913903i \(0.633053\pi\)
\(564\) 0 0
\(565\) 13.3313 30.9053i 0.560851 1.30020i
\(566\) 1.60019 0.0672608
\(567\) 0 0
\(568\) 12.4093 0.520682
\(569\) 4.43905 10.2909i 0.186095 0.431416i −0.799472 0.600703i \(-0.794887\pi\)
0.985567 + 0.169288i \(0.0541466\pi\)
\(570\) 0 0
\(571\) −0.299771 0.317738i −0.0125450 0.0132969i 0.721071 0.692861i \(-0.243650\pi\)
−0.733616 + 0.679565i \(0.762169\pi\)
\(572\) 0.0343793 + 0.590269i 0.00143747 + 0.0246804i
\(573\) 0 0
\(574\) −0.804862 0.190756i −0.0335943 0.00796200i
\(575\) 21.9662 7.99505i 0.916055 0.333417i
\(576\) 0 0
\(577\) 34.0165 + 12.3810i 1.41612 + 0.515427i 0.932921 0.360081i \(-0.117251\pi\)
0.483203 + 0.875508i \(0.339473\pi\)
\(578\) 0.230737 + 0.151758i 0.00959741 + 0.00631232i
\(579\) 0 0
\(580\) 6.52670 + 0.762861i 0.271006 + 0.0316761i
\(581\) −1.76588 + 2.37199i −0.0732612 + 0.0984069i
\(582\) 0 0
\(583\) 2.38415 40.9342i 0.0987413 1.69532i
\(584\) −3.45951 + 2.90287i −0.143155 + 0.120122i
\(585\) 0 0
\(586\) 8.24358 + 6.91718i 0.340539 + 0.285746i
\(587\) 0.551710 0.584778i 0.0227715 0.0241364i −0.715888 0.698215i \(-0.753978\pi\)
0.738659 + 0.674079i \(0.235459\pi\)
\(588\) 0 0
\(589\) 22.9941 15.1234i 0.947453 0.623150i
\(590\) −44.0982 + 10.4515i −1.81549 + 0.430280i
\(591\) 0 0
\(592\) 22.6067 2.64234i 0.929128 0.108599i
\(593\) −18.8891 + 32.7169i −0.775683 + 1.34352i 0.158726 + 0.987323i \(0.449261\pi\)
−0.934410 + 0.356200i \(0.884072\pi\)
\(594\) 0 0
\(595\) −1.90842 3.30548i −0.0782375 0.135511i
\(596\) 3.40109 + 4.56846i 0.139314 + 0.187131i
\(597\) 0 0
\(598\) 0.512820 1.71294i 0.0209708 0.0700473i
\(599\) −26.1795 13.1479i −1.06967 0.537207i −0.175288 0.984517i \(-0.556086\pi\)
−0.894379 + 0.447310i \(0.852382\pi\)
\(600\) 0 0
\(601\) −1.14204 3.81467i −0.0465846 0.155603i 0.931533 0.363658i \(-0.118472\pi\)
−0.978117 + 0.208054i \(0.933287\pi\)
\(602\) 0.172242 0.976833i 0.00702006 0.0398128i
\(603\) 0 0
\(604\) 0.111178 + 0.630523i 0.00452377 + 0.0256556i
\(605\) 64.8214 32.5545i 2.63536 1.32353i
\(606\) 0 0
\(607\) −13.3712 30.9980i −0.542721 1.25817i −0.940221 0.340566i \(-0.889381\pi\)
0.397500 0.917602i \(-0.369878\pi\)
\(608\) 4.14751 + 9.61502i 0.168204 + 0.389941i
\(609\) 0 0
\(610\) −13.7144 + 6.88763i −0.555280 + 0.278872i
\(611\) −0.334497 1.89703i −0.0135323 0.0767456i
\(612\) 0 0
\(613\) 7.41615 42.0591i 0.299536 1.69875i −0.348637 0.937258i \(-0.613355\pi\)
0.648173 0.761493i \(-0.275533\pi\)
\(614\) −8.15024 27.2237i −0.328917 1.09866i
\(615\) 0 0
\(616\) 3.76614 + 1.89143i 0.151742 + 0.0762077i
\(617\) 2.15522 7.19894i 0.0867660 0.289819i −0.903583 0.428412i \(-0.859073\pi\)
0.990349 + 0.138594i \(0.0442582\pi\)
\(618\) 0 0
\(619\) 12.5342 + 16.8364i 0.503793 + 0.676712i 0.979163 0.203074i \(-0.0650932\pi\)
−0.475370 + 0.879786i \(0.657686\pi\)
\(620\) −3.80472 6.58997i −0.152801 0.264660i
\(621\) 0 0
\(622\) −11.3934 + 19.7339i −0.456832 + 0.791256i
\(623\) 3.03265 0.354466i 0.121501 0.0142014i
\(624\) 0 0
\(625\) −23.8407 + 5.65034i −0.953627 + 0.226014i
\(626\) −7.33138 + 4.82193i −0.293021 + 0.192723i
\(627\) 0 0
\(628\) −1.42155 + 1.50675i −0.0567260 + 0.0601260i
\(629\) 15.3951 + 12.9180i 0.613841 + 0.515074i
\(630\) 0 0
\(631\) −23.1956 + 19.4634i −0.923403 + 0.774827i −0.974621 0.223860i \(-0.928134\pi\)
0.0512179 + 0.998688i \(0.483690\pi\)
\(632\) −1.55500 + 26.6983i −0.0618544 + 1.06200i
\(633\) 0 0
\(634\) −21.2189 + 28.5020i −0.842712 + 1.13196i
\(635\) 45.6465 + 5.33532i 1.81143 + 0.211726i
\(636\) 0 0
\(637\) 1.45276 + 0.955498i 0.0575606 + 0.0378582i
\(638\) −43.3497 15.7780i −1.71623 0.624657i
\(639\) 0 0
\(640\) −40.2937 + 14.6657i −1.59275 + 0.579712i
\(641\) −16.0562 3.80539i −0.634182 0.150304i −0.0990640 0.995081i \(-0.531585\pi\)
−0.535118 + 0.844777i \(0.679733\pi\)
\(642\) 0 0
\(643\) 1.05055 + 18.0372i 0.0414296 + 0.711318i 0.953520 + 0.301329i \(0.0974304\pi\)
−0.912091 + 0.409989i \(0.865533\pi\)
\(644\) 0.372524 + 0.394852i 0.0146795 + 0.0155594i
\(645\) 0 0
\(646\) −11.7028 + 27.1302i −0.460442 + 1.06742i
\(647\) −4.14445 −0.162935 −0.0814676 0.996676i \(-0.525961\pi\)
−0.0814676 + 0.996676i \(0.525961\pi\)
\(648\) 0 0
\(649\) 53.4951 2.09987
\(650\) 0.787356 1.82530i 0.0308826 0.0715940i
\(651\) 0 0
\(652\) 4.90361 + 5.19752i 0.192040 + 0.203551i
\(653\) −1.17463 20.1677i −0.0459669 0.789222i −0.939990 0.341201i \(-0.889166\pi\)
0.894023 0.448020i \(-0.147871\pi\)
\(654\) 0 0
\(655\) −11.8329 2.80444i −0.462348 0.109579i
\(656\) −7.95109 + 2.89396i −0.310438 + 0.112990i
\(657\) 0 0
\(658\) 3.26842 + 1.18961i 0.127416 + 0.0463758i
\(659\) −6.41002 4.21594i −0.249699 0.164230i 0.418490 0.908222i \(-0.362560\pi\)
−0.668188 + 0.743992i \(0.732930\pi\)
\(660\) 0 0
\(661\) 5.21185 + 0.609178i 0.202718 + 0.0236943i 0.216846 0.976206i \(-0.430423\pi\)
−0.0141280 + 0.999900i \(0.504497\pi\)
\(662\) 2.84955 3.82761i 0.110751 0.148764i
\(663\) 0 0
\(664\) −1.45274 + 24.9426i −0.0563772 + 0.967959i
\(665\) −3.31209 + 2.77917i −0.128437 + 0.107772i
\(666\) 0 0
\(667\) 17.9687 + 15.0775i 0.695750 + 0.583803i
\(668\) −0.382373 + 0.405291i −0.0147944 + 0.0156812i
\(669\) 0 0
\(670\) 28.1494 18.5141i 1.08751 0.715264i
\(671\) 17.6269 4.17766i 0.680480 0.161277i
\(672\) 0 0
\(673\) −3.30793 + 0.386642i −0.127512 + 0.0149040i −0.179609 0.983738i \(-0.557483\pi\)
0.0520977 + 0.998642i \(0.483409\pi\)
\(674\) 3.18620 5.51867i 0.122728 0.212571i
\(675\) 0 0
\(676\) 2.61481 + 4.52898i 0.100570 + 0.174192i
\(677\) −14.2005 19.0746i −0.545771 0.733098i 0.440587 0.897710i \(-0.354770\pi\)
−0.986358 + 0.164612i \(0.947363\pi\)
\(678\) 0 0
\(679\) −0.548285 + 1.83140i −0.0210413 + 0.0702827i
\(680\) −28.8182 14.4730i −1.10513 0.555016i
\(681\) 0 0
\(682\) 15.3214 + 51.1769i 0.586686 + 1.95967i
\(683\) −3.07677 + 17.4492i −0.117729 + 0.667676i 0.867633 + 0.497205i \(0.165640\pi\)
−0.985363 + 0.170472i \(0.945471\pi\)
\(684\) 0 0
\(685\) −7.87167 44.6424i −0.300761 1.70570i
\(686\) −5.64624 + 2.83565i −0.215574 + 0.108266i
\(687\) 0 0
\(688\) −4.01887 9.31678i −0.153218 0.355199i
\(689\) 0.702240 + 1.62797i 0.0267532 + 0.0620209i
\(690\) 0 0
\(691\) 25.3721 12.7423i 0.965199 0.484741i 0.104873 0.994486i \(-0.466556\pi\)
0.860326 + 0.509744i \(0.170260\pi\)
\(692\) 0.912541 + 5.17528i 0.0346896 + 0.196734i
\(693\) 0 0
\(694\) −2.40983 + 13.6668i −0.0914758 + 0.518785i
\(695\) −5.37109 17.9407i −0.203737 0.680529i
\(696\) 0 0
\(697\) −6.67643 3.35303i −0.252888 0.127005i
\(698\) −2.20550 + 7.36690i −0.0834796 + 0.278841i
\(699\) 0 0
\(700\) 0.360391 + 0.484089i 0.0136215 + 0.0182968i
\(701\) 19.6318 + 34.0032i 0.741482 + 1.28428i 0.951820 + 0.306656i \(0.0992102\pi\)
−0.210338 + 0.977629i \(0.567456\pi\)
\(702\) 0 0
\(703\) 11.3826 19.7152i 0.429303 0.743574i
\(704\) 33.4787 3.91310i 1.26178 0.147481i
\(705\) 0 0
\(706\) 30.6241 7.25805i 1.15255 0.273160i
\(707\) −0.0758508 + 0.0498879i −0.00285266 + 0.00187623i
\(708\) 0 0
\(709\) −34.3548 + 36.4139i −1.29022 + 1.36755i −0.397074 + 0.917786i \(0.629975\pi\)
−0.893146 + 0.449767i \(0.851507\pi\)
\(710\) −18.9299 15.8841i −0.710428 0.596120i
\(711\) 0 0
\(712\) 19.7618 16.5821i 0.740606 0.621442i
\(713\) 1.57938 27.1169i 0.0591482 1.01554i
\(714\) 0 0
\(715\) −2.77553 + 3.72818i −0.103799 + 0.139426i
\(716\) −10.0444 1.17402i −0.375377 0.0438753i
\(717\) 0 0
\(718\) 10.0839 + 6.63227i 0.376327 + 0.247514i
\(719\) 17.5102 + 6.37320i 0.653021 + 0.237680i 0.647220 0.762303i \(-0.275931\pi\)
0.00580045 + 0.999983i \(0.498154\pi\)
\(720\) 0 0
\(721\) 2.65702 0.967078i 0.0989528 0.0360159i
\(722\) 3.90097 + 0.924548i 0.145179 + 0.0344081i
\(723\) 0 0
\(724\) −0.108284 1.85917i −0.00402435 0.0690954i
\(725\) 17.8956 + 18.9682i 0.664626 + 0.704462i
\(726\) 0 0
\(727\) −16.6006 + 38.4844i −0.615680 + 1.42731i 0.269930 + 0.962880i \(0.412999\pi\)
−0.885611 + 0.464428i \(0.846260\pi\)
\(728\) −0.182229 −0.00675386
\(729\) 0 0
\(730\) 8.99309 0.332849
\(731\) 3.54853 8.22641i 0.131247 0.304265i
\(732\) 0 0
\(733\) −9.79629 10.3835i −0.361834 0.383522i 0.520724 0.853725i \(-0.325662\pi\)
−0.882558 + 0.470203i \(0.844181\pi\)
\(734\) 0.0175156 + 0.300732i 0.000646514 + 0.0111002i
\(735\) 0 0
\(736\) 10.0563 + 2.38339i 0.370680 + 0.0878527i
\(737\) −37.3715 + 13.6021i −1.37660 + 0.501041i
\(738\) 0 0
\(739\) −17.4197 6.34025i −0.640794 0.233230i 0.00112859 0.999999i \(-0.499641\pi\)
−0.641923 + 0.766769i \(0.721863\pi\)
\(740\) −5.25883 3.45879i −0.193318 0.127148i
\(741\) 0 0
\(742\) −3.17970 0.371654i −0.116730 0.0136438i
\(743\) −17.6072 + 23.6506i −0.645945 + 0.867655i −0.997654 0.0684547i \(-0.978193\pi\)
0.351709 + 0.936109i \(0.385601\pi\)
\(744\) 0 0
\(745\) −2.60322 + 44.6955i −0.0953745 + 1.63752i
\(746\) 2.71579 2.27882i 0.0994320 0.0834334i
\(747\) 0 0
\(748\) −7.38696 6.19840i −0.270094 0.226636i
\(749\) −2.13589 + 2.26391i −0.0780438 + 0.0827216i
\(750\) 0 0
\(751\) 13.9418 9.16968i 0.508744 0.334606i −0.269049 0.963126i \(-0.586709\pi\)
0.777793 + 0.628520i \(0.216339\pi\)
\(752\) 34.6208 8.20529i 1.26249 0.299216i
\(753\) 0 0
\(754\) 1.98123 0.231572i 0.0721521 0.00843337i
\(755\) −2.51646 + 4.35863i −0.0915833 + 0.158627i
\(756\) 0 0
\(757\) −16.3993 28.4044i −0.596042 1.03237i −0.993399 0.114710i \(-0.963406\pi\)
0.397357 0.917664i \(-0.369927\pi\)
\(758\) −6.71679 9.02221i −0.243965 0.327702i
\(759\) 0 0
\(760\) −10.4770 + 34.9955i −0.380040 + 1.26942i
\(761\) 30.2651 + 15.1997i 1.09711 + 0.550988i 0.902847 0.429962i \(-0.141473\pi\)
0.194261 + 0.980950i \(0.437769\pi\)
\(762\) 0 0
\(763\) 1.44090 + 4.81294i 0.0521641 + 0.174240i
\(764\) 0.188692 1.07013i 0.00682665 0.0387159i
\(765\) 0 0
\(766\) 7.28693 + 41.3262i 0.263287 + 1.49318i
\(767\) −2.06706 + 1.03812i −0.0746373 + 0.0374843i
\(768\) 0 0
\(769\) −0.585556 1.35747i −0.0211157 0.0489517i 0.907332 0.420415i \(-0.138115\pi\)
−0.928448 + 0.371463i \(0.878856\pi\)
\(770\) −3.32406 7.70603i −0.119791 0.277706i
\(771\) 0 0
\(772\) 2.38642 1.19850i 0.0858890 0.0431351i
\(773\) 0.387181 + 2.19581i 0.0139259 + 0.0789779i 0.990979 0.134020i \(-0.0427885\pi\)
−0.977053 + 0.212997i \(0.931677\pi\)
\(774\) 0 0
\(775\) 5.24388 29.7395i 0.188366 1.06827i
\(776\) 4.63245 + 15.4735i 0.166295 + 0.555465i
\(777\) 0 0
\(778\) −31.7117 15.9262i −1.13692 0.570982i
\(779\) −2.42724 + 8.10756i −0.0869650 + 0.290483i
\(780\) 0 0
\(781\) 17.4185 + 23.3971i 0.623283 + 0.837215i