Properties

Label 729.2.g.c.55.4
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.4
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.c.676.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.314515 + 0.729128i) q^{2} +(0.939775 + 0.996103i) q^{4} +(0.127484 + 2.18881i) q^{5} +(-3.45959 - 0.819939i) q^{7} +(-2.51422 + 0.915103i) q^{8} +O(q^{10})\) \(q+(-0.314515 + 0.729128i) q^{2} +(0.939775 + 0.996103i) q^{4} +(0.127484 + 2.18881i) q^{5} +(-3.45959 - 0.819939i) q^{7} +(-2.51422 + 0.915103i) q^{8} +(-1.63602 - 0.595462i) q^{10} +(3.62940 + 2.38710i) q^{11} +(-6.02225 - 0.703900i) q^{13} +(1.68594 - 2.26460i) q^{14} +(-0.0357186 + 0.613264i) q^{16} +(1.52297 - 1.27793i) q^{17} +(-2.70233 - 2.26753i) q^{19} +(-2.06047 + 2.18397i) q^{20} +(-2.88200 + 1.89552i) q^{22} +(-5.36375 + 1.27123i) q^{23} +(0.191560 - 0.0223902i) q^{25} +(2.40732 - 4.16961i) q^{26} +(-2.43450 - 4.21667i) q^{28} +(0.388529 + 0.521885i) q^{29} +(0.732013 - 2.44509i) q^{31} +(-5.21789 - 2.62052i) q^{32} +(0.452774 + 1.51237i) q^{34} +(1.35365 - 7.67692i) q^{35} +(0.702191 + 3.98232i) q^{37} +(2.50324 - 1.25718i) q^{38} +(-2.32351 - 5.38650i) q^{40} +(3.24228 + 7.51644i) q^{41} +(2.08047 - 1.04485i) q^{43} +(1.03303 + 5.85859i) q^{44} +(0.760089 - 4.31068i) q^{46} +(0.837341 + 2.79691i) q^{47} +(5.04106 + 2.53172i) q^{49} +(-0.0439233 + 0.146714i) q^{50} +(-4.95840 - 6.66029i) q^{52} +(-1.34845 - 2.33558i) q^{53} +(-4.76221 + 8.24838i) q^{55} +(9.44853 - 1.10437i) q^{56} +(-0.502720 + 0.119147i) q^{58} +(-6.21681 + 4.08886i) q^{59} +(-1.80586 + 1.91410i) q^{61} +(1.55256 + 1.30275i) q^{62} +(2.61064 - 2.19058i) q^{64} +(0.772965 - 13.2713i) q^{65} +(2.18642 - 2.93688i) q^{67} +(2.70420 + 0.316075i) q^{68} +(5.17172 + 3.40149i) q^{70} +(1.04338 + 0.379759i) q^{71} +(-8.97377 + 3.26619i) q^{73} +(-3.12448 - 0.740514i) q^{74} +(-0.280894 - 4.82277i) q^{76} +(-10.5990 - 11.2343i) q^{77} +(1.09986 - 2.54976i) q^{79} -1.34687 q^{80} -6.50019 q^{82} +(-4.95776 + 11.4934i) q^{83} +(2.99129 + 3.17058i) q^{85} +(0.107491 + 1.84555i) q^{86} +(-11.3096 - 2.68042i) q^{88} +(-3.58032 + 1.30313i) q^{89} +(20.2574 + 7.37309i) q^{91} +(-6.30699 - 4.14817i) q^{92} +(-2.30267 - 0.269143i) q^{94} +(4.61868 - 6.20396i) q^{95} +(-0.611885 + 10.5057i) q^{97} +(-3.43144 + 2.87932i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.314515 + 0.729128i −0.222396 + 0.515572i −0.992485 0.122364i \(-0.960952\pi\)
0.770089 + 0.637936i \(0.220212\pi\)
\(3\) 0 0
\(4\) 0.939775 + 0.996103i 0.469888 + 0.498052i
\(5\) 0.127484 + 2.18881i 0.0570124 + 0.978865i 0.898607 + 0.438755i \(0.144580\pi\)
−0.841594 + 0.540110i \(0.818383\pi\)
\(6\) 0 0
\(7\) −3.45959 0.819939i −1.30760 0.309908i −0.483001 0.875620i \(-0.660453\pi\)
−0.824603 + 0.565712i \(0.808601\pi\)
\(8\) −2.51422 + 0.915103i −0.888913 + 0.323538i
\(9\) 0 0
\(10\) −1.63602 0.595462i −0.517354 0.188302i
\(11\) 3.62940 + 2.38710i 1.09431 + 0.719736i 0.962430 0.271530i \(-0.0875295\pi\)
0.131876 + 0.991266i \(0.457900\pi\)
\(12\) 0 0
\(13\) −6.02225 0.703900i −1.67027 0.195227i −0.772293 0.635266i \(-0.780890\pi\)
−0.897979 + 0.440039i \(0.854965\pi\)
\(14\) 1.68594 2.26460i 0.450585 0.605241i
\(15\) 0 0
\(16\) −0.0357186 + 0.613264i −0.00892964 + 0.153316i
\(17\) 1.52297 1.27793i 0.369375 0.309942i −0.439139 0.898419i \(-0.644717\pi\)
0.808514 + 0.588477i \(0.200272\pi\)
\(18\) 0 0
\(19\) −2.70233 2.26753i −0.619958 0.520206i 0.277832 0.960630i \(-0.410384\pi\)
−0.897790 + 0.440423i \(0.854828\pi\)
\(20\) −2.06047 + 2.18397i −0.460736 + 0.488352i
\(21\) 0 0
\(22\) −2.88200 + 1.89552i −0.614445 + 0.404127i
\(23\) −5.36375 + 1.27123i −1.11842 + 0.265070i −0.747937 0.663770i \(-0.768955\pi\)
−0.370481 + 0.928840i \(0.620807\pi\)
\(24\) 0 0
\(25\) 0.191560 0.0223902i 0.0383120 0.00447804i
\(26\) 2.40732 4.16961i 0.472115 0.817727i
\(27\) 0 0
\(28\) −2.43450 4.21667i −0.460077 0.796876i
\(29\) 0.388529 + 0.521885i 0.0721480 + 0.0969116i 0.836732 0.547612i \(-0.184463\pi\)
−0.764584 + 0.644524i \(0.777056\pi\)
\(30\) 0 0
\(31\) 0.732013 2.44509i 0.131473 0.439152i −0.866749 0.498744i \(-0.833795\pi\)
0.998223 + 0.0595921i \(0.0189800\pi\)
\(32\) −5.21789 2.62052i −0.922401 0.463247i
\(33\) 0 0
\(34\) 0.452774 + 1.51237i 0.0776500 + 0.259369i
\(35\) 1.35365 7.67692i 0.228808 1.29764i
\(36\) 0 0
\(37\) 0.702191 + 3.98232i 0.115440 + 0.654690i 0.986532 + 0.163570i \(0.0523011\pi\)
−0.871092 + 0.491120i \(0.836588\pi\)
\(38\) 2.50324 1.25718i 0.406080 0.203941i
\(39\) 0 0
\(40\) −2.32351 5.38650i −0.367379 0.851680i
\(41\) 3.24228 + 7.51644i 0.506358 + 1.17387i 0.959315 + 0.282338i \(0.0911100\pi\)
−0.452957 + 0.891533i \(0.649631\pi\)
\(42\) 0 0
\(43\) 2.08047 1.04485i 0.317269 0.159338i −0.283037 0.959109i \(-0.591342\pi\)
0.600306 + 0.799771i \(0.295046\pi\)
\(44\) 1.03303 + 5.85859i 0.155735 + 0.883216i
\(45\) 0 0
\(46\) 0.760089 4.31068i 0.112069 0.635575i
\(47\) 0.837341 + 2.79691i 0.122139 + 0.407972i 0.997089 0.0762401i \(-0.0242916\pi\)
−0.874951 + 0.484212i \(0.839106\pi\)
\(48\) 0 0
\(49\) 5.04106 + 2.53172i 0.720152 + 0.361674i
\(50\) −0.0439233 + 0.146714i −0.00621169 + 0.0207485i
\(51\) 0 0
\(52\) −4.95840 6.66029i −0.687607 0.923616i
\(53\) −1.34845 2.33558i −0.185224 0.320817i 0.758428 0.651757i \(-0.225968\pi\)
−0.943652 + 0.330940i \(0.892634\pi\)
\(54\) 0 0
\(55\) −4.76221 + 8.24838i −0.642136 + 1.11221i
\(56\) 9.44853 1.10437i 1.26261 0.147578i
\(57\) 0 0
\(58\) −0.502720 + 0.119147i −0.0660103 + 0.0156447i
\(59\) −6.21681 + 4.08886i −0.809360 + 0.532324i −0.885427 0.464778i \(-0.846134\pi\)
0.0760672 + 0.997103i \(0.475764\pi\)
\(60\) 0 0
\(61\) −1.80586 + 1.91410i −0.231217 + 0.245076i −0.832586 0.553895i \(-0.813141\pi\)
0.601369 + 0.798971i \(0.294622\pi\)
\(62\) 1.55256 + 1.30275i 0.197175 + 0.165450i
\(63\) 0 0
\(64\) 2.61064 2.19058i 0.326329 0.273823i
\(65\) 0.772965 13.2713i 0.0958745 1.64610i
\(66\) 0 0
\(67\) 2.18642 2.93688i 0.267114 0.358797i −0.648247 0.761430i \(-0.724498\pi\)
0.915361 + 0.402633i \(0.131905\pi\)
\(68\) 2.70420 + 0.316075i 0.327932 + 0.0383298i
\(69\) 0 0
\(70\) 5.17172 + 3.40149i 0.618138 + 0.406556i
\(71\) 1.04338 + 0.379759i 0.123826 + 0.0450691i 0.403190 0.915116i \(-0.367901\pi\)
−0.279364 + 0.960185i \(0.590124\pi\)
\(72\) 0 0
\(73\) −8.97377 + 3.26619i −1.05030 + 0.382278i −0.808776 0.588117i \(-0.799870\pi\)
−0.241525 + 0.970395i \(0.577647\pi\)
\(74\) −3.12448 0.740514i −0.363213 0.0860830i
\(75\) 0 0
\(76\) −0.280894 4.82277i −0.0322208 0.553210i
\(77\) −10.5990 11.2343i −1.20787 1.28026i
\(78\) 0 0
\(79\) 1.09986 2.54976i 0.123744 0.286871i −0.845072 0.534653i \(-0.820442\pi\)
0.968816 + 0.247782i \(0.0797017\pi\)
\(80\) −1.34687 −0.150585
\(81\) 0 0
\(82\) −6.50019 −0.717826
\(83\) −4.95776 + 11.4934i −0.544185 + 1.26156i 0.395168 + 0.918609i \(0.370687\pi\)
−0.939352 + 0.342953i \(0.888573\pi\)
\(84\) 0 0
\(85\) 2.99129 + 3.17058i 0.324451 + 0.343898i
\(86\) 0.107491 + 1.84555i 0.0115911 + 0.199011i
\(87\) 0 0
\(88\) −11.3096 2.68042i −1.20560 0.285734i
\(89\) −3.58032 + 1.30313i −0.379514 + 0.138132i −0.524731 0.851268i \(-0.675834\pi\)
0.145217 + 0.989400i \(0.453612\pi\)
\(90\) 0 0
\(91\) 20.2574 + 7.37309i 2.12355 + 0.772909i
\(92\) −6.30699 4.14817i −0.657549 0.432477i
\(93\) 0 0
\(94\) −2.30267 0.269143i −0.237502 0.0277600i
\(95\) 4.61868 6.20396i 0.473867 0.636513i
\(96\) 0 0
\(97\) −0.611885 + 10.5057i −0.0621275 + 1.06669i 0.812834 + 0.582495i \(0.197923\pi\)
−0.874962 + 0.484192i \(0.839114\pi\)
\(98\) −3.43144 + 2.87932i −0.346628 + 0.290855i
\(99\) 0 0
\(100\) 0.202326 + 0.169772i 0.0202326 + 0.0169772i
\(101\) −6.34862 + 6.72914i −0.631711 + 0.669575i −0.961603 0.274444i \(-0.911506\pi\)
0.329892 + 0.944019i \(0.392988\pi\)
\(102\) 0 0
\(103\) −8.61167 + 5.66398i −0.848533 + 0.558089i −0.897653 0.440704i \(-0.854729\pi\)
0.0491194 + 0.998793i \(0.484359\pi\)
\(104\) 15.7854 3.74122i 1.54789 0.366856i
\(105\) 0 0
\(106\) 2.12705 0.248616i 0.206597 0.0241477i
\(107\) 1.36475 2.36382i 0.131936 0.228519i −0.792487 0.609889i \(-0.791214\pi\)
0.924423 + 0.381370i \(0.124547\pi\)
\(108\) 0 0
\(109\) 0.572236 + 0.991142i 0.0548103 + 0.0949342i 0.892129 0.451781i \(-0.149211\pi\)
−0.837318 + 0.546715i \(0.815878\pi\)
\(110\) −4.51634 6.06650i −0.430616 0.578418i
\(111\) 0 0
\(112\) 0.626411 2.09236i 0.0591903 0.197709i
\(113\) 10.8348 + 5.44144i 1.01925 + 0.511887i 0.878290 0.478128i \(-0.158684\pi\)
0.140961 + 0.990015i \(0.454981\pi\)
\(114\) 0 0
\(115\) −3.46627 11.5782i −0.323231 1.07967i
\(116\) −0.154722 + 0.877470i −0.0143655 + 0.0814710i
\(117\) 0 0
\(118\) −1.02602 5.81886i −0.0944530 0.535670i
\(119\) −6.31669 + 3.17236i −0.579050 + 0.290810i
\(120\) 0 0
\(121\) 3.11746 + 7.22709i 0.283406 + 0.657008i
\(122\) −0.827656 1.91872i −0.0749324 0.173713i
\(123\) 0 0
\(124\) 3.12349 1.56868i 0.280498 0.140871i
\(125\) 1.97706 + 11.2125i 0.176834 + 1.00287i
\(126\) 0 0
\(127\) 1.90657 10.8127i 0.169181 0.959471i −0.775468 0.631387i \(-0.782486\pi\)
0.944648 0.328084i \(-0.106403\pi\)
\(128\) −2.57314 8.59487i −0.227435 0.759687i
\(129\) 0 0
\(130\) 9.43336 + 4.73761i 0.827361 + 0.415516i
\(131\) 0.126951 0.424045i 0.0110917 0.0370490i −0.952265 0.305274i \(-0.901252\pi\)
0.963356 + 0.268225i \(0.0864371\pi\)
\(132\) 0 0
\(133\) 7.48974 + 10.0605i 0.649443 + 0.872354i
\(134\) 1.45370 + 2.51788i 0.125580 + 0.217511i
\(135\) 0 0
\(136\) −2.65966 + 4.60667i −0.228064 + 0.395019i
\(137\) 18.3072 2.13981i 1.56409 0.182816i 0.710476 0.703721i \(-0.248479\pi\)
0.853615 + 0.520905i \(0.174405\pi\)
\(138\) 0 0
\(139\) 19.5674 4.63757i 1.65969 0.393353i 0.709420 0.704786i \(-0.248957\pi\)
0.950268 + 0.311433i \(0.100809\pi\)
\(140\) 8.91913 5.86620i 0.753804 0.495785i
\(141\) 0 0
\(142\) −0.605052 + 0.641317i −0.0507748 + 0.0538181i
\(143\) −20.1769 16.9304i −1.68728 1.41579i
\(144\) 0 0
\(145\) −1.09278 + 0.916948i −0.0907501 + 0.0761484i
\(146\) 0.440920 7.57030i 0.0364908 0.626522i
\(147\) 0 0
\(148\) −3.30691 + 4.44194i −0.271826 + 0.365126i
\(149\) 2.02579 + 0.236781i 0.165959 + 0.0193979i 0.198667 0.980067i \(-0.436339\pi\)
−0.0327074 + 0.999465i \(0.510413\pi\)
\(150\) 0 0
\(151\) 7.70340 + 5.06660i 0.626894 + 0.412314i 0.822818 0.568305i \(-0.192400\pi\)
−0.195925 + 0.980619i \(0.562771\pi\)
\(152\) 8.86930 + 3.22816i 0.719395 + 0.261838i
\(153\) 0 0
\(154\) 11.5248 4.19467i 0.928692 0.338016i
\(155\) 5.44516 + 1.29053i 0.437366 + 0.103658i
\(156\) 0 0
\(157\) 1.29436 + 22.2233i 0.103301 + 1.77362i 0.510116 + 0.860106i \(0.329602\pi\)
−0.406815 + 0.913511i \(0.633360\pi\)
\(158\) 1.51318 + 1.60388i 0.120382 + 0.127598i
\(159\) 0 0
\(160\) 5.07063 11.7550i 0.400868 0.929317i
\(161\) 19.5987 1.54460
\(162\) 0 0
\(163\) 18.7475 1.46842 0.734210 0.678922i \(-0.237553\pi\)
0.734210 + 0.678922i \(0.237553\pi\)
\(164\) −4.44014 + 10.2934i −0.346717 + 0.803780i
\(165\) 0 0
\(166\) −6.82086 7.22969i −0.529401 0.561132i
\(167\) 0.251837 + 4.32388i 0.0194878 + 0.334592i 0.993935 + 0.109973i \(0.0350766\pi\)
−0.974447 + 0.224619i \(0.927886\pi\)
\(168\) 0 0
\(169\) 23.1224 + 5.48012i 1.77865 + 0.421548i
\(170\) −3.25257 + 1.18384i −0.249460 + 0.0907962i
\(171\) 0 0
\(172\) 2.99595 + 1.09044i 0.228439 + 0.0831451i
\(173\) 7.94546 + 5.22581i 0.604082 + 0.397311i 0.814385 0.580325i \(-0.197075\pi\)
−0.210303 + 0.977636i \(0.567445\pi\)
\(174\) 0 0
\(175\) −0.681079 0.0796068i −0.0514848 0.00601770i
\(176\) −1.59356 + 2.14052i −0.120119 + 0.161348i
\(177\) 0 0
\(178\) 0.175917 3.02037i 0.0131855 0.226386i
\(179\) −14.6883 + 12.3250i −1.09786 + 0.921212i −0.997279 0.0737166i \(-0.976514\pi\)
−0.100579 + 0.994929i \(0.532070\pi\)
\(180\) 0 0
\(181\) 5.16508 + 4.33401i 0.383917 + 0.322145i 0.814238 0.580531i \(-0.197155\pi\)
−0.430321 + 0.902676i \(0.641600\pi\)
\(182\) −11.7472 + 12.4513i −0.870759 + 0.922951i
\(183\) 0 0
\(184\) 12.3224 8.10454i 0.908416 0.597475i
\(185\) −8.62703 + 2.04464i −0.634272 + 0.150325i
\(186\) 0 0
\(187\) 8.57801 1.00263i 0.627286 0.0733193i
\(188\) −1.99910 + 3.46255i −0.145800 + 0.252532i
\(189\) 0 0
\(190\) 3.07084 + 5.31885i 0.222782 + 0.385870i
\(191\) −10.9826 14.7521i −0.794671 1.06743i −0.996127 0.0879303i \(-0.971975\pi\)
0.201456 0.979498i \(-0.435433\pi\)
\(192\) 0 0
\(193\) 2.65584 8.87112i 0.191171 0.638557i −0.807634 0.589685i \(-0.799252\pi\)
0.998805 0.0488723i \(-0.0155627\pi\)
\(194\) −7.46752 3.75033i −0.536137 0.269258i
\(195\) 0 0
\(196\) 2.21561 + 7.40067i 0.158258 + 0.528619i
\(197\) −4.14143 + 23.4872i −0.295065 + 1.67340i 0.371874 + 0.928283i \(0.378715\pi\)
−0.666939 + 0.745112i \(0.732396\pi\)
\(198\) 0 0
\(199\) −1.69676 9.62282i −0.120280 0.682144i −0.984000 0.178170i \(-0.942982\pi\)
0.863719 0.503973i \(-0.168129\pi\)
\(200\) −0.461136 + 0.231591i −0.0326073 + 0.0163760i
\(201\) 0 0
\(202\) −2.90967 6.74537i −0.204724 0.474603i
\(203\) −0.916239 2.12408i −0.0643074 0.149081i
\(204\) 0 0
\(205\) −16.0387 + 8.05494i −1.12019 + 0.562582i
\(206\) −1.42127 8.06042i −0.0990246 0.561596i
\(207\) 0 0
\(208\) 0.646783 3.66809i 0.0448463 0.254336i
\(209\) −4.39505 14.6805i −0.304012 1.01547i
\(210\) 0 0
\(211\) −15.3073 7.68759i −1.05380 0.529236i −0.164409 0.986392i \(-0.552572\pi\)
−0.889386 + 0.457156i \(0.848868\pi\)
\(212\) 1.05924 3.53812i 0.0727491 0.242999i
\(213\) 0 0
\(214\) 1.29429 + 1.73854i 0.0884760 + 0.118844i
\(215\) 2.55220 + 4.42055i 0.174059 + 0.301479i
\(216\) 0 0
\(217\) −4.53730 + 7.85883i −0.308012 + 0.533492i
\(218\) −0.902647 + 0.105504i −0.0611349 + 0.00714565i
\(219\) 0 0
\(220\) −12.6916 + 3.00798i −0.855671 + 0.202798i
\(221\) −10.0713 + 6.62397i −0.677466 + 0.445576i
\(222\) 0 0
\(223\) −10.9437 + 11.5997i −0.732845 + 0.776770i −0.981426 0.191841i \(-0.938554\pi\)
0.248581 + 0.968611i \(0.420036\pi\)
\(224\) 15.9031 + 13.3443i 1.06257 + 0.891603i
\(225\) 0 0
\(226\) −7.37521 + 6.18854i −0.490592 + 0.411656i
\(227\) −0.180528 + 3.09955i −0.0119821 + 0.205724i 0.987004 + 0.160697i \(0.0513744\pi\)
−0.998986 + 0.0450268i \(0.985663\pi\)
\(228\) 0 0
\(229\) 1.68303 2.26070i 0.111218 0.149391i −0.743029 0.669259i \(-0.766611\pi\)
0.854247 + 0.519868i \(0.174019\pi\)
\(230\) 9.53215 + 1.11415i 0.628532 + 0.0734648i
\(231\) 0 0
\(232\) −1.45443 0.956593i −0.0954879 0.0628034i
\(233\) −0.753290 0.274175i −0.0493497 0.0179618i 0.317227 0.948350i \(-0.397248\pi\)
−0.366577 + 0.930388i \(0.619470\pi\)
\(234\) 0 0
\(235\) −6.01516 + 2.18934i −0.392386 + 0.142817i
\(236\) −9.91533 2.34998i −0.645433 0.152970i
\(237\) 0 0
\(238\) −0.326363 5.60343i −0.0211550 0.363216i
\(239\) 11.6903 + 12.3910i 0.756186 + 0.801510i 0.985108 0.171935i \(-0.0550018\pi\)
−0.228923 + 0.973445i \(0.573520\pi\)
\(240\) 0 0
\(241\) 1.35982 3.15243i 0.0875940 0.203066i −0.868788 0.495184i \(-0.835101\pi\)
0.956382 + 0.292118i \(0.0943600\pi\)
\(242\) −6.24996 −0.401763
\(243\) 0 0
\(244\) −3.60375 −0.230707
\(245\) −4.89879 + 11.3567i −0.312972 + 0.725551i
\(246\) 0 0
\(247\) 14.6780 + 15.5578i 0.933940 + 0.989919i
\(248\) 0.397067 + 6.81738i 0.0252138 + 0.432904i
\(249\) 0 0
\(250\) −8.79715 2.08496i −0.556381 0.131865i
\(251\) 18.8184 6.84933i 1.18781 0.432326i 0.328853 0.944381i \(-0.393338\pi\)
0.858953 + 0.512055i \(0.171116\pi\)
\(252\) 0 0
\(253\) −22.5017 8.18996i −1.41467 0.514899i
\(254\) 7.28419 + 4.79089i 0.457051 + 0.300607i
\(255\) 0 0
\(256\) 13.8459 + 1.61835i 0.865366 + 0.101147i
\(257\) 4.34011 5.82977i 0.270728 0.363651i −0.645879 0.763440i \(-0.723509\pi\)
0.916607 + 0.399788i \(0.130916\pi\)
\(258\) 0 0
\(259\) 0.835966 14.3530i 0.0519444 0.891851i
\(260\) 13.9460 11.7021i 0.864894 0.725732i
\(261\) 0 0
\(262\) 0.269255 + 0.225932i 0.0166346 + 0.0139581i
\(263\) 16.9390 17.9542i 1.04450 1.10711i 0.0503907 0.998730i \(-0.483953\pi\)
0.994110 0.108376i \(-0.0345652\pi\)
\(264\) 0 0
\(265\) 4.94024 3.24925i 0.303476 0.199600i
\(266\) −9.69101 + 2.29681i −0.594194 + 0.140827i
\(267\) 0 0
\(268\) 4.98018 0.582100i 0.304213 0.0355574i
\(269\) −0.710882 + 1.23128i −0.0433432 + 0.0750727i −0.886883 0.461994i \(-0.847134\pi\)
0.843540 + 0.537066i \(0.180468\pi\)
\(270\) 0 0
\(271\) −5.71617 9.90069i −0.347232 0.601424i 0.638524 0.769602i \(-0.279545\pi\)
−0.985757 + 0.168177i \(0.946212\pi\)
\(272\) 0.729308 + 0.979630i 0.0442208 + 0.0593988i
\(273\) 0 0
\(274\) −4.19771 + 14.0213i −0.253593 + 0.847058i
\(275\) 0.748697 + 0.376010i 0.0451481 + 0.0226742i
\(276\) 0 0
\(277\) 5.74367 + 19.1852i 0.345104 + 1.15273i 0.937764 + 0.347274i \(0.112893\pi\)
−0.592660 + 0.805453i \(0.701922\pi\)
\(278\) −2.77287 + 15.7258i −0.166306 + 0.943168i
\(279\) 0 0
\(280\) 3.62180 + 20.5402i 0.216444 + 1.22751i
\(281\) −24.9957 + 12.5533i −1.49112 + 0.748867i −0.992986 0.118234i \(-0.962277\pi\)
−0.498132 + 0.867101i \(0.665980\pi\)
\(282\) 0 0
\(283\) −6.34849 14.7175i −0.377379 0.874862i −0.996015 0.0891846i \(-0.971574\pi\)
0.618636 0.785677i \(-0.287685\pi\)
\(284\) 0.602262 + 1.39620i 0.0357377 + 0.0828493i
\(285\) 0 0
\(286\) 18.6904 9.38667i 1.10519 0.555045i
\(287\) −5.05394 28.6623i −0.298324 1.69188i
\(288\) 0 0
\(289\) −2.26567 + 12.8492i −0.133275 + 0.755838i
\(290\) −0.324878 1.08517i −0.0190775 0.0637232i
\(291\) 0 0
\(292\) −11.6868 5.86933i −0.683918 0.343476i
\(293\) 6.62381 22.1251i 0.386967 1.29256i −0.513670 0.857988i \(-0.671714\pi\)
0.900637 0.434572i \(-0.143100\pi\)
\(294\) 0 0
\(295\) −9.74228 13.0861i −0.567217 0.761905i
\(296\) −5.40970 9.36988i −0.314433 0.544613i
\(297\) 0 0
\(298\) −0.809786 + 1.40259i −0.0469097 + 0.0812499i
\(299\) 33.1966 3.88013i 1.91981 0.224394i
\(300\) 0 0
\(301\) −8.05429 + 1.90890i −0.464242 + 0.110027i
\(302\) −6.11704 + 4.02324i −0.351996 + 0.231511i
\(303\) 0 0
\(304\) 1.48712 1.57625i 0.0852920 0.0904042i
\(305\) −4.41983 3.70868i −0.253079 0.212358i
\(306\) 0 0
\(307\) 13.6869 11.4846i 0.781150 0.655463i −0.162388 0.986727i \(-0.551920\pi\)
0.943538 + 0.331264i \(0.107475\pi\)
\(308\) 1.22983 21.1154i 0.0700761 1.20316i
\(309\) 0 0
\(310\) −2.65355 + 3.56433i −0.150711 + 0.202440i
\(311\) −11.5637 1.35160i −0.655718 0.0766424i −0.218273 0.975888i \(-0.570042\pi\)
−0.437445 + 0.899245i \(0.644116\pi\)
\(312\) 0 0
\(313\) −17.3722 11.4259i −0.981938 0.645831i −0.0463500 0.998925i \(-0.514759\pi\)
−0.935588 + 0.353095i \(0.885129\pi\)
\(314\) −16.6108 6.04583i −0.937400 0.341186i
\(315\) 0 0
\(316\) 3.57345 1.30063i 0.201022 0.0731661i
\(317\) 27.0983 + 6.42242i 1.52199 + 0.360719i 0.904712 0.426023i \(-0.140086\pi\)
0.617282 + 0.786742i \(0.288234\pi\)
\(318\) 0 0
\(319\) 0.164339 + 2.82159i 0.00920120 + 0.157979i
\(320\) 5.12758 + 5.43492i 0.286640 + 0.303821i
\(321\) 0 0
\(322\) −6.16409 + 14.2900i −0.343512 + 0.796349i
\(323\) −7.01331 −0.390231
\(324\) 0 0
\(325\) −1.16938 −0.0648658
\(326\) −5.89638 + 13.6694i −0.326570 + 0.757076i
\(327\) 0 0
\(328\) −15.0301 15.9310i −0.829900 0.879643i
\(329\) −0.603562 10.3628i −0.0332754 0.571317i
\(330\) 0 0
\(331\) 5.51555 + 1.30721i 0.303162 + 0.0718507i 0.379382 0.925240i \(-0.376137\pi\)
−0.0762194 + 0.997091i \(0.524285\pi\)
\(332\) −16.1078 + 5.86275i −0.884029 + 0.321760i
\(333\) 0 0
\(334\) −3.23187 1.17630i −0.176840 0.0643645i
\(335\) 6.70700 + 4.41126i 0.366442 + 0.241013i
\(336\) 0 0
\(337\) 3.22663 + 0.377139i 0.175766 + 0.0205441i 0.203520 0.979071i \(-0.434762\pi\)
−0.0277547 + 0.999615i \(0.508836\pi\)
\(338\) −11.2681 + 15.1356i −0.612902 + 0.823271i
\(339\) 0 0
\(340\) −0.347088 + 5.95927i −0.0188235 + 0.323187i
\(341\) 8.49344 7.12685i 0.459946 0.385940i
\(342\) 0 0
\(343\) 3.70115 + 3.10563i 0.199843 + 0.167688i
\(344\) −4.27462 + 4.53083i −0.230472 + 0.244286i
\(345\) 0 0
\(346\) −6.30925 + 4.14966i −0.339187 + 0.223087i
\(347\) −0.624696 + 0.148056i −0.0335354 + 0.00794804i −0.247349 0.968926i \(-0.579560\pi\)
0.213814 + 0.976874i \(0.431411\pi\)
\(348\) 0 0
\(349\) −35.7089 + 4.17377i −1.91145 + 0.223417i −0.987330 0.158682i \(-0.949275\pi\)
−0.924121 + 0.382099i \(0.875201\pi\)
\(350\) 0.272253 0.471557i 0.0145526 0.0252058i
\(351\) 0 0
\(352\) −12.6824 21.9665i −0.675973 1.17082i
\(353\) −19.3357 25.9723i −1.02913 1.38237i −0.921590 0.388165i \(-0.873109\pi\)
−0.107543 0.994200i \(-0.534298\pi\)
\(354\) 0 0
\(355\) −0.698206 + 2.33217i −0.0370569 + 0.123779i
\(356\) −4.66275 2.34172i −0.247125 0.124111i
\(357\) 0 0
\(358\) −4.36679 14.5861i −0.230792 0.770898i
\(359\) 6.49719 36.8474i 0.342908 1.94473i 0.0154001 0.999881i \(-0.495098\pi\)
0.327508 0.944848i \(-0.393791\pi\)
\(360\) 0 0
\(361\) −1.13839 6.45612i −0.0599151 0.339796i
\(362\) −4.78455 + 2.40289i −0.251470 + 0.126293i
\(363\) 0 0
\(364\) 11.6930 + 27.1075i 0.612881 + 1.42082i
\(365\) −8.29307 19.2255i −0.434079 1.00631i
\(366\) 0 0
\(367\) −8.18006 + 4.10818i −0.426996 + 0.214445i −0.649301 0.760532i \(-0.724938\pi\)
0.222305 + 0.974977i \(0.428642\pi\)
\(368\) −0.588015 3.33480i −0.0306524 0.173838i
\(369\) 0 0
\(370\) 1.22252 6.93328i 0.0635560 0.360444i
\(371\) 2.75005 + 9.18581i 0.142776 + 0.476904i
\(372\) 0 0
\(373\) −9.00646 4.52321i −0.466337 0.234203i 0.200084 0.979779i \(-0.435878\pi\)
−0.666421 + 0.745576i \(0.732175\pi\)
\(374\) −1.96687 + 6.56981i −0.101705 + 0.339717i
\(375\) 0 0
\(376\) −4.66473 6.26582i −0.240565 0.323135i
\(377\) −1.97246 3.41641i −0.101587 0.175954i
\(378\) 0 0
\(379\) 7.02304 12.1643i 0.360749 0.624836i −0.627335 0.778750i \(-0.715854\pi\)
0.988084 + 0.153913i \(0.0491876\pi\)
\(380\) 10.5203 1.22965i 0.539681 0.0630796i
\(381\) 0 0
\(382\) 14.2104 3.36792i 0.727067 0.172318i
\(383\) 18.5585 12.2061i 0.948293 0.623702i 0.0216984 0.999765i \(-0.493093\pi\)
0.926594 + 0.376063i \(0.122722\pi\)
\(384\) 0 0
\(385\) 23.2385 24.6313i 1.18434 1.25533i
\(386\) 5.63288 + 4.72655i 0.286706 + 0.240575i
\(387\) 0 0
\(388\) −11.0397 + 9.26345i −0.560458 + 0.470280i
\(389\) −1.47416 + 25.3103i −0.0747428 + 1.28328i 0.727425 + 0.686187i \(0.240717\pi\)
−0.802168 + 0.597098i \(0.796320\pi\)
\(390\) 0 0
\(391\) −6.54430 + 8.79052i −0.330959 + 0.444556i
\(392\) −14.9912 1.75221i −0.757167 0.0885002i
\(393\) 0 0
\(394\) −15.8227 10.4067i −0.797134 0.524283i
\(395\) 5.72116 + 2.08233i 0.287863 + 0.104773i
\(396\) 0 0
\(397\) 0.810757 0.295091i 0.0406907 0.0148102i −0.321595 0.946877i \(-0.604219\pi\)
0.362285 + 0.932067i \(0.381997\pi\)
\(398\) 7.54993 + 1.78937i 0.378444 + 0.0896928i
\(399\) 0 0
\(400\) 0.00688884 + 0.118277i 0.000344442 + 0.00591384i
\(401\) −6.03889 6.40085i −0.301568 0.319643i 0.558814 0.829293i \(-0.311257\pi\)
−0.860382 + 0.509650i \(0.829775\pi\)
\(402\) 0 0
\(403\) −6.12947 + 14.2097i −0.305331 + 0.707836i
\(404\) −12.6692 −0.630316
\(405\) 0 0
\(406\) 1.83690 0.0911638
\(407\) −6.95765 + 16.1297i −0.344878 + 0.799517i
\(408\) 0 0
\(409\) −14.5025 15.3718i −0.717102 0.760084i 0.261643 0.965165i \(-0.415736\pi\)
−0.978745 + 0.205081i \(0.934254\pi\)
\(410\) −0.828668 14.2277i −0.0409250 0.702655i
\(411\) 0 0
\(412\) −13.7349 3.25524i −0.676672 0.160374i
\(413\) 24.8603 9.04839i 1.22329 0.445242i
\(414\) 0 0
\(415\) −25.7888 9.38637i −1.26592 0.460759i
\(416\) 29.5789 + 19.4543i 1.45022 + 0.953826i
\(417\) 0 0
\(418\) 12.0863 + 1.41268i 0.591159 + 0.0690966i
\(419\) −21.9968 + 29.5469i −1.07462 + 1.44346i −0.187296 + 0.982304i \(0.559972\pi\)
−0.887320 + 0.461155i \(0.847435\pi\)
\(420\) 0 0
\(421\) 0.586747 10.0741i 0.0285963 0.490979i −0.953356 0.301849i \(-0.902396\pi\)
0.981952 0.189130i \(-0.0605668\pi\)
\(422\) 10.4196 8.74309i 0.507219 0.425607i
\(423\) 0 0
\(424\) 5.52760 + 4.63821i 0.268444 + 0.225251i
\(425\) 0.263128 0.278899i 0.0127636 0.0135286i
\(426\) 0 0
\(427\) 7.81701 5.14133i 0.378292 0.248806i
\(428\) 3.63717 0.862025i 0.175809 0.0416675i
\(429\) 0 0
\(430\) −4.02585 + 0.470555i −0.194144 + 0.0226922i
\(431\) −4.93273 + 8.54374i −0.237601 + 0.411537i −0.960025 0.279913i \(-0.909694\pi\)
0.722424 + 0.691450i \(0.243028\pi\)
\(432\) 0 0
\(433\) 13.7845 + 23.8755i 0.662441 + 1.14738i 0.979972 + 0.199133i \(0.0638127\pi\)
−0.317532 + 0.948248i \(0.602854\pi\)
\(434\) −4.30304 5.77999i −0.206553 0.277448i
\(435\) 0 0
\(436\) −0.449507 + 1.50146i −0.0215275 + 0.0719067i
\(437\) 17.3772 + 8.72715i 0.831263 + 0.417476i
\(438\) 0 0
\(439\) −5.32810 17.7971i −0.254296 0.849408i −0.985851 0.167626i \(-0.946390\pi\)
0.731555 0.681783i \(-0.238795\pi\)
\(440\) 4.42514 25.0962i 0.210960 1.19641i
\(441\) 0 0
\(442\) −1.66216 9.42657i −0.0790609 0.448376i
\(443\) 0.318644 0.160029i 0.0151392 0.00760322i −0.441213 0.897402i \(-0.645452\pi\)
0.456353 + 0.889799i \(0.349156\pi\)
\(444\) 0 0
\(445\) −3.30874 7.67052i −0.156849 0.363617i
\(446\) −5.01567 11.6276i −0.237499 0.550584i
\(447\) 0 0
\(448\) −10.8279 + 5.43797i −0.511569 + 0.256920i
\(449\) 4.01408 + 22.7650i 0.189436 + 1.07435i 0.920122 + 0.391632i \(0.128089\pi\)
−0.730686 + 0.682714i \(0.760799\pi\)
\(450\) 0 0
\(451\) −6.17494 + 35.0198i −0.290766 + 1.64902i
\(452\) 4.76203 + 15.9063i 0.223987 + 0.748170i
\(453\) 0 0
\(454\) −2.20319 1.10648i −0.103401 0.0519298i
\(455\) −13.5558 + 45.2795i −0.635505 + 2.12274i
\(456\) 0 0
\(457\) 14.3589 + 19.2874i 0.671683 + 0.902227i 0.999090 0.0426563i \(-0.0135820\pi\)
−0.327406 + 0.944884i \(0.606175\pi\)
\(458\) 1.11900 + 1.93817i 0.0522876 + 0.0905648i
\(459\) 0 0
\(460\) 8.27552 14.3336i 0.385848 0.668309i
\(461\) −35.9966 + 4.20740i −1.67653 + 0.195958i −0.900535 0.434783i \(-0.856825\pi\)
−0.775994 + 0.630741i \(0.782751\pi\)
\(462\) 0 0
\(463\) −27.5609 + 6.53205i −1.28086 + 0.303570i −0.814055 0.580788i \(-0.802745\pi\)
−0.466809 + 0.884358i \(0.654596\pi\)
\(464\) −0.333931 + 0.219630i −0.0155024 + 0.0101961i
\(465\) 0 0
\(466\) 0.436830 0.463013i 0.0202358 0.0214487i
\(467\) 14.1681 + 11.8885i 0.655622 + 0.550132i 0.908771 0.417295i \(-0.137022\pi\)
−0.253149 + 0.967427i \(0.581466\pi\)
\(468\) 0 0
\(469\) −9.97220 + 8.36767i −0.460473 + 0.386383i
\(470\) 0.295550 5.07441i 0.0136327 0.234065i
\(471\) 0 0
\(472\) 11.8887 15.9693i 0.547223 0.735048i
\(473\) 10.0450 + 1.17409i 0.461871 + 0.0539849i
\(474\) 0 0
\(475\) −0.568430 0.373862i −0.0260814 0.0171540i
\(476\) −9.09626 3.31077i −0.416927 0.151749i
\(477\) 0 0
\(478\) −12.7115 + 4.62659i −0.581408 + 0.211615i
\(479\) 23.0375 + 5.45998i 1.05261 + 0.249473i 0.720275 0.693689i \(-0.244016\pi\)
0.332334 + 0.943162i \(0.392164\pi\)
\(480\) 0 0
\(481\) −1.42561 24.4768i −0.0650024 1.11605i
\(482\) 1.87084 + 1.98297i 0.0852144 + 0.0903219i
\(483\) 0 0
\(484\) −4.26921 + 9.89715i −0.194055 + 0.449870i
\(485\) −23.0729 −1.04768
\(486\) 0 0
\(487\) 3.88368 0.175986 0.0879932 0.996121i \(-0.471955\pi\)
0.0879932 + 0.996121i \(0.471955\pi\)
\(488\) 2.78875 6.46504i 0.126241 0.292659i
\(489\) 0 0
\(490\) −6.73973 7.14370i −0.304470 0.322719i
\(491\) −0.253301 4.34902i −0.0114313 0.196268i −0.999189 0.0402710i \(-0.987178\pi\)
0.987757 0.155997i \(-0.0498592\pi\)
\(492\) 0 0
\(493\) 1.25865 + 0.298305i 0.0566867 + 0.0134350i
\(494\) −15.9601 + 5.80900i −0.718078 + 0.261359i
\(495\) 0 0
\(496\) 1.47334 + 0.536253i 0.0661550 + 0.0240785i
\(497\) −3.29829 2.16932i −0.147948 0.0973073i
\(498\) 0 0
\(499\) −9.49505 1.10981i −0.425057 0.0496820i −0.0991244 0.995075i \(-0.531604\pi\)
−0.325933 + 0.945393i \(0.605678\pi\)
\(500\) −9.31079 + 12.5066i −0.416391 + 0.559311i
\(501\) 0 0
\(502\) −0.924627 + 15.8752i −0.0412681 + 0.708546i
\(503\) −13.3954 + 11.2401i −0.597271 + 0.501170i −0.890567 0.454852i \(-0.849692\pi\)
0.293296 + 0.956022i \(0.405248\pi\)
\(504\) 0 0
\(505\) −15.5381 13.0381i −0.691439 0.580186i
\(506\) 13.0487 13.8308i 0.580084 0.614854i
\(507\) 0 0
\(508\) 12.5623 8.26236i 0.557362 0.366583i
\(509\) 4.67625 1.10829i 0.207271 0.0491242i −0.125669 0.992072i \(-0.540108\pi\)
0.332940 + 0.942948i \(0.391959\pi\)
\(510\) 0 0
\(511\) 33.7237 3.94173i 1.49185 0.174372i
\(512\) 3.43707 5.95318i 0.151898 0.263096i
\(513\) 0 0
\(514\) 2.88562 + 4.99805i 0.127279 + 0.220454i
\(515\) −13.4952 18.1272i −0.594671 0.798781i
\(516\) 0 0
\(517\) −3.63745 + 12.1499i −0.159975 + 0.534354i
\(518\) 10.2022 + 5.12376i 0.448261 + 0.225125i
\(519\) 0 0
\(520\) 10.2012 + 34.0744i 0.447352 + 1.49426i
\(521\) −1.19409 + 6.77202i −0.0523140 + 0.296688i −0.999728 0.0233231i \(-0.992575\pi\)
0.947414 + 0.320011i \(0.103686\pi\)
\(522\) 0 0
\(523\) −4.96810 28.1755i −0.217240 1.23203i −0.876977 0.480532i \(-0.840444\pi\)
0.659738 0.751496i \(-0.270667\pi\)
\(524\) 0.541697 0.272051i 0.0236642 0.0118846i
\(525\) 0 0
\(526\) 7.76339 + 17.9976i 0.338500 + 0.784731i
\(527\) −2.00981 4.65927i −0.0875488 0.202961i
\(528\) 0 0
\(529\) 6.60019 3.31474i 0.286965 0.144119i
\(530\) 0.815337 + 4.62400i 0.0354160 + 0.200854i
\(531\) 0 0
\(532\) −2.98260 + 16.9151i −0.129312 + 0.733364i
\(533\) −14.2350 47.5481i −0.616585 2.05954i
\(534\) 0 0
\(535\) 5.34793 + 2.68583i 0.231211 + 0.116119i
\(536\) −2.80962 + 9.38477i −0.121357 + 0.405361i
\(537\) 0 0
\(538\) −0.674180 0.905581i −0.0290660 0.0390424i
\(539\) 12.2526 + 21.2221i 0.527757 + 0.914102i
\(540\) 0 0
\(541\) 16.4141 28.4300i 0.705695 1.22230i −0.260745 0.965408i \(-0.583968\pi\)
0.966440 0.256892i \(-0.0826985\pi\)
\(542\) 9.01670 1.05390i 0.387300 0.0452689i
\(543\) 0 0
\(544\) −11.2955 + 2.67709i −0.484292 + 0.114779i
\(545\) −2.09647 + 1.37887i −0.0898029 + 0.0590643i
\(546\) 0 0
\(547\) 24.9358 26.4304i 1.06618 1.13008i 0.0750494 0.997180i \(-0.476089\pi\)
0.991129 0.132903i \(-0.0424300\pi\)
\(548\) 19.3361 + 16.2249i 0.825999 + 0.693095i
\(549\) 0 0
\(550\) −0.509636 + 0.427635i −0.0217309 + 0.0182344i
\(551\) 0.133454 2.29131i 0.00568531 0.0976130i
\(552\) 0 0
\(553\) −5.89572 + 7.91933i −0.250712 + 0.336764i
\(554\) −15.7950 1.84617i −0.671063 0.0784360i
\(555\) 0 0
\(556\) 23.0085 + 15.1329i 0.975777 + 0.641779i
\(557\) −7.83290 2.85094i −0.331891 0.120798i 0.170699 0.985323i \(-0.445397\pi\)
−0.502590 + 0.864525i \(0.667620\pi\)
\(558\) 0 0
\(559\) −13.2646 + 4.82791i −0.561032 + 0.204199i
\(560\) 4.65963 + 1.10435i 0.196905 + 0.0466674i
\(561\) 0 0
\(562\) −1.29145 22.1733i −0.0544764 0.935323i
\(563\) 9.75835 + 10.3432i 0.411266 + 0.435916i 0.899583 0.436750i \(-0.143871\pi\)
−0.488317 + 0.872666i \(0.662389\pi\)
\(564\) 0 0
\(565\) −10.5290 + 24.4090i −0.442959 + 1.02689i
\(566\) 12.7276 0.534981
\(567\) 0 0
\(568\) −2.97081 −0.124652
\(569\) 3.72797 8.64240i 0.156285 0.362308i −0.822027 0.569449i \(-0.807157\pi\)
0.978311 + 0.207141i \(0.0664158\pi\)
\(570\) 0 0
\(571\) 18.5168 + 19.6267i 0.774905 + 0.821351i 0.987801 0.155724i \(-0.0497710\pi\)
−0.212896 + 0.977075i \(0.568290\pi\)
\(572\) −2.09729 36.0091i −0.0876921 1.50561i
\(573\) 0 0
\(574\) 22.4880 + 5.32976i 0.938632 + 0.222460i
\(575\) −0.999017 + 0.363613i −0.0416619 + 0.0151637i
\(576\) 0 0
\(577\) 35.2517 + 12.8306i 1.46755 + 0.534143i 0.947433 0.319954i \(-0.103667\pi\)
0.520113 + 0.854097i \(0.325890\pi\)
\(578\) −8.65616 5.69324i −0.360049 0.236808i
\(579\) 0 0
\(580\) −1.94034 0.226793i −0.0805682 0.00941707i
\(581\) 26.5757 35.6974i 1.10255 1.48098i
\(582\) 0 0
\(583\) 0.681194 11.6956i 0.0282122 0.484384i
\(584\) 19.5732 16.4239i 0.809944 0.679624i
\(585\) 0 0
\(586\) 14.0487 + 11.7883i 0.580347 + 0.486969i
\(587\) −17.8340 + 18.9029i −0.736087 + 0.780206i −0.981959 0.189096i \(-0.939444\pi\)
0.245872 + 0.969302i \(0.420926\pi\)
\(588\) 0 0
\(589\) −7.52246 + 4.94760i −0.309958 + 0.203862i
\(590\) 12.6056 2.98758i 0.518963 0.122997i
\(591\) 0 0
\(592\) −2.46730 + 0.288386i −0.101405 + 0.0118526i
\(593\) −11.0981 + 19.2224i −0.455744 + 0.789371i −0.998731 0.0503700i \(-0.983960\pi\)
0.542987 + 0.839741i \(0.317293\pi\)
\(594\) 0 0
\(595\) −7.74896 13.4216i −0.317676 0.550232i
\(596\) 1.66793 + 2.24042i 0.0683211 + 0.0917711i
\(597\) 0 0
\(598\) −7.61174 + 25.4250i −0.311267 + 1.03970i
\(599\) −24.7245 12.4171i −1.01022 0.507349i −0.134878 0.990862i \(-0.543064\pi\)
−0.875337 + 0.483513i \(0.839361\pi\)
\(600\) 0 0
\(601\) −5.28556 17.6550i −0.215603 0.720163i −0.995543 0.0943089i \(-0.969936\pi\)
0.779940 0.625854i \(-0.215249\pi\)
\(602\) 1.14136 6.47299i 0.0465185 0.263819i
\(603\) 0 0
\(604\) 2.19260 + 12.4348i 0.0892156 + 0.505967i
\(605\) −15.4213 + 7.74486i −0.626964 + 0.314873i
\(606\) 0 0
\(607\) −2.32395 5.38752i −0.0943262 0.218673i 0.864520 0.502598i \(-0.167622\pi\)
−0.958846 + 0.283925i \(0.908363\pi\)
\(608\) 8.15837 + 18.9132i 0.330866 + 0.767033i
\(609\) 0 0
\(610\) 4.09420 2.05619i 0.165769 0.0832525i
\(611\) −3.07393 17.4331i −0.124358 0.705269i
\(612\) 0 0
\(613\) 4.27094 24.2217i 0.172502 0.978305i −0.768487 0.639866i \(-0.778990\pi\)
0.940988 0.338439i \(-0.109899\pi\)
\(614\) 4.06905 + 13.5916i 0.164213 + 0.548511i
\(615\) 0 0
\(616\) 36.9288 + 18.5463i 1.48790 + 0.747252i
\(617\) −1.10523 + 3.69173i −0.0444949 + 0.148623i −0.977350 0.211627i \(-0.932124\pi\)
0.932856 + 0.360251i \(0.117309\pi\)
\(618\) 0 0
\(619\) 11.9740 + 16.0839i 0.481277 + 0.646467i 0.974751 0.223294i \(-0.0716808\pi\)
−0.493475 + 0.869760i \(0.664273\pi\)
\(620\) 3.83173 + 6.63675i 0.153886 + 0.266538i
\(621\) 0 0
\(622\) 4.62246 8.00633i 0.185344 0.321024i
\(623\) 13.4550 1.57266i 0.539061 0.0630072i
\(624\) 0 0
\(625\) −23.3516 + 5.53443i −0.934064 + 0.221377i
\(626\) 13.7948 9.07298i 0.551351 0.362629i
\(627\) 0 0
\(628\) −20.9203 + 22.1743i −0.834813 + 0.884850i
\(629\) 6.15853 + 5.16762i 0.245557 + 0.206047i
\(630\) 0 0
\(631\) −1.61408 + 1.35437i −0.0642554 + 0.0539167i −0.674350 0.738412i \(-0.735576\pi\)
0.610094 + 0.792329i \(0.291132\pi\)
\(632\) −0.432001 + 7.41716i −0.0171841 + 0.295039i
\(633\) 0 0
\(634\) −13.2056 + 17.7382i −0.524462 + 0.704474i
\(635\) 23.9100 + 2.79467i 0.948838 + 0.110903i
\(636\) 0 0
\(637\) −28.5765 18.7950i −1.13224 0.744687i
\(638\) −2.10899 0.767608i −0.0834956 0.0303899i
\(639\) 0 0
\(640\) 18.4845 6.72781i 0.730664 0.265940i
\(641\) −17.1457 4.06360i −0.677214 0.160503i −0.122405 0.992480i \(-0.539061\pi\)
−0.554809 + 0.831978i \(0.687209\pi\)
\(642\) 0 0
\(643\) −1.98349 34.0553i −0.0782213 1.34301i −0.777827 0.628479i \(-0.783678\pi\)
0.699605 0.714529i \(-0.253359\pi\)
\(644\) 18.4184 + 19.5223i 0.725786 + 0.769288i
\(645\) 0 0
\(646\) 2.20579 5.11360i 0.0867858 0.201192i
\(647\) 14.3650 0.564747 0.282374 0.959305i \(-0.408878\pi\)
0.282374 + 0.959305i \(0.408878\pi\)
\(648\) 0 0
\(649\) −32.3238 −1.26882
\(650\) 0.367789 0.852631i 0.0144259 0.0334429i
\(651\) 0 0
\(652\) 17.6185 + 18.6745i 0.689992 + 0.731349i
\(653\) 0.705096 + 12.1060i 0.0275925 + 0.473745i 0.983595 + 0.180388i \(0.0577354\pi\)
−0.956003 + 0.293357i \(0.905228\pi\)
\(654\) 0 0
\(655\) 0.944337 + 0.223812i 0.0368983 + 0.00874506i
\(656\) −4.72537 + 1.71989i −0.184495 + 0.0671506i
\(657\) 0 0
\(658\) 7.74561 + 2.81917i 0.301955 + 0.109903i
\(659\) −16.7459 11.0140i −0.652328 0.429043i 0.179742 0.983714i \(-0.442474\pi\)
−0.832070 + 0.554671i \(0.812844\pi\)
\(660\) 0 0
\(661\) 3.52498 + 0.412011i 0.137106 + 0.0160254i 0.184369 0.982857i \(-0.440976\pi\)
−0.0472632 + 0.998882i \(0.515050\pi\)
\(662\) −2.68785 + 3.61041i −0.104466 + 0.140322i
\(663\) 0 0
\(664\) 1.94730 33.4338i 0.0755698 1.29748i
\(665\) −21.0656 + 17.6762i −0.816890 + 0.685452i
\(666\) 0 0
\(667\) −2.74741 2.30535i −0.106380 0.0892635i
\(668\) −4.07036 + 4.31433i −0.157487 + 0.166926i
\(669\) 0 0
\(670\) −5.32583 + 3.50285i −0.205755 + 0.135327i
\(671\) −11.1234 + 2.63628i −0.429413 + 0.101773i
\(672\) 0 0
\(673\) −26.5108 + 3.09867i −1.02192 + 0.119445i −0.610511 0.792008i \(-0.709036\pi\)
−0.411405 + 0.911453i \(0.634962\pi\)
\(674\) −1.28981 + 2.23401i −0.0496815 + 0.0860509i
\(675\) 0 0
\(676\) 16.2711 + 28.1824i 0.625813 + 1.08394i
\(677\) −21.2644 28.5631i −0.817258 1.09777i −0.993546 0.113430i \(-0.963816\pi\)
0.176288 0.984339i \(-0.443591\pi\)
\(678\) 0 0
\(679\) 10.7309 35.8436i 0.411813 1.37555i
\(680\) −10.4222 5.23422i −0.399672 0.200723i
\(681\) 0 0
\(682\) 2.52507 + 8.43431i 0.0966898 + 0.322966i
\(683\) −8.25887 + 46.8384i −0.316017 + 1.79222i 0.250442 + 0.968132i \(0.419424\pi\)
−0.566459 + 0.824090i \(0.691687\pi\)
\(684\) 0 0
\(685\) 7.01750 + 39.7982i 0.268125 + 1.52061i
\(686\) −3.42847 + 1.72184i −0.130900 + 0.0657403i
\(687\) 0 0
\(688\) 0.566458 + 1.31320i 0.0215960 + 0.0500652i
\(689\) 6.47668 + 15.0146i 0.246742 + 0.572012i
\(690\) 0 0
\(691\) 2.78462 1.39849i 0.105932 0.0532011i −0.395044 0.918662i \(-0.629271\pi\)
0.500976 + 0.865461i \(0.332974\pi\)
\(692\) 2.26150 + 12.8256i 0.0859692 + 0.487555i
\(693\) 0 0
\(694\) 0.0885248 0.502049i 0.00336035 0.0190575i
\(695\) 12.6453 + 42.2382i 0.479663 + 1.60218i
\(696\) 0 0
\(697\) 14.5433 + 7.30394i 0.550869 + 0.276657i
\(698\) 8.18777 27.3490i 0.309912 1.03518i
\(699\) 0 0
\(700\) −0.560765 0.753238i −0.0211949 0.0284697i
\(701\) −7.89786 13.6795i −0.298298 0.516667i 0.677449 0.735570i \(-0.263086\pi\)
−0.975747 + 0.218903i \(0.929752\pi\)
\(702\) 0 0
\(703\) 7.13247 12.3538i 0.269006 0.465933i
\(704\) 14.7042 1.71867i 0.554185 0.0647749i
\(705\) 0 0
\(706\) 25.0185 5.92949i 0.941583 0.223159i
\(707\) 27.4811 18.0746i 1.03353 0.679766i
\(708\) 0 0
\(709\) −11.7116 + 12.4135i −0.439837 + 0.466200i −0.908930 0.416949i \(-0.863099\pi\)
0.469093 + 0.883149i \(0.344581\pi\)
\(710\) −1.48085 1.24258i −0.0555755 0.0466334i
\(711\) 0 0
\(712\) 7.80924 6.55273i 0.292664 0.245574i
\(713\) −0.818052 + 14.0454i −0.0306363 + 0.526005i
\(714\) 0 0
\(715\) 34.4852 46.3217i 1.28967 1.73233i
\(716\) −26.0807 3.04840i −0.974681 0.113924i
\(717\) 0 0
\(718\) 24.8230 + 16.3263i 0.926386 + 0.609294i
\(719\) 9.60505 + 3.49595i 0.358208 + 0.130377i 0.514854 0.857278i \(-0.327846\pi\)
−0.156646 + 0.987655i \(0.550068\pi\)
\(720\) 0 0
\(721\) 34.4370 12.5340i 1.28250 0.466792i
\(722\) 5.06538 + 1.20052i 0.188514 + 0.0446786i
\(723\) 0 0
\(724\) 0.536884 + 9.21795i 0.0199531 + 0.342582i
\(725\) 0.0861118 + 0.0912732i 0.00319811 + 0.00338980i
\(726\) 0 0
\(727\) 14.7266 34.1401i 0.546179 1.26619i −0.391977 0.919975i \(-0.628209\pi\)
0.938157 0.346211i \(-0.112532\pi\)
\(728\) −57.6788 −2.13772
\(729\) 0 0
\(730\) 16.6261 0.615361
\(731\) 1.83326 4.24996i 0.0678054 0.157191i
\(732\) 0 0
\(733\) 24.2509 + 25.7045i 0.895728 + 0.949416i 0.998976 0.0452398i \(-0.0144052\pi\)
−0.103249 + 0.994656i \(0.532924\pi\)
\(734\) −0.422637 7.25640i −0.0155998 0.267839i
\(735\) 0 0
\(736\) 31.3187 + 7.42267i 1.15442 + 0.273603i
\(737\) 14.9460 5.43991i 0.550544 0.200382i
\(738\) 0 0
\(739\) −23.2146 8.44943i −0.853964 0.310817i −0.122308 0.992492i \(-0.539030\pi\)
−0.731655 + 0.681675i \(0.761252\pi\)
\(740\) −10.1441 6.67191i −0.372906 0.245264i
\(741\) 0 0
\(742\) −7.56257 0.883938i −0.277631 0.0324504i
\(743\) 18.6294 25.0236i 0.683447 0.918028i −0.316082 0.948732i \(-0.602367\pi\)
0.999529 + 0.0307037i \(0.00977481\pi\)
\(744\) 0 0
\(745\) −0.260013 + 4.46426i −0.00952615 + 0.163558i
\(746\) 6.13067 5.14424i 0.224460 0.188344i
\(747\) 0 0
\(748\) 9.06012 + 7.60234i 0.331271 + 0.277969i
\(749\) −6.65968 + 7.05885i −0.243339 + 0.257925i
\(750\) 0 0
\(751\) 18.1119 11.9124i 0.660911 0.434688i −0.174244 0.984703i \(-0.555748\pi\)
0.835155 + 0.550014i \(0.185378\pi\)
\(752\) −1.74516 + 0.413609i −0.0636393 + 0.0150828i
\(753\) 0 0
\(754\) 3.11137 0.363667i 0.113309 0.0132440i
\(755\) −10.1078 + 17.5072i −0.367859 + 0.637151i
\(756\) 0 0
\(757\) 20.8452 + 36.1050i 0.757632 + 1.31226i 0.944055 + 0.329788i \(0.106977\pi\)
−0.186422 + 0.982470i \(0.559689\pi\)
\(758\) 6.66046 + 8.94655i 0.241919 + 0.324953i
\(759\) 0 0
\(760\) −5.93513 + 19.8247i −0.215290 + 0.719119i
\(761\) 2.14236 + 1.07593i 0.0776604 + 0.0390025i 0.487206 0.873287i \(-0.338016\pi\)
−0.409545 + 0.912290i \(0.634313\pi\)
\(762\) 0 0
\(763\) −1.16703 3.89815i −0.0422493 0.141122i
\(764\) 4.37352 24.8035i 0.158228 0.897358i
\(765\) 0 0
\(766\) 3.06289 + 17.3705i 0.110667 + 0.627621i
\(767\) 40.3173 20.2481i 1.45577 0.731118i
\(768\) 0 0
\(769\) 11.1782 + 25.9140i 0.403096 + 0.934481i 0.991995 + 0.126275i \(0.0403021\pi\)
−0.588899 + 0.808206i \(0.700439\pi\)
\(770\) 10.6506 + 24.6908i 0.383819 + 0.889793i
\(771\) 0 0
\(772\) 11.3324 5.69136i 0.407863 0.204837i
\(773\) −5.35215 30.3536i −0.192504 1.09174i −0.915929 0.401340i \(-0.868545\pi\)
0.723426 0.690402i \(-0.242566\pi\)
\(774\) 0 0
\(775\) 0.0854785 0.484773i 0.00307048 0.0174135i
\(776\) −8.07534 26.9735i −0.289888 0.968293i
\(777\) 0 0
\(778\) −17.9908 9.03534i −0.645003 0.323933i
\(779\) 8.28202 27.6639i 0.296734 0.991161i
\(780\) 0 0
\(781\) 2.88032 + 3.86894i 0.103066 + 0.138442i
\(782\)