Properties

Label 729.2.g.c.55.2
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.2
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.c.676.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.880274 + 2.04070i) q^{2} +(-2.01711 - 2.13801i) q^{4} +(0.171269 + 2.94057i) q^{5} +(2.87602 + 0.681629i) q^{7} +(1.96178 - 0.714030i) q^{8} +O(q^{10})\) \(q+(-0.880274 + 2.04070i) q^{2} +(-2.01711 - 2.13801i) q^{4} +(0.171269 + 2.94057i) q^{5} +(2.87602 + 0.681629i) q^{7} +(1.96178 - 0.714030i) q^{8} +(-6.15160 - 2.23900i) q^{10} +(4.43417 + 2.91640i) q^{11} +(0.730282 + 0.0853577i) q^{13} +(-3.92268 + 5.26908i) q^{14} +(0.0720359 - 1.23681i) q^{16} +(1.11298 - 0.933897i) q^{17} +(4.21153 + 3.53390i) q^{19} +(5.94150 - 6.29762i) q^{20} +(-9.85479 + 6.48160i) q^{22} +(-0.438705 + 0.103975i) q^{23} +(-3.65143 + 0.426791i) q^{25} +(-0.817038 + 1.41515i) q^{26} +(-4.34391 - 7.52387i) q^{28} +(2.12271 + 2.85130i) q^{29} +(0.319104 - 1.06588i) q^{31} +(6.19179 + 3.10963i) q^{32} +(0.926085 + 3.09334i) q^{34} +(-1.51181 + 8.57387i) q^{35} +(-0.643205 - 3.64780i) q^{37} +(-10.9189 + 5.48370i) q^{38} +(2.43565 + 5.64646i) q^{40} +(-4.05045 - 9.39000i) q^{41} +(-7.08750 + 3.55948i) q^{43} +(-2.70891 - 15.3630i) q^{44} +(0.173998 - 0.986793i) q^{46} +(-1.58391 - 5.29061i) q^{47} +(1.55143 + 0.779157i) q^{49} +(2.34330 - 7.82718i) q^{50} +(-1.29056 - 1.73353i) q^{52} +(-1.83020 - 3.17001i) q^{53} +(-7.81644 + 13.5385i) q^{55} +(6.12882 - 0.716356i) q^{56} +(-7.68722 + 1.82190i) q^{58} +(-5.98693 + 3.93766i) q^{59} +(-2.98858 + 3.16771i) q^{61} +(1.89425 + 1.58947i) q^{62} +(-9.89820 + 8.30558i) q^{64} +(-0.125926 + 2.16206i) q^{65} +(6.75776 - 9.07724i) q^{67} +(-4.24167 - 0.495780i) q^{68} +(-16.1659 - 10.6325i) q^{70} +(-12.6408 - 4.60088i) q^{71} +(3.72979 - 1.35753i) q^{73} +(8.01028 + 1.89847i) q^{74} +(-0.939614 - 16.1325i) q^{76} +(10.7649 + 11.4101i) q^{77} +(1.12592 - 2.61017i) q^{79} +3.64926 q^{80} +22.7277 q^{82} +(0.139359 - 0.323070i) q^{83} +(2.93681 + 3.11283i) q^{85} +(-1.02490 - 17.5968i) q^{86} +(10.7813 + 2.55521i) q^{88} +(5.34347 - 1.94487i) q^{89} +(2.04212 + 0.743272i) q^{91} +(1.10721 + 0.728226i) q^{92} +(12.1908 + 1.42491i) q^{94} +(-9.67036 + 12.9896i) q^{95} +(0.409894 - 7.03762i) q^{97} +(-2.95571 + 2.48014i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.880274 + 2.04070i −0.622448 + 1.44300i 0.256721 + 0.966485i \(0.417358\pi\)
−0.879169 + 0.476510i \(0.841902\pi\)
\(3\) 0 0
\(4\) −2.01711 2.13801i −1.00855 1.06900i
\(5\) 0.171269 + 2.94057i 0.0765937 + 1.31506i 0.789477 + 0.613780i \(0.210352\pi\)
−0.712883 + 0.701283i \(0.752611\pi\)
\(6\) 0 0
\(7\) 2.87602 + 0.681629i 1.08703 + 0.257631i 0.734802 0.678282i \(-0.237275\pi\)
0.352231 + 0.935913i \(0.385423\pi\)
\(8\) 1.96178 0.714030i 0.693594 0.252448i
\(9\) 0 0
\(10\) −6.15160 2.23900i −1.94531 0.708033i
\(11\) 4.43417 + 2.91640i 1.33695 + 0.879328i 0.998106 0.0615139i \(-0.0195929\pi\)
0.338847 + 0.940842i \(0.389963\pi\)
\(12\) 0 0
\(13\) 0.730282 + 0.0853577i 0.202544 + 0.0236740i 0.216760 0.976225i \(-0.430451\pi\)
−0.0142160 + 0.999899i \(0.504525\pi\)
\(14\) −3.92268 + 5.26908i −1.04838 + 1.40822i
\(15\) 0 0
\(16\) 0.0720359 1.23681i 0.0180090 0.309202i
\(17\) 1.11298 0.933897i 0.269936 0.226503i −0.497764 0.867312i \(-0.665845\pi\)
0.767700 + 0.640809i \(0.221401\pi\)
\(18\) 0 0
\(19\) 4.21153 + 3.53390i 0.966192 + 0.810731i 0.981949 0.189145i \(-0.0605715\pi\)
−0.0157573 + 0.999876i \(0.505016\pi\)
\(20\) 5.94150 6.29762i 1.32856 1.40819i
\(21\) 0 0
\(22\) −9.85479 + 6.48160i −2.10105 + 1.38188i
\(23\) −0.438705 + 0.103975i −0.0914763 + 0.0216803i −0.276099 0.961129i \(-0.589042\pi\)
0.184623 + 0.982809i \(0.440894\pi\)
\(24\) 0 0
\(25\) −3.65143 + 0.426791i −0.730286 + 0.0853581i
\(26\) −0.817038 + 1.41515i −0.160234 + 0.277534i
\(27\) 0 0
\(28\) −4.34391 7.52387i −0.820921 1.42188i
\(29\) 2.12271 + 2.85130i 0.394178 + 0.529472i 0.954265 0.298961i \(-0.0966400\pi\)
−0.560088 + 0.828433i \(0.689233\pi\)
\(30\) 0 0
\(31\) 0.319104 1.06588i 0.0573128 0.191438i −0.924539 0.381087i \(-0.875550\pi\)
0.981852 + 0.189649i \(0.0607350\pi\)
\(32\) 6.19179 + 3.10963i 1.09456 + 0.549711i
\(33\) 0 0
\(34\) 0.926085 + 3.09334i 0.158822 + 0.530503i
\(35\) −1.51181 + 8.57387i −0.255542 + 1.44925i
\(36\) 0 0
\(37\) −0.643205 3.64780i −0.105742 0.599695i −0.990921 0.134444i \(-0.957075\pi\)
0.885179 0.465251i \(-0.154036\pi\)
\(38\) −10.9189 + 5.48370i −1.77129 + 0.889573i
\(39\) 0 0
\(40\) 2.43565 + 5.64646i 0.385109 + 0.892784i
\(41\) −4.05045 9.39000i −0.632574 1.46647i −0.868995 0.494820i \(-0.835234\pi\)
0.236421 0.971651i \(-0.424025\pi\)
\(42\) 0 0
\(43\) −7.08750 + 3.55948i −1.08083 + 0.542815i −0.897850 0.440301i \(-0.854872\pi\)
−0.182984 + 0.983116i \(0.558576\pi\)
\(44\) −2.70891 15.3630i −0.408383 2.31606i
\(45\) 0 0
\(46\) 0.173998 0.986793i 0.0256546 0.145495i
\(47\) −1.58391 5.29061i −0.231036 0.771715i −0.992364 0.123347i \(-0.960637\pi\)
0.761327 0.648368i \(-0.224548\pi\)
\(48\) 0 0
\(49\) 1.55143 + 0.779157i 0.221633 + 0.111308i
\(50\) 2.34330 7.82718i 0.331393 1.10693i
\(51\) 0 0
\(52\) −1.29056 1.73353i −0.178969 0.240397i
\(53\) −1.83020 3.17001i −0.251398 0.435434i 0.712513 0.701659i \(-0.247557\pi\)
−0.963911 + 0.266225i \(0.914224\pi\)
\(54\) 0 0
\(55\) −7.81644 + 13.5385i −1.05397 + 1.82553i
\(56\) 6.12882 0.716356i 0.818998 0.0957271i
\(57\) 0 0
\(58\) −7.68722 + 1.82190i −1.00938 + 0.239228i
\(59\) −5.98693 + 3.93766i −0.779431 + 0.512640i −0.875782 0.482707i \(-0.839653\pi\)
0.0963503 + 0.995347i \(0.469283\pi\)
\(60\) 0 0
\(61\) −2.98858 + 3.16771i −0.382649 + 0.405584i −0.889857 0.456240i \(-0.849196\pi\)
0.507208 + 0.861823i \(0.330677\pi\)
\(62\) 1.89425 + 1.58947i 0.240570 + 0.201862i
\(63\) 0 0
\(64\) −9.89820 + 8.30558i −1.23728 + 1.03820i
\(65\) −0.125926 + 2.16206i −0.0156192 + 0.268171i
\(66\) 0 0
\(67\) 6.75776 9.07724i 0.825591 1.10896i −0.166818 0.985988i \(-0.553349\pi\)
0.992410 0.122974i \(-0.0392432\pi\)
\(68\) −4.24167 0.495780i −0.514378 0.0601222i
\(69\) 0 0
\(70\) −16.1659 10.6325i −1.93220 1.27083i
\(71\) −12.6408 4.60088i −1.50019 0.546024i −0.544079 0.839034i \(-0.683121\pi\)
−0.956109 + 0.293010i \(0.905343\pi\)
\(72\) 0 0
\(73\) 3.72979 1.35753i 0.436538 0.158887i −0.114397 0.993435i \(-0.536493\pi\)
0.550935 + 0.834548i \(0.314271\pi\)
\(74\) 8.01028 + 1.89847i 0.931176 + 0.220693i
\(75\) 0 0
\(76\) −0.939614 16.1325i −0.107781 1.85053i
\(77\) 10.7649 + 11.4101i 1.22677 + 1.30030i
\(78\) 0 0
\(79\) 1.12592 2.61017i 0.126675 0.293667i −0.843062 0.537816i \(-0.819250\pi\)
0.969738 + 0.244149i \(0.0785088\pi\)
\(80\) 3.64926 0.408000
\(81\) 0 0
\(82\) 22.7277 2.50986
\(83\) 0.139359 0.323070i 0.0152966 0.0354615i −0.910397 0.413737i \(-0.864223\pi\)
0.925693 + 0.378275i \(0.123483\pi\)
\(84\) 0 0
\(85\) 2.93681 + 3.11283i 0.318542 + 0.337634i
\(86\) −1.02490 17.5968i −0.110518 1.89751i
\(87\) 0 0
\(88\) 10.7813 + 2.55521i 1.14929 + 0.272386i
\(89\) 5.34347 1.94487i 0.566407 0.206155i −0.0429141 0.999079i \(-0.513664\pi\)
0.609321 + 0.792923i \(0.291442\pi\)
\(90\) 0 0
\(91\) 2.04212 + 0.743272i 0.214073 + 0.0779160i
\(92\) 1.10721 + 0.728226i 0.115435 + 0.0759228i
\(93\) 0 0
\(94\) 12.1908 + 1.42491i 1.25739 + 0.146968i
\(95\) −9.67036 + 12.9896i −0.992158 + 1.33270i
\(96\) 0 0
\(97\) 0.409894 7.03762i 0.0416185 0.714562i −0.911376 0.411574i \(-0.864979\pi\)
0.952995 0.302987i \(-0.0979839\pi\)
\(98\) −2.95571 + 2.48014i −0.298572 + 0.250532i
\(99\) 0 0
\(100\) 8.27780 + 6.94590i 0.827780 + 0.694590i
\(101\) −7.28225 + 7.71874i −0.724611 + 0.768043i −0.980043 0.198784i \(-0.936301\pi\)
0.255432 + 0.966827i \(0.417782\pi\)
\(102\) 0 0
\(103\) 14.8895 9.79298i 1.46711 0.964931i 0.470519 0.882390i \(-0.344067\pi\)
0.996588 0.0825411i \(-0.0263036\pi\)
\(104\) 1.49360 0.353990i 0.146460 0.0347116i
\(105\) 0 0
\(106\) 8.08012 0.944431i 0.784811 0.0917313i
\(107\) 0.0249146 0.0431534i 0.00240859 0.00417180i −0.864819 0.502084i \(-0.832567\pi\)
0.867227 + 0.497913i \(0.165900\pi\)
\(108\) 0 0
\(109\) 0.202520 + 0.350775i 0.0193979 + 0.0335981i 0.875561 0.483107i \(-0.160492\pi\)
−0.856164 + 0.516705i \(0.827158\pi\)
\(110\) −20.7474 27.8686i −1.97819 2.65717i
\(111\) 0 0
\(112\) 1.05022 3.50798i 0.0992365 0.331473i
\(113\) −10.1658 5.10543i −0.956313 0.480279i −0.0990079 0.995087i \(-0.531567\pi\)
−0.857305 + 0.514808i \(0.827863\pi\)
\(114\) 0 0
\(115\) −0.380882 1.27223i −0.0355174 0.118636i
\(116\) 1.81436 10.2897i 0.168459 0.955379i
\(117\) 0 0
\(118\) −2.76547 15.6838i −0.254582 1.44381i
\(119\) 3.83751 1.92727i 0.351784 0.176672i
\(120\) 0 0
\(121\) 6.79960 + 15.7633i 0.618146 + 1.43302i
\(122\) −3.83359 8.88726i −0.347077 0.804615i
\(123\) 0 0
\(124\) −2.92253 + 1.46775i −0.262451 + 0.131808i
\(125\) 0.677067 + 3.83984i 0.0605587 + 0.343445i
\(126\) 0 0
\(127\) 2.26532 12.8473i 0.201015 1.14001i −0.702574 0.711611i \(-0.747966\pi\)
0.903589 0.428401i \(-0.140923\pi\)
\(128\) −4.26170 14.2351i −0.376685 1.25821i
\(129\) 0 0
\(130\) −4.30128 2.16019i −0.377248 0.189461i
\(131\) −2.29663 + 7.67128i −0.200658 + 0.670243i 0.797133 + 0.603804i \(0.206349\pi\)
−0.997790 + 0.0664391i \(0.978836\pi\)
\(132\) 0 0
\(133\) 9.70364 + 13.0342i 0.841412 + 1.13021i
\(134\) 12.5753 + 21.7810i 1.08634 + 1.88160i
\(135\) 0 0
\(136\) 1.51658 2.62680i 0.130046 0.225246i
\(137\) 10.2507 1.19814i 0.875777 0.102364i 0.333687 0.942684i \(-0.391707\pi\)
0.542090 + 0.840320i \(0.317633\pi\)
\(138\) 0 0
\(139\) −16.9835 + 4.02516i −1.44052 + 0.341410i −0.875320 0.483544i \(-0.839349\pi\)
−0.565200 + 0.824954i \(0.691201\pi\)
\(140\) 21.3805 14.0622i 1.80698 1.18847i
\(141\) 0 0
\(142\) 20.5164 21.7461i 1.72170 1.82489i
\(143\) 2.98926 + 2.50829i 0.249974 + 0.209753i
\(144\) 0 0
\(145\) −8.02088 + 6.73032i −0.666098 + 0.558923i
\(146\) −0.512914 + 8.80639i −0.0424490 + 0.728822i
\(147\) 0 0
\(148\) −6.50161 + 8.73318i −0.534429 + 0.717863i
\(149\) 8.25798 + 0.965219i 0.676520 + 0.0790739i 0.447413 0.894327i \(-0.352345\pi\)
0.229107 + 0.973401i \(0.426419\pi\)
\(150\) 0 0
\(151\) 14.7051 + 9.67168i 1.19668 + 0.787071i 0.981865 0.189584i \(-0.0607138\pi\)
0.214818 + 0.976654i \(0.431084\pi\)
\(152\) 10.7854 + 3.92557i 0.874812 + 0.318406i
\(153\) 0 0
\(154\) −32.7606 + 11.9239i −2.63992 + 0.960854i
\(155\) 3.18895 + 0.755796i 0.256143 + 0.0607070i
\(156\) 0 0
\(157\) 0.125292 + 2.15117i 0.00999936 + 0.171682i 0.999610 + 0.0279117i \(0.00888574\pi\)
−0.989611 + 0.143771i \(0.954077\pi\)
\(158\) 4.33546 + 4.59532i 0.344911 + 0.365584i
\(159\) 0 0
\(160\) −8.08364 + 18.7400i −0.639068 + 1.48153i
\(161\) −1.33260 −0.105023
\(162\) 0 0
\(163\) 9.47594 0.742213 0.371106 0.928590i \(-0.378979\pi\)
0.371106 + 0.928590i \(0.378979\pi\)
\(164\) −11.9057 + 27.6005i −0.929679 + 2.15524i
\(165\) 0 0
\(166\) 0.536616 + 0.568780i 0.0416495 + 0.0441459i
\(167\) 0.222204 + 3.81509i 0.0171946 + 0.295221i 0.995932 + 0.0901046i \(0.0287201\pi\)
−0.978738 + 0.205116i \(0.934243\pi\)
\(168\) 0 0
\(169\) −12.1236 2.87334i −0.932581 0.221026i
\(170\) −8.93757 + 3.25301i −0.685480 + 0.249494i
\(171\) 0 0
\(172\) 21.9064 + 7.97329i 1.67035 + 0.607958i
\(173\) −6.99032 4.59760i −0.531464 0.349549i 0.255242 0.966877i \(-0.417845\pi\)
−0.786706 + 0.617328i \(0.788215\pi\)
\(174\) 0 0
\(175\) −10.7925 1.26146i −0.815835 0.0953574i
\(176\) 3.92645 5.27413i 0.295967 0.397553i
\(177\) 0 0
\(178\) −0.734825 + 12.6165i −0.0550775 + 0.945644i
\(179\) 4.19854 3.52299i 0.313814 0.263321i −0.472252 0.881463i \(-0.656559\pi\)
0.786066 + 0.618142i \(0.212114\pi\)
\(180\) 0 0
\(181\) 16.7963 + 14.0938i 1.24846 + 1.04758i 0.996814 + 0.0797621i \(0.0254161\pi\)
0.251645 + 0.967820i \(0.419028\pi\)
\(182\) −3.31442 + 3.51308i −0.245681 + 0.260407i
\(183\) 0 0
\(184\) −0.786401 + 0.517224i −0.0579743 + 0.0381303i
\(185\) 10.6164 2.51614i 0.780537 0.184991i
\(186\) 0 0
\(187\) 7.65874 0.895178i 0.560063 0.0654619i
\(188\) −8.11647 + 14.0581i −0.591955 + 1.02530i
\(189\) 0 0
\(190\) −17.9953 31.1687i −1.30551 2.26122i
\(191\) −7.60922 10.2210i −0.550584 0.739562i 0.436511 0.899699i \(-0.356214\pi\)
−0.987095 + 0.160136i \(0.948807\pi\)
\(192\) 0 0
\(193\) −5.83150 + 19.4786i −0.419761 + 1.40210i 0.443016 + 0.896514i \(0.353908\pi\)
−0.862777 + 0.505585i \(0.831277\pi\)
\(194\) 14.0009 + 7.03150i 1.00520 + 0.504832i
\(195\) 0 0
\(196\) −1.46356 4.88862i −0.104540 0.349187i
\(197\) −0.696981 + 3.95277i −0.0496578 + 0.281623i −0.999518 0.0310522i \(-0.990114\pi\)
0.949860 + 0.312676i \(0.101225\pi\)
\(198\) 0 0
\(199\) 0.667809 + 3.78734i 0.0473398 + 0.268477i 0.999286 0.0377889i \(-0.0120314\pi\)
−0.951946 + 0.306266i \(0.900920\pi\)
\(200\) −6.85856 + 3.44450i −0.484973 + 0.243563i
\(201\) 0 0
\(202\) −9.34128 21.6555i −0.657250 1.52368i
\(203\) 4.16143 + 9.64728i 0.292075 + 0.677106i
\(204\) 0 0
\(205\) 26.9182 13.5188i 1.88005 0.944197i
\(206\) 6.87773 + 39.0056i 0.479195 + 2.71765i
\(207\) 0 0
\(208\) 0.158178 0.897070i 0.0109676 0.0622006i
\(209\) 8.36840 + 27.9524i 0.578855 + 1.93351i
\(210\) 0 0
\(211\) 6.36991 + 3.19909i 0.438522 + 0.220234i 0.654342 0.756199i \(-0.272946\pi\)
−0.215819 + 0.976433i \(0.569242\pi\)
\(212\) −3.08578 + 10.3072i −0.211932 + 0.707904i
\(213\) 0 0
\(214\) 0.0661317 + 0.0888303i 0.00452067 + 0.00607231i
\(215\) −11.6808 20.2317i −0.796621 1.37979i
\(216\) 0 0
\(217\) 1.64429 2.84799i 0.111621 0.193334i
\(218\) −0.894100 + 0.104505i −0.0605561 + 0.00707799i
\(219\) 0 0
\(220\) 44.7120 10.5969i 3.01448 0.714445i
\(221\) 0.892501 0.587007i 0.0600361 0.0394864i
\(222\) 0 0
\(223\) −10.1902 + 10.8009i −0.682384 + 0.723285i −0.972292 0.233770i \(-0.924894\pi\)
0.289908 + 0.957055i \(0.406375\pi\)
\(224\) 15.6881 + 13.1639i 1.04820 + 0.879548i
\(225\) 0 0
\(226\) 19.3673 16.2511i 1.28829 1.08101i
\(227\) 0.782420 13.4336i 0.0519310 0.891621i −0.867271 0.497836i \(-0.834128\pi\)
0.919202 0.393786i \(-0.128835\pi\)
\(228\) 0 0
\(229\) −1.94638 + 2.61445i −0.128621 + 0.172768i −0.861768 0.507302i \(-0.830643\pi\)
0.733148 + 0.680069i \(0.238050\pi\)
\(230\) 2.93153 + 0.342647i 0.193300 + 0.0225935i
\(231\) 0 0
\(232\) 6.20020 + 4.07794i 0.407063 + 0.267730i
\(233\) 7.77413 + 2.82955i 0.509300 + 0.185370i 0.583872 0.811846i \(-0.301537\pi\)
−0.0745722 + 0.997216i \(0.523759\pi\)
\(234\) 0 0
\(235\) 15.2861 5.56370i 0.997158 0.362936i
\(236\) 20.4950 + 4.85741i 1.33411 + 0.316191i
\(237\) 0 0
\(238\) 0.554928 + 9.52774i 0.0359706 + 0.617592i
\(239\) −8.96426 9.50156i −0.579850 0.614605i 0.369346 0.929292i \(-0.379582\pi\)
−0.949195 + 0.314687i \(0.898100\pi\)
\(240\) 0 0
\(241\) −0.250623 + 0.581008i −0.0161440 + 0.0374260i −0.926097 0.377284i \(-0.876858\pi\)
0.909953 + 0.414711i \(0.136117\pi\)
\(242\) −38.1537 −2.45261
\(243\) 0 0
\(244\) 12.8009 0.819493
\(245\) −2.02546 + 4.69553i −0.129402 + 0.299987i
\(246\) 0 0
\(247\) 2.77396 + 2.94023i 0.176503 + 0.187082i
\(248\) −0.135059 2.31888i −0.00857627 0.147249i
\(249\) 0 0
\(250\) −8.43197 1.99841i −0.533285 0.126391i
\(251\) 12.9984 4.73104i 0.820454 0.298621i 0.102519 0.994731i \(-0.467310\pi\)
0.717935 + 0.696110i \(0.245088\pi\)
\(252\) 0 0
\(253\) −2.24852 0.818396i −0.141364 0.0514521i
\(254\) 24.2234 + 15.9320i 1.51991 + 0.999662i
\(255\) 0 0
\(256\) 7.13340 + 0.833775i 0.445837 + 0.0521109i
\(257\) 15.6489 21.0202i 0.976153 1.31120i 0.0259190 0.999664i \(-0.491749\pi\)
0.950234 0.311537i \(-0.100844\pi\)
\(258\) 0 0
\(259\) 0.636574 10.9296i 0.0395548 0.679130i
\(260\) 4.87652 4.09189i 0.302429 0.253768i
\(261\) 0 0
\(262\) −13.6332 11.4396i −0.842259 0.706739i
\(263\) −0.976219 + 1.03473i −0.0601963 + 0.0638043i −0.756772 0.653679i \(-0.773225\pi\)
0.696576 + 0.717483i \(0.254706\pi\)
\(264\) 0 0
\(265\) 9.00817 5.92477i 0.553367 0.363955i
\(266\) −35.1409 + 8.32855i −2.15463 + 0.510656i
\(267\) 0 0
\(268\) −33.0383 + 3.86163i −2.01814 + 0.235887i
\(269\) −2.73320 + 4.73405i −0.166646 + 0.288640i −0.937239 0.348688i \(-0.886627\pi\)
0.770592 + 0.637328i \(0.219961\pi\)
\(270\) 0 0
\(271\) −15.3667 26.6158i −0.933458 1.61680i −0.777360 0.629056i \(-0.783442\pi\)
−0.156099 0.987741i \(-0.549892\pi\)
\(272\) −1.07488 1.44381i −0.0651740 0.0875439i
\(273\) 0 0
\(274\) −6.57839 + 21.9733i −0.397415 + 1.32746i
\(275\) −17.4357 8.75656i −1.05142 0.528041i
\(276\) 0 0
\(277\) −1.30655 4.36417i −0.0785029 0.262218i 0.909724 0.415213i \(-0.136293\pi\)
−0.988227 + 0.152996i \(0.951108\pi\)
\(278\) 6.73596 38.2015i 0.403996 2.29117i
\(279\) 0 0
\(280\) 3.15617 + 17.8995i 0.188617 + 1.06970i
\(281\) 16.3300 8.20123i 0.974166 0.489244i 0.110811 0.993842i \(-0.464655\pi\)
0.863355 + 0.504597i \(0.168359\pi\)
\(282\) 0 0
\(283\) −9.38158 21.7489i −0.557677 1.29284i −0.930959 0.365123i \(-0.881027\pi\)
0.373282 0.927718i \(-0.378232\pi\)
\(284\) 15.6612 + 36.3066i 0.929319 + 2.15440i
\(285\) 0 0
\(286\) −7.75003 + 3.89221i −0.458269 + 0.230151i
\(287\) −5.24867 29.7667i −0.309819 1.75707i
\(288\) 0 0
\(289\) −2.58547 + 14.6629i −0.152086 + 0.862525i
\(290\) −6.67402 22.2928i −0.391912 1.30908i
\(291\) 0 0
\(292\) −10.4258 5.23603i −0.610123 0.306415i
\(293\) 1.36749 4.56773i 0.0798895 0.266849i −0.908708 0.417433i \(-0.862930\pi\)
0.988597 + 0.150583i \(0.0481152\pi\)
\(294\) 0 0
\(295\) −12.6043 16.9306i −0.733854 0.985736i
\(296\) −3.86647 6.69691i −0.224734 0.389250i
\(297\) 0 0
\(298\) −9.23901 + 16.0024i −0.535202 + 0.926996i
\(299\) −0.329253 + 0.0384842i −0.0190412 + 0.00222560i
\(300\) 0 0
\(301\) −22.8100 + 5.40607i −1.31475 + 0.311601i
\(302\) −32.6815 + 21.4950i −1.88061 + 1.23690i
\(303\) 0 0
\(304\) 4.67413 4.95429i 0.268080 0.284148i
\(305\) −9.82673 8.24560i −0.562677 0.472142i
\(306\) 0 0
\(307\) −8.26674 + 6.93662i −0.471808 + 0.395894i −0.847453 0.530870i \(-0.821865\pi\)
0.375646 + 0.926763i \(0.377421\pi\)
\(308\) 2.68098 46.0307i 0.152763 2.62284i
\(309\) 0 0
\(310\) −4.34951 + 5.84241i −0.247036 + 0.331826i
\(311\) −9.61593 1.12394i −0.545269 0.0637328i −0.161001 0.986954i \(-0.551472\pi\)
−0.384268 + 0.923221i \(0.625546\pi\)
\(312\) 0 0
\(313\) 5.33634 + 3.50977i 0.301628 + 0.198384i 0.691296 0.722571i \(-0.257040\pi\)
−0.389668 + 0.920955i \(0.627410\pi\)
\(314\) −4.50020 1.63794i −0.253961 0.0924343i
\(315\) 0 0
\(316\) −7.85165 + 2.85777i −0.441690 + 0.160762i
\(317\) −20.0555 4.75324i −1.12643 0.266969i −0.375157 0.926961i \(-0.622411\pi\)
−0.751272 + 0.659993i \(0.770559\pi\)
\(318\) 0 0
\(319\) 1.09694 + 18.8338i 0.0614171 + 1.05449i
\(320\) −26.1184 27.6839i −1.46006 1.54758i
\(321\) 0 0
\(322\) 1.17305 2.71943i 0.0653714 0.151548i
\(323\) 7.98763 0.444444
\(324\) 0 0
\(325\) −2.70300 −0.149936
\(326\) −8.34142 + 19.3376i −0.461989 + 1.07101i
\(327\) 0 0
\(328\) −14.6508 15.5290i −0.808957 0.857444i
\(329\) −0.949107 16.2955i −0.0523259 0.898402i
\(330\) 0 0
\(331\) 19.7505 + 4.68095i 1.08558 + 0.257288i 0.734193 0.678941i \(-0.237561\pi\)
0.351391 + 0.936229i \(0.385709\pi\)
\(332\) −0.971828 + 0.353716i −0.0533360 + 0.0194127i
\(333\) 0 0
\(334\) −7.98107 2.90487i −0.436705 0.158948i
\(335\) 27.8497 + 18.3170i 1.52159 + 1.00077i
\(336\) 0 0
\(337\) 3.63159 + 0.424472i 0.197825 + 0.0231225i 0.214428 0.976740i \(-0.431211\pi\)
−0.0166032 + 0.999862i \(0.505285\pi\)
\(338\) 16.5357 22.2113i 0.899422 1.20813i
\(339\) 0 0
\(340\) 0.731411 12.5578i 0.0396663 0.681045i
\(341\) 4.52350 3.79567i 0.244961 0.205547i
\(342\) 0 0
\(343\) −11.9185 10.0008i −0.643537 0.539992i
\(344\) −11.3626 + 12.0436i −0.612628 + 0.649347i
\(345\) 0 0
\(346\) 15.5357 10.2180i 0.835207 0.549324i
\(347\) 28.3703 6.72388i 1.52300 0.360957i 0.617932 0.786232i \(-0.287971\pi\)
0.905064 + 0.425275i \(0.139823\pi\)
\(348\) 0 0
\(349\) −16.8175 + 1.96569i −0.900222 + 0.105221i −0.553599 0.832784i \(-0.686746\pi\)
−0.346623 + 0.938004i \(0.612672\pi\)
\(350\) 12.0746 20.9138i 0.645415 1.11789i
\(351\) 0 0
\(352\) 18.3865 + 31.8464i 0.980005 + 1.69742i
\(353\) −13.5844 18.2471i −0.723027 0.971194i −0.999947 0.0103008i \(-0.996721\pi\)
0.276920 0.960893i \(-0.410686\pi\)
\(354\) 0 0
\(355\) 11.3642 37.9592i 0.603151 2.01466i
\(356\) −14.9365 7.50139i −0.791633 0.397573i
\(357\) 0 0
\(358\) 3.49352 + 11.6692i 0.184638 + 0.616735i
\(359\) −2.65948 + 15.0826i −0.140362 + 0.796032i 0.830613 + 0.556850i \(0.187990\pi\)
−0.970975 + 0.239182i \(0.923121\pi\)
\(360\) 0 0
\(361\) 1.94928 + 11.0549i 0.102593 + 0.581836i
\(362\) −43.5466 + 21.8699i −2.28876 + 1.14946i
\(363\) 0 0
\(364\) −2.53006 5.86533i −0.132611 0.307427i
\(365\) 4.63071 + 10.7352i 0.242382 + 0.561906i
\(366\) 0 0
\(367\) 12.5438 6.29975i 0.654782 0.328844i −0.0902045 0.995923i \(-0.528752\pi\)
0.744987 + 0.667079i \(0.232456\pi\)
\(368\) 0.0969946 + 0.550084i 0.00505619 + 0.0286751i
\(369\) 0 0
\(370\) −4.21068 + 23.8799i −0.218903 + 1.24146i
\(371\) −3.10293 10.3645i −0.161096 0.538099i
\(372\) 0 0
\(373\) −24.3484 12.2282i −1.26071 0.633153i −0.312236 0.950005i \(-0.601078\pi\)
−0.948475 + 0.316852i \(0.897374\pi\)
\(374\) −4.91499 + 16.4172i −0.254148 + 0.848914i
\(375\) 0 0
\(376\) −6.88493 9.24807i −0.355063 0.476933i
\(377\) 1.30680 + 2.26344i 0.0673035 + 0.116573i
\(378\) 0 0
\(379\) −4.29852 + 7.44526i −0.220800 + 0.382437i −0.955051 0.296441i \(-0.904200\pi\)
0.734251 + 0.678878i \(0.237534\pi\)
\(380\) 47.2779 5.52600i 2.42531 0.283478i
\(381\) 0 0
\(382\) 27.5561 6.53093i 1.40989 0.334151i
\(383\) 16.1154 10.5992i 0.823456 0.541596i −0.0664232 0.997792i \(-0.521159\pi\)
0.889879 + 0.456196i \(0.150788\pi\)
\(384\) 0 0
\(385\) −31.7084 + 33.6090i −1.61601 + 1.71287i
\(386\) −34.6167 29.0469i −1.76194 1.47845i
\(387\) 0 0
\(388\) −15.8733 + 13.3193i −0.805844 + 0.676183i
\(389\) 1.81076 31.0895i 0.0918091 1.57630i −0.566826 0.823838i \(-0.691829\pi\)
0.658635 0.752463i \(-0.271134\pi\)
\(390\) 0 0
\(391\) −0.391166 + 0.525427i −0.0197821 + 0.0265720i
\(392\) 3.59991 + 0.420769i 0.181823 + 0.0212520i
\(393\) 0 0
\(394\) −7.45291 4.90185i −0.375472 0.246952i
\(395\) 7.86821 + 2.86379i 0.395893 + 0.144093i
\(396\) 0 0
\(397\) −10.0204 + 3.64712i −0.502908 + 0.183044i −0.581002 0.813902i \(-0.697339\pi\)
0.0780935 + 0.996946i \(0.475117\pi\)
\(398\) −8.31668 1.97109i −0.416878 0.0988018i
\(399\) 0 0
\(400\) 0.264824 + 4.54686i 0.0132412 + 0.227343i
\(401\) 5.55906 + 5.89226i 0.277606 + 0.294246i 0.851142 0.524935i \(-0.175910\pi\)
−0.573536 + 0.819180i \(0.694429\pi\)
\(402\) 0 0
\(403\) 0.324017 0.751157i 0.0161405 0.0374178i
\(404\) 31.1918 1.55185
\(405\) 0 0
\(406\) −23.3504 −1.15886
\(407\) 7.78636 18.0508i 0.385956 0.894745i
\(408\) 0 0
\(409\) 25.7216 + 27.2633i 1.27185 + 1.34808i 0.909312 + 0.416115i \(0.136609\pi\)
0.362539 + 0.931968i \(0.381910\pi\)
\(410\) 3.89254 + 66.8324i 0.192239 + 3.30062i
\(411\) 0 0
\(412\) −50.9712 12.0804i −2.51117 0.595159i
\(413\) −19.9025 + 7.24393i −0.979339 + 0.356450i
\(414\) 0 0
\(415\) 0.973877 + 0.354462i 0.0478058 + 0.0173999i
\(416\) 4.25632 + 2.79943i 0.208683 + 0.137253i
\(417\) 0 0
\(418\) −64.4091 7.52834i −3.15035 0.368223i
\(419\) −7.70081 + 10.3440i −0.376209 + 0.505337i −0.949393 0.314090i \(-0.898301\pi\)
0.573184 + 0.819427i \(0.305708\pi\)
\(420\) 0 0
\(421\) −1.34506 + 23.0938i −0.0655543 + 1.12552i 0.791794 + 0.610788i \(0.209147\pi\)
−0.857349 + 0.514736i \(0.827890\pi\)
\(422\) −12.1357 + 10.1830i −0.590754 + 0.495702i
\(423\) 0 0
\(424\) −5.85394 4.91204i −0.284292 0.238550i
\(425\) −3.66537 + 3.88507i −0.177797 + 0.188453i
\(426\) 0 0
\(427\) −10.7544 + 7.07329i −0.520443 + 0.342300i
\(428\) −0.142518 + 0.0337774i −0.00688887 + 0.00163269i
\(429\) 0 0
\(430\) 51.5691 6.02757i 2.48688 0.290675i
\(431\) 11.3499 19.6586i 0.546706 0.946923i −0.451791 0.892124i \(-0.649215\pi\)
0.998497 0.0547992i \(-0.0174519\pi\)
\(432\) 0 0
\(433\) 9.10550 + 15.7712i 0.437583 + 0.757915i 0.997502 0.0706315i \(-0.0225015\pi\)
−0.559920 + 0.828547i \(0.689168\pi\)
\(434\) 4.36448 + 5.86251i 0.209502 + 0.281409i
\(435\) 0 0
\(436\) 0.341455 1.14054i 0.0163527 0.0546219i
\(437\) −2.21506 1.11244i −0.105961 0.0532154i
\(438\) 0 0
\(439\) −7.88601 26.3411i −0.376379 1.25719i −0.911107 0.412169i \(-0.864771\pi\)
0.534728 0.845024i \(-0.320414\pi\)
\(440\) −5.66727 + 32.1407i −0.270177 + 1.53225i
\(441\) 0 0
\(442\) 0.412263 + 2.33806i 0.0196093 + 0.111210i
\(443\) 10.9576 5.50312i 0.520612 0.261461i −0.169031 0.985611i \(-0.554064\pi\)
0.689643 + 0.724150i \(0.257768\pi\)
\(444\) 0 0
\(445\) 6.63418 + 15.3798i 0.314491 + 0.729071i
\(446\) −13.0714 30.3029i −0.618949 1.43488i
\(447\) 0 0
\(448\) −34.1287 + 17.1401i −1.61243 + 0.809793i
\(449\) −1.20505 6.83416i −0.0568697 0.322524i 0.943080 0.332566i \(-0.107915\pi\)
−0.999950 + 0.0100422i \(0.996803\pi\)
\(450\) 0 0
\(451\) 9.42460 53.4496i 0.443787 2.51684i
\(452\) 9.58995 + 32.0327i 0.451073 + 1.50669i
\(453\) 0 0
\(454\) 26.7253 + 13.4220i 1.25428 + 0.629924i
\(455\) −1.83589 + 6.13230i −0.0860679 + 0.287487i
\(456\) 0 0
\(457\) 17.8340 + 23.9553i 0.834241 + 1.12058i 0.991121 + 0.132962i \(0.0424490\pi\)
−0.156880 + 0.987618i \(0.550144\pi\)
\(458\) −3.62196 6.27342i −0.169243 0.293138i
\(459\) 0 0
\(460\) −1.95177 + 3.38056i −0.0910017 + 0.157620i
\(461\) −0.814896 + 0.0952477i −0.0379535 + 0.00443613i −0.135048 0.990839i \(-0.543119\pi\)
0.0970950 + 0.995275i \(0.469045\pi\)
\(462\) 0 0
\(463\) −27.8479 + 6.60007i −1.29420 + 0.306731i −0.819329 0.573324i \(-0.805654\pi\)
−0.474872 + 0.880055i \(0.657506\pi\)
\(464\) 3.67942 2.41999i 0.170813 0.112345i
\(465\) 0 0
\(466\) −12.6176 + 13.3739i −0.584501 + 0.619535i
\(467\) 9.57011 + 8.03027i 0.442852 + 0.371597i 0.836775 0.547546i \(-0.184438\pi\)
−0.393924 + 0.919143i \(0.628883\pi\)
\(468\) 0 0
\(469\) 25.6227 21.5000i 1.18315 0.992779i
\(470\) −2.10212 + 36.0921i −0.0969638 + 1.66480i
\(471\) 0 0
\(472\) −8.93343 + 11.9997i −0.411194 + 0.552330i
\(473\) −41.8081 4.88666i −1.92234 0.224689i
\(474\) 0 0
\(475\) −16.8863 11.1063i −0.774799 0.509593i
\(476\) −11.8612 4.31712i −0.543656 0.197875i
\(477\) 0 0
\(478\) 27.2809 9.92943i 1.24780 0.454161i
\(479\) 4.41364 + 1.04605i 0.201664 + 0.0477953i 0.330206 0.943909i \(-0.392882\pi\)
−0.128542 + 0.991704i \(0.541030\pi\)
\(480\) 0 0
\(481\) −0.158354 2.71883i −0.00722030 0.123968i
\(482\) −0.965049 1.02289i −0.0439568 0.0465915i
\(483\) 0 0
\(484\) 19.9864 46.3338i 0.908475 2.10608i
\(485\) 20.7648 0.942881
\(486\) 0 0
\(487\) −28.2887 −1.28188 −0.640941 0.767590i \(-0.721456\pi\)
−0.640941 + 0.767590i \(0.721456\pi\)
\(488\) −3.60110 + 8.34829i −0.163014 + 0.377909i
\(489\) 0 0
\(490\) −7.79924 8.26671i −0.352334 0.373452i
\(491\) 1.13872 + 19.5510i 0.0513896 + 0.882325i 0.921236 + 0.389003i \(0.127180\pi\)
−0.869847 + 0.493322i \(0.835782\pi\)
\(492\) 0 0
\(493\) 5.02534 + 1.19103i 0.226330 + 0.0536412i
\(494\) −8.44198 + 3.07263i −0.379823 + 0.138244i
\(495\) 0 0
\(496\) −1.29531 0.471453i −0.0581609 0.0211688i
\(497\) −33.2191 21.8486i −1.49008 0.980042i
\(498\) 0 0
\(499\) 29.3991 + 3.43626i 1.31608 + 0.153828i 0.745000 0.667064i \(-0.232449\pi\)
0.571083 + 0.820892i \(0.306523\pi\)
\(500\) 6.84389 9.19294i 0.306068 0.411121i
\(501\) 0 0
\(502\) −1.78752 + 30.6906i −0.0797810 + 1.36979i
\(503\) −18.2284 + 15.2955i −0.812765 + 0.681991i −0.951266 0.308371i \(-0.900216\pi\)
0.138501 + 0.990362i \(0.455772\pi\)
\(504\) 0 0
\(505\) −23.9447 20.0920i −1.06553 0.894082i
\(506\) 3.64942 3.86816i 0.162237 0.171961i
\(507\) 0 0
\(508\) −32.0370 + 21.0711i −1.42141 + 0.934878i
\(509\) −12.1044 + 2.86880i −0.536519 + 0.127157i −0.489938 0.871757i \(-0.662981\pi\)
−0.0465808 + 0.998915i \(0.514833\pi\)
\(510\) 0 0
\(511\) 11.6523 1.36195i 0.515466 0.0602493i
\(512\) 6.87849 11.9139i 0.303989 0.526525i
\(513\) 0 0
\(514\) 29.1206 + 50.4383i 1.28445 + 2.22474i
\(515\) 31.3471 + 42.1064i 1.38132 + 1.85543i
\(516\) 0 0
\(517\) 8.40624 28.0788i 0.369706 1.23490i
\(518\) 21.7436 + 10.9201i 0.955361 + 0.479800i
\(519\) 0 0
\(520\) 1.29674 + 4.33141i 0.0568658 + 0.189945i
\(521\) −6.26330 + 35.5209i −0.274400 + 1.55620i 0.466461 + 0.884542i \(0.345529\pi\)
−0.740861 + 0.671659i \(0.765582\pi\)
\(522\) 0 0
\(523\) −3.40284 19.2985i −0.148796 0.843864i −0.964241 0.265029i \(-0.914619\pi\)
0.815445 0.578835i \(-0.196493\pi\)
\(524\) 21.0338 10.5636i 0.918867 0.461472i
\(525\) 0 0
\(526\) −1.25224 2.90302i −0.0546003 0.126578i
\(527\) −0.640270 1.48431i −0.0278906 0.0646576i
\(528\) 0 0
\(529\) −20.3719 + 10.2312i −0.885735 + 0.444833i
\(530\) 4.16104 + 23.5984i 0.180744 + 1.02505i
\(531\) 0 0
\(532\) 8.29406 47.0379i 0.359593 2.03935i
\(533\) −2.15646 7.20308i −0.0934067 0.312000i
\(534\) 0 0
\(535\) 0.131163 + 0.0658724i 0.00567066 + 0.00284791i
\(536\) 6.77582 22.6328i 0.292671 0.977588i
\(537\) 0 0
\(538\) −7.25483 9.74492i −0.312778 0.420133i
\(539\) 4.60697 + 7.97951i 0.198436 + 0.343702i
\(540\) 0 0
\(541\) 9.81665 17.0029i 0.422051 0.731013i −0.574089 0.818793i \(-0.694644\pi\)
0.996140 + 0.0877794i \(0.0279771\pi\)
\(542\) 67.8419 7.92959i 2.91406 0.340605i
\(543\) 0 0
\(544\) 9.79539 2.32155i 0.419974 0.0995356i
\(545\) −0.996792 + 0.655600i −0.0426979 + 0.0280828i
\(546\) 0 0
\(547\) 20.9915 22.2497i 0.897533 0.951329i −0.101520 0.994833i \(-0.532371\pi\)
0.999053 + 0.0435043i \(0.0138522\pi\)
\(548\) −23.2384 19.4993i −0.992695 0.832970i
\(549\) 0 0
\(550\) 33.2178 27.8730i 1.41641 1.18851i
\(551\) −1.13631 + 19.5098i −0.0484086 + 0.831144i
\(552\) 0 0
\(553\) 5.01732 6.73942i 0.213358 0.286589i
\(554\) 10.0561 + 1.17539i 0.427243 + 0.0499375i
\(555\) 0 0
\(556\) 42.8633 + 28.1917i 1.81781 + 1.19559i
\(557\) 31.4323 + 11.4404i 1.33183 + 0.484746i 0.907230 0.420636i \(-0.138193\pi\)
0.424599 + 0.905382i \(0.360415\pi\)
\(558\) 0 0
\(559\) −5.47970 + 1.99445i −0.231767 + 0.0843562i
\(560\) 10.4953 + 2.48744i 0.443509 + 0.105113i
\(561\) 0 0
\(562\) 2.36142 + 40.5440i 0.0996105 + 1.71025i
\(563\) −0.144057 0.152692i −0.00607128 0.00643518i 0.724331 0.689453i \(-0.242149\pi\)
−0.730402 + 0.683017i \(0.760667\pi\)
\(564\) 0 0
\(565\) 13.2718 30.7675i 0.558349 1.29440i
\(566\) 52.6415 2.21269
\(567\) 0 0
\(568\) −28.0837 −1.17836
\(569\) −16.2102 + 37.5794i −0.679566 + 1.57541i 0.132066 + 0.991241i \(0.457839\pi\)
−0.811632 + 0.584169i \(0.801420\pi\)
\(570\) 0 0
\(571\) −19.2901 20.4463i −0.807267 0.855653i 0.184616 0.982811i \(-0.440896\pi\)
−0.991882 + 0.127158i \(0.959414\pi\)
\(572\) −0.666918 11.4505i −0.0278852 0.478771i
\(573\) 0 0
\(574\) 65.3653 + 15.4919i 2.72829 + 0.646618i
\(575\) 1.55752 0.566892i 0.0649532 0.0236410i
\(576\) 0 0
\(577\) −12.8095 4.66227i −0.533266 0.194093i 0.0613301 0.998118i \(-0.480466\pi\)
−0.594596 + 0.804025i \(0.702688\pi\)
\(578\) −27.6468 18.1836i −1.14995 0.756336i
\(579\) 0 0
\(580\) 30.5685 + 3.57294i 1.26929 + 0.148358i
\(581\) 0.621012 0.834164i 0.0257639 0.0346069i
\(582\) 0 0
\(583\) 1.12957 19.3940i 0.0467820 0.803216i
\(584\) 6.34770 5.32636i 0.262670 0.220406i
\(585\) 0 0
\(586\) 8.11761 + 6.81149i 0.335336 + 0.281380i
\(587\) −19.2852 + 20.4412i −0.795987 + 0.843697i −0.990544 0.137194i \(-0.956192\pi\)
0.194557 + 0.980891i \(0.437673\pi\)
\(588\) 0 0
\(589\) 5.11064 3.36132i 0.210580 0.138501i
\(590\) 45.6456 10.8182i 1.87920 0.445378i
\(591\) 0 0
\(592\) −4.55796 + 0.532749i −0.187331 + 0.0218959i
\(593\) −2.12487 + 3.68039i −0.0872581 + 0.151135i −0.906351 0.422525i \(-0.861144\pi\)
0.819093 + 0.573661i \(0.194477\pi\)
\(594\) 0 0
\(595\) 6.32451 + 10.9544i 0.259280 + 0.449086i
\(596\) −14.5936 19.6026i −0.597777 0.802953i
\(597\) 0 0
\(598\) 0.211298 0.705785i 0.00864063 0.0288617i
\(599\) 18.9670 + 9.52557i 0.774970 + 0.389204i 0.791899 0.610652i \(-0.209093\pi\)
−0.0169292 + 0.999857i \(0.505389\pi\)
\(600\) 0 0
\(601\) 11.1975 + 37.4023i 0.456757 + 1.52567i 0.807882 + 0.589345i \(0.200614\pi\)
−0.351125 + 0.936329i \(0.614201\pi\)
\(602\) 9.04687 51.3073i 0.368723 2.09113i
\(603\) 0 0
\(604\) −8.98358 50.9484i −0.365537 2.07306i
\(605\) −45.1884 + 22.6945i −1.83717 + 0.922661i
\(606\) 0 0
\(607\) 17.7038 + 41.0420i 0.718574 + 1.66584i 0.745762 + 0.666212i \(0.232086\pi\)
−0.0271878 + 0.999630i \(0.508655\pi\)
\(608\) 15.0878 + 34.9775i 0.611892 + 1.41852i
\(609\) 0 0
\(610\) 25.4770 12.7951i 1.03154 0.518057i
\(611\) −0.705103 3.99884i −0.0285254 0.161776i
\(612\) 0 0
\(613\) −7.96425 + 45.1675i −0.321673 + 1.82430i 0.210418 + 0.977611i \(0.432517\pi\)
−0.532091 + 0.846687i \(0.678594\pi\)
\(614\) −6.87859 22.9761i −0.277597 0.927239i
\(615\) 0 0
\(616\) 29.2654 + 14.6976i 1.17914 + 0.592185i
\(617\) 6.22717 20.8002i 0.250696 0.837384i −0.736302 0.676653i \(-0.763430\pi\)
0.986998 0.160731i \(-0.0513851\pi\)
\(618\) 0 0
\(619\) −17.5933 23.6319i −0.707135 0.949848i 0.292845 0.956160i \(-0.405398\pi\)
−0.999980 + 0.00631239i \(0.997991\pi\)
\(620\) −4.81657 8.34254i −0.193438 0.335044i
\(621\) 0 0
\(622\) 10.7583 18.6339i 0.431368 0.747151i
\(623\) 16.6936 1.95120i 0.668815 0.0781733i
\(624\) 0 0
\(625\) −29.0613 + 6.88765i −1.16245 + 0.275506i
\(626\) −11.8598 + 7.80034i −0.474015 + 0.311764i
\(627\) 0 0
\(628\) 4.34650 4.60703i 0.173444 0.183840i
\(629\) −4.12254 3.45922i −0.164376 0.137928i
\(630\) 0 0
\(631\) −23.1628 + 19.4359i −0.922098 + 0.773732i −0.974382 0.224900i \(-0.927794\pi\)
0.0522840 + 0.998632i \(0.483350\pi\)
\(632\) 0.345063 5.92451i 0.0137259 0.235664i
\(633\) 0 0
\(634\) 27.3543 36.7432i 1.08638 1.45926i
\(635\) 38.1663 + 4.46100i 1.51458 + 0.177030i
\(636\) 0 0
\(637\) 1.06647 + 0.701431i 0.0422553 + 0.0277917i
\(638\) −39.3998 14.3404i −1.55985 0.567741i
\(639\) 0 0
\(640\) 41.1293 14.9699i 1.62578 0.591735i
\(641\) −0.595982 0.141250i −0.0235399 0.00557905i 0.218829 0.975763i \(-0.429776\pi\)
−0.242369 + 0.970184i \(0.577924\pi\)
\(642\) 0 0
\(643\) −1.08540 18.6357i −0.0428042 0.734919i −0.949622 0.313397i \(-0.898533\pi\)
0.906818 0.421522i \(-0.138504\pi\)
\(644\) 2.68799 + 2.84910i 0.105922 + 0.112270i
\(645\) 0 0
\(646\) −7.03130 + 16.3004i −0.276643 + 0.641330i
\(647\) −44.8197 −1.76204 −0.881022 0.473075i \(-0.843144\pi\)
−0.881022 + 0.473075i \(0.843144\pi\)
\(648\) 0 0
\(649\) −38.0309 −1.49284
\(650\) 2.37938 5.51603i 0.0933270 0.216356i
\(651\) 0 0
\(652\) −19.1140 20.2596i −0.748561 0.793429i
\(653\) −2.87763 49.4069i −0.112610 1.93344i −0.305443 0.952210i \(-0.598805\pi\)
0.192833 0.981232i \(-0.438233\pi\)
\(654\) 0 0
\(655\) −22.9513 5.43955i −0.896781 0.212541i
\(656\) −11.9054 + 4.33321i −0.464828 + 0.169183i
\(657\) 0 0
\(658\) 34.0898 + 12.4077i 1.32896 + 0.483702i
\(659\) −9.50779 6.25337i −0.370371 0.243597i 0.350655 0.936505i \(-0.385959\pi\)
−0.721026 + 0.692908i \(0.756329\pi\)
\(660\) 0 0
\(661\) −2.62498 0.306816i −0.102100 0.0119337i 0.0648896 0.997892i \(-0.479330\pi\)
−0.166989 + 0.985959i \(0.553405\pi\)
\(662\) −26.9382 + 36.1843i −1.04698 + 1.40634i
\(663\) 0 0
\(664\) 0.0427098 0.733298i 0.00165746 0.0284575i
\(665\) −36.6662 + 30.7666i −1.42185 + 1.19308i
\(666\) 0 0
\(667\) −1.22771 1.03017i −0.0475370 0.0398883i
\(668\) 7.70849 8.17052i 0.298250 0.316127i
\(669\) 0 0
\(670\) −61.8949 + 40.7089i −2.39121 + 1.57272i
\(671\) −22.4902 + 5.33027i −0.868224 + 0.205773i
\(672\) 0 0
\(673\) 2.32816 0.272123i 0.0897442 0.0104896i −0.0711023 0.997469i \(-0.522652\pi\)
0.160846 + 0.986979i \(0.448578\pi\)
\(674\) −4.06301 + 7.03734i −0.156501 + 0.271068i
\(675\) 0 0
\(676\) 18.3113 + 31.7161i 0.704281 + 1.21985i
\(677\) 5.57808 + 7.49266i 0.214383 + 0.287966i 0.896286 0.443476i \(-0.146255\pi\)
−0.681903 + 0.731442i \(0.738847\pi\)
\(678\) 0 0
\(679\) 5.97590 19.9609i 0.229334 0.766029i
\(680\) 7.98403 + 4.00973i 0.306174 + 0.153766i
\(681\) 0 0
\(682\) 3.76392 + 12.5724i 0.144128 + 0.481420i
\(683\) −5.08900 + 28.8612i −0.194725 + 1.10434i 0.718084 + 0.695956i \(0.245019\pi\)
−0.912809 + 0.408386i \(0.866092\pi\)
\(684\) 0 0
\(685\) 5.27883 + 29.9377i 0.201694 + 1.14386i
\(686\) 30.9002 15.5187i 1.17977 0.592505i
\(687\) 0 0
\(688\) 3.89184 + 9.02229i 0.148375 + 0.343972i
\(689\) −1.06598 2.47122i −0.0406106 0.0941460i
\(690\) 0 0
\(691\) −12.1669 + 6.11043i −0.462849 + 0.232452i −0.664913 0.746921i \(-0.731531\pi\)
0.202064 + 0.979372i \(0.435235\pi\)
\(692\) 4.27050 + 24.2192i 0.162340 + 0.920677i
\(693\) 0 0
\(694\) −11.2522 + 63.8142i −0.427126 + 2.42235i
\(695\) −14.7450 49.2518i −0.559310 1.86823i
\(696\) 0 0
\(697\) −13.2773 6.66813i −0.502915 0.252573i
\(698\) 10.7926 36.0500i 0.408508 1.36451i
\(699\) 0 0
\(700\) 19.0726 + 25.6189i 0.720876 + 0.968304i
\(701\) 20.8102 + 36.0443i 0.785989 + 1.36137i 0.928407 + 0.371566i \(0.121179\pi\)
−0.142418 + 0.989807i \(0.545488\pi\)
\(702\) 0 0
\(703\) 10.1821 17.6358i 0.384024 0.665149i
\(704\) −68.1127 + 7.96124i −2.56709 + 0.300050i
\(705\) 0 0
\(706\) 49.1949 11.6594i 1.85147 0.438808i
\(707\) −26.2052 + 17.2354i −0.985548 + 0.648205i
\(708\) 0 0
\(709\) 7.92161 8.39642i 0.297502 0.315334i −0.561329 0.827593i \(-0.689710\pi\)
0.858831 + 0.512259i \(0.171191\pi\)
\(710\) 67.4598 + 56.6055i 2.53172 + 2.12437i
\(711\) 0 0
\(712\) 9.09403 7.63080i 0.340813 0.285976i
\(713\) −0.0291675 + 0.500787i −0.00109233 + 0.0187546i
\(714\) 0 0
\(715\) −6.86382 + 9.21971i −0.256692 + 0.344798i
\(716\) −16.0011 1.87026i −0.597989 0.0698949i
\(717\) 0 0
\(718\) −28.4382 18.7041i −1.06130 0.698030i
\(719\) 29.9388 + 10.8968i 1.11653 + 0.406383i 0.833384 0.552695i \(-0.186401\pi\)
0.283143 + 0.959078i \(0.408623\pi\)
\(720\) 0 0
\(721\) 49.4976 18.0157i 1.84339 0.670939i
\(722\) −24.2757 5.75344i −0.903446 0.214121i
\(723\) 0 0
\(724\) −3.74734 64.3393i −0.139269 2.39115i
\(725\) −8.96783 9.50535i −0.333057 0.353020i
\(726\) 0 0
\(727\) −11.9587 + 27.7234i −0.443524 + 1.02821i 0.539040 + 0.842280i \(0.318787\pi\)
−0.982564 + 0.185925i \(0.940472\pi\)
\(728\) 4.53691 0.168149
\(729\) 0 0
\(730\) −25.9836 −0.961698
\(731\) −4.56403 + 10.5806i −0.168807 + 0.391338i
\(732\) 0 0
\(733\) 10.9774 + 11.6353i 0.405458 + 0.429760i 0.897638 0.440733i \(-0.145281\pi\)
−0.492180 + 0.870493i \(0.663800\pi\)
\(734\) 1.81392 + 31.1437i 0.0669529 + 1.14954i
\(735\) 0 0
\(736\) −3.03969 0.720421i −0.112045 0.0265551i
\(737\) 56.4379 20.5417i 2.07892 0.756664i
\(738\) 0 0
\(739\) 13.9238 + 5.06784i 0.512194 + 0.186423i 0.585171 0.810910i \(-0.301028\pi\)
−0.0729763 + 0.997334i \(0.523250\pi\)
\(740\) −26.7941 17.6227i −0.984969 0.647824i
\(741\) 0 0
\(742\) 23.8823 + 2.79144i 0.876748 + 0.102477i
\(743\) −0.620612 + 0.833627i −0.0227681 + 0.0305828i −0.813361 0.581759i \(-0.802365\pi\)
0.790593 + 0.612341i \(0.209772\pi\)
\(744\) 0 0
\(745\) −1.42396 + 24.4485i −0.0521699 + 0.895723i
\(746\) 46.3874 38.9236i 1.69836 1.42510i
\(747\) 0 0
\(748\) −17.3624 14.5688i −0.634832 0.532688i
\(749\) 0.101070 0.107127i 0.00369300 0.00391435i
\(750\) 0 0
\(751\) 27.5815 18.1407i 1.00647 0.661962i 0.0645851 0.997912i \(-0.479428\pi\)
0.941880 + 0.335950i \(0.109057\pi\)
\(752\) −6.65757 + 1.57787i −0.242777 + 0.0575391i
\(753\) 0 0
\(754\) −5.76935 + 0.674340i −0.210107 + 0.0245580i
\(755\) −25.9217 + 44.8978i −0.943389 + 1.63400i
\(756\) 0 0
\(757\) 16.5939 + 28.7414i 0.603114 + 1.04462i 0.992346 + 0.123485i \(0.0394070\pi\)
−0.389232 + 0.921140i \(0.627260\pi\)
\(758\) −11.4097 15.3259i −0.414419 0.556661i
\(759\) 0 0
\(760\) −9.69621 + 32.3876i −0.351718 + 1.17482i
\(761\) 33.3883 + 16.7682i 1.21032 + 0.607847i 0.935391 0.353616i \(-0.115048\pi\)
0.274933 + 0.961463i \(0.411344\pi\)
\(762\) 0 0
\(763\) 0.343352 + 1.14688i 0.0124302 + 0.0415197i
\(764\) −6.50388 + 36.8853i −0.235302 + 1.33446i
\(765\) 0 0
\(766\) 7.44398 + 42.2169i 0.268962 + 1.52536i
\(767\) −4.70826 + 2.36457i −0.170005 + 0.0853798i
\(768\) 0 0
\(769\) −16.9380 39.2666i −0.610798 1.41599i −0.890091 0.455784i \(-0.849359\pi\)
0.279292 0.960206i \(-0.409900\pi\)
\(770\) −40.6739 94.2927i −1.46578 3.39807i
\(771\) 0 0
\(772\) 53.4081 26.8226i 1.92220 0.965366i
\(773\) −4.28338 24.2923i −0.154062 0.873732i −0.959638 0.281239i \(-0.909255\pi\)
0.805575 0.592493i \(-0.201856\pi\)
\(774\) 0 0
\(775\) −0.710278 + 4.02818i −0.0255139 + 0.144697i
\(776\) −4.22094 14.0989i −0.151523 0.506122i
\(777\) 0 0
\(778\) 61.8505 + 31.0625i 2.21745 + 1.11364i
\(779\) 16.1247 53.8601i 0.577726 1.92974i
\(780\) 0 0
\(781\) −42.6335 57.2668i −1.52555 2.04917i
\(782\) −0.727908