Properties

Label 729.2.g.c.55.1
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.1
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.c.676.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.964822 + 2.23671i) q^{2} +(-2.69950 - 2.86130i) q^{4} +(-0.171598 - 2.94623i) q^{5} +(2.22815 + 0.528081i) q^{7} +(4.42639 - 1.61107i) q^{8} +O(q^{10})\) \(q+(-0.964822 + 2.23671i) q^{2} +(-2.69950 - 2.86130i) q^{4} +(-0.171598 - 2.94623i) q^{5} +(2.22815 + 0.528081i) q^{7} +(4.42639 - 1.61107i) q^{8} +(6.75541 + 2.45877i) q^{10} +(-1.97872 - 1.30142i) q^{11} +(-0.609623 - 0.0712547i) q^{13} +(-3.33093 + 4.47422i) q^{14} +(-0.209720 + 3.60075i) q^{16} +(-5.54151 + 4.64988i) q^{17} +(-3.45309 - 2.89749i) q^{19} +(-7.96681 + 8.44433i) q^{20} +(4.82002 - 3.17018i) q^{22} +(-7.28714 + 1.72708i) q^{23} +(-3.68461 + 0.430669i) q^{25} +(0.747554 - 1.29480i) q^{26} +(-4.50389 - 7.80096i) q^{28} +(-1.29693 - 1.74208i) q^{29} +(-0.890466 + 2.97436i) q^{31} +(0.567355 + 0.284936i) q^{32} +(-5.05386 - 16.8811i) q^{34} +(1.17350 - 6.65525i) q^{35} +(0.740274 + 4.19830i) q^{37} +(9.81244 - 4.92800i) q^{38} +(-5.50614 - 12.7647i) q^{40} +(-2.55020 - 5.91203i) q^{41} +(-3.63470 + 1.82541i) q^{43} +(1.61778 + 9.17491i) q^{44} +(3.16781 - 17.9655i) q^{46} +(0.248155 + 0.828895i) q^{47} +(-1.56965 - 0.788307i) q^{49} +(2.59171 - 8.65691i) q^{50} +(1.44180 + 1.93667i) q^{52} +(-1.55323 - 2.69028i) q^{53} +(-3.49475 + 6.05308i) q^{55} +(10.7134 - 1.25222i) q^{56} +(5.14783 - 1.22006i) q^{58} +(-0.512703 + 0.337210i) q^{59} +(3.75166 - 3.97653i) q^{61} +(-5.79364 - 4.86144i) q^{62} +(-6.71074 + 5.63098i) q^{64} +(-0.105322 + 1.80831i) q^{65} +(0.168582 - 0.226445i) q^{67} +(28.2640 + 3.30359i) q^{68} +(13.7536 + 9.04591i) q^{70} +(7.71930 + 2.80960i) q^{71} +(-14.3245 + 5.21369i) q^{73} +(-10.1046 - 2.39484i) q^{74} +(1.03103 + 17.7021i) q^{76} +(-3.72163 - 3.94469i) q^{77} +(2.95265 - 6.84501i) q^{79} +10.6446 q^{80} +15.6840 q^{82} +(-2.16942 + 5.02929i) q^{83} +(14.6505 + 15.5286i) q^{85} +(-0.576083 - 9.89096i) q^{86} +(-10.8553 - 2.57274i) q^{88} +(8.64084 - 3.14501i) q^{89} +(-1.32070 - 0.480697i) q^{91} +(24.6133 + 16.1885i) q^{92} +(-2.09342 - 0.244686i) q^{94} +(-7.94410 + 10.6708i) q^{95} +(0.0995190 - 1.70867i) q^{97} +(3.27764 - 2.75027i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.964822 + 2.23671i −0.682232 + 1.58159i 0.125535 + 0.992089i \(0.459935\pi\)
−0.807767 + 0.589502i \(0.799324\pi\)
\(3\) 0 0
\(4\) −2.69950 2.86130i −1.34975 1.43065i
\(5\) −0.171598 2.94623i −0.0767410 1.31759i −0.788442 0.615109i \(-0.789112\pi\)
0.711701 0.702483i \(-0.247925\pi\)
\(6\) 0 0
\(7\) 2.22815 + 0.528081i 0.842161 + 0.199596i 0.628985 0.777418i \(-0.283471\pi\)
0.213177 + 0.977014i \(0.431619\pi\)
\(8\) 4.42639 1.61107i 1.56496 0.569600i
\(9\) 0 0
\(10\) 6.75541 + 2.45877i 2.13625 + 0.777531i
\(11\) −1.97872 1.30142i −0.596606 0.392394i 0.214987 0.976617i \(-0.431029\pi\)
−0.811593 + 0.584223i \(0.801399\pi\)
\(12\) 0 0
\(13\) −0.609623 0.0712547i −0.169079 0.0197625i 0.0311321 0.999515i \(-0.490089\pi\)
−0.200211 + 0.979753i \(0.564163\pi\)
\(14\) −3.33093 + 4.47422i −0.890229 + 1.19578i
\(15\) 0 0
\(16\) −0.209720 + 3.60075i −0.0524300 + 0.900188i
\(17\) −5.54151 + 4.64988i −1.34401 + 1.12776i −0.363439 + 0.931618i \(0.618398\pi\)
−0.980575 + 0.196144i \(0.937158\pi\)
\(18\) 0 0
\(19\) −3.45309 2.89749i −0.792193 0.664729i 0.154094 0.988056i \(-0.450754\pi\)
−0.946287 + 0.323327i \(0.895199\pi\)
\(20\) −7.96681 + 8.44433i −1.78143 + 1.88821i
\(21\) 0 0
\(22\) 4.82002 3.17018i 1.02763 0.675884i
\(23\) −7.28714 + 1.72708i −1.51947 + 0.360122i −0.903826 0.427899i \(-0.859254\pi\)
−0.615648 + 0.788021i \(0.711106\pi\)
\(24\) 0 0
\(25\) −3.68461 + 0.430669i −0.736922 + 0.0861338i
\(26\) 0.747554 1.29480i 0.146607 0.253931i
\(27\) 0 0
\(28\) −4.50389 7.80096i −0.851155 1.47424i
\(29\) −1.29693 1.74208i −0.240834 0.323496i 0.665229 0.746640i \(-0.268334\pi\)
−0.906063 + 0.423143i \(0.860927\pi\)
\(30\) 0 0
\(31\) −0.890466 + 2.97436i −0.159932 + 0.534212i −0.999965 0.00832388i \(-0.997350\pi\)
0.840033 + 0.542535i \(0.182536\pi\)
\(32\) 0.567355 + 0.284936i 0.100295 + 0.0503701i
\(33\) 0 0
\(34\) −5.05386 16.8811i −0.866729 2.89508i
\(35\) 1.17350 6.65525i 0.198358 1.12494i
\(36\) 0 0
\(37\) 0.740274 + 4.19830i 0.121700 + 0.690197i 0.983213 + 0.182461i \(0.0584063\pi\)
−0.861513 + 0.507736i \(0.830483\pi\)
\(38\) 9.81244 4.92800i 1.59179 0.799426i
\(39\) 0 0
\(40\) −5.50614 12.7647i −0.870598 2.01827i
\(41\) −2.55020 5.91203i −0.398275 0.923305i −0.992861 0.119273i \(-0.961944\pi\)
0.594587 0.804031i \(-0.297316\pi\)
\(42\) 0 0
\(43\) −3.63470 + 1.82541i −0.554286 + 0.278373i −0.703814 0.710385i \(-0.748521\pi\)
0.149527 + 0.988758i \(0.452225\pi\)
\(44\) 1.61778 + 9.17491i 0.243890 + 1.38317i
\(45\) 0 0
\(46\) 3.16781 17.9655i 0.467068 2.64887i
\(47\) 0.248155 + 0.828895i 0.0361971 + 0.120907i 0.974179 0.225778i \(-0.0724925\pi\)
−0.937982 + 0.346685i \(0.887307\pi\)
\(48\) 0 0
\(49\) −1.56965 0.788307i −0.224235 0.112615i
\(50\) 2.59171 8.65691i 0.366523 1.22427i
\(51\) 0 0
\(52\) 1.44180 + 1.93667i 0.199941 + 0.268568i
\(53\) −1.55323 2.69028i −0.213353 0.369538i 0.739409 0.673257i \(-0.235105\pi\)
−0.952762 + 0.303718i \(0.901772\pi\)
\(54\) 0 0
\(55\) −3.49475 + 6.05308i −0.471231 + 0.816197i
\(56\) 10.7134 1.25222i 1.43164 0.167335i
\(57\) 0 0
\(58\) 5.14783 1.22006i 0.675943 0.160202i
\(59\) −0.512703 + 0.337210i −0.0667483 + 0.0439010i −0.582445 0.812870i \(-0.697904\pi\)
0.515696 + 0.856771i \(0.327533\pi\)
\(60\) 0 0
\(61\) 3.75166 3.97653i 0.480351 0.509142i −0.441195 0.897411i \(-0.645445\pi\)
0.921546 + 0.388269i \(0.126927\pi\)
\(62\) −5.79364 4.86144i −0.735793 0.617404i
\(63\) 0 0
\(64\) −6.71074 + 5.63098i −0.838842 + 0.703872i
\(65\) −0.105322 + 1.80831i −0.0130636 + 0.224294i
\(66\) 0 0
\(67\) 0.168582 0.226445i 0.0205956 0.0276647i −0.791706 0.610902i \(-0.790807\pi\)
0.812302 + 0.583237i \(0.198214\pi\)
\(68\) 28.2640 + 3.30359i 3.42752 + 0.400619i
\(69\) 0 0
\(70\) 13.7536 + 9.04591i 1.64387 + 1.08119i
\(71\) 7.71930 + 2.80960i 0.916113 + 0.333438i 0.756691 0.653773i \(-0.226815\pi\)
0.159422 + 0.987211i \(0.449037\pi\)
\(72\) 0 0
\(73\) −14.3245 + 5.21369i −1.67656 + 0.610216i −0.992831 0.119525i \(-0.961863\pi\)
−0.683724 + 0.729741i \(0.739641\pi\)
\(74\) −10.1046 2.39484i −1.17464 0.278394i
\(75\) 0 0
\(76\) 1.03103 + 17.7021i 0.118267 + 2.03057i
\(77\) −3.72163 3.94469i −0.424119 0.449539i
\(78\) 0 0
\(79\) 2.95265 6.84501i 0.332199 0.770123i −0.667476 0.744631i \(-0.732625\pi\)
0.999675 0.0254922i \(-0.00811529\pi\)
\(80\) 10.6446 1.19010
\(81\) 0 0
\(82\) 15.6840 1.73201
\(83\) −2.16942 + 5.02929i −0.238125 + 0.552036i −0.994811 0.101743i \(-0.967558\pi\)
0.756686 + 0.653779i \(0.226817\pi\)
\(84\) 0 0
\(85\) 14.6505 + 15.5286i 1.58907 + 1.68432i
\(86\) −0.576083 9.89096i −0.0621206 1.06657i
\(87\) 0 0
\(88\) −10.8553 2.57274i −1.15717 0.274255i
\(89\) 8.64084 3.14501i 0.915927 0.333370i 0.159310 0.987229i \(-0.449073\pi\)
0.756617 + 0.653858i \(0.226851\pi\)
\(90\) 0 0
\(91\) −1.32070 0.480697i −0.138447 0.0503907i
\(92\) 24.6133 + 16.1885i 2.56612 + 1.68776i
\(93\) 0 0
\(94\) −2.09342 0.244686i −0.215920 0.0252374i
\(95\) −7.94410 + 10.6708i −0.815048 + 1.09480i
\(96\) 0 0
\(97\) 0.0995190 1.70867i 0.0101046 0.173490i −0.989480 0.144670i \(-0.953788\pi\)
0.999585 0.0288199i \(-0.00917493\pi\)
\(98\) 3.27764 2.75027i 0.331092 0.277819i
\(99\) 0 0
\(100\) 11.1789 + 9.38019i 1.11789 + 0.938019i
\(101\) 5.81634 6.16496i 0.578747 0.613436i −0.370169 0.928964i \(-0.620700\pi\)
0.948916 + 0.315528i \(0.102182\pi\)
\(102\) 0 0
\(103\) 1.51566 0.996863i 0.149342 0.0982238i −0.472639 0.881256i \(-0.656698\pi\)
0.621981 + 0.783032i \(0.286328\pi\)
\(104\) −2.81322 + 0.666746i −0.275859 + 0.0653798i
\(105\) 0 0
\(106\) 7.51596 0.878490i 0.730015 0.0853265i
\(107\) 2.26668 3.92601i 0.219129 0.379542i −0.735413 0.677619i \(-0.763012\pi\)
0.954542 + 0.298077i \(0.0963452\pi\)
\(108\) 0 0
\(109\) −6.62630 11.4771i −0.634684 1.09931i −0.986582 0.163267i \(-0.947797\pi\)
0.351898 0.936039i \(-0.385537\pi\)
\(110\) −10.1672 13.6569i −0.969401 1.30213i
\(111\) 0 0
\(112\) −2.36878 + 7.91226i −0.223828 + 0.747639i
\(113\) −3.83584 1.92643i −0.360845 0.181223i 0.259134 0.965841i \(-0.416563\pi\)
−0.619979 + 0.784618i \(0.712859\pi\)
\(114\) 0 0
\(115\) 6.33884 + 21.1732i 0.591100 + 1.97441i
\(116\) −1.48355 + 8.41365i −0.137745 + 0.781188i
\(117\) 0 0
\(118\) −0.259574 1.47211i −0.0238957 0.135519i
\(119\) −14.8028 + 7.43426i −1.35697 + 0.681498i
\(120\) 0 0
\(121\) −2.13525 4.95007i −0.194114 0.450006i
\(122\) 5.27465 + 12.2280i 0.477544 + 1.10707i
\(123\) 0 0
\(124\) 10.9144 5.48140i 0.980139 0.492244i
\(125\) −0.661249 3.75013i −0.0591439 0.335422i
\(126\) 0 0
\(127\) −1.02230 + 5.79777i −0.0907147 + 0.514469i 0.905262 + 0.424854i \(0.139675\pi\)
−0.995977 + 0.0896144i \(0.971437\pi\)
\(128\) −5.75601 19.2264i −0.508764 1.69939i
\(129\) 0 0
\(130\) −3.94305 1.98028i −0.345829 0.173682i
\(131\) 3.74549 12.5108i 0.327245 1.09307i −0.623169 0.782087i \(-0.714155\pi\)
0.950414 0.310987i \(-0.100660\pi\)
\(132\) 0 0
\(133\) −6.16389 8.27954i −0.534477 0.717927i
\(134\) 0.343840 + 0.595549i 0.0297033 + 0.0514476i
\(135\) 0 0
\(136\) −17.0376 + 29.5099i −1.46096 + 2.53046i
\(137\) −4.49660 + 0.525577i −0.384170 + 0.0449030i −0.305986 0.952036i \(-0.598986\pi\)
−0.0781838 + 0.996939i \(0.524912\pi\)
\(138\) 0 0
\(139\) −4.66352 + 1.10527i −0.395555 + 0.0937482i −0.423579 0.905859i \(-0.639226\pi\)
0.0280246 + 0.999607i \(0.491078\pi\)
\(140\) −22.2105 + 14.6081i −1.87713 + 1.23461i
\(141\) 0 0
\(142\) −13.7320 + 14.5551i −1.15236 + 1.22143i
\(143\) 1.11354 + 0.934372i 0.0931189 + 0.0781361i
\(144\) 0 0
\(145\) −4.91001 + 4.11999i −0.407754 + 0.342146i
\(146\) 2.15908 37.0700i 0.178687 3.06793i
\(147\) 0 0
\(148\) 10.0142 13.4515i 0.823166 1.10570i
\(149\) 9.74923 + 1.13952i 0.798688 + 0.0933532i 0.505640 0.862745i \(-0.331256\pi\)
0.293048 + 0.956098i \(0.405331\pi\)
\(150\) 0 0
\(151\) −11.1565 7.33774i −0.907902 0.597137i 0.00736985 0.999973i \(-0.497654\pi\)
−0.915272 + 0.402836i \(0.868024\pi\)
\(152\) −19.9528 7.26221i −1.61838 0.589043i
\(153\) 0 0
\(154\) 12.4138 4.51826i 1.00033 0.364092i
\(155\) 8.91595 + 2.11312i 0.716146 + 0.169730i
\(156\) 0 0
\(157\) 0.174383 + 2.99403i 0.0139172 + 0.238950i 0.998092 + 0.0617480i \(0.0196675\pi\)
−0.984175 + 0.177202i \(0.943295\pi\)
\(158\) 12.4615 + 13.2084i 0.991384 + 1.05081i
\(159\) 0 0
\(160\) 0.742130 1.72045i 0.0586705 0.136014i
\(161\) −17.1489 −1.35152
\(162\) 0 0
\(163\) 17.7302 1.38874 0.694370 0.719618i \(-0.255683\pi\)
0.694370 + 0.719618i \(0.255683\pi\)
\(164\) −10.0318 + 23.2564i −0.783355 + 1.81602i
\(165\) 0 0
\(166\) −9.15595 9.70474i −0.710639 0.753234i
\(167\) 1.27868 + 21.9542i 0.0989476 + 1.69886i 0.573958 + 0.818885i \(0.305407\pi\)
−0.475011 + 0.879980i \(0.657556\pi\)
\(168\) 0 0
\(169\) −12.2830 2.91113i −0.944848 0.223933i
\(170\) −48.8682 + 17.7866i −3.74802 + 1.36417i
\(171\) 0 0
\(172\) 15.0349 + 5.47227i 1.14640 + 0.417256i
\(173\) −9.04414 5.94843i −0.687614 0.452251i 0.157020 0.987595i \(-0.449811\pi\)
−0.844634 + 0.535345i \(0.820182\pi\)
\(174\) 0 0
\(175\) −8.43729 0.986177i −0.637799 0.0745480i
\(176\) 5.10108 6.85194i 0.384509 0.516485i
\(177\) 0 0
\(178\) −1.30240 + 22.3614i −0.0976193 + 1.67606i
\(179\) −6.84973 + 5.74761i −0.511973 + 0.429596i −0.861823 0.507210i \(-0.830677\pi\)
0.349850 + 0.936806i \(0.386233\pi\)
\(180\) 0 0
\(181\) 3.31310 + 2.78002i 0.246261 + 0.206637i 0.757560 0.652765i \(-0.226391\pi\)
−0.511299 + 0.859403i \(0.670836\pi\)
\(182\) 2.34942 2.49024i 0.174151 0.184589i
\(183\) 0 0
\(184\) −29.4732 + 19.3849i −2.17280 + 1.42907i
\(185\) 12.2421 2.90144i 0.900059 0.213318i
\(186\) 0 0
\(187\) 17.0166 1.98895i 1.24437 0.145447i
\(188\) 1.70182 2.94765i 0.124118 0.214979i
\(189\) 0 0
\(190\) −16.2028 28.0640i −1.17547 2.03598i
\(191\) 12.6673 + 17.0151i 0.916570 + 1.23117i 0.972540 + 0.232735i \(0.0747675\pi\)
−0.0559700 + 0.998432i \(0.517825\pi\)
\(192\) 0 0
\(193\) 5.20688 17.3922i 0.374799 1.25192i −0.537804 0.843070i \(-0.680746\pi\)
0.912603 0.408847i \(-0.134069\pi\)
\(194\) 3.72579 + 1.87116i 0.267496 + 0.134342i
\(195\) 0 0
\(196\) 1.98168 + 6.61927i 0.141548 + 0.472805i
\(197\) 1.23957 7.02994i 0.0883155 0.500862i −0.908276 0.418371i \(-0.862601\pi\)
0.996592 0.0824914i \(-0.0262877\pi\)
\(198\) 0 0
\(199\) −0.634860 3.60047i −0.0450040 0.255231i 0.954002 0.299799i \(-0.0969197\pi\)
−0.999006 + 0.0445688i \(0.985809\pi\)
\(200\) −15.6157 + 7.84248i −1.10419 + 0.554547i
\(201\) 0 0
\(202\) 8.17748 + 18.9575i 0.575366 + 1.33385i
\(203\) −1.96980 4.56650i −0.138253 0.320505i
\(204\) 0 0
\(205\) −16.9806 + 8.52797i −1.18597 + 0.595619i
\(206\) 0.767353 + 4.35187i 0.0534640 + 0.303209i
\(207\) 0 0
\(208\) 0.384421 2.18016i 0.0266548 0.151167i
\(209\) 3.06184 + 10.2272i 0.211792 + 0.707433i
\(210\) 0 0
\(211\) −15.9532 8.01201i −1.09827 0.551570i −0.195066 0.980790i \(-0.562492\pi\)
−0.903200 + 0.429220i \(0.858788\pi\)
\(212\) −3.50475 + 11.7067i −0.240707 + 0.804018i
\(213\) 0 0
\(214\) 6.59440 + 8.85781i 0.450784 + 0.605508i
\(215\) 6.00179 + 10.3954i 0.409319 + 0.708961i
\(216\) 0 0
\(217\) −3.55480 + 6.15709i −0.241315 + 0.417970i
\(218\) 32.0641 3.74775i 2.17165 0.253830i
\(219\) 0 0
\(220\) 26.7537 6.34075i 1.80374 0.427493i
\(221\) 3.70956 2.43982i 0.249532 0.164120i
\(222\) 0 0
\(223\) 9.68032 10.2605i 0.648242 0.687096i −0.317008 0.948423i \(-0.602678\pi\)
0.965251 + 0.261326i \(0.0841598\pi\)
\(224\) 1.11368 + 0.934490i 0.0744110 + 0.0624383i
\(225\) 0 0
\(226\) 8.00976 6.72099i 0.532801 0.447073i
\(227\) 0.334510 5.74332i 0.0222022 0.381197i −0.968843 0.247674i \(-0.920334\pi\)
0.991046 0.133523i \(-0.0426292\pi\)
\(228\) 0 0
\(229\) −14.6753 + 19.7124i −0.969772 + 1.30263i −0.0167077 + 0.999860i \(0.505318\pi\)
−0.953064 + 0.302769i \(0.902089\pi\)
\(230\) −53.4741 6.25023i −3.52598 0.412128i
\(231\) 0 0
\(232\) −8.54733 5.62167i −0.561160 0.369081i
\(233\) 11.9802 + 4.36045i 0.784852 + 0.285663i 0.703194 0.710998i \(-0.251756\pi\)
0.0816576 + 0.996660i \(0.473979\pi\)
\(234\) 0 0
\(235\) 2.39953 0.873357i 0.156528 0.0569715i
\(236\) 2.34890 + 0.556700i 0.152900 + 0.0362381i
\(237\) 0 0
\(238\) −2.34618 40.2824i −0.152080 2.61112i
\(239\) −16.7115 17.7132i −1.08098 1.14577i −0.988680 0.150038i \(-0.952060\pi\)
−0.0922975 0.995731i \(-0.529421\pi\)
\(240\) 0 0
\(241\) −11.5147 + 26.6940i −0.741725 + 1.71951i −0.0484641 + 0.998825i \(0.515433\pi\)
−0.693261 + 0.720687i \(0.743827\pi\)
\(242\) 13.1320 0.844157
\(243\) 0 0
\(244\) −21.5057 −1.37676
\(245\) −2.05318 + 4.75981i −0.131173 + 0.304093i
\(246\) 0 0
\(247\) 1.89862 + 2.01242i 0.120807 + 0.128047i
\(248\) 0.850370 + 14.6003i 0.0539985 + 0.927119i
\(249\) 0 0
\(250\) 9.02593 + 2.13918i 0.570850 + 0.135294i
\(251\) 22.4049 8.15471i 1.41418 0.514721i 0.481828 0.876266i \(-0.339973\pi\)
0.932355 + 0.361545i \(0.117751\pi\)
\(252\) 0 0
\(253\) 16.6669 + 6.06625i 1.04784 + 0.381382i
\(254\) −11.9816 7.88040i −0.751791 0.494460i
\(255\) 0 0
\(256\) 31.1554 + 3.64154i 1.94721 + 0.227596i
\(257\) 7.24789 9.73561i 0.452111 0.607291i −0.516374 0.856363i \(-0.672718\pi\)
0.968485 + 0.249073i \(0.0801258\pi\)
\(258\) 0 0
\(259\) −0.567604 + 9.74538i −0.0352692 + 0.605548i
\(260\) 5.45845 4.58018i 0.338519 0.284051i
\(261\) 0 0
\(262\) 24.3693 + 20.4483i 1.50554 + 1.26330i
\(263\) −5.49109 + 5.82022i −0.338595 + 0.358890i −0.874189 0.485586i \(-0.838606\pi\)
0.535594 + 0.844476i \(0.320088\pi\)
\(264\) 0 0
\(265\) −7.65964 + 5.03782i −0.470528 + 0.309471i
\(266\) 24.4660 5.79854i 1.50011 0.355531i
\(267\) 0 0
\(268\) −1.10302 + 0.128924i −0.0673774 + 0.00787529i
\(269\) −11.2578 + 19.4990i −0.686397 + 1.18887i 0.286598 + 0.958051i \(0.407476\pi\)
−0.972995 + 0.230824i \(0.925858\pi\)
\(270\) 0 0
\(271\) 15.1514 + 26.2430i 0.920381 + 1.59415i 0.798826 + 0.601562i \(0.205455\pi\)
0.121555 + 0.992585i \(0.461212\pi\)
\(272\) −15.5809 20.9288i −0.944731 1.26899i
\(273\) 0 0
\(274\) 3.16285 10.5647i 0.191075 0.638234i
\(275\) 7.85129 + 3.94307i 0.473451 + 0.237776i
\(276\) 0 0
\(277\) 1.26874 + 4.23789i 0.0762312 + 0.254630i 0.987607 0.156944i \(-0.0501643\pi\)
−0.911376 + 0.411574i \(0.864979\pi\)
\(278\) 2.02729 11.4973i 0.121589 0.689564i
\(279\) 0 0
\(280\) −5.52773 31.3493i −0.330345 1.87348i
\(281\) 5.06519 2.54383i 0.302164 0.151752i −0.291257 0.956645i \(-0.594073\pi\)
0.593421 + 0.804893i \(0.297777\pi\)
\(282\) 0 0
\(283\) 11.4164 + 26.4661i 0.678632 + 1.57324i 0.812968 + 0.582309i \(0.197851\pi\)
−0.134336 + 0.990936i \(0.542890\pi\)
\(284\) −12.7991 29.6718i −0.759490 1.76069i
\(285\) 0 0
\(286\) −3.16428 + 1.58916i −0.187108 + 0.0939692i
\(287\) −2.56020 14.5196i −0.151124 0.857065i
\(288\) 0 0
\(289\) 6.13495 34.7930i 0.360879 2.04665i
\(290\) −4.47793 14.9573i −0.262953 0.878324i
\(291\) 0 0
\(292\) 53.5869 + 26.9123i 3.13594 + 1.57493i
\(293\) −0.620892 + 2.07392i −0.0362729 + 0.121160i −0.974209 0.225649i \(-0.927550\pi\)
0.937936 + 0.346809i \(0.112735\pi\)
\(294\) 0 0
\(295\) 1.08148 + 1.45267i 0.0629660 + 0.0845780i
\(296\) 10.0405 + 17.3907i 0.583593 + 1.01081i
\(297\) 0 0
\(298\) −11.9550 + 20.7067i −0.692537 + 1.19951i
\(299\) 4.56548 0.533627i 0.264028 0.0308605i
\(300\) 0 0
\(301\) −9.06262 + 2.14788i −0.522361 + 0.123802i
\(302\) 27.1764 17.8742i 1.56383 1.02854i
\(303\) 0 0
\(304\) 11.1573 11.8261i 0.639915 0.678271i
\(305\) −12.3595 10.3709i −0.707704 0.593835i
\(306\) 0 0
\(307\) 3.63465 3.04984i 0.207441 0.174063i −0.533148 0.846022i \(-0.678991\pi\)
0.740589 + 0.671959i \(0.234547\pi\)
\(308\) −1.24043 + 21.2974i −0.0706801 + 1.21353i
\(309\) 0 0
\(310\) −13.3287 + 17.9036i −0.757021 + 1.01686i
\(311\) −23.4449 2.74032i −1.32944 0.155389i −0.578458 0.815713i \(-0.696345\pi\)
−0.750981 + 0.660323i \(0.770419\pi\)
\(312\) 0 0
\(313\) −19.7427 12.9850i −1.11592 0.733955i −0.148955 0.988844i \(-0.547591\pi\)
−0.966970 + 0.254889i \(0.917961\pi\)
\(314\) −6.86503 2.49867i −0.387416 0.141008i
\(315\) 0 0
\(316\) −27.5563 + 10.0297i −1.55016 + 0.564213i
\(317\) 33.1557 + 7.85805i 1.86221 + 0.441352i 0.998081 0.0619179i \(-0.0197217\pi\)
0.864129 + 0.503270i \(0.167870\pi\)
\(318\) 0 0
\(319\) 0.299076 + 5.13494i 0.0167451 + 0.287502i
\(320\) 17.7417 + 18.8051i 0.991790 + 1.05124i
\(321\) 0 0
\(322\) 16.5456 38.3571i 0.922051 2.13756i
\(323\) 32.6083 1.81437
\(324\) 0 0
\(325\) 2.27691 0.126300
\(326\) −17.1065 + 39.6574i −0.947443 + 2.19642i
\(327\) 0 0
\(328\) −20.8129 22.0604i −1.14920 1.21808i
\(329\) 0.115202 + 1.97795i 0.00635131 + 0.109048i
\(330\) 0 0
\(331\) 25.2281 + 5.97918i 1.38666 + 0.328645i 0.855140 0.518398i \(-0.173471\pi\)
0.531524 + 0.847043i \(0.321619\pi\)
\(332\) 20.2467 7.36919i 1.11118 0.404437i
\(333\) 0 0
\(334\) −50.3388 18.3218i −2.75441 1.00252i
\(335\) −0.696087 0.457824i −0.0380313 0.0250136i
\(336\) 0 0
\(337\) −22.0017 2.57162i −1.19851 0.140085i −0.506670 0.862140i \(-0.669124\pi\)
−0.691836 + 0.722055i \(0.743198\pi\)
\(338\) 18.3623 24.6648i 0.998776 1.34159i
\(339\) 0 0
\(340\) 4.88307 83.8391i 0.264822 4.54681i
\(341\) 5.63289 4.72656i 0.305038 0.255957i
\(342\) 0 0
\(343\) −15.3601 12.8887i −0.829369 0.695923i
\(344\) −13.1477 + 13.9357i −0.708877 + 0.751365i
\(345\) 0 0
\(346\) 22.0309 14.4899i 1.18439 0.778984i
\(347\) 1.74506 0.413587i 0.0936797 0.0222025i −0.183509 0.983018i \(-0.558746\pi\)
0.277188 + 0.960816i \(0.410597\pi\)
\(348\) 0 0
\(349\) −0.174688 + 0.0204181i −0.00935083 + 0.00109295i −0.120767 0.992681i \(-0.538535\pi\)
0.111416 + 0.993774i \(0.464461\pi\)
\(350\) 10.3463 17.9203i 0.553031 0.957878i
\(351\) 0 0
\(352\) −0.751813 1.30218i −0.0400718 0.0694064i
\(353\) −18.1618 24.3956i −0.966656 1.29844i −0.954404 0.298520i \(-0.903507\pi\)
−0.0122526 0.999925i \(-0.503900\pi\)
\(354\) 0 0
\(355\) 6.95309 23.2249i 0.369032 1.23265i
\(356\) −32.3247 16.2341i −1.71321 0.860406i
\(357\) 0 0
\(358\) −6.24695 20.8663i −0.330161 1.10282i
\(359\) −1.11991 + 6.35130i −0.0591064 + 0.335209i −0.999994 0.00351034i \(-0.998883\pi\)
0.940887 + 0.338719i \(0.109994\pi\)
\(360\) 0 0
\(361\) 0.229085 + 1.29920i 0.0120571 + 0.0683792i
\(362\) −9.41464 + 4.72821i −0.494823 + 0.248509i
\(363\) 0 0
\(364\) 2.18982 + 5.07657i 0.114778 + 0.266085i
\(365\) 17.8188 + 41.3085i 0.932677 + 2.16219i
\(366\) 0 0
\(367\) 16.4470 8.26000i 0.858527 0.431169i 0.0356343 0.999365i \(-0.488655\pi\)
0.822893 + 0.568196i \(0.192359\pi\)
\(368\) −4.69054 26.6014i −0.244512 1.38669i
\(369\) 0 0
\(370\) −5.32180 + 30.1814i −0.276667 + 1.56906i
\(371\) −2.04015 6.81458i −0.105919 0.353795i
\(372\) 0 0
\(373\) −28.8505 14.4893i −1.49382 0.750227i −0.500517 0.865727i \(-0.666857\pi\)
−0.993307 + 0.115500i \(0.963153\pi\)
\(374\) −11.9693 + 39.9801i −0.618915 + 2.06732i
\(375\) 0 0
\(376\) 2.43384 + 3.26921i 0.125516 + 0.168597i
\(377\) 0.666508 + 1.15442i 0.0343269 + 0.0594559i
\(378\) 0 0
\(379\) 11.0163 19.0808i 0.565870 0.980116i −0.431098 0.902305i \(-0.641874\pi\)
0.996968 0.0778111i \(-0.0247931\pi\)
\(380\) 51.9774 6.07529i 2.66639 0.311656i
\(381\) 0 0
\(382\) −50.2794 + 11.9164i −2.57252 + 0.609698i
\(383\) 11.8857 7.81734i 0.607330 0.399447i −0.208263 0.978073i \(-0.566781\pi\)
0.815593 + 0.578626i \(0.196411\pi\)
\(384\) 0 0
\(385\) −10.9833 + 11.6417i −0.559762 + 0.593313i
\(386\) 33.8775 + 28.4266i 1.72432 + 1.44688i
\(387\) 0 0
\(388\) −5.15768 + 4.32781i −0.261842 + 0.219711i
\(389\) −0.713209 + 12.2453i −0.0361612 + 0.620863i 0.930735 + 0.365694i \(0.119168\pi\)
−0.966896 + 0.255169i \(0.917869\pi\)
\(390\) 0 0
\(391\) 32.3511 43.4550i 1.63606 2.19761i
\(392\) −8.21788 0.960533i −0.415066 0.0485142i
\(393\) 0 0
\(394\) 14.5280 + 9.55519i 0.731908 + 0.481383i
\(395\) −20.6736 7.52457i −1.04020 0.378602i
\(396\) 0 0
\(397\) −9.12859 + 3.32254i −0.458151 + 0.166753i −0.560777 0.827967i \(-0.689498\pi\)
0.102626 + 0.994720i \(0.467275\pi\)
\(398\) 8.66573 + 2.05382i 0.434374 + 0.102948i
\(399\) 0 0
\(400\) −0.777996 13.3577i −0.0388998 0.667884i
\(401\) −0.802397 0.850491i −0.0400698 0.0424715i 0.707029 0.707185i \(-0.250035\pi\)
−0.747098 + 0.664713i \(0.768554\pi\)
\(402\) 0 0
\(403\) 0.754786 1.74979i 0.0375986 0.0871633i
\(404\) −33.3410 −1.65878
\(405\) 0 0
\(406\) 12.1144 0.601229
\(407\) 3.99898 9.27068i 0.198222 0.459530i
\(408\) 0 0
\(409\) 18.8448 + 19.9743i 0.931816 + 0.987668i 0.999950 0.0100086i \(-0.00318588\pi\)
−0.0681336 + 0.997676i \(0.521704\pi\)
\(410\) −2.69134 46.2086i −0.132916 2.28208i
\(411\) 0 0
\(412\) −6.94384 1.64572i −0.342098 0.0810788i
\(413\) −1.32045 + 0.480606i −0.0649753 + 0.0236491i
\(414\) 0 0
\(415\) 15.1897 + 5.52860i 0.745633 + 0.271388i
\(416\) −0.325570 0.214131i −0.0159624 0.0104986i
\(417\) 0 0
\(418\) −25.8295 3.01903i −1.26336 0.147666i
\(419\) 14.6886 19.7303i 0.717587 0.963886i −0.282403 0.959296i \(-0.591131\pi\)
0.999989 0.00459033i \(-0.00146115\pi\)
\(420\) 0 0
\(421\) 0.715310 12.2814i 0.0348621 0.598559i −0.934961 0.354750i \(-0.884566\pi\)
0.969823 0.243809i \(-0.0783970\pi\)
\(422\) 33.3126 27.9526i 1.62163 1.36071i
\(423\) 0 0
\(424\) −11.2094 9.40584i −0.544379 0.456788i
\(425\) 18.4157 19.5196i 0.893295 0.946837i
\(426\) 0 0
\(427\) 10.4592 6.87912i 0.506156 0.332904i
\(428\) −17.3524 + 4.11260i −0.838761 + 0.198790i
\(429\) 0 0
\(430\) −29.0421 + 3.39454i −1.40054 + 0.163699i
\(431\) 3.97831 6.89064i 0.191628 0.331910i −0.754162 0.656689i \(-0.771956\pi\)
0.945790 + 0.324779i \(0.105290\pi\)
\(432\) 0 0
\(433\) −5.95735 10.3184i −0.286292 0.495872i 0.686630 0.727007i \(-0.259089\pi\)
−0.972922 + 0.231135i \(0.925756\pi\)
\(434\) −10.3419 13.8915i −0.496425 0.666815i
\(435\) 0 0
\(436\) −14.9517 + 49.9422i −0.716058 + 2.39180i
\(437\) 30.1674 + 15.1506i 1.44310 + 0.724752i
\(438\) 0 0
\(439\) −1.98064 6.61580i −0.0945308 0.315755i 0.897625 0.440759i \(-0.145291\pi\)
−0.992156 + 0.125004i \(0.960106\pi\)
\(440\) −5.71714 + 32.4235i −0.272554 + 1.54573i
\(441\) 0 0
\(442\) 1.87809 + 10.6512i 0.0893318 + 0.506626i
\(443\) 6.47445 3.25159i 0.307610 0.154488i −0.288297 0.957541i \(-0.593089\pi\)
0.595907 + 0.803053i \(0.296793\pi\)
\(444\) 0 0
\(445\) −10.7487 24.9182i −0.509535 1.18124i
\(446\) 13.6100 + 31.5516i 0.644454 + 1.49401i
\(447\) 0 0
\(448\) −17.9261 + 9.00284i −0.846930 + 0.425344i
\(449\) 5.97095 + 33.8630i 0.281787 + 1.59809i 0.716542 + 0.697543i \(0.245724\pi\)
−0.434756 + 0.900548i \(0.643165\pi\)
\(450\) 0 0
\(451\) −2.64793 + 15.0172i −0.124686 + 0.707130i
\(452\) 4.84274 + 16.1759i 0.227783 + 0.760850i
\(453\) 0 0
\(454\) 12.5234 + 6.28948i 0.587752 + 0.295180i
\(455\) −1.18961 + 3.97358i −0.0557698 + 0.186284i
\(456\) 0 0
\(457\) 9.94490 + 13.3583i 0.465203 + 0.624876i 0.971374 0.237557i \(-0.0763468\pi\)
−0.506170 + 0.862433i \(0.668939\pi\)
\(458\) −29.9317 51.8433i −1.39862 2.42248i
\(459\) 0 0
\(460\) 43.4712 75.2944i 2.02686 3.51062i
\(461\) −13.6903 + 1.60016i −0.637619 + 0.0745270i −0.428760 0.903419i \(-0.641049\pi\)
−0.208860 + 0.977946i \(0.566975\pi\)
\(462\) 0 0
\(463\) 11.9128 2.82340i 0.553637 0.131214i 0.0557317 0.998446i \(-0.482251\pi\)
0.497905 + 0.867231i \(0.334103\pi\)
\(464\) 6.54479 4.30458i 0.303834 0.199835i
\(465\) 0 0
\(466\) −21.3119 + 22.5893i −0.987253 + 1.04643i
\(467\) −11.7925 9.89507i −0.545691 0.457889i 0.327788 0.944751i \(-0.393697\pi\)
−0.873479 + 0.486862i \(0.838141\pi\)
\(468\) 0 0
\(469\) 0.495208 0.415529i 0.0228666 0.0191873i
\(470\) −0.361672 + 6.20968i −0.0166827 + 0.286431i
\(471\) 0 0
\(472\) −1.72615 + 2.31862i −0.0794526 + 0.106723i
\(473\) 9.56769 + 1.11830i 0.439923 + 0.0514196i
\(474\) 0 0
\(475\) 13.9711 + 9.18896i 0.641040 + 0.421619i
\(476\) 61.2319 + 22.2866i 2.80656 + 1.02150i
\(477\) 0 0
\(478\) 55.7428 20.2887i 2.54962 0.927985i
\(479\) −14.7420 3.49392i −0.673579 0.159641i −0.120428 0.992722i \(-0.538427\pi\)
−0.553151 + 0.833081i \(0.686575\pi\)
\(480\) 0 0
\(481\) −0.152139 2.61213i −0.00693696 0.119103i
\(482\) −48.5971 51.5099i −2.21354 2.34621i
\(483\) 0 0
\(484\) −8.39953 + 19.4723i −0.381797 + 0.885105i
\(485\) −5.05122 −0.229364
\(486\) 0 0
\(487\) −9.74343 −0.441517 −0.220758 0.975329i \(-0.570853\pi\)
−0.220758 + 0.975329i \(0.570853\pi\)
\(488\) 10.1998 23.6458i 0.461724 1.07040i
\(489\) 0 0
\(490\) −8.66535 9.18473i −0.391460 0.414924i
\(491\) 1.11256 + 19.1020i 0.0502093 + 0.862060i 0.925567 + 0.378584i \(0.123589\pi\)
−0.875358 + 0.483476i \(0.839374\pi\)
\(492\) 0 0
\(493\) 15.2874 + 3.62319i 0.688511 + 0.163180i
\(494\) −6.33304 + 2.30504i −0.284937 + 0.103709i
\(495\) 0 0
\(496\) −10.5232 3.83013i −0.472506 0.171978i
\(497\) 15.7161 + 10.3366i 0.704962 + 0.463661i
\(498\) 0 0
\(499\) 25.9471 + 3.03278i 1.16155 + 0.135766i 0.674953 0.737861i \(-0.264164\pi\)
0.486597 + 0.873627i \(0.338238\pi\)
\(500\) −8.94521 + 12.0155i −0.400042 + 0.537350i
\(501\) 0 0
\(502\) −3.37701 + 57.9810i −0.150723 + 2.58782i
\(503\) 0.849443 0.712768i 0.0378748 0.0317807i −0.623654 0.781701i \(-0.714352\pi\)
0.661529 + 0.749920i \(0.269908\pi\)
\(504\) 0 0
\(505\) −19.1614 16.0784i −0.852673 0.715477i
\(506\) −29.6490 + 31.4261i −1.31806 + 1.39706i
\(507\) 0 0
\(508\) 19.3489 12.7259i 0.858467 0.564623i
\(509\) −16.5171 + 3.91463i −0.732109 + 0.173513i −0.579729 0.814809i \(-0.696842\pi\)
−0.152379 + 0.988322i \(0.548694\pi\)
\(510\) 0 0
\(511\) −34.6704 + 4.05238i −1.53373 + 0.179267i
\(512\) −18.1349 + 31.4106i −0.801458 + 1.38817i
\(513\) 0 0
\(514\) 14.7828 + 25.6045i 0.652041 + 1.12937i
\(515\) −3.19707 4.29441i −0.140880 0.189234i
\(516\) 0 0
\(517\) 0.587715 1.96310i 0.0258477 0.0863372i
\(518\) −21.2499 10.6721i −0.933668 0.468906i
\(519\) 0 0
\(520\) 2.44713 + 8.17398i 0.107314 + 0.358453i
\(521\) −5.42618 + 30.7734i −0.237725 + 1.34821i 0.599072 + 0.800695i \(0.295536\pi\)
−0.836798 + 0.547512i \(0.815575\pi\)
\(522\) 0 0
\(523\) −2.23807 12.6927i −0.0978638 0.555013i −0.993832 0.110895i \(-0.964628\pi\)
0.895968 0.444118i \(-0.146483\pi\)
\(524\) −45.9082 + 23.0559i −2.00551 + 1.00720i
\(525\) 0 0
\(526\) −7.72021 17.8974i −0.336617 0.780366i
\(527\) −8.89591 20.6230i −0.387512 0.898354i
\(528\) 0 0
\(529\) 29.5661 14.8487i 1.28548 0.645594i
\(530\) −3.87796 21.9930i −0.168448 0.955314i
\(531\) 0 0
\(532\) −7.05085 + 39.9874i −0.305693 + 1.73367i
\(533\) 1.13340 + 3.78583i 0.0490931 + 0.163982i
\(534\) 0 0
\(535\) −11.9559 6.00447i −0.516898 0.259596i
\(536\) 0.381390 1.27393i 0.0164736 0.0550255i
\(537\) 0 0
\(538\) −32.7518 43.9934i −1.41203 1.89669i
\(539\) 2.07997 + 3.60261i 0.0895907 + 0.155176i
\(540\) 0 0
\(541\) −3.97103 + 6.87802i −0.170728 + 0.295709i −0.938675 0.344804i \(-0.887945\pi\)
0.767947 + 0.640514i \(0.221279\pi\)
\(542\) −73.3162 + 8.56944i −3.14920 + 0.368089i
\(543\) 0 0
\(544\) −4.46893 + 1.05915i −0.191604 + 0.0454109i
\(545\) −32.6770 + 21.4920i −1.39973 + 0.920617i
\(546\) 0 0
\(547\) 7.43375 7.87931i 0.317844 0.336895i −0.548678 0.836034i \(-0.684869\pi\)
0.866522 + 0.499139i \(0.166350\pi\)
\(548\) 13.6424 + 11.4473i 0.582774 + 0.489005i
\(549\) 0 0
\(550\) −16.3946 + 13.7567i −0.699067 + 0.586587i
\(551\) −0.569235 + 9.77340i −0.0242502 + 0.416361i
\(552\) 0 0
\(553\) 10.1937 13.6925i 0.433478 0.582263i
\(554\) −10.7030 1.25100i −0.454728 0.0531501i
\(555\) 0 0
\(556\) 15.7517 + 10.3601i 0.668020 + 0.439364i
\(557\) 1.66135 + 0.604682i 0.0703937 + 0.0256212i 0.376977 0.926223i \(-0.376964\pi\)
−0.306583 + 0.951844i \(0.599186\pi\)
\(558\) 0 0
\(559\) 2.34587 0.853825i 0.0992196 0.0361130i
\(560\) 23.7178 + 5.62122i 1.00226 + 0.237540i
\(561\) 0 0
\(562\) 0.802809 + 13.7837i 0.0338644 + 0.581430i
\(563\) 5.25025 + 5.56494i 0.221272 + 0.234534i 0.828494 0.559997i \(-0.189198\pi\)
−0.607223 + 0.794532i \(0.707716\pi\)
\(564\) 0 0
\(565\) −5.01748 + 11.6318i −0.211087 + 0.489354i
\(566\) −70.2116 −2.95121
\(567\) 0 0
\(568\) 38.6951 1.62361
\(569\) 7.88133 18.2710i 0.330402 0.765959i −0.669333 0.742962i \(-0.733420\pi\)
0.999736 0.0229964i \(-0.00732062\pi\)
\(570\) 0 0
\(571\) 31.6143 + 33.5092i 1.32302 + 1.40232i 0.855028 + 0.518582i \(0.173540\pi\)
0.467990 + 0.883734i \(0.344978\pi\)
\(572\) −0.332483 5.70851i −0.0139018 0.238685i
\(573\) 0 0
\(574\) 34.9463 + 8.28242i 1.45863 + 0.345701i
\(575\) 26.1065 9.50198i 1.08872 0.396260i
\(576\) 0 0
\(577\) −24.3829 8.87465i −1.01507 0.369457i −0.219695 0.975569i \(-0.570506\pi\)
−0.795379 + 0.606112i \(0.792728\pi\)
\(578\) 71.9027 + 47.2912i 2.99076 + 1.96705i
\(579\) 0 0
\(580\) 25.0431 + 2.92712i 1.03986 + 0.121542i
\(581\) −7.48967 + 10.0604i −0.310724 + 0.417375i
\(582\) 0 0
\(583\) −0.427782 + 7.34472i −0.0177169 + 0.304187i
\(584\) −55.0061 + 46.1556i −2.27617 + 1.90993i
\(585\) 0 0
\(586\) −4.03971 3.38972i −0.166879 0.140028i
\(587\) −14.4213 + 15.2857i −0.595231 + 0.630908i −0.953025 0.302893i \(-0.902048\pi\)
0.357794 + 0.933801i \(0.383529\pi\)
\(588\) 0 0
\(589\) 11.6930 7.69063i 0.481803 0.316887i
\(590\) −4.29264 + 1.01737i −0.176725 + 0.0418846i
\(591\) 0 0
\(592\) −15.2723 + 1.78508i −0.627688 + 0.0733662i
\(593\) −12.9024 + 22.3476i −0.529837 + 0.917705i 0.469557 + 0.882902i \(0.344414\pi\)
−0.999394 + 0.0348027i \(0.988920\pi\)
\(594\) 0 0
\(595\) 24.4432 + 42.3368i 1.00207 + 1.73564i
\(596\) −23.0575 30.9716i −0.944472 1.26865i
\(597\) 0 0
\(598\) −3.21130 + 10.7265i −0.131320 + 0.438639i
\(599\) −24.5346 12.3217i −1.00246 0.503453i −0.129671 0.991557i \(-0.541392\pi\)
−0.872785 + 0.488105i \(0.837688\pi\)
\(600\) 0 0
\(601\) −0.109405 0.365437i −0.00446271 0.0149065i 0.955729 0.294248i \(-0.0950691\pi\)
−0.960192 + 0.279341i \(0.909884\pi\)
\(602\) 3.93963 22.3428i 0.160567 0.910623i
\(603\) 0 0
\(604\) 9.12145 + 51.7303i 0.371146 + 2.10488i
\(605\) −14.2176 + 7.14036i −0.578028 + 0.290297i
\(606\) 0 0
\(607\) 2.44005 + 5.65667i 0.0990386 + 0.229597i 0.960531 0.278173i \(-0.0897290\pi\)
−0.861492 + 0.507771i \(0.830470\pi\)
\(608\) −1.13353 2.62781i −0.0459706 0.106572i
\(609\) 0 0
\(610\) 35.1214 17.6386i 1.42202 0.714166i
\(611\) −0.0922182 0.522996i −0.00373075 0.0211581i
\(612\) 0 0
\(613\) −4.86771 + 27.6062i −0.196605 + 1.11500i 0.713509 + 0.700646i \(0.247105\pi\)
−0.910114 + 0.414357i \(0.864006\pi\)
\(614\) 3.31480 + 11.0722i 0.133775 + 0.446838i
\(615\) 0 0
\(616\) −22.8285 11.4649i −0.919788 0.461935i
\(617\) 4.27981 14.2956i 0.172299 0.575518i −0.827600 0.561318i \(-0.810295\pi\)
0.999899 0.0142003i \(-0.00452023\pi\)
\(618\) 0 0
\(619\) −2.49285 3.34848i −0.100196 0.134587i 0.749197 0.662347i \(-0.230439\pi\)
−0.849394 + 0.527760i \(0.823032\pi\)
\(620\) −18.0223 31.2156i −0.723794 1.25365i
\(621\) 0 0
\(622\) 28.7494 49.7955i 1.15275 1.99662i
\(623\) 20.9139 2.44448i 0.837898 0.0979362i
\(624\) 0 0
\(625\) −28.9837 + 6.86927i −1.15935 + 0.274771i
\(626\) 48.0919 31.6305i 1.92214 1.26421i
\(627\) 0 0
\(628\) 8.09609 8.58135i 0.323069 0.342433i
\(629\) −23.6239 19.8228i −0.941945 0.790386i
\(630\) 0 0
\(631\) 24.5789 20.6241i 0.978470 0.821034i −0.00538805 0.999985i \(-0.501715\pi\)
0.983858 + 0.178952i \(0.0572706\pi\)
\(632\) 2.04175 35.0556i 0.0812166 1.39444i
\(633\) 0 0
\(634\) −49.5655 + 66.5780i −1.96850 + 2.64415i
\(635\) 17.2570 + 2.01705i 0.684821 + 0.0800441i
\(636\) 0 0
\(637\) 0.900723 + 0.592415i 0.0356879 + 0.0234723i
\(638\) −11.7739 4.28536i −0.466134 0.169659i
\(639\) 0 0
\(640\) −55.6576 + 20.2577i −2.20006 + 0.800757i
\(641\) −38.3438 9.08765i −1.51449 0.358941i −0.612421 0.790532i \(-0.709804\pi\)
−0.902069 + 0.431591i \(0.857952\pi\)
\(642\) 0 0
\(643\) 1.65969 + 28.4958i 0.0654519 + 1.12376i 0.857897 + 0.513822i \(0.171771\pi\)
−0.792445 + 0.609943i \(0.791192\pi\)
\(644\) 46.2934 + 49.0681i 1.82422 + 1.93356i
\(645\) 0 0
\(646\) −31.4612 + 72.9353i −1.23782 + 2.86960i
\(647\) 3.61582 0.142153 0.0710764 0.997471i \(-0.477357\pi\)
0.0710764 + 0.997471i \(0.477357\pi\)
\(648\) 0 0
\(649\) 1.45335 0.0570489
\(650\) −2.19681 + 5.09278i −0.0861661 + 0.199755i
\(651\) 0 0
\(652\) −47.8628 50.7316i −1.87445 1.98680i
\(653\) −0.689989 11.8467i −0.0270014 0.463595i −0.984525 0.175242i \(-0.943929\pi\)
0.957524 0.288353i \(-0.0931078\pi\)
\(654\) 0 0
\(655\) −37.5024 8.88823i −1.46534 0.347292i
\(656\) 21.8226 7.94277i 0.852029 0.310113i
\(657\) 0 0
\(658\) −4.53524 1.65069i −0.176802 0.0643507i
\(659\) 2.19931 + 1.44651i 0.0856730 + 0.0563481i 0.591623 0.806215i \(-0.298488\pi\)
−0.505950 + 0.862563i \(0.668858\pi\)
\(660\) 0 0
\(661\) −25.6714 3.00056i −0.998503 0.116708i −0.398890 0.916999i \(-0.630605\pi\)
−0.599613 + 0.800290i \(0.704679\pi\)
\(662\) −37.7143 + 50.6591i −1.46581 + 1.96892i
\(663\) 0 0
\(664\) −1.50016 + 25.7567i −0.0582173 + 0.999553i
\(665\) −23.3357 + 19.5810i −0.904919 + 0.759317i
\(666\) 0 0
\(667\) 12.4596 + 10.4549i 0.482439 + 0.404815i
\(668\) 59.3657 62.9240i 2.29693 2.43460i
\(669\) 0 0
\(670\) 1.69562 1.11523i 0.0655075 0.0430849i
\(671\) −12.5986 + 2.98593i −0.486365 + 0.115271i
\(672\) 0 0
\(673\) −1.19536 + 0.139717i −0.0460776 + 0.00538570i −0.139100 0.990278i \(-0.544421\pi\)
0.0930229 + 0.995664i \(0.470347\pi\)
\(674\) 26.9796 46.7301i 1.03922 1.79998i
\(675\) 0 0
\(676\) 24.8284 + 43.0040i 0.954938 + 1.65400i
\(677\) −23.4105 31.4457i −0.899737 1.20856i −0.977362 0.211574i \(-0.932141\pi\)
0.0776247 0.996983i \(-0.475266\pi\)
\(678\) 0 0
\(679\) 1.12406 3.75463i 0.0431375 0.144089i
\(680\) 89.8666 + 45.1327i 3.44623 + 1.73076i
\(681\) 0 0
\(682\) 5.13719 + 17.1594i 0.196713 + 0.657068i
\(683\) 1.15437 6.54674i 0.0441706 0.250504i −0.954725 0.297490i \(-0.903851\pi\)
0.998896 + 0.0469860i \(0.0149616\pi\)
\(684\) 0 0
\(685\) 2.32008 + 13.1578i 0.0886455 + 0.502734i
\(686\) 43.6480 21.9209i 1.66649 0.836942i
\(687\) 0 0
\(688\) −5.81059 13.4705i −0.221527 0.513557i
\(689\) 0.755192 + 1.75073i 0.0287705 + 0.0666976i
\(690\) 0 0
\(691\) −10.1591 + 5.10207i −0.386469 + 0.194092i −0.631416 0.775445i \(-0.717526\pi\)
0.244947 + 0.969536i \(0.421229\pi\)
\(692\) 7.39441 + 41.9358i 0.281093 + 1.59416i
\(693\) 0 0
\(694\) −0.758598 + 4.30222i −0.0287960 + 0.163310i
\(695\) 4.05664 + 13.5501i 0.153877 + 0.513985i
\(696\) 0 0
\(697\) 41.6222 + 20.9035i 1.57655 + 0.791776i
\(698\) 0.122873 0.410425i 0.00465082 0.0155348i
\(699\) 0 0
\(700\) 19.9547 + 26.8038i 0.754217 + 1.01309i
\(701\) −14.2748 24.7247i −0.539152 0.933838i −0.998950 0.0458147i \(-0.985412\pi\)
0.459798 0.888023i \(-0.347922\pi\)
\(702\) 0 0
\(703\) 9.60829 16.6421i 0.362384 0.627667i
\(704\) 20.6070 2.40861i 0.776654 0.0907778i
\(705\) 0 0
\(706\) 72.0887 17.0853i 2.71309 0.643015i
\(707\) 16.2153 10.6650i 0.609838 0.401097i
\(708\) 0 0
\(709\) 29.9559 31.7514i 1.12502 1.19245i 0.145870 0.989304i \(-0.453402\pi\)
0.979148 0.203146i \(-0.0651166\pi\)
\(710\) 45.2389 + 37.9599i 1.69779 + 1.42461i
\(711\) 0 0
\(712\) 33.1808 27.8420i 1.24350 1.04342i
\(713\) 1.35198 23.2125i 0.0506319 0.869316i
\(714\) 0 0
\(715\) 2.56179 3.44108i 0.0958054 0.128689i
\(716\) 34.9365 + 4.08349i 1.30564 + 0.152607i
\(717\) 0 0
\(718\) −13.1255 8.63278i −0.489839 0.322173i
\(719\) −28.1797 10.2566i −1.05093 0.382506i −0.241914 0.970298i \(-0.577775\pi\)
−0.809012 + 0.587792i \(0.799998\pi\)
\(720\) 0 0
\(721\) 3.90353 1.42077i 0.145375 0.0529122i
\(722\) −3.12697 0.741105i −0.116374 0.0275811i
\(723\) 0 0
\(724\) −0.989230 16.9844i −0.0367645 0.631221i
\(725\) 5.52894 + 5.86034i 0.205340 + 0.217647i
\(726\) 0 0
\(727\) 15.8758 36.8042i 0.588800 1.36499i −0.319865 0.947463i \(-0.603637\pi\)
0.908664 0.417528i \(-0.137103\pi\)
\(728\) −6.62038 −0.245368
\(729\) 0 0
\(730\) −109.587 −4.05600
\(731\) 11.6538 27.0165i 0.431030 0.999240i
\(732\) 0 0
\(733\) −18.8469 19.9765i −0.696125 0.737849i 0.278808 0.960347i \(-0.410061\pi\)
−0.974933 + 0.222497i \(0.928579\pi\)
\(734\) 2.60678 + 44.7566i 0.0962178 + 1.65200i
\(735\) 0 0
\(736\) −4.62651 1.09650i −0.170535 0.0404176i
\(737\) −0.628278 + 0.228675i −0.0231429 + 0.00842334i
\(738\) 0 0
\(739\) −29.1919 10.6250i −1.07384 0.390846i −0.256229 0.966616i \(-0.582480\pi\)
−0.817612 + 0.575770i \(0.804702\pi\)
\(740\) −41.3495 27.1960i −1.52004 0.999744i
\(741\) 0 0
\(742\) 17.2106 + 2.01163i 0.631821 + 0.0738493i
\(743\) −3.86766 + 5.19517i −0.141891 + 0.190592i −0.867388 0.497633i \(-0.834203\pi\)
0.725497 + 0.688226i \(0.241610\pi\)
\(744\) 0 0
\(745\) 1.68434 28.9190i 0.0617094 1.05951i
\(746\) 60.2439 50.5507i 2.20569 1.85079i
\(747\) 0 0
\(748\) −51.6272 43.3204i −1.88768 1.58395i
\(749\) 7.12377 7.55075i 0.260297 0.275898i
\(750\) 0 0
\(751\) 6.19254 4.07290i 0.225969 0.148622i −0.431477 0.902124i \(-0.642007\pi\)
0.657446 + 0.753502i \(0.271637\pi\)
\(752\) −3.03669 + 0.719708i −0.110737 + 0.0262450i
\(753\) 0 0
\(754\) −3.22517 + 0.376969i −0.117454 + 0.0137284i
\(755\) −19.7042 + 34.1287i −0.717109 + 1.24207i
\(756\) 0 0
\(757\) −22.2841 38.5972i −0.809930 1.40284i −0.912912 0.408157i \(-0.866172\pi\)
0.102981 0.994683i \(-0.467162\pi\)
\(758\) 32.0495 + 43.0499i 1.16409 + 1.56364i
\(759\) 0 0
\(760\) −17.9723 + 60.0315i −0.651922 + 2.17757i
\(761\) −17.8901 8.98475i −0.648516 0.325697i 0.0939538 0.995577i \(-0.470049\pi\)
−0.742470 + 0.669880i \(0.766346\pi\)
\(762\) 0 0
\(763\) −8.70355 29.0719i −0.315090 1.05247i
\(764\) 14.4900 82.1770i 0.524231 2.97306i
\(765\) 0 0
\(766\) 6.01753 + 34.1271i 0.217422 + 1.23306i
\(767\) 0.336584 0.169039i 0.0121533 0.00610363i
\(768\) 0 0
\(769\) −1.97582 4.58046i −0.0712499 0.165176i 0.878870 0.477062i \(-0.158298\pi\)
−0.950119 + 0.311887i \(0.899039\pi\)
\(770\) −15.4420 35.7986i −0.556492 1.29009i
\(771\) 0 0
\(772\) −63.8202 + 32.0517i −2.29694 + 1.15357i
\(773\) −4.06522 23.0550i −0.146216 0.829232i −0.966383 0.257108i \(-0.917231\pi\)
0.820167 0.572124i \(-0.193881\pi\)
\(774\) 0 0
\(775\) 2.00005 11.3429i 0.0718440 0.407448i
\(776\) −2.31229 7.72358i −0.0830063 0.277260i
\(777\) 0 0
\(778\) −26.7011 13.4098i −0.957281 0.480765i
\(779\) −8.32396 + 27.8040i −0.298237 + 0.996180i
\(780\) 0 0
\(781\) −11.6179 15.6055i −0.415720 0.558408i