Properties

Label 729.2.g.c.379.7
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,-63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.7
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.c.352.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.579169 + 1.93456i) q^{2} +(-1.73611 + 1.14185i) q^{4} +(-1.09641 - 2.54176i) q^{5} +(0.0355426 - 0.610243i) q^{7} +(-0.120591 - 0.101188i) q^{8} +(4.28217 - 3.59317i) q^{10} +(-2.23626 - 3.00382i) q^{11} +(-2.34689 - 2.48756i) q^{13} +(1.20114 - 0.284675i) q^{14} +(-1.52016 + 3.52413i) q^{16} +(-1.31516 - 7.45862i) q^{17} +(0.132568 - 0.751830i) q^{19} +(4.80579 + 3.16082i) q^{20} +(4.51590 - 6.06590i) q^{22} +(-0.126403 - 2.17026i) q^{23} +(-1.82720 + 1.93672i) q^{25} +(3.45308 - 5.98091i) q^{26} +(0.635103 + 1.10003i) q^{28} +(-4.42027 - 1.04762i) q^{29} +(7.31490 + 3.67368i) q^{31} +(-8.01077 - 0.936325i) q^{32} +(13.6674 - 6.86404i) q^{34} +(-1.59006 + 0.578734i) q^{35} +(3.96908 + 1.44463i) q^{37} +(1.53124 - 0.178976i) q^{38} +(-0.124978 + 0.417456i) q^{40} +(-2.59329 + 8.66219i) q^{41} +(-1.74287 + 0.203712i) q^{43} +(7.31231 + 2.66146i) q^{44} +(4.12528 - 1.50148i) q^{46} +(10.5125 - 5.27956i) q^{47} +(6.58154 + 0.769271i) q^{49} +(-4.80497 - 2.41314i) q^{50} +(6.91487 + 1.63886i) q^{52} +(-2.80062 - 4.85082i) q^{53} +(-5.18313 + 8.97744i) q^{55} +(-0.0660353 + 0.0699933i) q^{56} +(-0.533395 - 9.15803i) q^{58} +(0.903619 - 1.21377i) q^{59} +(-2.52614 - 1.66147i) q^{61} +(-2.87039 + 16.2788i) q^{62} +(-1.49529 - 8.48019i) q^{64} +(-3.74962 + 8.69259i) q^{65} +(-7.44589 + 1.76471i) q^{67} +(10.7999 + 11.4472i) q^{68} +(-2.04051 - 2.74088i) q^{70} +(-5.19850 + 4.36206i) q^{71} +(0.438511 + 0.367955i) q^{73} +(-0.495949 + 8.51511i) q^{74} +(0.628329 + 1.45663i) q^{76} +(-1.91254 + 1.25790i) q^{77} +(-2.64293 - 8.82799i) q^{79} +10.6242 q^{80} -18.2595 q^{82} +(1.77486 + 5.92845i) q^{83} +(-17.5160 + 11.5205i) q^{85} +(-1.40351 - 3.25370i) q^{86} +(-0.0342772 + 0.588516i) q^{88} +(-3.52742 - 2.95986i) q^{89} +(-1.60143 + 1.34376i) q^{91} +(2.69757 + 3.62346i) q^{92} +(16.3021 + 17.2792i) q^{94} +(-2.05632 + 0.487356i) q^{95} +(-4.16552 + 9.65675i) q^{97} +(2.32362 + 13.1779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.579169 + 1.93456i 0.409534 + 1.36794i 0.875535 + 0.483155i \(0.160509\pi\)
−0.466001 + 0.884784i \(0.654306\pi\)
\(3\) 0 0
\(4\) −1.73611 + 1.14185i −0.868053 + 0.570927i
\(5\) −1.09641 2.54176i −0.490328 1.13671i −0.966340 0.257269i \(-0.917177\pi\)
0.476012 0.879439i \(-0.342082\pi\)
\(6\) 0 0
\(7\) 0.0355426 0.610243i 0.0134338 0.230650i −0.984908 0.173081i \(-0.944628\pi\)
0.998341 0.0575696i \(-0.0183351\pi\)
\(8\) −0.120591 0.101188i −0.0426353 0.0357753i
\(9\) 0 0
\(10\) 4.28217 3.59317i 1.35414 1.13626i
\(11\) −2.23626 3.00382i −0.674258 0.905686i 0.324939 0.945735i \(-0.394656\pi\)
−0.999198 + 0.0400487i \(0.987249\pi\)
\(12\) 0 0
\(13\) −2.34689 2.48756i −0.650910 0.689924i 0.314915 0.949120i \(-0.398024\pi\)
−0.965825 + 0.259196i \(0.916542\pi\)
\(14\) 1.20114 0.284675i 0.321017 0.0760825i
\(15\) 0 0
\(16\) −1.52016 + 3.52413i −0.380040 + 0.881032i
\(17\) −1.31516 7.45862i −0.318972 1.80898i −0.549030 0.835803i \(-0.685003\pi\)
0.230058 0.973177i \(-0.426109\pi\)
\(18\) 0 0
\(19\) 0.132568 0.751830i 0.0304132 0.172482i −0.965818 0.259222i \(-0.916534\pi\)
0.996231 + 0.0867403i \(0.0276450\pi\)
\(20\) 4.80579 + 3.16082i 1.07461 + 0.706781i
\(21\) 0 0
\(22\) 4.51590 6.06590i 0.962792 1.29325i
\(23\) −0.126403 2.17026i −0.0263569 0.452530i −0.985507 0.169633i \(-0.945742\pi\)
0.959150 0.282897i \(-0.0912954\pi\)
\(24\) 0 0
\(25\) −1.82720 + 1.93672i −0.365441 + 0.387345i
\(26\) 3.45308 5.98091i 0.677205 1.17295i
\(27\) 0 0
\(28\) 0.635103 + 1.10003i 0.120023 + 0.207886i
\(29\) −4.42027 1.04762i −0.820824 0.194539i −0.201313 0.979527i \(-0.564521\pi\)
−0.619511 + 0.784988i \(0.712669\pi\)
\(30\) 0 0
\(31\) 7.31490 + 3.67368i 1.31379 + 0.659812i 0.961171 0.275953i \(-0.0889934\pi\)
0.352623 + 0.935765i \(0.385290\pi\)
\(32\) −8.01077 0.936325i −1.41612 0.165520i
\(33\) 0 0
\(34\) 13.6674 6.86404i 2.34395 1.17717i
\(35\) −1.59006 + 0.578734i −0.268769 + 0.0978239i
\(36\) 0 0
\(37\) 3.96908 + 1.44463i 0.652513 + 0.237495i 0.647001 0.762489i \(-0.276023\pi\)
0.00551256 + 0.999985i \(0.498245\pi\)
\(38\) 1.53124 0.178976i 0.248400 0.0290338i
\(39\) 0 0
\(40\) −0.124978 + 0.417456i −0.0197608 + 0.0660055i
\(41\) −2.59329 + 8.66219i −0.405004 + 1.35281i 0.475895 + 0.879502i \(0.342124\pi\)
−0.880899 + 0.473304i \(0.843061\pi\)
\(42\) 0 0
\(43\) −1.74287 + 0.203712i −0.265785 + 0.0310658i −0.247942 0.968775i \(-0.579754\pi\)
−0.0178433 + 0.999841i \(0.505680\pi\)
\(44\) 7.31231 + 2.66146i 1.10237 + 0.401231i
\(45\) 0 0
\(46\) 4.12528 1.50148i 0.608240 0.221381i
\(47\) 10.5125 5.27956i 1.53340 0.770103i 0.536144 0.844126i \(-0.319880\pi\)
0.997256 + 0.0740235i \(0.0235840\pi\)
\(48\) 0 0
\(49\) 6.58154 + 0.769271i 0.940219 + 0.109896i
\(50\) −4.80497 2.41314i −0.679525 0.341270i
\(51\) 0 0
\(52\) 6.91487 + 1.63886i 0.958920 + 0.227268i
\(53\) −2.80062 4.85082i −0.384695 0.666312i 0.607032 0.794678i \(-0.292360\pi\)
−0.991727 + 0.128366i \(0.959027\pi\)
\(54\) 0 0
\(55\) −5.18313 + 8.97744i −0.698893 + 1.21052i
\(56\) −0.0660353 + 0.0699933i −0.00882434 + 0.00935325i
\(57\) 0 0
\(58\) −0.533395 9.15803i −0.0700381 1.20251i
\(59\) 0.903619 1.21377i 0.117641 0.158020i −0.739402 0.673264i \(-0.764892\pi\)
0.857043 + 0.515245i \(0.172299\pi\)
\(60\) 0 0
\(61\) −2.52614 1.66147i −0.323439 0.212729i 0.377397 0.926052i \(-0.376819\pi\)
−0.700836 + 0.713322i \(0.747190\pi\)
\(62\) −2.87039 + 16.2788i −0.364540 + 2.06741i
\(63\) 0 0
\(64\) −1.49529 8.48019i −0.186911 1.06002i
\(65\) −3.74962 + 8.69259i −0.465083 + 1.07818i
\(66\) 0 0
\(67\) −7.44589 + 1.76471i −0.909660 + 0.215593i −0.658701 0.752405i \(-0.728894\pi\)
−0.250958 + 0.967998i \(0.580746\pi\)
\(68\) 10.7999 + 11.4472i 1.30968 + 1.38818i
\(69\) 0 0
\(70\) −2.04051 2.74088i −0.243887 0.327597i
\(71\) −5.19850 + 4.36206i −0.616948 + 0.517681i −0.896843 0.442350i \(-0.854145\pi\)
0.279895 + 0.960031i \(0.409701\pi\)
\(72\) 0 0
\(73\) 0.438511 + 0.367955i 0.0513238 + 0.0430658i 0.668089 0.744082i \(-0.267113\pi\)
−0.616765 + 0.787147i \(0.711557\pi\)
\(74\) −0.495949 + 8.51511i −0.0576529 + 0.989861i
\(75\) 0 0
\(76\) 0.628329 + 1.45663i 0.0720742 + 0.167087i
\(77\) −1.91254 + 1.25790i −0.217955 + 0.143351i
\(78\) 0 0
\(79\) −2.64293 8.82799i −0.297353 0.993227i −0.967895 0.251355i \(-0.919124\pi\)
0.670542 0.741871i \(-0.266061\pi\)
\(80\) 10.6242 1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) 1.77486 + 5.92845i 0.194816 + 0.650732i 0.998452 + 0.0556113i \(0.0177108\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(84\) 0 0
\(85\) −17.5160 + 11.5205i −1.89988 + 1.24957i
\(86\) −1.40351 3.25370i −0.151344 0.350855i
\(87\) 0 0
\(88\) −0.0342772 + 0.588516i −0.00365396 + 0.0627360i
\(89\) −3.52742 2.95986i −0.373906 0.313744i 0.436399 0.899753i \(-0.356254\pi\)
−0.810304 + 0.586009i \(0.800698\pi\)
\(90\) 0 0
\(91\) −1.60143 + 1.34376i −0.167875 + 0.140864i
\(92\) 2.69757 + 3.62346i 0.281241 + 0.377772i
\(93\) 0 0
\(94\) 16.3021 + 17.2792i 1.68143 + 1.78222i
\(95\) −2.05632 + 0.487356i −0.210974 + 0.0500017i
\(96\) 0 0
\(97\) −4.16552 + 9.65675i −0.422944 + 0.980495i 0.564916 + 0.825148i \(0.308909\pi\)
−0.987860 + 0.155346i \(0.950351\pi\)
\(98\) 2.32362 + 13.1779i 0.234721 + 1.33117i
\(99\) 0 0
\(100\) 0.960763 5.44876i 0.0960763 0.544876i
\(101\) −2.04573 1.34549i −0.203557 0.133882i 0.443638 0.896206i \(-0.353688\pi\)
−0.647195 + 0.762324i \(0.724058\pi\)
\(102\) 0 0
\(103\) 10.1863 13.6825i 1.00368 1.34818i 0.0670938 0.997747i \(-0.478627\pi\)
0.936588 0.350432i \(-0.113965\pi\)
\(104\) 0.0313031 + 0.537453i 0.00306952 + 0.0527016i
\(105\) 0 0
\(106\) 7.76217 8.22742i 0.753929 0.799118i
\(107\) 0.402056 0.696381i 0.0388682 0.0673217i −0.845937 0.533283i \(-0.820958\pi\)
0.884805 + 0.465961i \(0.154291\pi\)
\(108\) 0 0
\(109\) 2.11135 + 3.65696i 0.202230 + 0.350273i 0.949247 0.314532i \(-0.101848\pi\)
−0.747016 + 0.664806i \(0.768514\pi\)
\(110\) −20.3693 4.82761i −1.94214 0.460295i
\(111\) 0 0
\(112\) 2.09654 + 1.05292i 0.198105 + 0.0994920i
\(113\) 12.2597 + 1.43296i 1.15330 + 0.134801i 0.671173 0.741301i \(-0.265791\pi\)
0.482125 + 0.876102i \(0.339865\pi\)
\(114\) 0 0
\(115\) −5.37768 + 2.70077i −0.501471 + 0.251848i
\(116\) 8.87030 3.22852i 0.823586 0.299761i
\(117\) 0 0
\(118\) 2.87146 + 1.04513i 0.264339 + 0.0962116i
\(119\) −4.59831 + 0.537466i −0.421527 + 0.0492694i
\(120\) 0 0
\(121\) −0.867238 + 2.89678i −0.0788398 + 0.263343i
\(122\) 1.75115 5.84924i 0.158541 0.529565i
\(123\) 0 0
\(124\) −16.8942 + 1.97465i −1.51715 + 0.177329i
\(125\) −6.07999 2.21294i −0.543811 0.197931i
\(126\) 0 0
\(127\) −9.37360 + 3.41171i −0.831772 + 0.302740i −0.722586 0.691281i \(-0.757047\pi\)
−0.109186 + 0.994021i \(0.534824\pi\)
\(128\) 1.12455 0.564772i 0.0993973 0.0499192i
\(129\) 0 0
\(130\) −18.9880 2.21938i −1.66536 0.194652i
\(131\) 4.90886 + 2.46532i 0.428889 + 0.215396i 0.650130 0.759823i \(-0.274714\pi\)
−0.221241 + 0.975219i \(0.571011\pi\)
\(132\) 0 0
\(133\) −0.454087 0.107621i −0.0393744 0.00933190i
\(134\) −7.72636 13.3824i −0.667456 1.15607i
\(135\) 0 0
\(136\) −0.596125 + 1.03252i −0.0511173 + 0.0885378i
\(137\) 10.4519 11.0783i 0.892962 0.946484i −0.105890 0.994378i \(-0.533769\pi\)
0.998852 + 0.0478934i \(0.0152508\pi\)
\(138\) 0 0
\(139\) −0.931263 15.9892i −0.0789887 1.35618i −0.772168 0.635419i \(-0.780828\pi\)
0.693179 0.720765i \(-0.256210\pi\)
\(140\) 2.09968 2.82036i 0.177455 0.238364i
\(141\) 0 0
\(142\) −11.4495 7.53043i −0.960818 0.631940i
\(143\) −2.22392 + 12.6125i −0.185973 + 1.05471i
\(144\) 0 0
\(145\) 2.18361 + 12.3839i 0.181339 + 1.02842i
\(146\) −0.457858 + 1.06143i −0.0378926 + 0.0878449i
\(147\) 0 0
\(148\) −8.54030 + 2.02409i −0.702009 + 0.166379i
\(149\) −6.06663 6.43025i −0.496997 0.526786i 0.429510 0.903062i \(-0.358686\pi\)
−0.926508 + 0.376275i \(0.877205\pi\)
\(150\) 0 0
\(151\) 0.589901 + 0.792374i 0.0480054 + 0.0644825i 0.825478 0.564435i \(-0.190906\pi\)
−0.777472 + 0.628917i \(0.783498\pi\)
\(152\) −0.0920625 + 0.0772496i −0.00746726 + 0.00626577i
\(153\) 0 0
\(154\) −3.54117 2.97139i −0.285355 0.239442i
\(155\) 1.31750 22.6205i 0.105824 1.81692i
\(156\) 0 0
\(157\) 7.20807 + 16.7102i 0.575267 + 1.33362i 0.918891 + 0.394511i \(0.129086\pi\)
−0.343624 + 0.939107i \(0.611655\pi\)
\(158\) 15.5476 10.2258i 1.23690 0.813521i
\(159\) 0 0
\(160\) 6.40315 + 21.3880i 0.506214 + 1.69087i
\(161\) −1.32888 −0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) −5.38873 17.9996i −0.420789 1.40553i
\(165\) 0 0
\(166\) −10.4410 + 6.86715i −0.810379 + 0.532994i
\(167\) 2.33733 + 5.41854i 0.180868 + 0.419299i 0.984396 0.175968i \(-0.0563055\pi\)
−0.803528 + 0.595267i \(0.797046\pi\)
\(168\) 0 0
\(169\) 0.0758312 1.30197i 0.00583317 0.100152i
\(170\) −32.4318 27.2135i −2.48740 2.08718i
\(171\) 0 0
\(172\) 2.79319 2.34377i 0.212979 0.178711i
\(173\) 5.37008 + 7.21327i 0.408280 + 0.548415i 0.957938 0.286975i \(-0.0926495\pi\)
−0.549658 + 0.835389i \(0.685242\pi\)
\(174\) 0 0
\(175\) 1.11693 + 1.18388i 0.0844319 + 0.0894926i
\(176\) 13.9853 3.31458i 1.05418 0.249846i
\(177\) 0 0
\(178\) 3.68305 8.53826i 0.276056 0.639970i
\(179\) 0.223820 + 1.26935i 0.0167291 + 0.0948754i 0.992029 0.126009i \(-0.0402168\pi\)
−0.975300 + 0.220884i \(0.929106\pi\)
\(180\) 0 0
\(181\) 0.645386 3.66017i 0.0479712 0.272058i −0.951382 0.308013i \(-0.900336\pi\)
0.999353 + 0.0359546i \(0.0114472\pi\)
\(182\) −3.52708 2.31980i −0.261444 0.171955i
\(183\) 0 0
\(184\) −0.204361 + 0.274504i −0.0150657 + 0.0202367i
\(185\) −0.679836 11.6723i −0.0499826 0.858167i
\(186\) 0 0
\(187\) −19.4633 + 20.6299i −1.42330 + 1.50861i
\(188\) −12.2223 + 21.1696i −0.891400 + 1.54395i
\(189\) 0 0
\(190\) −2.13377 3.69580i −0.154800 0.268122i
\(191\) 7.09353 + 1.68120i 0.513270 + 0.121647i 0.479085 0.877768i \(-0.340968\pi\)
0.0341846 + 0.999416i \(0.489117\pi\)
\(192\) 0 0
\(193\) −8.60314 4.32066i −0.619267 0.311008i 0.111364 0.993780i \(-0.464478\pi\)
−0.730632 + 0.682772i \(0.760774\pi\)
\(194\) −21.0941 2.46555i −1.51447 0.177016i
\(195\) 0 0
\(196\) −12.3046 + 6.17962i −0.878902 + 0.441401i
\(197\) 4.63898 1.68845i 0.330513 0.120297i −0.171433 0.985196i \(-0.554840\pi\)
0.501946 + 0.864899i \(0.332617\pi\)
\(198\) 0 0
\(199\) −2.36550 0.860973i −0.167686 0.0610327i 0.256813 0.966461i \(-0.417328\pi\)
−0.424499 + 0.905428i \(0.639550\pi\)
\(200\) 0.416317 0.0486605i 0.0294381 0.00344082i
\(201\) 0 0
\(202\) 1.41812 4.73684i 0.0997784 0.333283i
\(203\) −0.796414 + 2.66021i −0.0558973 + 0.186710i
\(204\) 0 0
\(205\) 24.8605 2.90577i 1.73633 0.202948i
\(206\) 32.3692 + 11.7814i 2.25527 + 0.820851i
\(207\) 0 0
\(208\) 12.3341 4.48925i 0.855217 0.311273i
\(209\) −2.55482 + 1.28308i −0.176721 + 0.0887524i
\(210\) 0 0
\(211\) −6.94056 0.811235i −0.477808 0.0558477i −0.126219 0.992002i \(-0.540284\pi\)
−0.351589 + 0.936155i \(0.614358\pi\)
\(212\) 10.4011 + 5.22364i 0.714351 + 0.358761i
\(213\) 0 0
\(214\) 1.58005 + 0.374478i 0.108010 + 0.0255988i
\(215\) 2.42868 + 4.20659i 0.165634 + 0.286887i
\(216\) 0 0
\(217\) 2.50183 4.33330i 0.169835 0.294163i
\(218\) −5.85178 + 6.20253i −0.396333 + 0.420088i
\(219\) 0 0
\(220\) −1.25247 21.5042i −0.0844418 1.44981i
\(221\) −15.4672 + 20.7761i −1.04044 + 1.39755i
\(222\) 0 0
\(223\) 15.0373 + 9.89018i 1.00697 + 0.662295i 0.942007 0.335592i \(-0.108936\pi\)
0.0649637 + 0.997888i \(0.479307\pi\)
\(224\) −0.856110 + 4.85524i −0.0572012 + 0.324404i
\(225\) 0 0
\(226\) 4.32831 + 24.5471i 0.287915 + 1.63285i
\(227\) −0.242999 + 0.563336i −0.0161284 + 0.0373899i −0.926090 0.377303i \(-0.876852\pi\)
0.909962 + 0.414693i \(0.136111\pi\)
\(228\) 0 0
\(229\) −4.86058 + 1.15198i −0.321196 + 0.0761249i −0.388051 0.921638i \(-0.626852\pi\)
0.0668550 + 0.997763i \(0.478704\pi\)
\(230\) −8.33938 8.83923i −0.549883 0.582842i
\(231\) 0 0
\(232\) 0.427038 + 0.573612i 0.0280364 + 0.0376595i
\(233\) 10.0792 8.45747i 0.660311 0.554067i −0.249869 0.968280i \(-0.580387\pi\)
0.910180 + 0.414213i \(0.135943\pi\)
\(234\) 0 0
\(235\) −24.9453 20.9316i −1.62725 1.36543i
\(236\) −0.182828 + 3.13904i −0.0119011 + 0.204334i
\(237\) 0 0
\(238\) −3.70296 8.58442i −0.240027 0.556446i
\(239\) 7.60142 4.99953i 0.491695 0.323393i −0.279333 0.960194i \(-0.590113\pi\)
0.771028 + 0.636802i \(0.219743\pi\)
\(240\) 0 0
\(241\) 4.08698 + 13.6515i 0.263265 + 0.879368i 0.982763 + 0.184872i \(0.0591872\pi\)
−0.719497 + 0.694496i \(0.755628\pi\)
\(242\) −6.10626 −0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) −5.26074 17.5721i −0.336096 1.12264i
\(246\) 0 0
\(247\) −2.18134 + 1.43469i −0.138795 + 0.0912872i
\(248\) −0.510379 1.18319i −0.0324091 0.0751327i
\(249\) 0 0
\(250\) 0.759713 13.0438i 0.0480484 0.824960i
\(251\) 6.58379 + 5.52445i 0.415565 + 0.348700i 0.826473 0.562976i \(-0.190344\pi\)
−0.410908 + 0.911677i \(0.634788\pi\)
\(252\) 0 0
\(253\) −6.23640 + 5.23296i −0.392079 + 0.328993i
\(254\) −12.0291 16.1578i −0.754770 1.01383i
\(255\) 0 0
\(256\) −10.0746 10.6784i −0.629661 0.667401i
\(257\) −21.5984 + 5.11891i −1.34727 + 0.319309i −0.840050 0.542509i \(-0.817475\pi\)
−0.507219 + 0.861817i \(0.669326\pi\)
\(258\) 0 0
\(259\) 1.02265 2.37076i 0.0635441 0.147312i
\(260\) −3.41594 19.3728i −0.211848 1.20145i
\(261\) 0 0
\(262\) −1.92625 + 10.9243i −0.119004 + 0.674906i
\(263\) −4.39677 2.89180i −0.271117 0.178316i 0.406669 0.913575i \(-0.366690\pi\)
−0.677786 + 0.735259i \(0.737060\pi\)
\(264\) 0 0
\(265\) −9.25898 + 12.4370i −0.568775 + 0.763997i
\(266\) −0.0547947 0.940789i −0.00335968 0.0576835i
\(267\) 0 0
\(268\) 10.9118 11.5658i 0.666545 0.706496i
\(269\) −3.11423 + 5.39401i −0.189878 + 0.328878i −0.945209 0.326465i \(-0.894143\pi\)
0.755331 + 0.655343i \(0.227476\pi\)
\(270\) 0 0
\(271\) −3.65935 6.33818i −0.222290 0.385017i 0.733213 0.679999i \(-0.238020\pi\)
−0.955503 + 0.294982i \(0.904686\pi\)
\(272\) 28.2844 + 6.70351i 1.71499 + 0.406460i
\(273\) 0 0
\(274\) 27.4850 + 13.8035i 1.66043 + 0.833900i
\(275\) 9.90368 + 1.15757i 0.597214 + 0.0698043i
\(276\) 0 0
\(277\) −16.6496 + 8.36174i −1.00038 + 0.502409i −0.872099 0.489330i \(-0.837242\pi\)
−0.128279 + 0.991738i \(0.540945\pi\)
\(278\) 30.3926 11.0620i 1.82283 0.663456i
\(279\) 0 0
\(280\) 0.250307 + 0.0911045i 0.0149587 + 0.00544453i
\(281\) 1.01503 0.118640i 0.0605517 0.00707747i −0.0857631 0.996316i \(-0.527333\pi\)
0.146315 + 0.989238i \(0.453259\pi\)
\(282\) 0 0
\(283\) 3.14431 10.5027i 0.186910 0.624322i −0.812249 0.583311i \(-0.801757\pi\)
0.999159 0.0410113i \(-0.0130580\pi\)
\(284\) 4.04430 13.5089i 0.239985 0.801607i
\(285\) 0 0
\(286\) −25.6876 + 3.00245i −1.51894 + 0.177538i
\(287\) 5.19387 + 1.89041i 0.306584 + 0.111588i
\(288\) 0 0
\(289\) −37.9265 + 13.8041i −2.23097 + 0.812008i
\(290\) −22.6927 + 11.3967i −1.33256 + 0.669236i
\(291\) 0 0
\(292\) −1.18145 0.138092i −0.0691393 0.00808122i
\(293\) 21.6970 + 10.8966i 1.26755 + 0.636588i 0.950177 0.311712i \(-0.100902\pi\)
0.317375 + 0.948300i \(0.397199\pi\)
\(294\) 0 0
\(295\) −4.07584 0.965992i −0.237305 0.0562422i
\(296\) −0.332457 0.575832i −0.0193237 0.0334696i
\(297\) 0 0
\(298\) 8.92609 15.4604i 0.517075 0.895599i
\(299\) −5.10199 + 5.40779i −0.295056 + 0.312741i
\(300\) 0 0
\(301\) 0.0623678 + 1.07081i 0.00359482 + 0.0617207i
\(302\) −1.19124 + 1.60012i −0.0685483 + 0.0920763i
\(303\) 0 0
\(304\) 2.44802 + 1.61009i 0.140404 + 0.0923449i
\(305\) −1.45337 + 8.24247i −0.0832198 + 0.471963i
\(306\) 0 0
\(307\) −4.31169 24.4528i −0.246081 1.39560i −0.817968 0.575264i \(-0.804899\pi\)
0.571887 0.820333i \(-0.306212\pi\)
\(308\) 1.88404 4.36769i 0.107353 0.248872i
\(309\) 0 0
\(310\) 44.5238 10.5523i 2.52878 0.599332i
\(311\) −1.27003 1.34616i −0.0720170 0.0763335i 0.690363 0.723463i \(-0.257451\pi\)
−0.762380 + 0.647130i \(0.775969\pi\)
\(312\) 0 0
\(313\) −4.15117 5.57599i −0.234638 0.315173i 0.669172 0.743108i \(-0.266649\pi\)
−0.903810 + 0.427934i \(0.859242\pi\)
\(314\) −28.1521 + 23.6225i −1.58872 + 1.33309i
\(315\) 0 0
\(316\) 14.6687 + 12.3085i 0.825178 + 0.692406i
\(317\) −1.51393 + 25.9932i −0.0850310 + 1.45993i 0.638493 + 0.769627i \(0.279558\pi\)
−0.723524 + 0.690299i \(0.757479\pi\)
\(318\) 0 0
\(319\) 6.73802 + 15.6205i 0.377256 + 0.874579i
\(320\) −19.9151 + 13.0984i −1.11329 + 0.732222i
\(321\) 0 0
\(322\) −0.769645 2.57079i −0.0428906 0.143265i
\(323\) −5.78196 −0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) 9.93094 + 33.1717i 0.550024 + 1.83721i
\(327\) 0 0
\(328\) 1.18923 0.782172i 0.0656645 0.0431882i
\(329\) −2.84817 6.60281i −0.157025 0.364025i
\(330\) 0 0
\(331\) 1.51383 25.9914i 0.0832075 1.42862i −0.655807 0.754928i \(-0.727672\pi\)
0.739015 0.673689i \(-0.235291\pi\)
\(332\) −9.85078 8.26579i −0.540632 0.453644i
\(333\) 0 0
\(334\) −9.12878 + 7.65996i −0.499505 + 0.419134i
\(335\) 12.6492 + 16.9908i 0.691098 + 0.928306i
\(336\) 0 0
\(337\) 10.3150 + 10.9332i 0.561892 + 0.595571i 0.944570 0.328311i \(-0.106479\pi\)
−0.382677 + 0.923882i \(0.624998\pi\)
\(338\) 2.56266 0.607362i 0.139390 0.0330361i
\(339\) 0 0
\(340\) 17.2550 40.0015i 0.935782 2.16939i
\(341\) −5.32295 30.1880i −0.288254 1.63477i
\(342\) 0 0
\(343\) 1.44640 8.20293i 0.0780981 0.442917i
\(344\) 0.230787 + 0.151791i 0.0124432 + 0.00818403i
\(345\) 0 0
\(346\) −10.8443 + 14.5664i −0.582994 + 0.783097i
\(347\) 1.47816 + 25.3791i 0.0793520 + 1.36242i 0.769451 + 0.638706i \(0.220530\pi\)
−0.690099 + 0.723715i \(0.742433\pi\)
\(348\) 0 0
\(349\) 20.0832 21.2870i 1.07503 1.13947i 0.0853248 0.996353i \(-0.472807\pi\)
0.989706 0.143113i \(-0.0457113\pi\)
\(350\) −1.64339 + 2.84643i −0.0878427 + 0.152148i
\(351\) 0 0
\(352\) 15.1016 + 26.1568i 0.804920 + 1.39416i
\(353\) 27.9183 + 6.61675i 1.48594 + 0.352174i 0.891890 0.452253i \(-0.149380\pi\)
0.594051 + 0.804428i \(0.297528\pi\)
\(354\) 0 0
\(355\) 16.7869 + 8.43072i 0.890958 + 0.447456i
\(356\) 9.50370 + 1.11082i 0.503695 + 0.0588735i
\(357\) 0 0
\(358\) −2.32599 + 1.16816i −0.122933 + 0.0617391i
\(359\) 19.5984 7.13322i 1.03436 0.376477i 0.231622 0.972806i \(-0.425597\pi\)
0.802740 + 0.596329i \(0.203375\pi\)
\(360\) 0 0
\(361\) 17.3065 + 6.29905i 0.910868 + 0.331529i
\(362\) 7.45460 0.871318i 0.391805 0.0457954i
\(363\) 0 0
\(364\) 1.24587 4.16151i 0.0653015 0.218122i
\(365\) 0.454464 1.51802i 0.0237877 0.0794566i
\(366\) 0 0
\(367\) 34.3330 4.01296i 1.79217 0.209475i 0.846009 0.533169i \(-0.178999\pi\)
0.946162 + 0.323694i \(0.104925\pi\)
\(368\) 7.84042 + 2.85368i 0.408710 + 0.148758i
\(369\) 0 0
\(370\) 22.1871 8.07544i 1.15345 0.419822i
\(371\) −3.05972 + 1.53665i −0.158853 + 0.0797790i
\(372\) 0 0
\(373\) 9.30608 + 1.08773i 0.481851 + 0.0563203i 0.353551 0.935415i \(-0.384974\pi\)
0.128300 + 0.991735i \(0.459048\pi\)
\(374\) −51.1823 25.7047i −2.64657 1.32916i
\(375\) 0 0
\(376\) −1.80194 0.427067i −0.0929277 0.0220243i
\(377\) 7.76787 + 13.4543i 0.400065 + 0.692934i
\(378\) 0 0
\(379\) 0.963771 1.66930i 0.0495056 0.0857462i −0.840211 0.542260i \(-0.817569\pi\)
0.889716 + 0.456514i \(0.150902\pi\)
\(380\) 3.01349 3.19411i 0.154589 0.163855i
\(381\) 0 0
\(382\) 0.855977 + 14.6966i 0.0437956 + 0.751941i
\(383\) 11.6398 15.6350i 0.594768 0.798912i −0.398199 0.917299i \(-0.630365\pi\)
0.992968 + 0.118387i \(0.0377722\pi\)
\(384\) 0 0
\(385\) 5.29420 + 3.48205i 0.269817 + 0.177462i
\(386\) 3.37590 19.1457i 0.171829 0.974489i
\(387\) 0 0
\(388\) −3.79483 21.5216i −0.192653 1.09259i
\(389\) −3.62013 + 8.39242i −0.183548 + 0.425512i −0.985002 0.172545i \(-0.944801\pi\)
0.801454 + 0.598057i \(0.204060\pi\)
\(390\) 0 0
\(391\) −16.0209 + 3.79702i −0.810211 + 0.192024i
\(392\) −0.715833 0.758738i −0.0361550 0.0383221i
\(393\) 0 0
\(394\) 5.95315 + 7.99647i 0.299916 + 0.402857i
\(395\) −19.5409 + 16.3967i −0.983208 + 0.825009i
\(396\) 0 0
\(397\) 25.5466 + 21.4361i 1.28215 + 1.07585i 0.992944 + 0.118581i \(0.0378344\pi\)
0.289202 + 0.957268i \(0.406610\pi\)
\(398\) 0.295577 5.07485i 0.0148159 0.254379i
\(399\) 0 0
\(400\) −4.04762 9.38343i −0.202381 0.469172i
\(401\) 2.96491 1.95005i 0.148061 0.0973809i −0.473317 0.880892i \(-0.656944\pi\)
0.621378 + 0.783511i \(0.286573\pi\)
\(402\) 0 0
\(403\) −8.02876 26.8179i −0.399941 1.33590i
\(404\) 5.08795 0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) −4.53651 15.1530i −0.224866 0.751106i
\(408\) 0 0
\(409\) 26.7647 17.6034i 1.32343 0.870435i 0.326237 0.945288i \(-0.394219\pi\)
0.997195 + 0.0748535i \(0.0238489\pi\)
\(410\) 20.0198 + 46.4111i 0.988707 + 2.29208i
\(411\) 0 0
\(412\) −2.06097 + 35.3855i −0.101537 + 1.74332i
\(413\) −0.708579 0.594568i −0.0348669 0.0292568i
\(414\) 0 0
\(415\) 13.1227 11.0113i 0.644168 0.540522i
\(416\) 16.4712 + 22.1247i 0.807568 + 1.08475i
\(417\) 0 0
\(418\) −3.96186 4.19933i −0.193781 0.205396i
\(419\) −14.4349 + 3.42114i −0.705192 + 0.167134i −0.567538 0.823347i \(-0.692104\pi\)
−0.137653 + 0.990480i \(0.543956\pi\)
\(420\) 0 0
\(421\) −6.17082 + 14.3056i −0.300747 + 0.697210i −0.999841 0.0178193i \(-0.994328\pi\)
0.699094 + 0.715030i \(0.253587\pi\)
\(422\) −2.45037 13.8968i −0.119282 0.676484i
\(423\) 0 0
\(424\) −0.153114 + 0.868355i −0.00743589 + 0.0421710i
\(425\) 16.8483 + 11.0813i 0.817264 + 0.537523i
\(426\) 0 0
\(427\) −1.10369 + 1.48251i −0.0534111 + 0.0717435i
\(428\) 0.0971546 + 1.66808i 0.00469614 + 0.0806297i
\(429\) 0 0
\(430\) −6.73129 + 7.13475i −0.324611 + 0.344068i
\(431\) −0.648713 + 1.12360i −0.0312474 + 0.0541221i −0.881226 0.472695i \(-0.843281\pi\)
0.849979 + 0.526817i \(0.176615\pi\)
\(432\) 0 0
\(433\) −8.76506 15.1815i −0.421222 0.729577i 0.574838 0.818268i \(-0.305065\pi\)
−0.996059 + 0.0886901i \(0.971732\pi\)
\(434\) 9.83200 + 2.33023i 0.471951 + 0.111854i
\(435\) 0 0
\(436\) −7.84124 3.93802i −0.375527 0.188597i
\(437\) −1.64842 0.192673i −0.0788548 0.00921680i
\(438\) 0 0
\(439\) 19.4081 9.74712i 0.926298 0.465205i 0.0793304 0.996848i \(-0.474722\pi\)
0.846968 + 0.531644i \(0.178426\pi\)
\(440\) 1.53345 0.558129i 0.0731042 0.0266077i
\(441\) 0 0
\(442\) −49.1506 17.8894i −2.33786 0.850910i
\(443\) −9.08183 + 1.06151i −0.431491 + 0.0504340i −0.329066 0.944307i \(-0.606734\pi\)
−0.102424 + 0.994741i \(0.532660\pi\)
\(444\) 0 0
\(445\) −3.65575 + 12.2110i −0.173299 + 0.578859i
\(446\) −10.4240 + 34.8186i −0.493591 + 1.64871i
\(447\) 0 0
\(448\) −5.22812 + 0.611080i −0.247006 + 0.0288708i
\(449\) −11.6732 4.24870i −0.550893 0.200509i 0.0515501 0.998670i \(-0.483584\pi\)
−0.602443 + 0.798162i \(0.705806\pi\)
\(450\) 0 0
\(451\) 31.8189 11.5811i 1.49829 0.545335i
\(452\) −22.9204 + 11.5111i −1.07809 + 0.541435i
\(453\) 0 0
\(454\) −1.23054 0.143830i −0.0577523 0.00675027i
\(455\) 5.17132 + 2.59714i 0.242435 + 0.121756i
\(456\) 0 0
\(457\) −18.1910 4.31134i −0.850938 0.201676i −0.218067 0.975934i \(-0.569975\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(458\) −5.04367 8.73589i −0.235675 0.408201i
\(459\) 0 0
\(460\) 6.25233 10.8293i 0.291516 0.504921i
\(461\) −28.1921 + 29.8819i −1.31304 + 1.39174i −0.444768 + 0.895646i \(0.646714\pi\)
−0.868270 + 0.496093i \(0.834768\pi\)
\(462\) 0 0
\(463\) 0.240127 + 4.12282i 0.0111597 + 0.191604i 0.999281 + 0.0379254i \(0.0120749\pi\)
−0.988121 + 0.153678i \(0.950888\pi\)
\(464\) 10.4115 13.9851i 0.483341 0.649240i
\(465\) 0 0
\(466\) 22.1990 + 14.6005i 1.02835 + 0.676357i
\(467\) −4.38922 + 24.8925i −0.203109 + 1.15189i 0.697279 + 0.716799i \(0.254394\pi\)
−0.900388 + 0.435087i \(0.856717\pi\)
\(468\) 0 0
\(469\) 0.812254 + 4.60652i 0.0375064 + 0.212710i
\(470\) 26.0458 60.3810i 1.20140 2.78517i
\(471\) 0 0
\(472\) −0.231787 + 0.0549346i −0.0106689 + 0.00252857i
\(473\) 4.50942 + 4.77971i 0.207344 + 0.219771i
\(474\) 0 0
\(475\) 1.21386 + 1.63049i 0.0556956 + 0.0748122i
\(476\) 7.36945 6.18370i 0.337778 0.283430i
\(477\) 0 0
\(478\) 14.0744 + 11.8098i 0.643748 + 0.540168i
\(479\) 1.20953 20.7669i 0.0552650 0.948863i −0.850737 0.525591i \(-0.823844\pi\)
0.906002 0.423272i \(-0.139119\pi\)
\(480\) 0 0
\(481\) −5.72140 13.2637i −0.260873 0.604773i
\(482\) −24.0425 + 15.8130i −1.09511 + 0.720263i
\(483\) 0 0
\(484\) −1.80208 6.01937i −0.0819128 0.273608i
\(485\) 29.1122 1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) 0.136509 + 0.455973i 0.00617949 + 0.0206409i
\(489\) 0 0
\(490\) 30.9474 20.3544i 1.39806 0.919518i
\(491\) −14.4749 33.5565i −0.653241 1.51438i −0.846026 0.533142i \(-0.821011\pi\)
0.192785 0.981241i \(-0.438248\pi\)
\(492\) 0 0
\(493\) −2.00048 + 34.3469i −0.0900971 + 1.54691i
\(494\) −4.03886 3.38900i −0.181717 0.152479i
\(495\) 0 0
\(496\) −24.0663 + 20.1941i −1.08061 + 0.906740i
\(497\) 2.47715 + 3.32739i 0.111115 + 0.149254i
\(498\) 0 0
\(499\) −24.9750 26.4720i −1.11804 1.18505i −0.980903 0.194496i \(-0.937693\pi\)
−0.137132 0.990553i \(-0.543788\pi\)
\(500\) 13.0824 3.10058i 0.585061 0.138662i
\(501\) 0 0
\(502\) −6.87426 + 15.9363i −0.306813 + 0.711273i
\(503\) 1.38230 + 7.83939i 0.0616335 + 0.349541i 0.999992 + 0.00387871i \(0.00123464\pi\)
−0.938359 + 0.345662i \(0.887654\pi\)
\(504\) 0 0
\(505\) −1.17697 + 6.67494i −0.0523746 + 0.297031i
\(506\) −13.7354 9.03391i −0.610613 0.401606i
\(507\) 0 0
\(508\) 12.3779 16.6264i 0.549180 0.737676i
\(509\) 0.0970326 + 1.66599i 0.00430090 + 0.0738435i 0.999776 0.0211833i \(-0.00674336\pi\)
−0.995475 + 0.0950268i \(0.969706\pi\)
\(510\) 0 0
\(511\) 0.240128 0.254520i 0.0106226 0.0112593i
\(512\) 16.0816 27.8541i 0.710711 1.23099i
\(513\) 0 0
\(514\) −22.4119 38.8186i −0.988548 1.71221i
\(515\) −45.9459 10.8894i −2.02462 0.479843i
\(516\) 0 0
\(517\) −39.3675 19.7711i −1.73138 0.869532i
\(518\) 5.17866 + 0.605299i 0.227537 + 0.0265953i
\(519\) 0 0
\(520\) 1.33175 0.668832i 0.0584013 0.0293302i
\(521\) 32.9725 12.0010i 1.44455 0.525773i 0.503486 0.864003i \(-0.332050\pi\)
0.941063 + 0.338230i \(0.109828\pi\)
\(522\) 0 0
\(523\) 11.3086 + 4.11600i 0.494491 + 0.179980i 0.577214 0.816593i \(-0.304140\pi\)
−0.0827236 + 0.996573i \(0.526362\pi\)
\(524\) −11.3373 + 1.32514i −0.495274 + 0.0578892i
\(525\) 0 0
\(526\) 3.04789 10.1807i 0.132894 0.443898i
\(527\) 17.7803 59.3905i 0.774524 2.58709i
\(528\) 0 0
\(529\) 18.1504 2.12148i 0.789149 0.0922383i
\(530\) −29.4226 10.7089i −1.27803 0.465167i
\(531\) 0 0
\(532\) 0.911231 0.331661i 0.0395069 0.0143793i
\(533\) 27.6338 13.8782i 1.19695 0.601133i
\(534\) 0 0
\(535\) −2.21085 0.258411i −0.0955832 0.0111721i
\(536\) 1.07647 + 0.540625i 0.0464966 + 0.0233515i
\(537\) 0 0
\(538\) −12.2387 2.90062i −0.527647 0.125055i
\(539\) −12.4073 21.4900i −0.534420 0.925642i
\(540\) 0 0
\(541\) −9.81306 + 16.9967i −0.421896 + 0.730746i −0.996125 0.0879490i \(-0.971969\pi\)
0.574229 + 0.818695i \(0.305302\pi\)
\(542\) 10.1422 10.7501i 0.435645 0.461757i
\(543\) 0 0
\(544\) 3.55172 + 60.9807i 0.152279 + 2.61452i
\(545\) 6.98021 9.37604i 0.298999 0.401626i
\(546\) 0 0
\(547\) −7.28872 4.79386i −0.311643 0.204971i 0.384046 0.923314i \(-0.374530\pi\)
−0.695689 + 0.718343i \(0.744901\pi\)
\(548\) −5.49569 + 31.1676i −0.234764 + 1.33141i
\(549\) 0 0
\(550\) 3.49651 + 19.8297i 0.149092 + 0.845540i
\(551\) −1.37362 + 3.18441i −0.0585183 + 0.135661i
\(552\) 0 0
\(553\) −5.48116 + 1.29906i −0.233083 + 0.0552416i
\(554\) −25.8192 27.3668i −1.09695 1.16270i
\(555\) 0 0
\(556\) 19.8741 + 26.6955i 0.842849 + 1.13214i
\(557\) 15.1698 12.7290i 0.642765 0.539344i −0.262101 0.965041i \(-0.584415\pi\)
0.904866 + 0.425696i \(0.139971\pi\)
\(558\) 0 0
\(559\) 4.59706 + 3.85739i 0.194435 + 0.163150i
\(560\) 0.377611 6.48333i 0.0159570 0.273971i
\(561\) 0 0
\(562\) 0.817391 + 1.89492i 0.0344795 + 0.0799326i
\(563\) −28.3702 + 18.6594i −1.19566 + 0.786400i −0.981699 0.190442i \(-0.939008\pi\)
−0.213964 + 0.976841i \(0.568638\pi\)
\(564\) 0 0
\(565\) −9.79942 32.7323i −0.412265 1.37706i
\(566\) 22.1392 0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) 5.51785 + 18.4309i 0.231320 + 0.772664i 0.992297 + 0.123884i \(0.0395352\pi\)
−0.760976 + 0.648780i \(0.775280\pi\)
\(570\) 0 0
\(571\) 2.07779 1.36658i 0.0869528 0.0571898i −0.505288 0.862951i \(-0.668614\pi\)
0.592241 + 0.805761i \(0.298243\pi\)
\(572\) −10.5406 24.4360i −0.440726 1.02172i
\(573\) 0 0
\(574\) −0.648989 + 11.1427i −0.0270883 + 0.465088i
\(575\) 4.43416 + 3.72070i 0.184917 + 0.155164i
\(576\) 0 0
\(577\) 19.5278 16.3857i 0.812951 0.682147i −0.138359 0.990382i \(-0.544183\pi\)
0.951310 + 0.308235i \(0.0997383\pi\)
\(578\) −48.6708 65.3762i −2.02444 2.71929i
\(579\) 0 0
\(580\) −17.9316 19.0063i −0.744568 0.789196i
\(581\) 3.68088 0.872385i 0.152709 0.0361926i
\(582\) 0 0
\(583\) −8.30808 + 19.2603i −0.344085 + 0.797680i
\(584\) −0.0156480 0.0887440i −0.000647517 0.00367225i
\(585\) 0 0
\(586\) −8.51396 + 48.2851i −0.351709 + 1.99464i
\(587\) −0.748080 0.492020i −0.0308765 0.0203078i 0.533977 0.845499i \(-0.320697\pi\)
−0.564853 + 0.825191i \(0.691067\pi\)
\(588\) 0 0
\(589\) 3.73170 5.01255i 0.153762 0.206538i
\(590\) −0.491832 8.44443i −0.0202484 0.347652i
\(591\) 0 0
\(592\) −11.1247 + 11.7915i −0.457222 + 0.484627i
\(593\) −16.2145 + 28.0843i −0.665848 + 1.15328i 0.313207 + 0.949685i \(0.398597\pi\)
−0.979055 + 0.203597i \(0.934737\pi\)
\(594\) 0 0
\(595\) 6.40773 + 11.0985i 0.262691 + 0.454994i
\(596\) 17.8747 + 4.23638i 0.732177 + 0.173529i
\(597\) 0 0
\(598\) −13.4166 6.73807i −0.548646 0.275540i
\(599\) 41.8092 + 4.88680i 1.70828 + 0.199669i 0.913390 0.407086i \(-0.133455\pi\)
0.794889 + 0.606755i \(0.207529\pi\)
\(600\) 0 0
\(601\) −27.6486 + 13.8857i −1.12781 + 0.566408i −0.912067 0.410042i \(-0.865514\pi\)
−0.215744 + 0.976450i \(0.569218\pi\)
\(602\) −2.03543 + 0.740836i −0.0829580 + 0.0301942i
\(603\) 0 0
\(604\) −1.92891 0.702064i −0.0784861 0.0285666i
\(605\) 8.31375 0.971737i 0.338002 0.0395067i
\(606\) 0 0
\(607\) 4.29468 14.3452i 0.174316 0.582255i −0.825524 0.564367i \(-0.809120\pi\)
0.999840 0.0178885i \(-0.00569440\pi\)
\(608\) −1.76593 + 5.89861i −0.0716179 + 0.239220i
\(609\) 0 0
\(610\) −16.7873 + 1.96215i −0.679698 + 0.0794453i
\(611\) −37.8048 13.7598i −1.52942 0.556663i
\(612\) 0 0
\(613\) 17.2467 6.27730i 0.696589 0.253538i 0.0306353 0.999531i \(-0.490247\pi\)
0.665954 + 0.745993i \(0.268025\pi\)
\(614\) 44.8082 22.5035i 1.80831 0.908169i
\(615\) 0 0
\(616\) 0.357920 + 0.0418348i 0.0144210 + 0.00168557i
\(617\) −29.2891 14.7095i −1.17913 0.592184i −0.252299 0.967649i \(-0.581187\pi\)
−0.926836 + 0.375466i \(0.877483\pi\)
\(618\) 0 0
\(619\) −5.84054 1.38423i −0.234751 0.0556370i 0.111556 0.993758i \(-0.464416\pi\)
−0.346307 + 0.938121i \(0.612565\pi\)
\(620\) 23.5420 + 40.7760i 0.945471 + 1.63760i
\(621\) 0 0
\(622\) 1.86865 3.23661i 0.0749262 0.129776i
\(623\) −1.93161 + 2.04738i −0.0773882 + 0.0820267i
\(624\) 0 0
\(625\) 1.81549 + 31.1707i 0.0726195 + 1.24683i
\(626\) 8.38285 11.2601i 0.335046 0.450045i
\(627\) 0 0
\(628\) −31.5946 20.7801i −1.26076 0.829215i
\(629\) 5.55497 31.5038i 0.221491 1.25614i
\(630\) 0 0
\(631\) −4.24361 24.0667i −0.168935 0.958080i −0.944914 0.327320i \(-0.893854\pi\)
0.775978 0.630760i \(-0.217257\pi\)
\(632\) −0.574572 + 1.33201i −0.0228553 + 0.0529844i
\(633\) 0 0
\(634\) −51.1623 + 12.1257i −2.03191 + 0.481572i
\(635\) 18.9490 + 20.0848i 0.751968 + 0.797040i
\(636\) 0 0
\(637\) −13.5325 18.1773i −0.536178 0.720212i
\(638\) −26.3163 + 22.0820i −1.04187 + 0.874234i
\(639\) 0 0
\(640\) −2.66848 2.23912i −0.105481 0.0885089i
\(641\) −0.599772 + 10.2977i −0.0236896 + 0.406734i 0.965530 + 0.260293i \(0.0838190\pi\)
−0.989219 + 0.146441i \(0.953218\pi\)
\(642\) 0 0
\(643\) −17.1529 39.7650i −0.676446 1.56818i −0.816057 0.577971i \(-0.803845\pi\)
0.139612 0.990206i \(-0.455415\pi\)
\(644\) 2.30707 1.51739i 0.0909114 0.0597934i
\(645\) 0 0
\(646\) −3.34873 11.1855i −0.131754 0.440089i
\(647\) 6.50021 0.255550 0.127775 0.991803i \(-0.459217\pi\)
0.127775 + 0.991803i \(0.459217\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) 5.27389 + 17.6160i 0.206859 + 0.690956i
\(651\) 0 0
\(652\) −29.7688 + 19.5792i −1.16584 + 0.766782i
\(653\) 1.17917 + 2.73362i 0.0461444 + 0.106975i 0.939729 0.341920i \(-0.111077\pi\)
−0.893585 + 0.448895i \(0.851818\pi\)
\(654\) 0 0
\(655\) 0.884140 15.1801i 0.0345462 0.593136i
\(656\) −26.5844 22.3070i −1.03795 0.870941i
\(657\) 0 0
\(658\) 11.1240 9.33410i 0.433657 0.363881i
\(659\) −16.7861 22.5476i −0.653893 0.878330i 0.344273 0.938869i \(-0.388125\pi\)
−0.998166 + 0.0605394i \(0.980718\pi\)
\(660\) 0 0
\(661\) 2.23073 + 2.36443i 0.0867653 + 0.0919658i 0.769301 0.638886i \(-0.220604\pi\)
−0.682536 + 0.730852i \(0.739123\pi\)
\(662\) 51.1587 12.1248i 1.98834 0.471245i
\(663\) 0 0
\(664\) 0.385855 0.894513i 0.0149741 0.0347138i
\(665\) 0.224319 + 1.27217i 0.00869871 + 0.0493328i
\(666\) 0 0
\(667\) −1.71488 + 9.72556i −0.0664004 + 0.376575i
\(668\) −10.2450 6.73827i −0.396393 0.260711i
\(669\) 0 0
\(670\) −25.5437 + 34.3111i −0.986838 + 1.32555i
\(671\) 0.658357 + 11.3036i 0.0254156 + 0.436369i
\(672\) 0 0
\(673\) −9.53489 + 10.1064i −0.367543 + 0.389573i −0.884579 0.466391i \(-0.845554\pi\)
0.517036 + 0.855964i \(0.327035\pi\)
\(674\) −15.1769 + 26.2871i −0.584591 + 1.01254i
\(675\) 0 0
\(676\) 1.35501 + 2.34695i 0.0521158 + 0.0902672i
\(677\) −10.5640 2.50372i −0.406009 0.0962259i 0.0225368 0.999746i \(-0.492826\pi\)
−0.428546 + 0.903520i \(0.640974\pi\)
\(678\) 0 0
\(679\) 5.74491 + 2.88520i 0.220470 + 0.110724i
\(680\) 3.27801 + 0.383144i 0.125706 + 0.0146929i
\(681\) 0 0
\(682\) 55.3175 27.7815i 2.11822 1.06381i
\(683\) −31.5858 + 11.4963i −1.20860 + 0.439893i −0.866217 0.499668i \(-0.833455\pi\)
−0.342380 + 0.939562i \(0.611233\pi\)
\(684\) 0 0
\(685\) −39.6178 14.4197i −1.51372 0.550949i
\(686\) 16.7068 1.95274i 0.637867 0.0745560i
\(687\) 0 0
\(688\) 1.93153 6.45176i 0.0736389 0.245971i
\(689\) −5.49394 + 18.3511i −0.209303 + 0.699119i
\(690\) 0 0
\(691\) 0.444637 0.0519706i 0.0169148 0.00197706i −0.107631 0.994191i \(-0.534327\pi\)
0.124546 + 0.992214i \(0.460253\pi\)
\(692\) −17.5595 6.39115i −0.667513 0.242955i
\(693\) 0 0
\(694\) −48.2412 + 17.5584i −1.83121 + 0.666507i
\(695\) −39.6195 + 19.8977i −1.50285 + 0.754762i
\(696\) 0 0
\(697\) 68.0185 + 7.95022i 2.57638 + 0.301136i
\(698\) 52.8125 + 26.5234i 1.99898 + 1.00393i
\(699\) 0 0
\(700\) −3.29092 0.779962i −0.124385 0.0294798i
\(701\) 1.94332 + 3.36593i 0.0733982 + 0.127129i 0.900389 0.435087i \(-0.143282\pi\)
−0.826990 + 0.562216i \(0.809949\pi\)
\(702\) 0 0
\(703\) 1.61229 2.79256i 0.0608086 0.105324i
\(704\) −22.1291 + 23.4555i −0.834022 + 0.884012i
\(705\) 0 0
\(706\) 3.36890 + 57.8418i 0.126790 + 2.17690i
\(707\) −0.893789 + 1.20057i −0.0336144 + 0.0451520i
\(708\) 0 0
\(709\) 12.3151 + 8.09975i 0.462502 + 0.304193i 0.759292 0.650750i \(-0.225546\pi\)
−0.296789 + 0.954943i \(0.595916\pi\)
\(710\) −6.58725 + 37.3581i −0.247215 + 1.40203i
\(711\) 0 0
\(712\) 0.125874 + 0.713864i 0.00471731 + 0.0267532i
\(713\) 7.04821 16.3396i 0.263958 0.611922i
\(714\) 0 0
\(715\) 34.4961 8.17573i 1.29008 0.305755i
\(716\) −1.83798 1.94815i −0.0686887 0.0728057i
\(717\) 0 0
\(718\) 25.1504 + 33.7829i 0.938605 + 1.26076i
\(719\) 24.7821 20.7947i 0.924218 0.775511i −0.0505523 0.998721i \(-0.516098\pi\)
0.974770 + 0.223210i \(0.0716537\pi\)
\(720\) 0 0
\(721\) −7.98762 6.70241i −0.297474 0.249611i
\(722\) −2.16250 + 37.1286i −0.0804798 + 1.38178i
\(723\) 0 0
\(724\) 3.05892 + 7.09138i 0.113684 + 0.263549i
\(725\) 10.1057 6.64663i 0.375316 0.246849i
\(726\) 0 0
\(727\) 2.64725 + 8.84244i 0.0981811 + 0.327948i 0.992942 0.118597i \(-0.0378396\pi\)
−0.894761 + 0.446545i \(0.852654\pi\)
\(728\) 0.329090 0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) 3.81155 + 12.7315i 0.140975 + 0.470890i
\(732\) 0 0
\(733\) 44.2756 29.1205i 1.63535 1.07559i 0.704820 0.709386i \(-0.251028\pi\)
0.930535 0.366204i \(-0.119343\pi\)
\(734\) 27.6479 + 64.0951i 1.02050 + 2.36579i
\(735\) 0 0
\(736\) −1.01948 + 17.5038i −0.0375786 + 0.645199i
\(737\) 21.9518 + 18.4198i 0.808606 + 0.678501i
\(738\) 0 0
\(739\) 2.18316 1.83188i 0.0803087 0.0673870i −0.601750 0.798685i \(-0.705529\pi\)
0.682058 + 0.731298i \(0.261085\pi\)
\(740\) 14.5084 + 19.4881i 0.533339 + 0.716398i
\(741\) 0 0
\(742\) −4.74484 5.02924i −0.174189 0.184629i
\(743\) −28.6198 + 6.78302i −1.04996 + 0.248845i −0.719151 0.694854i \(-0.755469\pi\)
−0.330807 + 0.943698i \(0.607321\pi\)
\(744\) 0 0
\(745\) −9.69263 + 22.4700i −0.355110 + 0.823239i
\(746\) 3.28553 + 18.6331i 0.120292 + 0.682208i
\(747\) 0 0
\(748\) 10.2340 58.0400i 0.374193 2.12215i
\(749\) −0.410672 0.270103i −0.0150056 0.00986935i
\(750\) 0 0
\(751\) −16.3799 + 22.0021i −0.597712 + 0.802866i −0.993300 0.115561i \(-0.963133\pi\)
0.395588 + 0.918428i \(0.370541\pi\)
\(752\) 2.62521 + 45.0730i 0.0957314 + 1.64364i
\(753\) 0 0
\(754\) −21.5293 + 22.8197i −0.784051 + 0.831045i
\(755\) 1.36725 2.36815i 0.0497593 0.0861857i
\(756\) 0 0
\(757\) 14.2323 + 24.6511i 0.517282 + 0.895959i 0.999799 + 0.0200719i \(0.00638952\pi\)
−0.482516 + 0.875887i \(0.660277\pi\)
\(758\) 3.78754 + 0.897664i 0.137570 + 0.0326046i
\(759\) 0 0
\(760\) 0.297288 + 0.149303i 0.0107838 + 0.00541580i
\(761\) −27.7831 3.24738i −1.00714 0.117717i −0.403502 0.914979i \(-0.632207\pi\)
−0.603634 + 0.797261i \(0.706281\pi\)
\(762\) 0 0
\(763\) 2.30668 1.15846i 0.0835074 0.0419390i
\(764\) −14.2348 + 5.18104i −0.514997 + 0.187444i
\(765\) 0 0
\(766\) 36.9883 + 13.4626i 1.33644 + 0.486425i
\(767\) −5.14002 + 0.600782i −0.185595 + 0.0216930i
\(768\) 0 0
\(769\) −13.4693 + 44.9907i −0.485717 + 1.62241i 0.266742 + 0.963768i \(0.414053\pi\)
−0.752459 + 0.658640i \(0.771132\pi\)
\(770\) −3.66999 + 12.2586i −0.132257 + 0.441770i
\(771\) 0 0
\(772\) 19.8695 2.32241i 0.715120 0.0835855i
\(773\) 41.5507 + 15.1232i 1.49447 + 0.543944i 0.954623 0.297816i \(-0.0962583\pi\)
0.539851 + 0.841761i \(0.318481\pi\)
\(774\) 0 0
\(775\) −20.4807 + 7.45437i −0.735689 + 0.267769i
\(776\) 1.47947 0.743018i 0.0531099 0.0266728i
\(777\) 0 0
\(778\) −18.3323 2.14274i −0.657244 0.0768209i
\(779\) 6.16870 + 3.09804i 0.221017 + 0.110999i
\(780\) 0 0
\(781\) 24.7280 + 5.86065i 0.884839 + 0.209711i
\(782\) −16.6244 28.7942i −0.594486 1.02968i
\(783\) 0 0
\(784\) −12.7160 + 22.0247i −0.454143 + 0.786598i
\(785\) 34.5702 36.6423i 1.23386 1.30782i
\(786\) 0 0
\(787\) −2.12128 36.4210i −0.0756155 1.29827i −0.796256 0.604959i \(-0.793189\pi\)
0.720641 0.693308i \(-0.243848\pi\)
\(788\) −6.12579 + 8.22836i −0.218222 + 0.293123i
\(789\) 0 0
\(790\) −43.0379 28.3065i −1.53122 1.00710i
\(791\) 1.31019 7.43049i 0.0465852 0.264198i
\(792\) 0 0
\(793\) 1.79557 + 10.1832i 0.0637627 + 0.361616i
\(794\) −26.6737 + 61.8365i −0.946613 + 2.19450i
\(795\) 0 0
\(796\) 5.08987 1.20632i 0.180406 0.0427569i
\(797\) 10.3741 + 10.9959i 0.367469 + 0.389494i 0.884552 0.466441i \(-0.154464\pi\)
−0.517084 + 0.855935i \(0.672982\pi\)
\(798\) 0 0
\(799\) −53.2037 71.4650i −1.88221 2.52825i
\(800\) 16.4507 13.8038i 0.581621 0.488038i
\(801\) 0 0
\(802\) 5.48967 + 4.60638i 0.193847 + 0.162657i
\(803\) 0.124644 2.14005i 0.00439859 0.0755208i
\(804\) 0 0
\(805\) 1.45699 + 3.37768i 0.0513522 + 0.119048i
\(806\) 47.2309 31.0642i 1.66364 1.09419i
\(807\) 0 0
\(808\) 0.110548 + 0.369257i 0.00388908 + 0.0129904i
\(809\) −49.6978 −1.74728 −0.873641 0.486571i \(-0.838247\pi\)
−0.873641 + 0.486571i \(0.838247\pi\)
\(810\) 0 0
\(811\) −8.76133 −0.307652 −0.153826 0.988098i \(-0.549159\pi\)
−0.153826 + 0.988098i \(0.549159\pi\)
\(812\) −1.65491 5.52779i −0.0580760 0.193987i
\(813\) 0 0
\(814\) 26.6869 17.5523i 0.935377 0.615207i
\(815\) −18.7999 43.5832i −0.658533 1.52665i
\(816\) 0 0
\(817\) −0.0778915 + 1.33735i −0.00272508 + 0.0467878i
\(818\) 49.5562 + 41.5826i 1.73269 + 1.45390i
\(819\) 0 0
\(820\) −39.8424 + 33.4317i −1.39136 + 1.16749i
\(821\) −21.1777 28.4466i −0.739106 0.992792i −0.999627 0.0273238i \(-0.991301\pi\)
0.260520 0.965468i \(-0.416106\pi\)
\(822\) 0 0
\(823\) 1.28955 + 1.36684i 0.0449508 + 0.0476451i 0.749459 0.662051i \(-0.230314\pi\)
−0.704508 + 0.709696i \(0.748832\pi\)
\(824\) −2.61288 + 0.619263i −0.0910238 + 0.0215730i
\(825\) 0 0
\(826\) 0.739840 1.71514i 0.0257423 0.0596774i
\(827\) 1.66995 + 9.47075i 0.0580698 + 0.329330i 0.999979 0.00653851i \(-0.00208129\pi\)
−0.941909 + 0.335869i \(0.890970\pi\)
\(828\) 0 0
\(829\) −1.31856 + 7.47791i −0.0457954 + 0.259719i −0.999106 0.0422726i \(-0.986540\pi\)
0.953311 + 0.301991i \(0.0976513\pi\)
\(830\) 28.9022 + 19.0093i 1.00321 + 0.659821i
\(831\) 0 0
\(832\) −17.5857 + 23.6217i −0.609673 + 0.818934i
\(833\) −2.91804 50.1008i −0.101104 1.73589i
\(834\) 0 0
\(835\) 11.2099 11.8818i 0.387936 0.411188i
\(836\) 2.97035 5.14479i 0.102732 0.177936i
\(837\) 0 0
\(838\) −14.9786 25.9438i −0.517429 0.896213i
\(839\) −38.5546 9.13760i −1.33105 0.315465i −0.497288 0.867586i \(-0.665671\pi\)
−0.833764 + 0.552121i \(0.813819\pi\)
\(840\) 0 0
\(841\) −7.47404 3.75360i −0.257725 0.129435i
\(842\) −31.2489 3.65247i −1.07691 0.125873i
\(843\) 0 0
\(844\) 12.9759 6.51672i 0.446647 0.224315i
\(845\) −3.39243 + 1.23475i −0.116703 + 0.0424765i
\(846\) 0 0
\(847\) 1.73692 + 0.632185i 0.0596811 + 0.0217221i
\(848\) 21.3523 2.49573i 0.733242 0.0857036i
\(849\) 0 0
\(850\) −11.6794 + 39.0120i −0.400601 + 1.33810i
\(851\) 2.63351 8.79654i 0.0902756 0.301542i
\(852\) 0 0
\(853\) −3.42041 + 0.399789i −0.117113 + 0.0136885i −0.174447 0.984667i \(-0.555814\pi\)
0.0573346 + 0.998355i \(0.481740\pi\)
\(854\) −3.50722 1.27652i −0.120015 0.0436817i
\(855\) 0 0
\(856\) −0.118950 + 0.0432941i −0.00406561 + 0.00147976i
\(857\) −19.7908 + 9.93930i −0.676040 + 0.339520i −0.753474 0.657477i \(-0.771623\pi\)
0.0774344 + 0.996997i \(0.475327\pi\)
\(858\) 0 0
\(859\) −35.3818 4.13554i −1.20721 0.141103i −0.511409 0.859337i \(-0.670876\pi\)
−0.695801 + 0.718235i \(0.744950\pi\)
\(860\) −9.01976 4.52989i −0.307571 0.154468i
\(861\) 0 0
\(862\) −2.54939 0.604217i −0.0868327 0.0205797i
\(863\) 10.4873 + 18.1645i 0.356992 + 0.618328i 0.987457 0.157890i \(-0.0504691\pi\)
−0.630465 + 0.776218i \(0.717136\pi\)
\(864\) 0 0
\(865\) 12.4466 21.5581i 0.423196 0.732998i
\(866\) 24.2931 25.7492i 0.825513 0.874993i
\(867\) 0 0
\(868\) 0.604553 + 10.3798i 0.0205199 + 0.352313i
\(869\) −20.6074 + 27.6806i −0.699059 + 0.938999i
\(870\) 0 0
\(871\) 21.8645 + 14.3805i 0.740849 + 0.487264i
\(872\) 0.115431 0.654639i 0.00390897 0.0221689i
\(873\) 0 0
\(874\) −0.581978 3.30056i −0.0196857 0.111643i
\(875\) −1.56653 + 3.63162i −0.0529583 + 0.122771i
\(876\) 0 0
\(877\) 41.0756 9.73510i 1.38702 0.328731i 0.531748 0.846903i \(-0.321535\pi\)
0.855277 + 0.518172i \(0.173387\pi\)
\(878\) 30.0969 + 31.9009i 1.01572 + 1.07660i
\(879\) 0 0
\(880\) −23.7585 31.9131i −0.800897 1.07579i
\(881\) −29.2913 + 24.5783i −0.986848 + 0.828064i −0.985108 0.171935i \(-0.944998\pi\)
−0.00173943 + 0.999998i \(0.500554\pi\)
\(882\) 0 0
\(883\) −22.0694 18.5184i −0.742693 0.623194i 0.190866 0.981616i \(-0.438870\pi\)
−0.933560 + 0.358422i \(0.883315\pi\)
\(884\) 3.12946 53.7307i 0.105255 1.80716i
\(885\) 0 0
\(886\) −7.31347 16.9545i −0.245701 0.569599i
\(887\) 11.4615 7.53832i 0.384838 0.253112i −0.342318 0.939584i \(-0.611212\pi\)
0.727156 + 0.686472i \(0.240842\pi\)
\(888\) 0 0
\(889\) 1.74881 + 5.84144i 0.0586532 + 0.195915i
\(890\) −25.7403 −0.862816
\(891\) 0 0
\(892\) −37.3995 −1.25223
\(893\) −2.57571 8.60349i −0.0861930 0.287905i
\(894\) 0 0
\(895\) 2.98097 1.96061i 0.0996428 0.0655361i
\(896\) −0.304678 0.706324i −0.0101786 0.0235966i
\(897\) 0 0
\(898\) 1.45860 25.0432i 0.0486742 0.835704i
\(899\) −28.4852 23.9019i −0.950035 0.797174i
\(900\) 0 0
\(901\) −32.4972 + 27.2684i −1.08264 + 0.908441i
\(902\) 40.8329 + 54.8482i 1.35959 + 1.82624i
\(903\) 0 0
\(904\) −1.33341 1.41334i −0.0443487 0.0470069i
\(905\) −10.0109 + 2.37262i −0.332772 + 0.0788685i
\(906\) 0 0
\(907\) 22.4724 52.0969i 0.746184 1.72985i 0.0648290 0.997896i \(-0.479350\pi\)
0.681355 0.731953i \(-0.261391\pi\)
\(908\) −0.221375 1.25548i −0.00734659 0.0416646i
\(909\) 0 0
\(910\) −2.02924 + 11.5084i −0.0672687 + 0.381500i
\(911\) 0.596300 + 0.392193i 0.0197563 + 0.0129939i 0.559349 0.828932i \(-0.311051\pi\)
−0.539592 + 0.841926i \(0.681422\pi\)
\(912\) 0 0
\(913\) 13.8390 18.5889i 0.458003 0.615204i
\(914\) −2.19510 37.6885i −0.0726076 1.24662i
\(915\) 0 0
\(916\) 7.12309 7.55004i 0.235354 0.249460i
\(917\) 1.67892 2.90797i 0.0554428 0.0960297i
\(918\) 0 0
\(919\) 28.6606 + 49.6416i 0.945425 + 1.63752i 0.754898 + 0.655842i \(0.227686\pi\)
0.190527 + 0.981682i \(0.438980\pi\)
\(920\) 0.921785 + 0.218467i 0.0303903 + 0.00720264i
\(921\) 0 0
\(922\) −74.1363 37.2326i −2.44155 1.22619i
\(923\) 23.0512 + 2.69429i 0.758738 + 0.0886837i
\(924\) 0 0
\(925\) −10.0502 + 5.04739i −0.330448 + 0.165957i
\(926\) −7.83677 + 2.85235i −0.257532 + 0.0937341i
\(927\) 0 0
\(928\) 34.4289 + 12.5311i 1.13018 + 0.411353i
\(929\) −14.8620 + 1.73711i −0.487605 + 0.0569928i −0.356344 0.934355i \(-0.615977\pi\)
−0.131261 + 0.991348i \(0.541903\pi\)
\(930\) 0 0
\(931\) 1.45086 4.84621i 0.0475501 0.158828i
\(932\) −7.84139 + 26.1921i −0.256853 + 0.857949i
\(933\) 0 0
\(934\) −50.6981 + 5.92575i −1.65889 + 0.193897i
\(935\) 73.7759 + 26.8522i 2.41273 + 0.878162i
\(936\) 0 0
\(937\) 23.1819 8.43751i 0.757319 0.275641i 0.0656366 0.997844i \(-0.479092\pi\)
0.691682 + 0.722202i \(0.256870\pi\)
\(938\) −8.44116 + 4.23931i −0.275614 + 0.138418i
\(939\) 0 0
\(940\) 67.2084 + 7.85554i 2.19210 + 0.256219i
\(941\) −20.7862 10.4392i −0.677612 0.340310i 0.0764865 0.997071i \(-0.475630\pi\)
−0.754099 + 0.656761i \(0.771926\pi\)
\(942\) 0 0
\(943\) 19.1270 + 4.53318i 0.622860 + 0.147621i
\(944\) 2.90384 + 5.02959i 0.0945119 + 0.163699i
\(945\) 0 0
\(946\) −6.63491 + 11.4920i −0.215720 + 0.373637i
\(947\) 13.1603 13.9491i 0.427653 0.453286i −0.477336 0.878721i \(-0.658397\pi\)
0.904989 + 0.425435i \(0.139879\pi\)
\(948\) 0 0
\(949\) −0.113829 1.95437i −0.00369505 0.0634415i
\(950\) −2.45126 + 3.29261i −0.0795293 + 0.106826i
\(951\) 0 0
\(952\) 0.608900 + 0.400480i 0.0197346 + 0.0129796i
\(953\) 5.37991 30.5110i 0.174272 0.988348i −0.764708 0.644377i \(-0.777117\pi\)
0.938980 0.343971i \(-0.111772\pi\)
\(954\) 0 0
\(955\) −3.50420 19.8733i −0.113393 0.643085i
\(956\) −7.48812 + 17.3594i −0.242183 + 0.561444i
\(957\) 0 0
\(958\) 40.8753 9.68762i 1.32062 0.312993i
\(959\) −6.38898 6.77192i −0.206311 0.218677i
\(960\) 0 0
\(961\) 21.4999 + 28.8794i 0.693545 + 0.931593i
\(962\) 22.3457 18.7503i 0.720456 0.604534i
\(963\) 0 0
\(964\) −22.6834 19.0336i −0.730583 0.613032i
\(965\) −1.54952 + 26.6043i −0.0498809 + 0.856422i
\(966\) 0 0
\(967\) 7.86525 + 18.2337i 0.252929 + 0.586356i 0.996618 0.0821696i \(-0.0261849\pi\)
−0.743689 + 0.668526i \(0.766926\pi\)
\(968\) 0.397700 0.261571i 0.0127826 0.00840722i
\(969\) 0 0
\(970\) 16.8609 + 56.3193i 0.541370 + 1.80830i
\(971\) −3.39436 −0.108930 −0.0544651 0.998516i \(-0.517345\pi\)
−0.0544651 + 0.998516i \(0.517345\pi\)
\(972\) 0 0
\(973\) −9.79039 −0.313865
\(974\) −3.82286 12.7693i −0.122492 0.409153i
\(975\) 0 0
\(976\) 9.69536 6.37674i 0.310341 0.204115i
\(977\) −21.2170 49.1866i −0.678793 1.57362i −0.812738 0.582630i \(-0.802024\pi\)
0.133945 0.990989i \(-0.457235\pi\)
\(978\) 0 0
\(979\) −1.00265 + 17.2148i −0.0320447 + 0.550186i
\(980\) 29.1980 + 24.5000i 0.932694 + 0.782624i
\(981\) 0 0
\(982\) 56.5336 47.4373i 1.80406 1.51379i
\(983\) 16.6147 + 22.3174i 0.529925 + 0.711813i 0.983803 0.179250i \(-0.0573672\pi\)
−0.453878 + 0.891064i \(0.649960\pi\)
\(984\) 0 0
\(985\) −9.37783 9.93992i −0.298802 0.316712i
\(986\) −67.6047 + 16.0226i −2.15297 + 0.510264i
\(987\) 0 0
\(988\) 2.14883 4.98155i 0.0683634 0.158484i
\(989\) 0.662412 + 3.75672i 0.0210635 + 0.119457i
\(990\) 0 0
\(991\) 2.53438 14.3732i 0.0805071 0.456579i −0.917729 0.397207i \(-0.869979\pi\)
0.998236 0.0593711i \(-0.0189095\pi\)
\(992\) −55.1582 36.2781i −1.75128 1.15183i
\(993\) 0 0
\(994\) −5.00234 + 6.71931i −0.158665 + 0.213123i
\(995\) 0.405170 + 6.95651i 0.0128448 + 0.220536i
\(996\) 0 0
\(997\) 1.67236 1.77260i 0.0529641 0.0561386i −0.700350 0.713800i \(-0.746973\pi\)
0.753314 + 0.657661i \(0.228454\pi\)
\(998\) 36.7468 63.6474i 1.16320 2.01472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.c.379.7 144
3.2 odd 2 729.2.g.b.379.2 144
9.2 odd 6 729.2.g.a.622.2 144
9.4 even 3 81.2.g.a.16.2 144
9.5 odd 6 243.2.g.a.208.7 144
9.7 even 3 729.2.g.d.622.7 144
81.5 odd 54 729.2.g.a.109.2 144
81.7 even 27 6561.2.a.c.1.14 72
81.22 even 27 81.2.g.a.76.2 yes 144
81.32 odd 54 729.2.g.b.352.2 144
81.49 even 27 inner 729.2.g.c.352.7 144
81.59 odd 54 243.2.g.a.118.7 144
81.74 odd 54 6561.2.a.d.1.59 72
81.76 even 27 729.2.g.d.109.7 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.2 144 9.4 even 3
81.2.g.a.76.2 yes 144 81.22 even 27
243.2.g.a.118.7 144 81.59 odd 54
243.2.g.a.208.7 144 9.5 odd 6
729.2.g.a.109.2 144 81.5 odd 54
729.2.g.a.622.2 144 9.2 odd 6
729.2.g.b.352.2 144 81.32 odd 54
729.2.g.b.379.2 144 3.2 odd 2
729.2.g.c.352.7 144 81.49 even 27 inner
729.2.g.c.379.7 144 1.1 even 1 trivial
729.2.g.d.109.7 144 81.76 even 27
729.2.g.d.622.7 144 9.7 even 3
6561.2.a.c.1.14 72 81.7 even 27
6561.2.a.d.1.59 72 81.74 odd 54