Properties

Label 729.2.g.c.379.3
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,-63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.3
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.c.352.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.194062 - 0.648213i) q^{2} +(1.28846 - 0.847431i) q^{4} +(0.373572 + 0.866038i) q^{5} +(0.0849292 - 1.45818i) q^{7} +(-1.83603 - 1.54061i) q^{8} +(0.488880 - 0.410219i) q^{10} +(3.65505 + 4.90959i) q^{11} +(3.60053 + 3.81633i) q^{13} +(-0.961691 + 0.227925i) q^{14} +(0.579298 - 1.34296i) q^{16} +(-0.00536485 - 0.0304256i) q^{17} +(0.634963 - 3.60105i) q^{19} +(1.21524 + 0.799275i) q^{20} +(2.47315 - 3.32202i) q^{22} +(-0.00607888 - 0.104370i) q^{23} +(2.82074 - 2.98981i) q^{25} +(1.77507 - 3.07451i) q^{26} +(-1.12628 - 1.95077i) q^{28} +(0.498884 + 0.118238i) q^{29} +(-7.30038 - 3.66639i) q^{31} +(-5.74406 - 0.671384i) q^{32} +(-0.0186811 + 0.00938202i) q^{34} +(1.29456 - 0.471183i) q^{35} +(5.42328 + 1.97391i) q^{37} +(-2.45747 + 0.287237i) q^{38} +(0.648337 - 2.16560i) q^{40} +(-1.25791 + 4.20171i) q^{41} +(-1.36737 + 0.159822i) q^{43} +(8.86991 + 3.22838i) q^{44} +(-0.0664745 + 0.0241947i) q^{46} +(5.01303 - 2.51764i) q^{47} +(4.83360 + 0.564967i) q^{49} +(-2.48543 - 1.24823i) q^{50} +(7.87320 + 1.86598i) q^{52} +(-4.89106 - 8.47157i) q^{53} +(-2.88646 + 4.99950i) q^{55} +(-2.40241 + 2.54641i) q^{56} +(-0.0201713 - 0.346328i) q^{58} +(-3.37359 + 4.53152i) q^{59} +(-1.43519 - 0.943940i) q^{61} +(-0.959872 + 5.44370i) q^{62} +(0.171556 + 0.972942i) q^{64} +(-1.96003 + 4.54387i) q^{65} +(2.66387 - 0.631349i) q^{67} +(-0.0326960 - 0.0346557i) q^{68} +(-0.556652 - 0.747714i) q^{70} +(1.66448 - 1.39666i) q^{71} +(-6.38204 - 5.35517i) q^{73} +(0.227062 - 3.89850i) q^{74} +(-2.23352 - 5.17789i) q^{76} +(7.46947 - 4.91275i) q^{77} +(3.61740 + 12.0829i) q^{79} +1.37947 q^{80} +2.96771 q^{82} +(-5.11210 - 17.0756i) q^{83} +(0.0243456 - 0.0160123i) q^{85} +(0.368953 + 0.855329i) q^{86} +(0.852982 - 14.6451i) q^{88} +(-10.6853 - 8.96604i) q^{89} +(5.87068 - 4.92609i) q^{91} +(-0.0962791 - 0.129325i) q^{92} +(-2.60480 - 2.76093i) q^{94} +(3.35585 - 0.795351i) q^{95} +(-2.77706 + 6.43795i) q^{97} +(-0.571800 - 3.24284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.194062 0.648213i −0.137223 0.458356i 0.861561 0.507653i \(-0.169487\pi\)
−0.998784 + 0.0492977i \(0.984302\pi\)
\(3\) 0 0
\(4\) 1.28846 0.847431i 0.644228 0.423715i
\(5\) 0.373572 + 0.866038i 0.167067 + 0.387304i 0.981097 0.193519i \(-0.0619901\pi\)
−0.814030 + 0.580823i \(0.802731\pi\)
\(6\) 0 0
\(7\) 0.0849292 1.45818i 0.0321002 0.551139i −0.943471 0.331455i \(-0.892460\pi\)
0.975571 0.219684i \(-0.0705026\pi\)
\(8\) −1.83603 1.54061i −0.649133 0.544688i
\(9\) 0 0
\(10\) 0.488880 0.410219i 0.154598 0.129723i
\(11\) 3.65505 + 4.90959i 1.10204 + 1.48030i 0.860183 + 0.509985i \(0.170349\pi\)
0.241857 + 0.970312i \(0.422244\pi\)
\(12\) 0 0
\(13\) 3.60053 + 3.81633i 0.998606 + 1.05846i 0.998290 + 0.0584608i \(0.0186193\pi\)
0.000316539 1.00000i \(0.499899\pi\)
\(14\) −0.961691 + 0.227925i −0.257023 + 0.0609155i
\(15\) 0 0
\(16\) 0.579298 1.34296i 0.144825 0.335741i
\(17\) −0.00536485 0.0304256i −0.00130117 0.00737929i 0.984150 0.177337i \(-0.0567481\pi\)
−0.985451 + 0.169957i \(0.945637\pi\)
\(18\) 0 0
\(19\) 0.634963 3.60105i 0.145670 0.826138i −0.821156 0.570704i \(-0.806670\pi\)
0.966826 0.255434i \(-0.0822184\pi\)
\(20\) 1.21524 + 0.799275i 0.271736 + 0.178723i
\(21\) 0 0
\(22\) 2.47315 3.32202i 0.527277 0.708256i
\(23\) −0.00607888 0.104370i −0.00126753 0.0217627i 0.997615 0.0690227i \(-0.0219881\pi\)
−0.998883 + 0.0472600i \(0.984951\pi\)
\(24\) 0 0
\(25\) 2.82074 2.98981i 0.564149 0.597963i
\(26\) 1.77507 3.07451i 0.348120 0.602961i
\(27\) 0 0
\(28\) −1.12628 1.95077i −0.212846 0.368661i
\(29\) 0.498884 + 0.118238i 0.0926405 + 0.0219562i 0.276675 0.960964i \(-0.410768\pi\)
−0.184034 + 0.982920i \(0.558916\pi\)
\(30\) 0 0
\(31\) −7.30038 3.66639i −1.31119 0.658503i −0.350611 0.936521i \(-0.614026\pi\)
−0.960576 + 0.278019i \(0.910322\pi\)
\(32\) −5.74406 0.671384i −1.01542 0.118685i
\(33\) 0 0
\(34\) −0.0186811 + 0.00938202i −0.00320379 + 0.00160900i
\(35\) 1.29456 0.471183i 0.218821 0.0796444i
\(36\) 0 0
\(37\) 5.42328 + 1.97391i 0.891581 + 0.324509i 0.746874 0.664965i \(-0.231554\pi\)
0.144707 + 0.989475i \(0.453776\pi\)
\(38\) −2.45747 + 0.287237i −0.398654 + 0.0465960i
\(39\) 0 0
\(40\) 0.648337 2.16560i 0.102511 0.342411i
\(41\) −1.25791 + 4.20171i −0.196452 + 0.656197i 0.801827 + 0.597557i \(0.203862\pi\)
−0.998279 + 0.0586403i \(0.981324\pi\)
\(42\) 0 0
\(43\) −1.36737 + 0.159822i −0.208522 + 0.0243727i −0.219712 0.975565i \(-0.570512\pi\)
0.0111907 + 0.999937i \(0.496438\pi\)
\(44\) 8.86991 + 3.22838i 1.33719 + 0.486697i
\(45\) 0 0
\(46\) −0.0664745 + 0.0241947i −0.00980113 + 0.00356732i
\(47\) 5.01303 2.51764i 0.731225 0.367235i −0.0439058 0.999036i \(-0.513980\pi\)
0.775131 + 0.631801i \(0.217684\pi\)
\(48\) 0 0
\(49\) 4.83360 + 0.564967i 0.690514 + 0.0807095i
\(50\) −2.48543 1.24823i −0.351493 0.176527i
\(51\) 0 0
\(52\) 7.87320 + 1.86598i 1.09182 + 0.258765i
\(53\) −4.89106 8.47157i −0.671839 1.16366i −0.977382 0.211481i \(-0.932171\pi\)
0.305543 0.952178i \(-0.401162\pi\)
\(54\) 0 0
\(55\) −2.88646 + 4.99950i −0.389211 + 0.674132i
\(56\) −2.40241 + 2.54641i −0.321036 + 0.340278i
\(57\) 0 0
\(58\) −0.0201713 0.346328i −0.00264863 0.0454752i
\(59\) −3.37359 + 4.53152i −0.439204 + 0.589953i −0.965518 0.260337i \(-0.916166\pi\)
0.526314 + 0.850290i \(0.323574\pi\)
\(60\) 0 0
\(61\) −1.43519 0.943940i −0.183757 0.120859i 0.454297 0.890850i \(-0.349890\pi\)
−0.638055 + 0.769991i \(0.720261\pi\)
\(62\) −0.959872 + 5.44370i −0.121904 + 0.691351i
\(63\) 0 0
\(64\) 0.171556 + 0.972942i 0.0214445 + 0.121618i
\(65\) −1.96003 + 4.54387i −0.243112 + 0.563597i
\(66\) 0 0
\(67\) 2.66387 0.631349i 0.325444 0.0771315i −0.0646466 0.997908i \(-0.520592\pi\)
0.390090 + 0.920777i \(0.372444\pi\)
\(68\) −0.0326960 0.0346557i −0.00396497 0.00420262i
\(69\) 0 0
\(70\) −0.556652 0.747714i −0.0665327 0.0893689i
\(71\) 1.66448 1.39666i 0.197537 0.165753i −0.538654 0.842527i \(-0.681067\pi\)
0.736191 + 0.676774i \(0.236623\pi\)
\(72\) 0 0
\(73\) −6.38204 5.35517i −0.746961 0.626775i 0.187736 0.982219i \(-0.439885\pi\)
−0.934697 + 0.355445i \(0.884329\pi\)
\(74\) 0.227062 3.89850i 0.0263954 0.453191i
\(75\) 0 0
\(76\) −2.23352 5.17789i −0.256203 0.593944i
\(77\) 7.46947 4.91275i 0.851225 0.559860i
\(78\) 0 0
\(79\) 3.61740 + 12.0829i 0.406989 + 1.35944i 0.878570 + 0.477614i \(0.158498\pi\)
−0.471581 + 0.881823i \(0.656316\pi\)
\(80\) 1.37947 0.154229
\(81\) 0 0
\(82\) 2.96771 0.327729
\(83\) −5.11210 17.0756i −0.561126 1.87429i −0.479313 0.877644i \(-0.659114\pi\)
−0.0818133 0.996648i \(-0.526071\pi\)
\(84\) 0 0
\(85\) 0.0243456 0.0160123i 0.00264065 0.00173678i
\(86\) 0.368953 + 0.855329i 0.0397852 + 0.0922325i
\(87\) 0 0
\(88\) 0.852982 14.6451i 0.0909282 1.56118i
\(89\) −10.6853 8.96604i −1.13264 0.950399i −0.133468 0.991053i \(-0.542611\pi\)
−0.999173 + 0.0406545i \(0.987056\pi\)
\(90\) 0 0
\(91\) 5.87068 4.92609i 0.615415 0.516394i
\(92\) −0.0962791 0.129325i −0.0100378 0.0134831i
\(93\) 0 0
\(94\) −2.60480 2.76093i −0.268665 0.284768i
\(95\) 3.35585 0.795351i 0.344303 0.0816013i
\(96\) 0 0
\(97\) −2.77706 + 6.43795i −0.281968 + 0.653675i −0.999062 0.0433014i \(-0.986212\pi\)
0.717094 + 0.696976i \(0.245472\pi\)
\(98\) −0.571800 3.24284i −0.0577605 0.327576i
\(99\) 0 0
\(100\) 1.10074 6.24263i 0.110074 0.624263i
\(101\) 7.26104 + 4.77566i 0.722501 + 0.475196i 0.856737 0.515753i \(-0.172488\pi\)
−0.134237 + 0.990949i \(0.542858\pi\)
\(102\) 0 0
\(103\) −3.06205 + 4.11304i −0.301712 + 0.405270i −0.926962 0.375155i \(-0.877590\pi\)
0.625250 + 0.780425i \(0.284997\pi\)
\(104\) −0.731181 12.5539i −0.0716982 1.23101i
\(105\) 0 0
\(106\) −4.54221 + 4.81446i −0.441178 + 0.467622i
\(107\) −4.97642 + 8.61941i −0.481089 + 0.833270i −0.999765 0.0217011i \(-0.993092\pi\)
0.518676 + 0.854971i \(0.326425\pi\)
\(108\) 0 0
\(109\) 6.36856 + 11.0307i 0.609997 + 1.05655i 0.991240 + 0.132071i \(0.0421627\pi\)
−0.381243 + 0.924475i \(0.624504\pi\)
\(110\) 3.80089 + 0.900828i 0.362401 + 0.0858906i
\(111\) 0 0
\(112\) −1.90908 0.958776i −0.180391 0.0905958i
\(113\) −5.70803 0.667173i −0.536966 0.0627623i −0.156712 0.987644i \(-0.550089\pi\)
−0.380254 + 0.924882i \(0.624164\pi\)
\(114\) 0 0
\(115\) 0.0881178 0.0442544i 0.00821703 0.00412675i
\(116\) 0.742989 0.270426i 0.0689848 0.0251084i
\(117\) 0 0
\(118\) 3.59207 + 1.30741i 0.330677 + 0.120357i
\(119\) −0.0448216 + 0.00523889i −0.00410879 + 0.000480248i
\(120\) 0 0
\(121\) −7.58981 + 25.3517i −0.689983 + 2.30470i
\(122\) −0.333357 + 1.11349i −0.0301808 + 0.100811i
\(123\) 0 0
\(124\) −12.5132 + 1.46259i −1.12372 + 0.131344i
\(125\) 8.07451 + 2.93888i 0.722206 + 0.262862i
\(126\) 0 0
\(127\) −9.96192 + 3.62584i −0.883977 + 0.321741i −0.743814 0.668387i \(-0.766985\pi\)
−0.140163 + 0.990128i \(0.544763\pi\)
\(128\) −9.73866 + 4.89094i −0.860784 + 0.432302i
\(129\) 0 0
\(130\) 3.32576 + 0.388726i 0.291689 + 0.0340935i
\(131\) 12.7466 + 6.40157i 1.11367 + 0.559308i 0.907856 0.419283i \(-0.137718\pi\)
0.205817 + 0.978590i \(0.434015\pi\)
\(132\) 0 0
\(133\) −5.19705 1.23172i −0.450641 0.106804i
\(134\) −0.926205 1.60423i −0.0800119 0.138585i
\(135\) 0 0
\(136\) −0.0370239 + 0.0641273i −0.00317478 + 0.00549887i
\(137\) −3.66191 + 3.88140i −0.312858 + 0.331610i −0.864653 0.502370i \(-0.832462\pi\)
0.551795 + 0.833980i \(0.313943\pi\)
\(138\) 0 0
\(139\) 0.238054 + 4.08722i 0.0201915 + 0.346674i 0.993240 + 0.116075i \(0.0370314\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(140\) 1.26869 1.70415i 0.107224 0.144027i
\(141\) 0 0
\(142\) −1.22834 0.807895i −0.103080 0.0677971i
\(143\) −5.57652 + 31.6260i −0.466332 + 2.64470i
\(144\) 0 0
\(145\) 0.0839709 + 0.476223i 0.00697341 + 0.0395482i
\(146\) −2.23277 + 5.17615i −0.184786 + 0.428381i
\(147\) 0 0
\(148\) 8.66041 2.05255i 0.711881 0.168719i
\(149\) 12.9539 + 13.7303i 1.06122 + 1.12483i 0.991872 + 0.127237i \(0.0406109\pi\)
0.0693495 + 0.997592i \(0.477908\pi\)
\(150\) 0 0
\(151\) −1.83951 2.47089i −0.149697 0.201078i 0.720949 0.692988i \(-0.243706\pi\)
−0.870646 + 0.491910i \(0.836299\pi\)
\(152\) −6.71362 + 5.63340i −0.544547 + 0.456929i
\(153\) 0 0
\(154\) −4.63405 3.88843i −0.373422 0.313338i
\(155\) 0.448012 7.69206i 0.0359852 0.617841i
\(156\) 0 0
\(157\) −1.35800 3.14820i −0.108380 0.251254i 0.855391 0.517982i \(-0.173317\pi\)
−0.963772 + 0.266728i \(0.914057\pi\)
\(158\) 7.13032 4.68968i 0.567257 0.373091i
\(159\) 0 0
\(160\) −1.56438 5.22538i −0.123675 0.413103i
\(161\) −0.152707 −0.0120350
\(162\) 0 0
\(163\) −19.7151 −1.54420 −0.772101 0.635500i \(-0.780794\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(164\) 1.93990 + 6.47971i 0.151481 + 0.505980i
\(165\) 0 0
\(166\) −10.0766 + 6.62746i −0.782093 + 0.514391i
\(167\) −7.66118 17.7606i −0.592840 1.37436i −0.905441 0.424473i \(-0.860460\pi\)
0.312601 0.949885i \(-0.398800\pi\)
\(168\) 0 0
\(169\) −0.844740 + 14.5036i −0.0649800 + 1.11566i
\(170\) −0.0151039 0.0126737i −0.00115842 0.000972029i
\(171\) 0 0
\(172\) −1.62635 + 1.36467i −0.124008 + 0.104055i
\(173\) −3.68287 4.94696i −0.280004 0.376110i 0.639765 0.768570i \(-0.279031\pi\)
−0.919769 + 0.392460i \(0.871624\pi\)
\(174\) 0 0
\(175\) −4.12011 4.36707i −0.311451 0.330119i
\(176\) 8.71077 2.06449i 0.656599 0.155617i
\(177\) 0 0
\(178\) −3.73829 + 8.66632i −0.280196 + 0.649568i
\(179\) −0.601129 3.40917i −0.0449305 0.254814i 0.954066 0.299596i \(-0.0968518\pi\)
−0.998997 + 0.0447821i \(0.985741\pi\)
\(180\) 0 0
\(181\) −3.31327 + 18.7905i −0.246273 + 1.39668i 0.571244 + 0.820780i \(0.306461\pi\)
−0.817517 + 0.575904i \(0.804650\pi\)
\(182\) −4.33243 2.84948i −0.321141 0.211218i
\(183\) 0 0
\(184\) −0.149633 + 0.200992i −0.0110311 + 0.0148173i
\(185\) 0.316504 + 5.43416i 0.0232698 + 0.399528i
\(186\) 0 0
\(187\) 0.129768 0.137546i 0.00948960 0.0100584i
\(188\) 4.32554 7.49206i 0.315473 0.546415i
\(189\) 0 0
\(190\) −1.16680 2.02096i −0.0846486 0.146616i
\(191\) −19.3906 4.59566i −1.40306 0.332530i −0.541717 0.840561i \(-0.682226\pi\)
−0.861339 + 0.508031i \(0.830374\pi\)
\(192\) 0 0
\(193\) −9.57740 4.80995i −0.689396 0.346228i 0.0693698 0.997591i \(-0.477901\pi\)
−0.758766 + 0.651363i \(0.774197\pi\)
\(194\) 4.71208 + 0.550763i 0.338308 + 0.0395425i
\(195\) 0 0
\(196\) 6.70665 3.36821i 0.479047 0.240586i
\(197\) 22.2725 8.10651i 1.58685 0.577565i 0.610169 0.792272i \(-0.291102\pi\)
0.976679 + 0.214707i \(0.0688795\pi\)
\(198\) 0 0
\(199\) −8.20833 2.98759i −0.581873 0.211785i 0.0342781 0.999412i \(-0.489087\pi\)
−0.616151 + 0.787628i \(0.711309\pi\)
\(200\) −9.78509 + 1.14371i −0.691910 + 0.0808727i
\(201\) 0 0
\(202\) 1.68655 5.63347i 0.118665 0.396370i
\(203\) 0.214781 0.717420i 0.0150747 0.0503530i
\(204\) 0 0
\(205\) −4.10876 + 0.480245i −0.286968 + 0.0335418i
\(206\) 3.26035 + 1.18667i 0.227160 + 0.0826793i
\(207\) 0 0
\(208\) 7.21098 2.62458i 0.499991 0.181982i
\(209\) 20.0005 10.0446i 1.38346 0.694802i
\(210\) 0 0
\(211\) 7.22885 + 0.844932i 0.497655 + 0.0581675i 0.361218 0.932481i \(-0.382361\pi\)
0.136437 + 0.990649i \(0.456435\pi\)
\(212\) −13.4810 6.77041i −0.925878 0.464994i
\(213\) 0 0
\(214\) 6.55294 + 1.55308i 0.447950 + 0.106166i
\(215\) −0.649223 1.12449i −0.0442766 0.0766894i
\(216\) 0 0
\(217\) −5.96626 + 10.3339i −0.405016 + 0.701508i
\(218\) 5.91432 6.26881i 0.400568 0.424578i
\(219\) 0 0
\(220\) 0.517650 + 8.88771i 0.0349000 + 0.599210i
\(221\) 0.0967980 0.130022i 0.00651134 0.00874624i
\(222\) 0 0
\(223\) −0.625341 0.411293i −0.0418759 0.0275422i 0.528398 0.848997i \(-0.322793\pi\)
−0.570274 + 0.821454i \(0.693163\pi\)
\(224\) −1.46684 + 8.31884i −0.0980071 + 0.555826i
\(225\) 0 0
\(226\) 0.675242 + 3.82949i 0.0449164 + 0.254734i
\(227\) 3.01257 6.98392i 0.199951 0.463539i −0.788508 0.615024i \(-0.789146\pi\)
0.988460 + 0.151485i \(0.0484056\pi\)
\(228\) 0 0
\(229\) −15.1813 + 3.59803i −1.00321 + 0.237765i −0.699216 0.714910i \(-0.746468\pi\)
−0.303991 + 0.952675i \(0.598319\pi\)
\(230\) −0.0457866 0.0485310i −0.00301908 0.00320004i
\(231\) 0 0
\(232\) −0.733806 0.985673i −0.0481768 0.0647126i
\(233\) −12.6227 + 10.5917i −0.826940 + 0.693885i −0.954586 0.297935i \(-0.903702\pi\)
0.127647 + 0.991820i \(0.459258\pi\)
\(234\) 0 0
\(235\) 4.05310 + 3.40095i 0.264395 + 0.221854i
\(236\) −0.506574 + 8.69755i −0.0329752 + 0.566162i
\(237\) 0 0
\(238\) 0.0120941 + 0.0280372i 0.000783943 + 0.00181738i
\(239\) −16.1641 + 10.6313i −1.04557 + 0.687682i −0.951426 0.307876i \(-0.900382\pi\)
−0.0941436 + 0.995559i \(0.530011\pi\)
\(240\) 0 0
\(241\) −1.65339 5.52271i −0.106504 0.355749i 0.888079 0.459691i \(-0.152040\pi\)
−0.994583 + 0.103941i \(0.966855\pi\)
\(242\) 17.9062 1.15105
\(243\) 0 0
\(244\) −2.64910 −0.169591
\(245\) 1.31642 + 4.39714i 0.0841027 + 0.280923i
\(246\) 0 0
\(247\) 16.0290 10.5425i 1.01990 0.670800i
\(248\) 7.75521 + 17.9786i 0.492457 + 1.14164i
\(249\) 0 0
\(250\) 0.338063 5.80433i 0.0213810 0.367098i
\(251\) −14.4752 12.1462i −0.913668 0.766659i 0.0591449 0.998249i \(-0.481163\pi\)
−0.972813 + 0.231591i \(0.925607\pi\)
\(252\) 0 0
\(253\) 0.490197 0.411324i 0.0308184 0.0258597i
\(254\) 4.28355 + 5.75380i 0.268774 + 0.361026i
\(255\) 0 0
\(256\) 6.41622 + 6.80080i 0.401014 + 0.425050i
\(257\) −17.6323 + 4.17892i −1.09987 + 0.260674i −0.740187 0.672401i \(-0.765263\pi\)
−0.359683 + 0.933075i \(0.617115\pi\)
\(258\) 0 0
\(259\) 3.33891 7.74046i 0.207470 0.480969i
\(260\) 1.32520 + 7.51557i 0.0821853 + 0.466096i
\(261\) 0 0
\(262\) 1.67595 9.50479i 0.103541 0.587208i
\(263\) −7.24297 4.76377i −0.446621 0.293747i 0.306207 0.951965i \(-0.400940\pi\)
−0.752827 + 0.658218i \(0.771310\pi\)
\(264\) 0 0
\(265\) 5.50953 7.40059i 0.338448 0.454615i
\(266\) 0.210132 + 3.60782i 0.0128840 + 0.221210i
\(267\) 0 0
\(268\) 2.89726 3.07091i 0.176978 0.187586i
\(269\) −5.59305 + 9.68745i −0.341014 + 0.590654i −0.984621 0.174702i \(-0.944104\pi\)
0.643607 + 0.765356i \(0.277437\pi\)
\(270\) 0 0
\(271\) 5.08705 + 8.81103i 0.309016 + 0.535232i 0.978147 0.207912i \(-0.0666669\pi\)
−0.669131 + 0.743144i \(0.733334\pi\)
\(272\) −0.0439683 0.0104207i −0.00266597 0.000631847i
\(273\) 0 0
\(274\) 3.22661 + 1.62046i 0.194926 + 0.0978957i
\(275\) 24.9887 + 2.92076i 1.50688 + 0.176129i
\(276\) 0 0
\(277\) −1.16354 + 0.584354i −0.0699106 + 0.0351104i −0.483411 0.875394i \(-0.660602\pi\)
0.413500 + 0.910504i \(0.364306\pi\)
\(278\) 2.60319 0.947485i 0.156129 0.0568264i
\(279\) 0 0
\(280\) −3.10276 1.12931i −0.185425 0.0674894i
\(281\) 6.36648 0.744134i 0.379792 0.0443913i 0.0759447 0.997112i \(-0.475803\pi\)
0.303847 + 0.952721i \(0.401729\pi\)
\(282\) 0 0
\(283\) 5.48286 18.3140i 0.325922 1.08866i −0.625361 0.780336i \(-0.715048\pi\)
0.951283 0.308319i \(-0.0997666\pi\)
\(284\) 0.961030 3.21006i 0.0570267 0.190482i
\(285\) 0 0
\(286\) 21.5826 2.52264i 1.27620 0.149167i
\(287\) 6.02001 + 2.19110i 0.355350 + 0.129337i
\(288\) 0 0
\(289\) 15.9739 5.81402i 0.939640 0.342001i
\(290\) 0.292398 0.146848i 0.0171702 0.00862320i
\(291\) 0 0
\(292\) −12.7611 1.49156i −0.746787 0.0872869i
\(293\) −1.63183 0.819535i −0.0953324 0.0478777i 0.400494 0.916299i \(-0.368839\pi\)
−0.495826 + 0.868422i \(0.665135\pi\)
\(294\) 0 0
\(295\) −5.18474 1.22881i −0.301868 0.0715439i
\(296\) −6.91625 11.9793i −0.401999 0.696283i
\(297\) 0 0
\(298\) 6.38629 11.0614i 0.369948 0.640769i
\(299\) 0.376425 0.398987i 0.0217692 0.0230740i
\(300\) 0 0
\(301\) 0.116920 + 2.00744i 0.00673916 + 0.115707i
\(302\) −1.24468 + 1.67190i −0.0716234 + 0.0962069i
\(303\) 0 0
\(304\) −4.46825 2.93881i −0.256272 0.168553i
\(305\) 0.281340 1.59556i 0.0161095 0.0913614i
\(306\) 0 0
\(307\) −2.60207 14.7571i −0.148508 0.842232i −0.964483 0.264145i \(-0.914910\pi\)
0.815975 0.578087i \(-0.196201\pi\)
\(308\) 5.46087 12.6597i 0.311162 0.721355i
\(309\) 0 0
\(310\) −5.07303 + 1.20233i −0.288129 + 0.0682878i
\(311\) −14.1776 15.0274i −0.803937 0.852123i 0.187560 0.982253i \(-0.439942\pi\)
−0.991497 + 0.130130i \(0.958461\pi\)
\(312\) 0 0
\(313\) 13.3306 + 17.9062i 0.753492 + 1.01212i 0.999086 + 0.0427428i \(0.0136096\pi\)
−0.245594 + 0.969373i \(0.578983\pi\)
\(314\) −1.77717 + 1.49122i −0.100291 + 0.0841545i
\(315\) 0 0
\(316\) 14.9003 + 12.5028i 0.838208 + 0.703340i
\(317\) −0.660533 + 11.3409i −0.0370992 + 0.636969i 0.927593 + 0.373591i \(0.121874\pi\)
−0.964693 + 0.263378i \(0.915163\pi\)
\(318\) 0 0
\(319\) 1.24295 + 2.88148i 0.0695918 + 0.161332i
\(320\) −0.778516 + 0.512038i −0.0435204 + 0.0286238i
\(321\) 0 0
\(322\) 0.0296346 + 0.0989865i 0.00165147 + 0.00551630i
\(323\) −0.112971 −0.00628586
\(324\) 0 0
\(325\) 21.5663 1.19628
\(326\) 3.82594 + 12.7795i 0.211899 + 0.707794i
\(327\) 0 0
\(328\) 8.78275 5.77650i 0.484946 0.318954i
\(329\) −3.24541 7.52371i −0.178925 0.414795i
\(330\) 0 0
\(331\) −0.837706 + 14.3829i −0.0460445 + 0.790553i 0.893698 + 0.448670i \(0.148102\pi\)
−0.939742 + 0.341884i \(0.888935\pi\)
\(332\) −21.0571 17.6690i −1.15566 0.969714i
\(333\) 0 0
\(334\) −10.0259 + 8.41273i −0.548593 + 0.460324i
\(335\) 1.54192 + 2.07116i 0.0842441 + 0.113159i
\(336\) 0 0
\(337\) 6.79901 + 7.20653i 0.370366 + 0.392565i 0.885573 0.464501i \(-0.153766\pi\)
−0.515207 + 0.857066i \(0.672285\pi\)
\(338\) 9.56536 2.26703i 0.520287 0.123310i
\(339\) 0 0
\(340\) 0.0177988 0.0412624i 0.000965278 0.00223777i
\(341\) −8.68281 49.2427i −0.470201 2.66664i
\(342\) 0 0
\(343\) 3.00981 17.0695i 0.162514 0.921665i
\(344\) 2.75675 + 1.81314i 0.148634 + 0.0977580i
\(345\) 0 0
\(346\) −2.49197 + 3.34730i −0.133969 + 0.179952i
\(347\) 0.196427 + 3.37252i 0.0105448 + 0.181046i 0.999468 + 0.0326179i \(0.0103844\pi\)
−0.988923 + 0.148428i \(0.952579\pi\)
\(348\) 0 0
\(349\) 0.912656 0.967359i 0.0488534 0.0517815i −0.702486 0.711698i \(-0.747927\pi\)
0.751339 + 0.659916i \(0.229408\pi\)
\(350\) −2.03123 + 3.51819i −0.108574 + 0.188055i
\(351\) 0 0
\(352\) −17.6986 30.6549i −0.943340 1.63391i
\(353\) 11.4757 + 2.71979i 0.610789 + 0.144760i 0.524357 0.851498i \(-0.324306\pi\)
0.0864312 + 0.996258i \(0.472454\pi\)
\(354\) 0 0
\(355\) 1.83136 + 0.919745i 0.0971987 + 0.0488150i
\(356\) −21.3657 2.49729i −1.13238 0.132356i
\(357\) 0 0
\(358\) −2.09321 + 1.05125i −0.110630 + 0.0555603i
\(359\) 27.9195 10.1619i 1.47353 0.536323i 0.524477 0.851425i \(-0.324261\pi\)
0.949058 + 0.315102i \(0.102039\pi\)
\(360\) 0 0
\(361\) 5.28976 + 1.92531i 0.278408 + 0.101332i
\(362\) 12.8232 1.49882i 0.673972 0.0787760i
\(363\) 0 0
\(364\) 3.38960 11.3220i 0.177663 0.593437i
\(365\) 2.25362 7.52763i 0.117960 0.394014i
\(366\) 0 0
\(367\) 7.97273 0.931879i 0.416173 0.0486437i 0.0945701 0.995518i \(-0.469852\pi\)
0.321603 + 0.946875i \(0.395778\pi\)
\(368\) −0.143687 0.0522978i −0.00749021 0.00272621i
\(369\) 0 0
\(370\) 3.46107 1.25973i 0.179933 0.0654901i
\(371\) −12.7684 + 6.41256i −0.662905 + 0.332923i
\(372\) 0 0
\(373\) 2.97358 + 0.347562i 0.153966 + 0.0179961i 0.192727 0.981252i \(-0.438267\pi\)
−0.0387606 + 0.999249i \(0.512341\pi\)
\(374\) −0.114342 0.0574249i −0.00591251 0.00296937i
\(375\) 0 0
\(376\) −13.0827 3.10067i −0.674691 0.159905i
\(377\) 1.34501 + 2.32963i 0.0692716 + 0.119982i
\(378\) 0 0
\(379\) 11.0537 19.1456i 0.567792 0.983444i −0.428992 0.903308i \(-0.641131\pi\)
0.996784 0.0801362i \(-0.0255355\pi\)
\(380\) 3.64986 3.86863i 0.187234 0.198456i
\(381\) 0 0
\(382\) 0.784019 + 13.4611i 0.0401139 + 0.688729i
\(383\) 8.57378 11.5166i 0.438100 0.588470i −0.527159 0.849767i \(-0.676743\pi\)
0.965259 + 0.261297i \(0.0841501\pi\)
\(384\) 0 0
\(385\) 7.04501 + 4.63358i 0.359047 + 0.236149i
\(386\) −1.25926 + 7.14162i −0.0640947 + 0.363499i
\(387\) 0 0
\(388\) 1.87760 + 10.6484i 0.0953206 + 0.540590i
\(389\) −7.22054 + 16.7391i −0.366096 + 0.848706i 0.631228 + 0.775597i \(0.282551\pi\)
−0.997324 + 0.0731085i \(0.976708\pi\)
\(390\) 0 0
\(391\) −0.00314292 0.000744886i −0.000158944 3.76705e-5i
\(392\) −8.00422 8.48398i −0.404274 0.428506i
\(393\) 0 0
\(394\) −9.57698 12.8641i −0.482481 0.648085i
\(395\) −9.11293 + 7.64665i −0.458521 + 0.384745i
\(396\) 0 0
\(397\) 1.06250 + 0.891545i 0.0533255 + 0.0447454i 0.669061 0.743208i \(-0.266697\pi\)
−0.615735 + 0.787953i \(0.711141\pi\)
\(398\) −0.343666 + 5.90052i −0.0172264 + 0.295766i
\(399\) 0 0
\(400\) −2.38116 5.52015i −0.119058 0.276007i
\(401\) −18.4528 + 12.1366i −0.921490 + 0.606074i −0.919143 0.393923i \(-0.871117\pi\)
−0.00234714 + 0.999997i \(0.500747\pi\)
\(402\) 0 0
\(403\) −12.2930 41.0616i −0.612360 2.04542i
\(404\) 13.4026 0.666803
\(405\) 0 0
\(406\) −0.506722 −0.0251482
\(407\) 10.1313 + 33.8408i 0.502189 + 1.67743i
\(408\) 0 0
\(409\) −0.482395 + 0.317276i −0.0238529 + 0.0156883i −0.561379 0.827559i \(-0.689729\pi\)
0.537527 + 0.843247i \(0.319359\pi\)
\(410\) 1.10866 + 2.57015i 0.0547526 + 0.126931i
\(411\) 0 0
\(412\) −0.459793 + 7.89435i −0.0226524 + 0.388927i
\(413\) 6.32124 + 5.30415i 0.311048 + 0.261000i
\(414\) 0 0
\(415\) 12.8784 10.8062i 0.632175 0.530458i
\(416\) −18.1194 24.3386i −0.888377 1.19330i
\(417\) 0 0
\(418\) −10.3924 11.0153i −0.508309 0.538776i
\(419\) −12.2911 + 2.91303i −0.600457 + 0.142311i −0.519593 0.854414i \(-0.673916\pi\)
−0.0808646 + 0.996725i \(0.525768\pi\)
\(420\) 0 0
\(421\) 8.48642 19.6737i 0.413603 0.958839i −0.576319 0.817225i \(-0.695511\pi\)
0.989922 0.141614i \(-0.0452292\pi\)
\(422\) −0.855151 4.84980i −0.0416281 0.236085i
\(423\) 0 0
\(424\) −4.07126 + 23.0892i −0.197718 + 1.12131i
\(425\) −0.106100 0.0697829i −0.00514659 0.00338497i
\(426\) 0 0
\(427\) −1.49832 + 2.01259i −0.0725088 + 0.0973963i
\(428\) 0.892458 + 15.3229i 0.0431386 + 0.740661i
\(429\) 0 0
\(430\) −0.602917 + 0.639055i −0.0290752 + 0.0308179i
\(431\) −2.23566 + 3.87227i −0.107688 + 0.186521i −0.914833 0.403832i \(-0.867678\pi\)
0.807145 + 0.590353i \(0.201011\pi\)
\(432\) 0 0
\(433\) −4.56671 7.90977i −0.219462 0.380119i 0.735182 0.677870i \(-0.237097\pi\)
−0.954644 + 0.297751i \(0.903763\pi\)
\(434\) 7.85636 + 1.86199i 0.377118 + 0.0893785i
\(435\) 0 0
\(436\) 17.5533 + 8.81562i 0.840652 + 0.422191i
\(437\) −0.379703 0.0443809i −0.0181637 0.00212303i
\(438\) 0 0
\(439\) 2.54563 1.27847i 0.121496 0.0610178i −0.387013 0.922074i \(-0.626493\pi\)
0.508509 + 0.861057i \(0.330197\pi\)
\(440\) 13.0019 4.73230i 0.619841 0.225604i
\(441\) 0 0
\(442\) −0.103067 0.0375133i −0.00490239 0.00178432i
\(443\) 12.2879 1.43625i 0.583816 0.0682383i 0.180942 0.983494i \(-0.442085\pi\)
0.402874 + 0.915255i \(0.368011\pi\)
\(444\) 0 0
\(445\) 3.77320 12.6033i 0.178867 0.597456i
\(446\) −0.145250 + 0.485170i −0.00687781 + 0.0229735i
\(447\) 0 0
\(448\) 1.43329 0.167528i 0.0677167 0.00791495i
\(449\) −16.1389 5.87407i −0.761640 0.277214i −0.0681449 0.997675i \(-0.521708\pi\)
−0.693495 + 0.720461i \(0.743930\pi\)
\(450\) 0 0
\(451\) −25.2264 + 9.18166i −1.18786 + 0.432347i
\(452\) −7.91993 + 3.97754i −0.372522 + 0.187088i
\(453\) 0 0
\(454\) −5.11169 0.597471i −0.239903 0.0280407i
\(455\) 6.45930 + 3.24398i 0.302817 + 0.152080i
\(456\) 0 0
\(457\) 0.860915 + 0.204041i 0.0402719 + 0.00954461i 0.250702 0.968064i \(-0.419338\pi\)
−0.210431 + 0.977609i \(0.567487\pi\)
\(458\) 5.27840 + 9.14246i 0.246644 + 0.427199i
\(459\) 0 0
\(460\) 0.0760334 0.131694i 0.00354507 0.00614025i
\(461\) 10.4527 11.0792i 0.486831 0.516011i −0.436662 0.899626i \(-0.643839\pi\)
0.923493 + 0.383615i \(0.125321\pi\)
\(462\) 0 0
\(463\) −1.95582 33.5801i −0.0908945 1.56060i −0.668145 0.744031i \(-0.732912\pi\)
0.577251 0.816567i \(-0.304126\pi\)
\(464\) 0.447792 0.601489i 0.0207882 0.0279234i
\(465\) 0 0
\(466\) 9.31525 + 6.12674i 0.431521 + 0.283816i
\(467\) 1.91520 10.8616i 0.0886249 0.502617i −0.907890 0.419207i \(-0.862308\pi\)
0.996515 0.0834093i \(-0.0265809\pi\)
\(468\) 0 0
\(469\) −0.694378 3.93802i −0.0320634 0.181841i
\(470\) 1.41799 3.28726i 0.0654069 0.151630i
\(471\) 0 0
\(472\) 13.1753 3.12260i 0.606442 0.143729i
\(473\) −5.78246 6.12905i −0.265878 0.281814i
\(474\) 0 0
\(475\) −8.97541 12.0561i −0.411820 0.553170i
\(476\) −0.0533110 + 0.0447333i −0.00244351 + 0.00205035i
\(477\) 0 0
\(478\) 10.0282 + 8.41465i 0.458679 + 0.384877i
\(479\) 0.693250 11.9026i 0.0316754 0.543846i −0.944723 0.327869i \(-0.893669\pi\)
0.976399 0.215977i \(-0.0692935\pi\)
\(480\) 0 0
\(481\) 11.9935 + 27.8042i 0.546859 + 1.26776i
\(482\) −3.25903 + 2.14350i −0.148445 + 0.0976337i
\(483\) 0 0
\(484\) 11.7047 + 39.0964i 0.532032 + 1.77711i
\(485\) −6.61294 −0.300278
\(486\) 0 0
\(487\) 38.2435 1.73298 0.866489 0.499196i \(-0.166371\pi\)
0.866489 + 0.499196i \(0.166371\pi\)
\(488\) 1.18081 + 3.94417i 0.0534526 + 0.178544i
\(489\) 0 0
\(490\) 2.59481 1.70663i 0.117222 0.0770979i
\(491\) 1.67921 + 3.89284i 0.0757815 + 0.175681i 0.951896 0.306423i \(-0.0991321\pi\)
−0.876114 + 0.482104i \(0.839873\pi\)
\(492\) 0 0
\(493\) 0.000921013 0.0158132i 4.14803e−5 0.000712190i
\(494\) −9.94438 8.34432i −0.447419 0.375429i
\(495\) 0 0
\(496\) −9.15292 + 7.68021i −0.410978 + 0.344852i
\(497\) −1.89522 2.54572i −0.0850121 0.114191i
\(498\) 0 0
\(499\) −25.6682 27.2067i −1.14906 1.21794i −0.972313 0.233682i \(-0.924923\pi\)
−0.176752 0.984255i \(-0.556559\pi\)
\(500\) 12.8942 3.05597i 0.576644 0.136667i
\(501\) 0 0
\(502\) −5.06420 + 11.7401i −0.226026 + 0.523988i
\(503\) 0.0594062 + 0.336909i 0.00264879 + 0.0150220i 0.986104 0.166132i \(-0.0531278\pi\)
−0.983455 + 0.181154i \(0.942017\pi\)
\(504\) 0 0
\(505\) −1.42338 + 8.07239i −0.0633396 + 0.359217i
\(506\) −0.361754 0.237929i −0.0160819 0.0105773i
\(507\) 0 0
\(508\) −9.76284 + 13.1138i −0.433156 + 0.581830i
\(509\) 0.363632 + 6.24332i 0.0161177 + 0.276730i 0.996732 + 0.0807816i \(0.0257416\pi\)
−0.980614 + 0.195949i \(0.937221\pi\)
\(510\) 0 0
\(511\) −8.35080 + 8.85134i −0.369418 + 0.391560i
\(512\) −7.73462 + 13.3968i −0.341825 + 0.592059i
\(513\) 0 0
\(514\) 6.13058 + 10.6185i 0.270408 + 0.468361i
\(515\) −4.70595 1.11533i −0.207369 0.0491473i
\(516\) 0 0
\(517\) 30.6834 + 15.4098i 1.34946 + 0.677722i
\(518\) −5.66542 0.662193i −0.248924 0.0290951i
\(519\) 0 0
\(520\) 10.5990 5.32302i 0.464797 0.233430i
\(521\) 29.5418 10.7523i 1.29425 0.471068i 0.399129 0.916895i \(-0.369313\pi\)
0.895119 + 0.445827i \(0.147090\pi\)
\(522\) 0 0
\(523\) −20.1279 7.32597i −0.880134 0.320342i −0.137870 0.990450i \(-0.544026\pi\)
−0.742264 + 0.670108i \(0.766248\pi\)
\(524\) 21.8483 2.55370i 0.954447 0.111559i
\(525\) 0 0
\(526\) −1.68235 + 5.61945i −0.0733541 + 0.245020i
\(527\) −0.0723866 + 0.241788i −0.00315321 + 0.0105325i
\(528\) 0 0
\(529\) 22.8336 2.66887i 0.992766 0.116038i
\(530\) −5.86635 2.13518i −0.254818 0.0927461i
\(531\) 0 0
\(532\) −7.73997 + 2.81712i −0.335570 + 0.122138i
\(533\) −20.5643 + 10.3278i −0.890737 + 0.447345i
\(534\) 0 0
\(535\) −9.32379 1.08979i −0.403102 0.0471159i
\(536\) −5.86360 2.94481i −0.253269 0.127196i
\(537\) 0 0
\(538\) 7.36492 + 1.74552i 0.317524 + 0.0752547i
\(539\) 14.8933 + 25.7960i 0.641500 + 1.11111i
\(540\) 0 0
\(541\) 0.188033 0.325682i 0.00808416 0.0140022i −0.861955 0.506985i \(-0.830760\pi\)
0.870039 + 0.492983i \(0.164093\pi\)
\(542\) 4.72422 5.00738i 0.202922 0.215085i
\(543\) 0 0
\(544\) 0.0103888 + 0.178368i 0.000445415 + 0.00764748i
\(545\) −7.17386 + 9.63616i −0.307294 + 0.412768i
\(546\) 0 0
\(547\) 5.57872 + 3.66918i 0.238529 + 0.156883i 0.663146 0.748490i \(-0.269221\pi\)
−0.424617 + 0.905373i \(0.639591\pi\)
\(548\) −1.42899 + 8.10422i −0.0610436 + 0.346195i
\(549\) 0 0
\(550\) −2.95609 16.7648i −0.126048 0.714854i
\(551\) 0.742553 1.72143i 0.0316338 0.0733355i
\(552\) 0 0
\(553\) 17.9263 4.24861i 0.762304 0.180669i
\(554\) 0.604586 + 0.640823i 0.0256864 + 0.0272260i
\(555\) 0 0
\(556\) 3.77036 + 5.06448i 0.159899 + 0.214782i
\(557\) 2.30382 1.93313i 0.0976160 0.0819095i −0.592674 0.805443i \(-0.701928\pi\)
0.690290 + 0.723533i \(0.257483\pi\)
\(558\) 0 0
\(559\) −5.53318 4.64289i −0.234028 0.196373i
\(560\) 0.117157 2.01151i 0.00495079 0.0850017i
\(561\) 0 0
\(562\) −1.71785 3.98242i −0.0724631 0.167988i
\(563\) 27.4131 18.0299i 1.15533 0.759870i 0.180662 0.983545i \(-0.442176\pi\)
0.974664 + 0.223675i \(0.0718056\pi\)
\(564\) 0 0
\(565\) −1.55456 5.19261i −0.0654010 0.218455i
\(566\) −12.9354 −0.543715
\(567\) 0 0
\(568\) −5.20773 −0.218511
\(569\) −7.49905 25.0486i −0.314376 1.05009i −0.958482 0.285154i \(-0.907955\pi\)
0.644105 0.764937i \(-0.277230\pi\)
\(570\) 0 0
\(571\) 0.669019 0.440021i 0.0279976 0.0184143i −0.535433 0.844578i \(-0.679852\pi\)
0.563431 + 0.826163i \(0.309481\pi\)
\(572\) 19.6158 + 45.4744i 0.820176 + 1.90138i
\(573\) 0 0
\(574\) 0.252046 4.32745i 0.0105202 0.180624i
\(575\) −0.329195 0.276227i −0.0137284 0.0115195i
\(576\) 0 0
\(577\) −32.3968 + 27.1841i −1.34869 + 1.13169i −0.369395 + 0.929273i \(0.620435\pi\)
−0.979300 + 0.202416i \(0.935121\pi\)
\(578\) −6.86864 9.22619i −0.285698 0.383759i
\(579\) 0 0
\(580\) 0.511759 + 0.542433i 0.0212496 + 0.0225233i
\(581\) −25.3334 + 6.00414i −1.05101 + 0.249094i
\(582\) 0 0
\(583\) 23.7148 54.9772i 0.982168 2.27692i
\(584\) 3.46737 + 19.6644i 0.143481 + 0.813721i
\(585\) 0 0
\(586\) −0.214557 + 1.21681i −0.00886326 + 0.0502661i
\(587\) −11.1494 7.33310i −0.460186 0.302669i 0.298166 0.954514i \(-0.403625\pi\)
−0.758352 + 0.651845i \(0.773995\pi\)
\(588\) 0 0
\(589\) −17.8383 + 23.9610i −0.735015 + 0.987297i
\(590\) 0.209634 + 3.59928i 0.00863051 + 0.148180i
\(591\) 0 0
\(592\) 5.79259 6.13978i 0.238074 0.252344i
\(593\) −17.2045 + 29.7990i −0.706503 + 1.22370i 0.259644 + 0.965704i \(0.416395\pi\)
−0.966147 + 0.257994i \(0.916939\pi\)
\(594\) 0 0
\(595\) −0.0212812 0.0368601i −0.000872443 0.00151112i
\(596\) 28.3260 + 6.71338i 1.16028 + 0.274991i
\(597\) 0 0
\(598\) −0.331679 0.166575i −0.0135633 0.00681177i
\(599\) 39.7896 + 4.65074i 1.62576 + 0.190024i 0.879590 0.475733i \(-0.157817\pi\)
0.746169 + 0.665757i \(0.231891\pi\)
\(600\) 0 0
\(601\) −38.5925 + 19.3819i −1.57422 + 0.790603i −0.999613 0.0278267i \(-0.991141\pi\)
−0.574607 + 0.818430i \(0.694845\pi\)
\(602\) 1.27856 0.465357i 0.0521101 0.0189665i
\(603\) 0 0
\(604\) −4.46403 1.62477i −0.181639 0.0661111i
\(605\) −24.7909 + 2.89764i −1.00789 + 0.117806i
\(606\) 0 0
\(607\) −5.05347 + 16.8798i −0.205114 + 0.685129i 0.792090 + 0.610404i \(0.208993\pi\)
−0.997204 + 0.0747248i \(0.976192\pi\)
\(608\) −6.06495 + 20.2583i −0.245966 + 0.821585i
\(609\) 0 0
\(610\) −1.08886 + 0.127269i −0.0440866 + 0.00515298i
\(611\) 27.6577 + 10.0666i 1.11891 + 0.407250i
\(612\) 0 0
\(613\) 25.9691 9.45198i 1.04888 0.381762i 0.240641 0.970614i \(-0.422642\pi\)
0.808241 + 0.588852i \(0.200420\pi\)
\(614\) −9.06077 + 4.55049i −0.365663 + 0.183643i
\(615\) 0 0
\(616\) −21.2828 2.48760i −0.857507 0.100228i
\(617\) 3.94054 + 1.97901i 0.158640 + 0.0796720i 0.526348 0.850269i \(-0.323561\pi\)
−0.367708 + 0.929941i \(0.619857\pi\)
\(618\) 0 0
\(619\) −24.3417 5.76908i −0.978375 0.231879i −0.289834 0.957077i \(-0.593600\pi\)
−0.688541 + 0.725198i \(0.741748\pi\)
\(620\) −5.94125 10.2905i −0.238606 0.413278i
\(621\) 0 0
\(622\) −6.98959 + 12.1063i −0.280257 + 0.485420i
\(623\) −13.9816 + 14.8196i −0.560160 + 0.593735i
\(624\) 0 0
\(625\) −0.723768 12.4266i −0.0289507 0.497065i
\(626\) 9.02002 12.1160i 0.360513 0.484252i
\(627\) 0 0
\(628\) −4.41761 2.90551i −0.176282 0.115942i
\(629\) 0.0309624 0.175596i 0.00123455 0.00700148i
\(630\) 0 0
\(631\) 2.45133 + 13.9022i 0.0975857 + 0.553436i 0.993924 + 0.110066i \(0.0351062\pi\)
−0.896339 + 0.443370i \(0.853783\pi\)
\(632\) 11.9735 27.7576i 0.476279 1.10414i
\(633\) 0 0
\(634\) 7.47951 1.77268i 0.297049 0.0704020i
\(635\) −6.86161 7.27288i −0.272295 0.288616i
\(636\) 0 0
\(637\) 15.2474 + 20.4808i 0.604124 + 0.811479i
\(638\) 1.62660 1.36488i 0.0643978 0.0540362i
\(639\) 0 0
\(640\) −7.87383 6.60693i −0.311241 0.261162i
\(641\) −1.98908 + 34.1512i −0.0785639 + 1.34889i 0.696750 + 0.717314i \(0.254629\pi\)
−0.775314 + 0.631576i \(0.782408\pi\)
\(642\) 0 0
\(643\) −5.34174 12.3835i −0.210658 0.488359i 0.779825 0.625998i \(-0.215308\pi\)
−0.990483 + 0.137639i \(0.956049\pi\)
\(644\) −0.196756 + 0.129409i −0.00775328 + 0.00509941i
\(645\) 0 0
\(646\) 0.0219233 + 0.0732290i 0.000862562 + 0.00288116i
\(647\) 3.19249 0.125510 0.0627548 0.998029i \(-0.480011\pi\)
0.0627548 + 0.998029i \(0.480011\pi\)
\(648\) 0 0
\(649\) −34.5785 −1.35733
\(650\) −4.18520 13.9795i −0.164157 0.548323i
\(651\) 0 0
\(652\) −25.4020 + 16.7071i −0.994818 + 0.654302i
\(653\) −12.7409 29.5367i −0.498589 1.15586i −0.962819 0.270146i \(-0.912928\pi\)
0.464230 0.885715i \(-0.346331\pi\)
\(654\) 0 0
\(655\) −0.782235 + 13.4305i −0.0305645 + 0.524772i
\(656\) 4.91404 + 4.12337i 0.191861 + 0.160991i
\(657\) 0 0
\(658\) −4.24715 + 3.56378i −0.165571 + 0.138931i
\(659\) 8.71506 + 11.7064i 0.339490 + 0.456015i 0.938780 0.344518i \(-0.111958\pi\)
−0.599289 + 0.800532i \(0.704550\pi\)
\(660\) 0 0
\(661\) 5.34701 + 5.66750i 0.207975 + 0.220440i 0.822962 0.568097i \(-0.192320\pi\)
−0.614987 + 0.788537i \(0.710839\pi\)
\(662\) 9.48572 2.24816i 0.368673 0.0873771i
\(663\) 0 0
\(664\) −16.9209 + 39.2270i −0.656658 + 1.52230i
\(665\) −0.874754 4.96098i −0.0339215 0.192378i
\(666\) 0 0
\(667\) 0.00930786 0.0527875i 0.000360402 0.00204394i
\(668\) −24.9220 16.3914i −0.964260 0.634204i
\(669\) 0 0
\(670\) 1.04332 1.40143i 0.0403071 0.0541418i
\(671\) −0.611343 10.4963i −0.0236006 0.405207i
\(672\) 0 0
\(673\) −5.50205 + 5.83183i −0.212088 + 0.224801i −0.824681 0.565598i \(-0.808645\pi\)
0.612592 + 0.790399i \(0.290127\pi\)
\(674\) 3.35193 5.80572i 0.129112 0.223628i
\(675\) 0 0
\(676\) 11.2024 + 19.4031i 0.430862 + 0.746274i
\(677\) 8.28940 + 1.96462i 0.318588 + 0.0755067i 0.386798 0.922164i \(-0.373581\pi\)
−0.0682108 + 0.997671i \(0.521729\pi\)
\(678\) 0 0
\(679\) 9.15182 + 4.59622i 0.351215 + 0.176387i
\(680\) −0.0693678 0.00810794i −0.00266013 0.000310925i
\(681\) 0 0
\(682\) −30.2347 + 15.1844i −1.15775 + 0.581443i
\(683\) −13.5460 + 4.93034i −0.518323 + 0.188654i −0.587917 0.808921i \(-0.700052\pi\)
0.0695940 + 0.997575i \(0.477830\pi\)
\(684\) 0 0
\(685\) −4.72942 1.72137i −0.180702 0.0657701i
\(686\) −11.6487 + 1.36154i −0.444751 + 0.0519839i
\(687\) 0 0
\(688\) −0.577478 + 1.92891i −0.0220161 + 0.0735390i
\(689\) 14.7199 49.1680i 0.560785 1.87315i
\(690\) 0 0
\(691\) −36.2228 + 4.23384i −1.37798 + 0.161063i −0.772610 0.634881i \(-0.781049\pi\)
−0.605371 + 0.795944i \(0.706975\pi\)
\(692\) −8.93742 3.25296i −0.339750 0.123659i
\(693\) 0 0
\(694\) 2.14799 0.781805i 0.0815366 0.0296769i
\(695\) −3.45076 + 1.73304i −0.130895 + 0.0657378i
\(696\) 0 0
\(697\) 0.134588 + 0.0157311i 0.00509789 + 0.000595857i
\(698\) −0.804166 0.403867i −0.0304381 0.0152866i
\(699\) 0 0
\(700\) −9.00937 2.13526i −0.340522 0.0807053i
\(701\) −4.76010 8.24474i −0.179787 0.311399i 0.762021 0.647553i \(-0.224207\pi\)
−0.941807 + 0.336153i \(0.890874\pi\)
\(702\) 0 0
\(703\) 10.5517 18.2761i 0.397966 0.689298i
\(704\) −4.14970 + 4.39842i −0.156398 + 0.165772i
\(705\) 0 0
\(706\) −0.463995 7.96648i −0.0174627 0.299823i
\(707\) 7.58044 10.1823i 0.285092 0.382945i
\(708\) 0 0
\(709\) −9.99222 6.57198i −0.375266 0.246816i 0.347840 0.937554i \(-0.386915\pi\)
−0.723105 + 0.690738i \(0.757286\pi\)
\(710\) 0.240792 1.36560i 0.00903677 0.0512501i
\(711\) 0 0
\(712\) 5.80535 + 32.9238i 0.217565 + 1.23387i
\(713\) −0.338284 + 0.784231i −0.0126688 + 0.0293697i
\(714\) 0 0
\(715\) −29.4725 + 6.98512i −1.10221 + 0.261229i
\(716\) −3.66357 3.88316i −0.136914 0.145120i
\(717\) 0 0
\(718\) −12.0052 16.1257i −0.448029 0.601807i
\(719\) −16.3766 + 13.7416i −0.610743 + 0.512474i −0.894879 0.446310i \(-0.852738\pi\)
0.284135 + 0.958784i \(0.408294\pi\)
\(720\) 0 0
\(721\) 5.73749 + 4.81433i 0.213675 + 0.179295i
\(722\) 0.221472 3.80252i 0.00824232 0.141515i
\(723\) 0 0
\(724\) 11.6546 + 27.0185i 0.433141 + 1.00413i
\(725\) 1.76073 1.15805i 0.0653920 0.0430090i
\(726\) 0 0
\(727\) 2.26034 + 7.55006i 0.0838313 + 0.280016i 0.989619 0.143716i \(-0.0459051\pi\)
−0.905788 + 0.423732i \(0.860720\pi\)
\(728\) −18.3679 −0.680760
\(729\) 0 0
\(730\) −5.31685 −0.196785
\(731\) 0.0121984 + 0.0407456i 0.000451175 + 0.00150703i
\(732\) 0 0
\(733\) −29.0944 + 19.1357i −1.07463 + 0.706794i −0.958112 0.286395i \(-0.907543\pi\)
−0.116516 + 0.993189i \(0.537173\pi\)
\(734\) −2.15126 4.98718i −0.0794045 0.184080i
\(735\) 0 0
\(736\) −0.0351552 + 0.603591i −0.00129584 + 0.0222487i
\(737\) 12.8363 + 10.7709i 0.472829 + 0.396751i
\(738\) 0 0
\(739\) 33.5899 28.1853i 1.23563 1.03681i 0.237772 0.971321i \(-0.423583\pi\)
0.997853 0.0654916i \(-0.0208615\pi\)
\(740\) 5.01288 + 6.73346i 0.184277 + 0.247527i
\(741\) 0 0
\(742\) 6.63457 + 7.03224i 0.243563 + 0.258161i
\(743\) 20.7769 4.92421i 0.762229 0.180652i 0.168924 0.985629i \(-0.445971\pi\)
0.593305 + 0.804978i \(0.297823\pi\)
\(744\) 0 0
\(745\) −7.05175 + 16.3478i −0.258356 + 0.598937i
\(746\) −0.351765 1.99496i −0.0128790 0.0730407i
\(747\) 0 0
\(748\) 0.0506397 0.287192i 0.00185157 0.0105008i
\(749\) 12.1460 + 7.98854i 0.443805 + 0.291895i
\(750\) 0 0
\(751\) 2.70404 3.63215i 0.0986718 0.132539i −0.750045 0.661387i \(-0.769968\pi\)
0.848717 + 0.528848i \(0.177376\pi\)
\(752\) −0.477058 8.19078i −0.0173965 0.298687i
\(753\) 0 0
\(754\) 1.24908 1.32395i 0.0454887 0.0482152i
\(755\) 1.45269 2.51614i 0.0528689 0.0915716i
\(756\) 0 0
\(757\) −15.3969 26.6682i −0.559610 0.969273i −0.997529 0.0702583i \(-0.977618\pi\)
0.437919 0.899014i \(-0.355716\pi\)
\(758\) −14.5555 3.44973i −0.528681 0.125300i
\(759\) 0 0
\(760\) −7.38676 3.70977i −0.267946 0.134567i
\(761\) 3.55461 + 0.415474i 0.128854 + 0.0150609i 0.180276 0.983616i \(-0.442301\pi\)
−0.0514212 + 0.998677i \(0.516375\pi\)
\(762\) 0 0
\(763\) 16.6255 8.34966i 0.601885 0.302278i
\(764\) −28.8785 + 10.5109i −1.04479 + 0.380271i
\(765\) 0 0
\(766\) −9.12904 3.32270i −0.329846 0.120054i
\(767\) −29.4405 + 3.44110i −1.06303 + 0.124251i
\(768\) 0 0
\(769\) 4.18876 13.9914i 0.151051 0.504544i −0.848652 0.528952i \(-0.822585\pi\)
0.999702 + 0.0244085i \(0.00777023\pi\)
\(770\) 1.63637 5.46587i 0.0589708 0.196976i
\(771\) 0 0
\(772\) −16.4162 + 1.91877i −0.590831 + 0.0690582i
\(773\) −18.7983 6.84203i −0.676129 0.246091i −0.0189442 0.999821i \(-0.506030\pi\)
−0.657184 + 0.753730i \(0.728253\pi\)
\(774\) 0 0
\(775\) −31.5543 + 11.4848i −1.13346 + 0.412547i
\(776\) 15.0171 7.54188i 0.539083 0.270738i
\(777\) 0 0
\(778\) 12.2517 + 1.43202i 0.439246 + 0.0513404i
\(779\) 14.3319 + 7.19773i 0.513492 + 0.257885i
\(780\) 0 0
\(781\) 12.9408 + 3.06702i 0.463057 + 0.109747i
\(782\) 0.00109277 + 0.00189273i 3.90772e−5 + 6.76838e-5i
\(783\) 0 0
\(784\) 3.55882 6.16407i 0.127101 0.220145i
\(785\) 2.21915 2.35216i 0.0792049 0.0839523i
\(786\) 0 0
\(787\) 0.787575 + 13.5221i 0.0280740 + 0.482012i 0.982817 + 0.184581i \(0.0590928\pi\)
−0.954743 + 0.297431i \(0.903870\pi\)
\(788\) 21.8274 29.3193i 0.777568 1.04446i
\(789\) 0 0
\(790\) 6.72513 + 4.42319i 0.239269 + 0.157370i
\(791\) −1.45763 + 8.26666i −0.0518275 + 0.293929i
\(792\) 0 0
\(793\) −1.56505 8.87585i −0.0555766 0.315191i
\(794\) 0.371719 0.861743i 0.0131918 0.0305821i
\(795\) 0 0
\(796\) −13.1079 + 3.10662i −0.464595 + 0.110111i
\(797\) 20.5872 + 21.8212i 0.729237 + 0.772946i 0.980825 0.194888i \(-0.0624344\pi\)
−0.251588 + 0.967834i \(0.580953\pi\)
\(798\) 0 0
\(799\) −0.103495 0.139018i −0.00366138 0.00491809i
\(800\) −18.2098 + 15.2799i −0.643814 + 0.540225i
\(801\) 0 0
\(802\) 11.4481 + 9.60610i 0.404247 + 0.339203i
\(803\) 2.96497 50.9066i 0.104632 1.79645i
\(804\) 0 0
\(805\) −0.0570470 0.132250i −0.00201064 0.00466120i
\(806\) −24.2310 + 15.9370i −0.853502 + 0.561357i
\(807\) 0 0
\(808\) −5.97404 19.9547i −0.210166 0.702003i
\(809\) 48.8577 1.71774 0.858872 0.512190i \(-0.171166\pi\)
0.858872 + 0.512190i \(0.171166\pi\)
\(810\) 0 0
\(811\) −14.0558 −0.493566 −0.246783 0.969071i \(-0.579373\pi\)
−0.246783 + 0.969071i \(0.579373\pi\)
\(812\) −0.331227 1.10638i −0.0116238 0.0388262i
\(813\) 0 0
\(814\) 19.9699 13.1344i 0.699946 0.460362i
\(815\) −7.36500 17.0740i −0.257985 0.598075i
\(816\) 0 0
\(817\) −0.292699 + 5.02544i −0.0102402 + 0.175818i
\(818\) 0.299277 + 0.251123i 0.0104640 + 0.00878032i
\(819\) 0 0
\(820\) −4.88698 + 4.10067i −0.170661 + 0.143201i
\(821\) 19.2557 + 25.8649i 0.672030 + 0.902692i 0.999105 0.0423060i \(-0.0134704\pi\)
−0.327075 + 0.944998i \(0.606063\pi\)
\(822\) 0 0
\(823\) 22.7018 + 24.0626i 0.791337 + 0.838768i 0.989966 0.141307i \(-0.0451304\pi\)
−0.198629 + 0.980075i \(0.563649\pi\)
\(824\) 11.9586 2.83424i 0.416597 0.0987353i
\(825\) 0 0
\(826\) 2.21150 5.12684i 0.0769481 0.178386i
\(827\) 6.93056 + 39.3051i 0.240999 + 1.36677i 0.829604 + 0.558352i \(0.188566\pi\)
−0.588605 + 0.808421i \(0.700323\pi\)
\(828\) 0 0
\(829\) −3.03189 + 17.1947i −0.105302 + 0.597198i 0.885797 + 0.464073i \(0.153612\pi\)
−0.991099 + 0.133125i \(0.957499\pi\)
\(830\) −9.50395 6.25085i −0.329887 0.216970i
\(831\) 0 0
\(832\) −3.09538 + 4.15782i −0.107313 + 0.144146i
\(833\) −0.00874210 0.150096i −0.000302896 0.00520052i
\(834\) 0 0
\(835\) 12.5194 13.2697i 0.433250 0.459218i
\(836\) 17.2576 29.8911i 0.596868 1.03381i
\(837\) 0 0
\(838\) 4.27349 + 7.40191i 0.147625 + 0.255695i
\(839\) −38.4211 9.10598i −1.32645 0.314373i −0.494474 0.869192i \(-0.664639\pi\)
−0.831971 + 0.554819i \(0.812788\pi\)
\(840\) 0 0
\(841\) −25.6804 12.8972i −0.885532 0.444731i
\(842\) −14.3997 1.68308i −0.496245 0.0580027i
\(843\) 0 0
\(844\) 10.0301 5.03730i 0.345250 0.173391i
\(845\) −12.8763 + 4.68657i −0.442957 + 0.161223i
\(846\) 0 0
\(847\) 36.3227 + 13.2204i 1.24806 + 0.454258i
\(848\) −14.2104 + 1.66096i −0.487987 + 0.0570375i
\(849\) 0 0
\(850\) −0.0246442 + 0.0823174i −0.000845289 + 0.00282346i
\(851\) 0.173050 0.578029i 0.00593209 0.0198146i
\(852\) 0 0
\(853\) 31.1073 3.63592i 1.06509 0.124491i 0.434551 0.900647i \(-0.356907\pi\)
0.630541 + 0.776156i \(0.282833\pi\)
\(854\) 1.59536 + 0.580662i 0.0545920 + 0.0198699i
\(855\) 0 0
\(856\) 22.4160 8.15875i 0.766162 0.278860i
\(857\) 31.5874 15.8638i 1.07901 0.541897i 0.181721 0.983350i \(-0.441833\pi\)
0.897284 + 0.441453i \(0.145537\pi\)
\(858\) 0 0
\(859\) −28.0616 3.27993i −0.957450 0.111910i −0.377007 0.926211i \(-0.623047\pi\)
−0.580443 + 0.814301i \(0.697121\pi\)
\(860\) −1.78942 0.898680i −0.0610187 0.0306447i
\(861\) 0 0
\(862\) 2.94391 + 0.697720i 0.100270 + 0.0237644i
\(863\) −1.91089 3.30976i −0.0650475 0.112666i 0.831668 0.555274i \(-0.187387\pi\)
−0.896715 + 0.442608i \(0.854053\pi\)
\(864\) 0 0
\(865\) 2.90843 5.03755i 0.0988896 0.171282i
\(866\) −4.24099 + 4.49518i −0.144115 + 0.152752i
\(867\) 0 0
\(868\) 1.06997 + 18.3707i 0.0363172 + 0.623543i
\(869\) −46.1005 + 61.9237i −1.56385 + 2.10062i
\(870\) 0 0
\(871\) 12.0008 + 7.89303i 0.406631 + 0.267445i
\(872\) 5.30110 30.0640i 0.179518 1.01810i
\(873\) 0 0
\(874\) 0.0449177 + 0.254741i 0.00151936 + 0.00861674i
\(875\) 4.97117 11.5245i 0.168056 0.389598i
\(876\) 0 0
\(877\) −33.3655 + 7.90777i −1.12667 + 0.267026i −0.751374 0.659877i \(-0.770608\pi\)
−0.375300 + 0.926904i \(0.622460\pi\)
\(878\) −1.32273 1.40201i −0.0446399 0.0473156i
\(879\) 0 0
\(880\) 5.04203 + 6.77262i 0.169967 + 0.228305i
\(881\) 39.1151 32.8215i 1.31782 1.10578i 0.331059 0.943610i \(-0.392594\pi\)
0.986762 0.162173i \(-0.0518502\pi\)
\(882\) 0 0
\(883\) −30.6669 25.7326i −1.03202 0.865972i −0.0409344 0.999162i \(-0.513033\pi\)
−0.991091 + 0.133190i \(0.957478\pi\)
\(884\) 0.0145351 0.249558i 0.000488867 0.00839353i
\(885\) 0 0
\(886\) −3.31561 7.68646i −0.111390 0.258232i
\(887\) −19.1315 + 12.5830i −0.642374 + 0.422496i −0.828468 0.560036i \(-0.810787\pi\)
0.186095 + 0.982532i \(0.440417\pi\)
\(888\) 0 0
\(889\) 4.44106 + 14.8342i 0.148948 + 0.497523i
\(890\) −8.90188 −0.298392
\(891\) 0 0
\(892\) −1.15427 −0.0386477
\(893\) −5.88306 19.6508i −0.196869 0.657588i
\(894\) 0 0
\(895\) 2.72791 1.79417i 0.0911839 0.0599726i
\(896\) 6.30476 + 14.6161i 0.210627 + 0.488289i
\(897\) 0 0
\(898\) −0.675702 + 11.6014i −0.0225485 + 0.387142i
\(899\) −3.20854 2.69228i −0.107011 0.0897927i
\(900\) 0 0
\(901\) −0.231513 + 0.194262i −0.00771281 + 0.00647182i
\(902\) 10.8472 + 14.5703i 0.361171 + 0.485136i
\(903\) 0 0
\(904\) 9.45224 + 10.0188i 0.314377 + 0.333220i
\(905\) −17.5110 + 4.15018i −0.582085 + 0.137957i
\(906\) 0 0
\(907\) −9.48338 + 21.9850i −0.314891 + 0.729998i 0.685108 + 0.728441i \(0.259755\pi\)
−0.999999 + 0.00155714i \(0.999504\pi\)
\(908\) −2.03683 11.5514i −0.0675944 0.383347i
\(909\) 0 0
\(910\) 0.849285 4.81654i 0.0281535 0.159667i
\(911\) 25.7190 + 16.9157i 0.852110 + 0.560441i 0.898746 0.438470i \(-0.144480\pi\)
−0.0466357 + 0.998912i \(0.514850\pi\)
\(912\) 0 0
\(913\) 65.1492 87.5106i 2.15612 2.89618i
\(914\) −0.0348093 0.597652i −0.00115139 0.0197686i
\(915\) 0 0
\(916\) −16.5113 + 17.5010i −0.545550 + 0.578249i
\(917\) 10.4172 18.0431i 0.344006 0.595835i
\(918\) 0 0
\(919\) 21.9894 + 38.0868i 0.725365 + 1.25637i 0.958824 + 0.284002i \(0.0916623\pi\)
−0.233459 + 0.972367i \(0.575004\pi\)
\(920\) −0.229965 0.0545028i −0.00758173 0.00179690i
\(921\) 0 0
\(922\) −9.21017 4.62552i −0.303321 0.152333i
\(923\) 11.3231 + 1.32348i 0.372705 + 0.0435629i
\(924\) 0 0
\(925\) 21.1993 10.6467i 0.697029 0.350061i
\(926\) −21.3875 + 7.78440i −0.702836 + 0.255811i
\(927\) 0 0
\(928\) −2.78624 1.01411i −0.0914627 0.0332897i
\(929\) 28.1444 3.28960i 0.923386 0.107928i 0.358905 0.933374i \(-0.383150\pi\)
0.564481 + 0.825446i \(0.309076\pi\)
\(930\) 0 0
\(931\) 5.10363 17.0473i 0.167265 0.558703i
\(932\) −7.28805 + 24.3438i −0.238728 + 0.797407i
\(933\) 0 0
\(934\) −7.41232 + 0.866376i −0.242539 + 0.0283487i
\(935\) 0.167598 + 0.0610008i 0.00548105 + 0.00199494i
\(936\) 0 0
\(937\) 12.4825 4.54327i 0.407787 0.148422i −0.129979 0.991517i \(-0.541491\pi\)
0.537765 + 0.843095i \(0.319269\pi\)
\(938\) −2.41792 + 1.21432i −0.0789479 + 0.0396491i
\(939\) 0 0
\(940\) 8.10431 + 0.947258i 0.264333 + 0.0308961i
\(941\) −12.6023 6.32910i −0.410822 0.206323i 0.231371 0.972866i \(-0.425679\pi\)
−0.642193 + 0.766543i \(0.721975\pi\)
\(942\) 0 0
\(943\) 0.446181 + 0.105747i 0.0145296 + 0.00344359i
\(944\) 4.13135 + 7.15571i 0.134464 + 0.232898i
\(945\) 0 0
\(946\) −2.85077 + 4.93768i −0.0926866 + 0.160538i
\(947\) −16.6076 + 17.6030i −0.539673 + 0.572020i −0.938620 0.344954i \(-0.887895\pi\)
0.398946 + 0.916974i \(0.369376\pi\)
\(948\) 0 0
\(949\) −2.54159 43.6374i −0.0825035 1.41653i
\(950\) −6.07311 + 8.15760i −0.197038 + 0.264667i
\(951\) 0 0
\(952\) 0.0903646 + 0.0594338i 0.00292874 + 0.00192626i
\(953\) −0.315523 + 1.78942i −0.0102208 + 0.0579650i −0.989492 0.144590i \(-0.953814\pi\)
0.979271 + 0.202555i \(0.0649246\pi\)
\(954\) 0 0
\(955\) −3.26378 18.5098i −0.105613 0.598964i
\(956\) −11.8175 + 27.3959i −0.382204 + 0.886048i
\(957\) 0 0
\(958\) −7.84998 + 1.86048i −0.253621 + 0.0601094i
\(959\) 5.34876 + 5.66936i 0.172721 + 0.183073i
\(960\) 0 0
\(961\) 21.3412 + 28.6662i 0.688425 + 0.924716i
\(962\) 15.6955 13.1701i 0.506044 0.424621i
\(963\) 0 0
\(964\) −6.81044 5.71464i −0.219350 0.184056i
\(965\) 0.587749 10.0913i 0.0189203 0.324849i
\(966\) 0 0
\(967\) −0.751265 1.74163i −0.0241591 0.0560070i 0.905709 0.423899i \(-0.139339\pi\)
−0.929869 + 0.367892i \(0.880080\pi\)
\(968\) 52.9922 34.8535i 1.70323 1.12023i
\(969\) 0 0
\(970\) 1.28332 + 4.28659i 0.0412050 + 0.137634i
\(971\) −27.1629 −0.871698 −0.435849 0.900020i \(-0.643552\pi\)
−0.435849 + 0.900020i \(0.643552\pi\)
\(972\) 0 0
\(973\) 5.98012 0.191714
\(974\) −7.42161 24.7899i −0.237804 0.794320i
\(975\) 0 0
\(976\) −2.09908 + 1.38059i −0.0671899 + 0.0441915i
\(977\) −10.1432 23.5146i −0.324510 0.752298i −0.999890 0.0148287i \(-0.995280\pi\)
0.675380 0.737470i \(-0.263980\pi\)
\(978\) 0 0
\(979\) 4.96419 85.2319i 0.158656 2.72402i
\(980\) 5.42241 + 4.54994i 0.173213 + 0.145343i
\(981\) 0 0
\(982\) 2.19751 1.84393i 0.0701255 0.0588423i
\(983\) −17.3432 23.2960i −0.553163 0.743026i 0.434319 0.900759i \(-0.356989\pi\)
−0.987482 + 0.157733i \(0.949582\pi\)
\(984\) 0 0
\(985\) 15.3409 + 16.2604i 0.488802 + 0.518100i
\(986\) −0.0104290 + 0.00247173i −0.000332128 + 7.87158e-5i
\(987\) 0 0
\(988\) 11.7187 27.1670i 0.372821 0.864297i
\(989\) 0.0249928 + 0.141741i 0.000794725 + 0.00450711i
\(990\) 0 0
\(991\) 6.28903 35.6669i 0.199778 1.13300i −0.705671 0.708539i \(-0.749354\pi\)
0.905449 0.424456i \(-0.139534\pi\)
\(992\) 39.4722 + 25.9613i 1.25324 + 0.824272i
\(993\) 0 0
\(994\) −1.28238 + 1.72253i −0.0406745 + 0.0546354i
\(995\) −0.479040 8.22481i −0.0151866 0.260744i
\(996\) 0 0
\(997\) 10.4130 11.0372i 0.329784 0.349550i −0.541172 0.840912i \(-0.682019\pi\)
0.870956 + 0.491362i \(0.163501\pi\)
\(998\) −12.6545 + 21.9182i −0.400571 + 0.693809i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.c.379.3 144
3.2 odd 2 729.2.g.b.379.6 144
9.2 odd 6 729.2.g.a.622.6 144
9.4 even 3 81.2.g.a.16.6 144
9.5 odd 6 243.2.g.a.208.3 144
9.7 even 3 729.2.g.d.622.3 144
81.5 odd 54 729.2.g.a.109.6 144
81.7 even 27 6561.2.a.c.1.46 72
81.22 even 27 81.2.g.a.76.6 yes 144
81.32 odd 54 729.2.g.b.352.6 144
81.49 even 27 inner 729.2.g.c.352.3 144
81.59 odd 54 243.2.g.a.118.3 144
81.74 odd 54 6561.2.a.d.1.27 72
81.76 even 27 729.2.g.d.109.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.6 144 9.4 even 3
81.2.g.a.76.6 yes 144 81.22 even 27
243.2.g.a.118.3 144 81.59 odd 54
243.2.g.a.208.3 144 9.5 odd 6
729.2.g.a.109.6 144 81.5 odd 54
729.2.g.a.622.6 144 9.2 odd 6
729.2.g.b.352.6 144 81.32 odd 54
729.2.g.b.379.6 144 3.2 odd 2
729.2.g.c.352.3 144 81.49 even 27 inner
729.2.g.c.379.3 144 1.1 even 1 trivial
729.2.g.d.109.3 144 81.76 even 27
729.2.g.d.622.3 144 9.7 even 3
6561.2.a.c.1.46 72 81.7 even 27
6561.2.a.d.1.27 72 81.74 odd 54