Properties

Label 729.2.g.c.352.3
Level $729$
Weight $2$
Character 729.352
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,9,0,9,9,0,9,-18,0,-18,9,0,9,9,0,9,-18,0,-18,-63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 352.3
Character \(\chi\) \(=\) 729.352
Dual form 729.2.g.c.379.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.194062 + 0.648213i) q^{2} +(1.28846 + 0.847431i) q^{4} +(0.373572 - 0.866038i) q^{5} +(0.0849292 + 1.45818i) q^{7} +(-1.83603 + 1.54061i) q^{8} +(0.488880 + 0.410219i) q^{10} +(3.65505 - 4.90959i) q^{11} +(3.60053 - 3.81633i) q^{13} +(-0.961691 - 0.227925i) q^{14} +(0.579298 + 1.34296i) q^{16} +(-0.00536485 + 0.0304256i) q^{17} +(0.634963 + 3.60105i) q^{19} +(1.21524 - 0.799275i) q^{20} +(2.47315 + 3.32202i) q^{22} +(-0.00607888 + 0.104370i) q^{23} +(2.82074 + 2.98981i) q^{25} +(1.77507 + 3.07451i) q^{26} +(-1.12628 + 1.95077i) q^{28} +(0.498884 - 0.118238i) q^{29} +(-7.30038 + 3.66639i) q^{31} +(-5.74406 + 0.671384i) q^{32} +(-0.0186811 - 0.00938202i) q^{34} +(1.29456 + 0.471183i) q^{35} +(5.42328 - 1.97391i) q^{37} +(-2.45747 - 0.287237i) q^{38} +(0.648337 + 2.16560i) q^{40} +(-1.25791 - 4.20171i) q^{41} +(-1.36737 - 0.159822i) q^{43} +(8.86991 - 3.22838i) q^{44} +(-0.0664745 - 0.0241947i) q^{46} +(5.01303 + 2.51764i) q^{47} +(4.83360 - 0.564967i) q^{49} +(-2.48543 + 1.24823i) q^{50} +(7.87320 - 1.86598i) q^{52} +(-4.89106 + 8.47157i) q^{53} +(-2.88646 - 4.99950i) q^{55} +(-2.40241 - 2.54641i) q^{56} +(-0.0201713 + 0.346328i) q^{58} +(-3.37359 - 4.53152i) q^{59} +(-1.43519 + 0.943940i) q^{61} +(-0.959872 - 5.44370i) q^{62} +(0.171556 - 0.972942i) q^{64} +(-1.96003 - 4.54387i) q^{65} +(2.66387 + 0.631349i) q^{67} +(-0.0326960 + 0.0346557i) q^{68} +(-0.556652 + 0.747714i) q^{70} +(1.66448 + 1.39666i) q^{71} +(-6.38204 + 5.35517i) q^{73} +(0.227062 + 3.89850i) q^{74} +(-2.23352 + 5.17789i) q^{76} +(7.46947 + 4.91275i) q^{77} +(3.61740 - 12.0829i) q^{79} +1.37947 q^{80} +2.96771 q^{82} +(-5.11210 + 17.0756i) q^{83} +(0.0243456 + 0.0160123i) q^{85} +(0.368953 - 0.855329i) q^{86} +(0.852982 + 14.6451i) q^{88} +(-10.6853 + 8.96604i) q^{89} +(5.87068 + 4.92609i) q^{91} +(-0.0962791 + 0.129325i) q^{92} +(-2.60480 + 2.76093i) q^{94} +(3.35585 + 0.795351i) q^{95} +(-2.77706 - 6.43795i) q^{97} +(-0.571800 + 3.24284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{16}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.194062 + 0.648213i −0.137223 + 0.458356i −0.998784 0.0492977i \(-0.984302\pi\)
0.861561 + 0.507653i \(0.169487\pi\)
\(3\) 0 0
\(4\) 1.28846 + 0.847431i 0.644228 + 0.423715i
\(5\) 0.373572 0.866038i 0.167067 0.387304i −0.814030 0.580823i \(-0.802731\pi\)
0.981097 + 0.193519i \(0.0619901\pi\)
\(6\) 0 0
\(7\) 0.0849292 + 1.45818i 0.0321002 + 0.551139i 0.975571 + 0.219684i \(0.0705026\pi\)
−0.943471 + 0.331455i \(0.892460\pi\)
\(8\) −1.83603 + 1.54061i −0.649133 + 0.544688i
\(9\) 0 0
\(10\) 0.488880 + 0.410219i 0.154598 + 0.129723i
\(11\) 3.65505 4.90959i 1.10204 1.48030i 0.241857 0.970312i \(-0.422244\pi\)
0.860183 0.509985i \(-0.170349\pi\)
\(12\) 0 0
\(13\) 3.60053 3.81633i 0.998606 1.05846i 0.000316539 1.00000i \(-0.499899\pi\)
0.998290 0.0584608i \(-0.0186193\pi\)
\(14\) −0.961691 0.227925i −0.257023 0.0609155i
\(15\) 0 0
\(16\) 0.579298 + 1.34296i 0.144825 + 0.335741i
\(17\) −0.00536485 + 0.0304256i −0.00130117 + 0.00737929i −0.985451 0.169957i \(-0.945637\pi\)
0.984150 + 0.177337i \(0.0567481\pi\)
\(18\) 0 0
\(19\) 0.634963 + 3.60105i 0.145670 + 0.826138i 0.966826 + 0.255434i \(0.0822184\pi\)
−0.821156 + 0.570704i \(0.806670\pi\)
\(20\) 1.21524 0.799275i 0.271736 0.178723i
\(21\) 0 0
\(22\) 2.47315 + 3.32202i 0.527277 + 0.708256i
\(23\) −0.00607888 + 0.104370i −0.00126753 + 0.0217627i −0.998883 0.0472600i \(-0.984951\pi\)
0.997615 + 0.0690227i \(0.0219881\pi\)
\(24\) 0 0
\(25\) 2.82074 + 2.98981i 0.564149 + 0.597963i
\(26\) 1.77507 + 3.07451i 0.348120 + 0.602961i
\(27\) 0 0
\(28\) −1.12628 + 1.95077i −0.212846 + 0.368661i
\(29\) 0.498884 0.118238i 0.0926405 0.0219562i −0.184034 0.982920i \(-0.558916\pi\)
0.276675 + 0.960964i \(0.410768\pi\)
\(30\) 0 0
\(31\) −7.30038 + 3.66639i −1.31119 + 0.658503i −0.960576 0.278019i \(-0.910322\pi\)
−0.350611 + 0.936521i \(0.614026\pi\)
\(32\) −5.74406 + 0.671384i −1.01542 + 0.118685i
\(33\) 0 0
\(34\) −0.0186811 0.00938202i −0.00320379 0.00160900i
\(35\) 1.29456 + 0.471183i 0.218821 + 0.0796444i
\(36\) 0 0
\(37\) 5.42328 1.97391i 0.891581 0.324509i 0.144707 0.989475i \(-0.453776\pi\)
0.746874 + 0.664965i \(0.231554\pi\)
\(38\) −2.45747 0.287237i −0.398654 0.0465960i
\(39\) 0 0
\(40\) 0.648337 + 2.16560i 0.102511 + 0.342411i
\(41\) −1.25791 4.20171i −0.196452 0.656197i −0.998279 0.0586403i \(-0.981324\pi\)
0.801827 0.597557i \(-0.203862\pi\)
\(42\) 0 0
\(43\) −1.36737 0.159822i −0.208522 0.0243727i 0.0111907 0.999937i \(-0.496438\pi\)
−0.219712 + 0.975565i \(0.570512\pi\)
\(44\) 8.86991 3.22838i 1.33719 0.486697i
\(45\) 0 0
\(46\) −0.0664745 0.0241947i −0.00980113 0.00356732i
\(47\) 5.01303 + 2.51764i 0.731225 + 0.367235i 0.775131 0.631801i \(-0.217684\pi\)
−0.0439058 + 0.999036i \(0.513980\pi\)
\(48\) 0 0
\(49\) 4.83360 0.564967i 0.690514 0.0807095i
\(50\) −2.48543 + 1.24823i −0.351493 + 0.176527i
\(51\) 0 0
\(52\) 7.87320 1.86598i 1.09182 0.258765i
\(53\) −4.89106 + 8.47157i −0.671839 + 1.16366i 0.305543 + 0.952178i \(0.401162\pi\)
−0.977382 + 0.211481i \(0.932171\pi\)
\(54\) 0 0
\(55\) −2.88646 4.99950i −0.389211 0.674132i
\(56\) −2.40241 2.54641i −0.321036 0.340278i
\(57\) 0 0
\(58\) −0.0201713 + 0.346328i −0.00264863 + 0.0454752i
\(59\) −3.37359 4.53152i −0.439204 0.589953i 0.526314 0.850290i \(-0.323574\pi\)
−0.965518 + 0.260337i \(0.916166\pi\)
\(60\) 0 0
\(61\) −1.43519 + 0.943940i −0.183757 + 0.120859i −0.638055 0.769991i \(-0.720261\pi\)
0.454297 + 0.890850i \(0.349890\pi\)
\(62\) −0.959872 5.44370i −0.121904 0.691351i
\(63\) 0 0
\(64\) 0.171556 0.972942i 0.0214445 0.121618i
\(65\) −1.96003 4.54387i −0.243112 0.563597i
\(66\) 0 0
\(67\) 2.66387 + 0.631349i 0.325444 + 0.0771315i 0.390090 0.920777i \(-0.372444\pi\)
−0.0646466 + 0.997908i \(0.520592\pi\)
\(68\) −0.0326960 + 0.0346557i −0.00396497 + 0.00420262i
\(69\) 0 0
\(70\) −0.556652 + 0.747714i −0.0665327 + 0.0893689i
\(71\) 1.66448 + 1.39666i 0.197537 + 0.165753i 0.736191 0.676774i \(-0.236623\pi\)
−0.538654 + 0.842527i \(0.681067\pi\)
\(72\) 0 0
\(73\) −6.38204 + 5.35517i −0.746961 + 0.626775i −0.934697 0.355445i \(-0.884329\pi\)
0.187736 + 0.982219i \(0.439885\pi\)
\(74\) 0.227062 + 3.89850i 0.0263954 + 0.453191i
\(75\) 0 0
\(76\) −2.23352 + 5.17789i −0.256203 + 0.593944i
\(77\) 7.46947 + 4.91275i 0.851225 + 0.559860i
\(78\) 0 0
\(79\) 3.61740 12.0829i 0.406989 1.35944i −0.471581 0.881823i \(-0.656316\pi\)
0.878570 0.477614i \(-0.158498\pi\)
\(80\) 1.37947 0.154229
\(81\) 0 0
\(82\) 2.96771 0.327729
\(83\) −5.11210 + 17.0756i −0.561126 + 1.87429i −0.0818133 + 0.996648i \(0.526071\pi\)
−0.479313 + 0.877644i \(0.659114\pi\)
\(84\) 0 0
\(85\) 0.0243456 + 0.0160123i 0.00264065 + 0.00173678i
\(86\) 0.368953 0.855329i 0.0397852 0.0922325i
\(87\) 0 0
\(88\) 0.852982 + 14.6451i 0.0909282 + 1.56118i
\(89\) −10.6853 + 8.96604i −1.13264 + 0.950399i −0.999173 0.0406545i \(-0.987056\pi\)
−0.133468 + 0.991053i \(0.542611\pi\)
\(90\) 0 0
\(91\) 5.87068 + 4.92609i 0.615415 + 0.516394i
\(92\) −0.0962791 + 0.129325i −0.0100378 + 0.0134831i
\(93\) 0 0
\(94\) −2.60480 + 2.76093i −0.268665 + 0.284768i
\(95\) 3.35585 + 0.795351i 0.344303 + 0.0816013i
\(96\) 0 0
\(97\) −2.77706 6.43795i −0.281968 0.653675i 0.717094 0.696976i \(-0.245472\pi\)
−0.999062 + 0.0433014i \(0.986212\pi\)
\(98\) −0.571800 + 3.24284i −0.0577605 + 0.327576i
\(99\) 0 0
\(100\) 1.10074 + 6.24263i 0.110074 + 0.624263i
\(101\) 7.26104 4.77566i 0.722501 0.475196i −0.134237 0.990949i \(-0.542858\pi\)
0.856737 + 0.515753i \(0.172488\pi\)
\(102\) 0 0
\(103\) −3.06205 4.11304i −0.301712 0.405270i 0.625250 0.780425i \(-0.284997\pi\)
−0.926962 + 0.375155i \(0.877590\pi\)
\(104\) −0.731181 + 12.5539i −0.0716982 + 1.23101i
\(105\) 0 0
\(106\) −4.54221 4.81446i −0.441178 0.467622i
\(107\) −4.97642 8.61941i −0.481089 0.833270i 0.518676 0.854971i \(-0.326425\pi\)
−0.999765 + 0.0217011i \(0.993092\pi\)
\(108\) 0 0
\(109\) 6.36856 11.0307i 0.609997 1.05655i −0.381243 0.924475i \(-0.624504\pi\)
0.991240 0.132071i \(-0.0421627\pi\)
\(110\) 3.80089 0.900828i 0.362401 0.0858906i
\(111\) 0 0
\(112\) −1.90908 + 0.958776i −0.180391 + 0.0905958i
\(113\) −5.70803 + 0.667173i −0.536966 + 0.0627623i −0.380254 0.924882i \(-0.624164\pi\)
−0.156712 + 0.987644i \(0.550089\pi\)
\(114\) 0 0
\(115\) 0.0881178 + 0.0442544i 0.00821703 + 0.00412675i
\(116\) 0.742989 + 0.270426i 0.0689848 + 0.0251084i
\(117\) 0 0
\(118\) 3.59207 1.30741i 0.330677 0.120357i
\(119\) −0.0448216 0.00523889i −0.00410879 0.000480248i
\(120\) 0 0
\(121\) −7.58981 25.3517i −0.689983 2.30470i
\(122\) −0.333357 1.11349i −0.0301808 0.100811i
\(123\) 0 0
\(124\) −12.5132 1.46259i −1.12372 0.131344i
\(125\) 8.07451 2.93888i 0.722206 0.262862i
\(126\) 0 0
\(127\) −9.96192 3.62584i −0.883977 0.321741i −0.140163 0.990128i \(-0.544763\pi\)
−0.743814 + 0.668387i \(0.766985\pi\)
\(128\) −9.73866 4.89094i −0.860784 0.432302i
\(129\) 0 0
\(130\) 3.32576 0.388726i 0.291689 0.0340935i
\(131\) 12.7466 6.40157i 1.11367 0.559308i 0.205817 0.978590i \(-0.434015\pi\)
0.907856 + 0.419283i \(0.137718\pi\)
\(132\) 0 0
\(133\) −5.19705 + 1.23172i −0.450641 + 0.106804i
\(134\) −0.926205 + 1.60423i −0.0800119 + 0.138585i
\(135\) 0 0
\(136\) −0.0370239 0.0641273i −0.00317478 0.00549887i
\(137\) −3.66191 3.88140i −0.312858 0.331610i 0.551795 0.833980i \(-0.313943\pi\)
−0.864653 + 0.502370i \(0.832462\pi\)
\(138\) 0 0
\(139\) 0.238054 4.08722i 0.0201915 0.346674i −0.973049 0.230599i \(-0.925932\pi\)
0.993240 0.116075i \(-0.0370314\pi\)
\(140\) 1.26869 + 1.70415i 0.107224 + 0.144027i
\(141\) 0 0
\(142\) −1.22834 + 0.807895i −0.103080 + 0.0677971i
\(143\) −5.57652 31.6260i −0.466332 2.64470i
\(144\) 0 0
\(145\) 0.0839709 0.476223i 0.00697341 0.0395482i
\(146\) −2.23277 5.17615i −0.184786 0.428381i
\(147\) 0 0
\(148\) 8.66041 + 2.05255i 0.711881 + 0.168719i
\(149\) 12.9539 13.7303i 1.06122 1.12483i 0.0693495 0.997592i \(-0.477908\pi\)
0.991872 0.127237i \(-0.0406109\pi\)
\(150\) 0 0
\(151\) −1.83951 + 2.47089i −0.149697 + 0.201078i −0.870646 0.491910i \(-0.836299\pi\)
0.720949 + 0.692988i \(0.243706\pi\)
\(152\) −6.71362 5.63340i −0.544547 0.456929i
\(153\) 0 0
\(154\) −4.63405 + 3.88843i −0.373422 + 0.313338i
\(155\) 0.448012 + 7.69206i 0.0359852 + 0.617841i
\(156\) 0 0
\(157\) −1.35800 + 3.14820i −0.108380 + 0.251254i −0.963772 0.266728i \(-0.914057\pi\)
0.855391 + 0.517982i \(0.173317\pi\)
\(158\) 7.13032 + 4.68968i 0.567257 + 0.373091i
\(159\) 0 0
\(160\) −1.56438 + 5.22538i −0.123675 + 0.413103i
\(161\) −0.152707 −0.0120350
\(162\) 0 0
\(163\) −19.7151 −1.54420 −0.772101 0.635500i \(-0.780794\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(164\) 1.93990 6.47971i 0.151481 0.505980i
\(165\) 0 0
\(166\) −10.0766 6.62746i −0.782093 0.514391i
\(167\) −7.66118 + 17.7606i −0.592840 + 1.37436i 0.312601 + 0.949885i \(0.398800\pi\)
−0.905441 + 0.424473i \(0.860460\pi\)
\(168\) 0 0
\(169\) −0.844740 14.5036i −0.0649800 1.11566i
\(170\) −0.0151039 + 0.0126737i −0.00115842 + 0.000972029i
\(171\) 0 0
\(172\) −1.62635 1.36467i −0.124008 0.104055i
\(173\) −3.68287 + 4.94696i −0.280004 + 0.376110i −0.919769 0.392460i \(-0.871624\pi\)
0.639765 + 0.768570i \(0.279031\pi\)
\(174\) 0 0
\(175\) −4.12011 + 4.36707i −0.311451 + 0.330119i
\(176\) 8.71077 + 2.06449i 0.656599 + 0.155617i
\(177\) 0 0
\(178\) −3.73829 8.66632i −0.280196 0.649568i
\(179\) −0.601129 + 3.40917i −0.0449305 + 0.254814i −0.998997 0.0447821i \(-0.985741\pi\)
0.954066 + 0.299596i \(0.0968518\pi\)
\(180\) 0 0
\(181\) −3.31327 18.7905i −0.246273 1.39668i −0.817517 0.575904i \(-0.804650\pi\)
0.571244 0.820780i \(-0.306461\pi\)
\(182\) −4.33243 + 2.84948i −0.321141 + 0.211218i
\(183\) 0 0
\(184\) −0.149633 0.200992i −0.0110311 0.0148173i
\(185\) 0.316504 5.43416i 0.0232698 0.399528i
\(186\) 0 0
\(187\) 0.129768 + 0.137546i 0.00948960 + 0.0100584i
\(188\) 4.32554 + 7.49206i 0.315473 + 0.546415i
\(189\) 0 0
\(190\) −1.16680 + 2.02096i −0.0846486 + 0.146616i
\(191\) −19.3906 + 4.59566i −1.40306 + 0.332530i −0.861339 0.508031i \(-0.830374\pi\)
−0.541717 + 0.840561i \(0.682226\pi\)
\(192\) 0 0
\(193\) −9.57740 + 4.80995i −0.689396 + 0.346228i −0.758766 0.651363i \(-0.774197\pi\)
0.0693698 + 0.997591i \(0.477901\pi\)
\(194\) 4.71208 0.550763i 0.338308 0.0395425i
\(195\) 0 0
\(196\) 6.70665 + 3.36821i 0.479047 + 0.240586i
\(197\) 22.2725 + 8.10651i 1.58685 + 0.577565i 0.976679 0.214707i \(-0.0688795\pi\)
0.610169 + 0.792272i \(0.291102\pi\)
\(198\) 0 0
\(199\) −8.20833 + 2.98759i −0.581873 + 0.211785i −0.616151 0.787628i \(-0.711309\pi\)
0.0342781 + 0.999412i \(0.489087\pi\)
\(200\) −9.78509 1.14371i −0.691910 0.0808727i
\(201\) 0 0
\(202\) 1.68655 + 5.63347i 0.118665 + 0.396370i
\(203\) 0.214781 + 0.717420i 0.0150747 + 0.0503530i
\(204\) 0 0
\(205\) −4.10876 0.480245i −0.286968 0.0335418i
\(206\) 3.26035 1.18667i 0.227160 0.0826793i
\(207\) 0 0
\(208\) 7.21098 + 2.62458i 0.499991 + 0.181982i
\(209\) 20.0005 + 10.0446i 1.38346 + 0.694802i
\(210\) 0 0
\(211\) 7.22885 0.844932i 0.497655 0.0581675i 0.136437 0.990649i \(-0.456435\pi\)
0.361218 + 0.932481i \(0.382361\pi\)
\(212\) −13.4810 + 6.77041i −0.925878 + 0.464994i
\(213\) 0 0
\(214\) 6.55294 1.55308i 0.447950 0.106166i
\(215\) −0.649223 + 1.12449i −0.0442766 + 0.0766894i
\(216\) 0 0
\(217\) −5.96626 10.3339i −0.405016 0.701508i
\(218\) 5.91432 + 6.26881i 0.400568 + 0.424578i
\(219\) 0 0
\(220\) 0.517650 8.88771i 0.0349000 0.599210i
\(221\) 0.0967980 + 0.130022i 0.00651134 + 0.00874624i
\(222\) 0 0
\(223\) −0.625341 + 0.411293i −0.0418759 + 0.0275422i −0.570274 0.821454i \(-0.693163\pi\)
0.528398 + 0.848997i \(0.322793\pi\)
\(224\) −1.46684 8.31884i −0.0980071 0.555826i
\(225\) 0 0
\(226\) 0.675242 3.82949i 0.0449164 0.254734i
\(227\) 3.01257 + 6.98392i 0.199951 + 0.463539i 0.988460 0.151485i \(-0.0484056\pi\)
−0.788508 + 0.615024i \(0.789146\pi\)
\(228\) 0 0
\(229\) −15.1813 3.59803i −1.00321 0.237765i −0.303991 0.952675i \(-0.598319\pi\)
−0.699216 + 0.714910i \(0.746468\pi\)
\(230\) −0.0457866 + 0.0485310i −0.00301908 + 0.00320004i
\(231\) 0 0
\(232\) −0.733806 + 0.985673i −0.0481768 + 0.0647126i
\(233\) −12.6227 10.5917i −0.826940 0.693885i 0.127647 0.991820i \(-0.459258\pi\)
−0.954586 + 0.297935i \(0.903702\pi\)
\(234\) 0 0
\(235\) 4.05310 3.40095i 0.264395 0.221854i
\(236\) −0.506574 8.69755i −0.0329752 0.566162i
\(237\) 0 0
\(238\) 0.0120941 0.0280372i 0.000783943 0.00181738i
\(239\) −16.1641 10.6313i −1.04557 0.687682i −0.0941436 0.995559i \(-0.530011\pi\)
−0.951426 + 0.307876i \(0.900382\pi\)
\(240\) 0 0
\(241\) −1.65339 + 5.52271i −0.106504 + 0.355749i −0.994583 0.103941i \(-0.966855\pi\)
0.888079 + 0.459691i \(0.152040\pi\)
\(242\) 17.9062 1.15105
\(243\) 0 0
\(244\) −2.64910 −0.169591
\(245\) 1.31642 4.39714i 0.0841027 0.280923i
\(246\) 0 0
\(247\) 16.0290 + 10.5425i 1.01990 + 0.670800i
\(248\) 7.75521 17.9786i 0.492457 1.14164i
\(249\) 0 0
\(250\) 0.338063 + 5.80433i 0.0213810 + 0.367098i
\(251\) −14.4752 + 12.1462i −0.913668 + 0.766659i −0.972813 0.231591i \(-0.925607\pi\)
0.0591449 + 0.998249i \(0.481163\pi\)
\(252\) 0 0
\(253\) 0.490197 + 0.411324i 0.0308184 + 0.0258597i
\(254\) 4.28355 5.75380i 0.268774 0.361026i
\(255\) 0 0
\(256\) 6.41622 6.80080i 0.401014 0.425050i
\(257\) −17.6323 4.17892i −1.09987 0.260674i −0.359683 0.933075i \(-0.617115\pi\)
−0.740187 + 0.672401i \(0.765263\pi\)
\(258\) 0 0
\(259\) 3.33891 + 7.74046i 0.207470 + 0.480969i
\(260\) 1.32520 7.51557i 0.0821853 0.466096i
\(261\) 0 0
\(262\) 1.67595 + 9.50479i 0.103541 + 0.587208i
\(263\) −7.24297 + 4.76377i −0.446621 + 0.293747i −0.752827 0.658218i \(-0.771310\pi\)
0.306207 + 0.951965i \(0.400940\pi\)
\(264\) 0 0
\(265\) 5.50953 + 7.40059i 0.338448 + 0.454615i
\(266\) 0.210132 3.60782i 0.0128840 0.221210i
\(267\) 0 0
\(268\) 2.89726 + 3.07091i 0.176978 + 0.187586i
\(269\) −5.59305 9.68745i −0.341014 0.590654i 0.643607 0.765356i \(-0.277437\pi\)
−0.984621 + 0.174702i \(0.944104\pi\)
\(270\) 0 0
\(271\) 5.08705 8.81103i 0.309016 0.535232i −0.669131 0.743144i \(-0.733334\pi\)
0.978147 + 0.207912i \(0.0666669\pi\)
\(272\) −0.0439683 + 0.0104207i −0.00266597 + 0.000631847i
\(273\) 0 0
\(274\) 3.22661 1.62046i 0.194926 0.0978957i
\(275\) 24.9887 2.92076i 1.50688 0.176129i
\(276\) 0 0
\(277\) −1.16354 0.584354i −0.0699106 0.0351104i 0.413500 0.910504i \(-0.364306\pi\)
−0.483411 + 0.875394i \(0.660602\pi\)
\(278\) 2.60319 + 0.947485i 0.156129 + 0.0568264i
\(279\) 0 0
\(280\) −3.10276 + 1.12931i −0.185425 + 0.0674894i
\(281\) 6.36648 + 0.744134i 0.379792 + 0.0443913i 0.303847 0.952721i \(-0.401729\pi\)
0.0759447 + 0.997112i \(0.475803\pi\)
\(282\) 0 0
\(283\) 5.48286 + 18.3140i 0.325922 + 1.08866i 0.951283 + 0.308319i \(0.0997666\pi\)
−0.625361 + 0.780336i \(0.715048\pi\)
\(284\) 0.961030 + 3.21006i 0.0570267 + 0.190482i
\(285\) 0 0
\(286\) 21.5826 + 2.52264i 1.27620 + 0.149167i
\(287\) 6.02001 2.19110i 0.355350 0.129337i
\(288\) 0 0
\(289\) 15.9739 + 5.81402i 0.939640 + 0.342001i
\(290\) 0.292398 + 0.146848i 0.0171702 + 0.00862320i
\(291\) 0 0
\(292\) −12.7611 + 1.49156i −0.746787 + 0.0872869i
\(293\) −1.63183 + 0.819535i −0.0953324 + 0.0478777i −0.495826 0.868422i \(-0.665135\pi\)
0.400494 + 0.916299i \(0.368839\pi\)
\(294\) 0 0
\(295\) −5.18474 + 1.22881i −0.301868 + 0.0715439i
\(296\) −6.91625 + 11.9793i −0.401999 + 0.696283i
\(297\) 0 0
\(298\) 6.38629 + 11.0614i 0.369948 + 0.640769i
\(299\) 0.376425 + 0.398987i 0.0217692 + 0.0230740i
\(300\) 0 0
\(301\) 0.116920 2.00744i 0.00673916 0.115707i
\(302\) −1.24468 1.67190i −0.0716234 0.0962069i
\(303\) 0 0
\(304\) −4.46825 + 2.93881i −0.256272 + 0.168553i
\(305\) 0.281340 + 1.59556i 0.0161095 + 0.0913614i
\(306\) 0 0
\(307\) −2.60207 + 14.7571i −0.148508 + 0.842232i 0.815975 + 0.578087i \(0.196201\pi\)
−0.964483 + 0.264145i \(0.914910\pi\)
\(308\) 5.46087 + 12.6597i 0.311162 + 0.721355i
\(309\) 0 0
\(310\) −5.07303 1.20233i −0.288129 0.0682878i
\(311\) −14.1776 + 15.0274i −0.803937 + 0.852123i −0.991497 0.130130i \(-0.958461\pi\)
0.187560 + 0.982253i \(0.439942\pi\)
\(312\) 0 0
\(313\) 13.3306 17.9062i 0.753492 1.01212i −0.245594 0.969373i \(-0.578983\pi\)
0.999086 0.0427428i \(-0.0136096\pi\)
\(314\) −1.77717 1.49122i −0.100291 0.0841545i
\(315\) 0 0
\(316\) 14.9003 12.5028i 0.838208 0.703340i
\(317\) −0.660533 11.3409i −0.0370992 0.636969i −0.964693 0.263378i \(-0.915163\pi\)
0.927593 0.373591i \(-0.121874\pi\)
\(318\) 0 0
\(319\) 1.24295 2.88148i 0.0695918 0.161332i
\(320\) −0.778516 0.512038i −0.0435204 0.0286238i
\(321\) 0 0
\(322\) 0.0296346 0.0989865i 0.00165147 0.00551630i
\(323\) −0.112971 −0.00628586
\(324\) 0 0
\(325\) 21.5663 1.19628
\(326\) 3.82594 12.7795i 0.211899 0.707794i
\(327\) 0 0
\(328\) 8.78275 + 5.77650i 0.484946 + 0.318954i
\(329\) −3.24541 + 7.52371i −0.178925 + 0.414795i
\(330\) 0 0
\(331\) −0.837706 14.3829i −0.0460445 0.790553i −0.939742 0.341884i \(-0.888935\pi\)
0.893698 0.448670i \(-0.148102\pi\)
\(332\) −21.0571 + 17.6690i −1.15566 + 0.969714i
\(333\) 0 0
\(334\) −10.0259 8.41273i −0.548593 0.460324i
\(335\) 1.54192 2.07116i 0.0842441 0.113159i
\(336\) 0 0
\(337\) 6.79901 7.20653i 0.370366 0.392565i −0.515207 0.857066i \(-0.672285\pi\)
0.885573 + 0.464501i \(0.153766\pi\)
\(338\) 9.56536 + 2.26703i 0.520287 + 0.123310i
\(339\) 0 0
\(340\) 0.0177988 + 0.0412624i 0.000965278 + 0.00223777i
\(341\) −8.68281 + 49.2427i −0.470201 + 2.66664i
\(342\) 0 0
\(343\) 3.00981 + 17.0695i 0.162514 + 0.921665i
\(344\) 2.75675 1.81314i 0.148634 0.0977580i
\(345\) 0 0
\(346\) −2.49197 3.34730i −0.133969 0.179952i
\(347\) 0.196427 3.37252i 0.0105448 0.181046i −0.988923 0.148428i \(-0.952579\pi\)
0.999468 0.0326179i \(-0.0103844\pi\)
\(348\) 0 0
\(349\) 0.912656 + 0.967359i 0.0488534 + 0.0517815i 0.751339 0.659916i \(-0.229408\pi\)
−0.702486 + 0.711698i \(0.747927\pi\)
\(350\) −2.03123 3.51819i −0.108574 0.188055i
\(351\) 0 0
\(352\) −17.6986 + 30.6549i −0.943340 + 1.63391i
\(353\) 11.4757 2.71979i 0.610789 0.144760i 0.0864312 0.996258i \(-0.472454\pi\)
0.524357 + 0.851498i \(0.324306\pi\)
\(354\) 0 0
\(355\) 1.83136 0.919745i 0.0971987 0.0488150i
\(356\) −21.3657 + 2.49729i −1.13238 + 0.132356i
\(357\) 0 0
\(358\) −2.09321 1.05125i −0.110630 0.0555603i
\(359\) 27.9195 + 10.1619i 1.47353 + 0.536323i 0.949058 0.315102i \(-0.102039\pi\)
0.524477 + 0.851425i \(0.324261\pi\)
\(360\) 0 0
\(361\) 5.28976 1.92531i 0.278408 0.101332i
\(362\) 12.8232 + 1.49882i 0.673972 + 0.0787760i
\(363\) 0 0
\(364\) 3.38960 + 11.3220i 0.177663 + 0.593437i
\(365\) 2.25362 + 7.52763i 0.117960 + 0.394014i
\(366\) 0 0
\(367\) 7.97273 + 0.931879i 0.416173 + 0.0486437i 0.321603 0.946875i \(-0.395778\pi\)
0.0945701 + 0.995518i \(0.469852\pi\)
\(368\) −0.143687 + 0.0522978i −0.00749021 + 0.00272621i
\(369\) 0 0
\(370\) 3.46107 + 1.25973i 0.179933 + 0.0654901i
\(371\) −12.7684 6.41256i −0.662905 0.332923i
\(372\) 0 0
\(373\) 2.97358 0.347562i 0.153966 0.0179961i −0.0387606 0.999249i \(-0.512341\pi\)
0.192727 + 0.981252i \(0.438267\pi\)
\(374\) −0.114342 + 0.0574249i −0.00591251 + 0.00296937i
\(375\) 0 0
\(376\) −13.0827 + 3.10067i −0.674691 + 0.159905i
\(377\) 1.34501 2.32963i 0.0692716 0.119982i
\(378\) 0 0
\(379\) 11.0537 + 19.1456i 0.567792 + 0.983444i 0.996784 + 0.0801362i \(0.0255355\pi\)
−0.428992 + 0.903308i \(0.641131\pi\)
\(380\) 3.64986 + 3.86863i 0.187234 + 0.198456i
\(381\) 0 0
\(382\) 0.784019 13.4611i 0.0401139 0.688729i
\(383\) 8.57378 + 11.5166i 0.438100 + 0.588470i 0.965259 0.261297i \(-0.0841501\pi\)
−0.527159 + 0.849767i \(0.676743\pi\)
\(384\) 0 0
\(385\) 7.04501 4.63358i 0.359047 0.236149i
\(386\) −1.25926 7.14162i −0.0640947 0.363499i
\(387\) 0 0
\(388\) 1.87760 10.6484i 0.0953206 0.540590i
\(389\) −7.22054 16.7391i −0.366096 0.848706i −0.997324 0.0731085i \(-0.976708\pi\)
0.631228 0.775597i \(-0.282551\pi\)
\(390\) 0 0
\(391\) −0.00314292 0.000744886i −0.000158944 3.76705e-5i
\(392\) −8.00422 + 8.48398i −0.404274 + 0.428506i
\(393\) 0 0
\(394\) −9.57698 + 12.8641i −0.482481 + 0.648085i
\(395\) −9.11293 7.64665i −0.458521 0.384745i
\(396\) 0 0
\(397\) 1.06250 0.891545i 0.0533255 0.0447454i −0.615735 0.787953i \(-0.711141\pi\)
0.669061 + 0.743208i \(0.266697\pi\)
\(398\) −0.343666 5.90052i −0.0172264 0.295766i
\(399\) 0 0
\(400\) −2.38116 + 5.52015i −0.119058 + 0.276007i
\(401\) −18.4528 12.1366i −0.921490 0.606074i −0.00234714 0.999997i \(-0.500747\pi\)
−0.919143 + 0.393923i \(0.871117\pi\)
\(402\) 0 0
\(403\) −12.2930 + 41.0616i −0.612360 + 2.04542i
\(404\) 13.4026 0.666803
\(405\) 0 0
\(406\) −0.506722 −0.0251482
\(407\) 10.1313 33.8408i 0.502189 1.67743i
\(408\) 0 0
\(409\) −0.482395 0.317276i −0.0238529 0.0156883i 0.537527 0.843247i \(-0.319359\pi\)
−0.561379 + 0.827559i \(0.689729\pi\)
\(410\) 1.10866 2.57015i 0.0547526 0.126931i
\(411\) 0 0
\(412\) −0.459793 7.89435i −0.0226524 0.388927i
\(413\) 6.32124 5.30415i 0.311048 0.261000i
\(414\) 0 0
\(415\) 12.8784 + 10.8062i 0.632175 + 0.530458i
\(416\) −18.1194 + 24.3386i −0.888377 + 1.19330i
\(417\) 0 0
\(418\) −10.3924 + 11.0153i −0.508309 + 0.538776i
\(419\) −12.2911 2.91303i −0.600457 0.142311i −0.0808646 0.996725i \(-0.525768\pi\)
−0.519593 + 0.854414i \(0.673916\pi\)
\(420\) 0 0
\(421\) 8.48642 + 19.6737i 0.413603 + 0.958839i 0.989922 + 0.141614i \(0.0452292\pi\)
−0.576319 + 0.817225i \(0.695511\pi\)
\(422\) −0.855151 + 4.84980i −0.0416281 + 0.236085i
\(423\) 0 0
\(424\) −4.07126 23.0892i −0.197718 1.12131i
\(425\) −0.106100 + 0.0697829i −0.00514659 + 0.00338497i
\(426\) 0 0
\(427\) −1.49832 2.01259i −0.0725088 0.0973963i
\(428\) 0.892458 15.3229i 0.0431386 0.740661i
\(429\) 0 0
\(430\) −0.602917 0.639055i −0.0290752 0.0308179i
\(431\) −2.23566 3.87227i −0.107688 0.186521i 0.807145 0.590353i \(-0.201011\pi\)
−0.914833 + 0.403832i \(0.867678\pi\)
\(432\) 0 0
\(433\) −4.56671 + 7.90977i −0.219462 + 0.380119i −0.954644 0.297751i \(-0.903763\pi\)
0.735182 + 0.677870i \(0.237097\pi\)
\(434\) 7.85636 1.86199i 0.377118 0.0893785i
\(435\) 0 0
\(436\) 17.5533 8.81562i 0.840652 0.422191i
\(437\) −0.379703 + 0.0443809i −0.0181637 + 0.00212303i
\(438\) 0 0
\(439\) 2.54563 + 1.27847i 0.121496 + 0.0610178i 0.508509 0.861057i \(-0.330197\pi\)
−0.387013 + 0.922074i \(0.626493\pi\)
\(440\) 13.0019 + 4.73230i 0.619841 + 0.225604i
\(441\) 0 0
\(442\) −0.103067 + 0.0375133i −0.00490239 + 0.00178432i
\(443\) 12.2879 + 1.43625i 0.583816 + 0.0682383i 0.402874 0.915255i \(-0.368011\pi\)
0.180942 + 0.983494i \(0.442085\pi\)
\(444\) 0 0
\(445\) 3.77320 + 12.6033i 0.178867 + 0.597456i
\(446\) −0.145250 0.485170i −0.00687781 0.0229735i
\(447\) 0 0
\(448\) 1.43329 + 0.167528i 0.0677167 + 0.00791495i
\(449\) −16.1389 + 5.87407i −0.761640 + 0.277214i −0.693495 0.720461i \(-0.743930\pi\)
−0.0681449 + 0.997675i \(0.521708\pi\)
\(450\) 0 0
\(451\) −25.2264 9.18166i −1.18786 0.432347i
\(452\) −7.91993 3.97754i −0.372522 0.187088i
\(453\) 0 0
\(454\) −5.11169 + 0.597471i −0.239903 + 0.0280407i
\(455\) 6.45930 3.24398i 0.302817 0.152080i
\(456\) 0 0
\(457\) 0.860915 0.204041i 0.0402719 0.00954461i −0.210431 0.977609i \(-0.567487\pi\)
0.250702 + 0.968064i \(0.419338\pi\)
\(458\) 5.27840 9.14246i 0.246644 0.427199i
\(459\) 0 0
\(460\) 0.0760334 + 0.131694i 0.00354507 + 0.00614025i
\(461\) 10.4527 + 11.0792i 0.486831 + 0.516011i 0.923493 0.383615i \(-0.125321\pi\)
−0.436662 + 0.899626i \(0.643839\pi\)
\(462\) 0 0
\(463\) −1.95582 + 33.5801i −0.0908945 + 1.56060i 0.577251 + 0.816567i \(0.304126\pi\)
−0.668145 + 0.744031i \(0.732912\pi\)
\(464\) 0.447792 + 0.601489i 0.0207882 + 0.0279234i
\(465\) 0 0
\(466\) 9.31525 6.12674i 0.431521 0.283816i
\(467\) 1.91520 + 10.8616i 0.0886249 + 0.502617i 0.996515 + 0.0834093i \(0.0265809\pi\)
−0.907890 + 0.419207i \(0.862308\pi\)
\(468\) 0 0
\(469\) −0.694378 + 3.93802i −0.0320634 + 0.181841i
\(470\) 1.41799 + 3.28726i 0.0654069 + 0.151630i
\(471\) 0 0
\(472\) 13.1753 + 3.12260i 0.606442 + 0.143729i
\(473\) −5.78246 + 6.12905i −0.265878 + 0.281814i
\(474\) 0 0
\(475\) −8.97541 + 12.0561i −0.411820 + 0.553170i
\(476\) −0.0533110 0.0447333i −0.00244351 0.00205035i
\(477\) 0 0
\(478\) 10.0282 8.41465i 0.458679 0.384877i
\(479\) 0.693250 + 11.9026i 0.0316754 + 0.543846i 0.976399 + 0.215977i \(0.0692935\pi\)
−0.944723 + 0.327869i \(0.893669\pi\)
\(480\) 0 0
\(481\) 11.9935 27.8042i 0.546859 1.26776i
\(482\) −3.25903 2.14350i −0.148445 0.0976337i
\(483\) 0 0
\(484\) 11.7047 39.0964i 0.532032 1.77711i
\(485\) −6.61294 −0.300278
\(486\) 0 0
\(487\) 38.2435 1.73298 0.866489 0.499196i \(-0.166371\pi\)
0.866489 + 0.499196i \(0.166371\pi\)
\(488\) 1.18081 3.94417i 0.0534526 0.178544i
\(489\) 0 0
\(490\) 2.59481 + 1.70663i 0.117222 + 0.0770979i
\(491\) 1.67921 3.89284i 0.0757815 0.175681i −0.876114 0.482104i \(-0.839873\pi\)
0.951896 + 0.306423i \(0.0991321\pi\)
\(492\) 0 0
\(493\) 0.000921013 0.0158132i 4.14803e−5 0.000712190i
\(494\) −9.94438 + 8.34432i −0.447419 + 0.375429i
\(495\) 0 0
\(496\) −9.15292 7.68021i −0.410978 0.344852i
\(497\) −1.89522 + 2.54572i −0.0850121 + 0.114191i
\(498\) 0 0
\(499\) −25.6682 + 27.2067i −1.14906 + 1.21794i −0.176752 + 0.984255i \(0.556559\pi\)
−0.972313 + 0.233682i \(0.924923\pi\)
\(500\) 12.8942 + 3.05597i 0.576644 + 0.136667i
\(501\) 0 0
\(502\) −5.06420 11.7401i −0.226026 0.523988i
\(503\) 0.0594062 0.336909i 0.00264879 0.0150220i −0.983455 0.181154i \(-0.942017\pi\)
0.986104 + 0.166132i \(0.0531278\pi\)
\(504\) 0 0
\(505\) −1.42338 8.07239i −0.0633396 0.359217i
\(506\) −0.361754 + 0.237929i −0.0160819 + 0.0105773i
\(507\) 0 0
\(508\) −9.76284 13.1138i −0.433156 0.581830i
\(509\) 0.363632 6.24332i 0.0161177 0.276730i −0.980614 0.195949i \(-0.937221\pi\)
0.996732 0.0807816i \(-0.0257416\pi\)
\(510\) 0 0
\(511\) −8.35080 8.85134i −0.369418 0.391560i
\(512\) −7.73462 13.3968i −0.341825 0.592059i
\(513\) 0 0
\(514\) 6.13058 10.6185i 0.270408 0.468361i
\(515\) −4.70595 + 1.11533i −0.207369 + 0.0491473i
\(516\) 0 0
\(517\) 30.6834 15.4098i 1.34946 0.677722i
\(518\) −5.66542 + 0.662193i −0.248924 + 0.0290951i
\(519\) 0 0
\(520\) 10.5990 + 5.32302i 0.464797 + 0.233430i
\(521\) 29.5418 + 10.7523i 1.29425 + 0.471068i 0.895119 0.445827i \(-0.147090\pi\)
0.399129 + 0.916895i \(0.369313\pi\)
\(522\) 0 0
\(523\) −20.1279 + 7.32597i −0.880134 + 0.320342i −0.742264 0.670108i \(-0.766248\pi\)
−0.137870 + 0.990450i \(0.544026\pi\)
\(524\) 21.8483 + 2.55370i 0.954447 + 0.111559i
\(525\) 0 0
\(526\) −1.68235 5.61945i −0.0733541 0.245020i
\(527\) −0.0723866 0.241788i −0.00315321 0.0105325i
\(528\) 0 0
\(529\) 22.8336 + 2.66887i 0.992766 + 0.116038i
\(530\) −5.86635 + 2.13518i −0.254818 + 0.0927461i
\(531\) 0 0
\(532\) −7.73997 2.81712i −0.335570 0.122138i
\(533\) −20.5643 10.3278i −0.890737 0.447345i
\(534\) 0 0
\(535\) −9.32379 + 1.08979i −0.403102 + 0.0471159i
\(536\) −5.86360 + 2.94481i −0.253269 + 0.127196i
\(537\) 0 0
\(538\) 7.36492 1.74552i 0.317524 0.0752547i
\(539\) 14.8933 25.7960i 0.641500 1.11111i
\(540\) 0 0
\(541\) 0.188033 + 0.325682i 0.00808416 + 0.0140022i 0.870039 0.492983i \(-0.164093\pi\)
−0.861955 + 0.506985i \(0.830760\pi\)
\(542\) 4.72422 + 5.00738i 0.202922 + 0.215085i
\(543\) 0 0
\(544\) 0.0103888 0.178368i 0.000445415 0.00764748i
\(545\) −7.17386 9.63616i −0.307294 0.412768i
\(546\) 0 0
\(547\) 5.57872 3.66918i 0.238529 0.156883i −0.424617 0.905373i \(-0.639591\pi\)
0.663146 + 0.748490i \(0.269221\pi\)
\(548\) −1.42899 8.10422i −0.0610436 0.346195i
\(549\) 0 0
\(550\) −2.95609 + 16.7648i −0.126048 + 0.714854i
\(551\) 0.742553 + 1.72143i 0.0316338 + 0.0733355i
\(552\) 0 0
\(553\) 17.9263 + 4.24861i 0.762304 + 0.180669i
\(554\) 0.604586 0.640823i 0.0256864 0.0272260i
\(555\) 0 0
\(556\) 3.77036 5.06448i 0.159899 0.214782i
\(557\) 2.30382 + 1.93313i 0.0976160 + 0.0819095i 0.690290 0.723533i \(-0.257483\pi\)
−0.592674 + 0.805443i \(0.701928\pi\)
\(558\) 0 0
\(559\) −5.53318 + 4.64289i −0.234028 + 0.196373i
\(560\) 0.117157 + 2.01151i 0.00495079 + 0.0850017i
\(561\) 0 0
\(562\) −1.71785 + 3.98242i −0.0724631 + 0.167988i
\(563\) 27.4131 + 18.0299i 1.15533 + 0.759870i 0.974664 0.223675i \(-0.0718056\pi\)
0.180662 + 0.983545i \(0.442176\pi\)
\(564\) 0 0
\(565\) −1.55456 + 5.19261i −0.0654010 + 0.218455i
\(566\) −12.9354 −0.543715
\(567\) 0 0
\(568\) −5.20773 −0.218511
\(569\) −7.49905 + 25.0486i −0.314376 + 1.05009i 0.644105 + 0.764937i \(0.277230\pi\)
−0.958482 + 0.285154i \(0.907955\pi\)
\(570\) 0 0
\(571\) 0.669019 + 0.440021i 0.0279976 + 0.0184143i 0.563431 0.826163i \(-0.309481\pi\)
−0.535433 + 0.844578i \(0.679852\pi\)
\(572\) 19.6158 45.4744i 0.820176 1.90138i
\(573\) 0 0
\(574\) 0.252046 + 4.32745i 0.0105202 + 0.180624i
\(575\) −0.329195 + 0.276227i −0.0137284 + 0.0115195i
\(576\) 0 0
\(577\) −32.3968 27.1841i −1.34869 1.13169i −0.979300 0.202416i \(-0.935121\pi\)
−0.369395 0.929273i \(-0.620435\pi\)
\(578\) −6.86864 + 9.22619i −0.285698 + 0.383759i
\(579\) 0 0
\(580\) 0.511759 0.542433i 0.0212496 0.0225233i
\(581\) −25.3334 6.00414i −1.05101 0.249094i
\(582\) 0 0
\(583\) 23.7148 + 54.9772i 0.982168 + 2.27692i
\(584\) 3.46737 19.6644i 0.143481 0.813721i
\(585\) 0 0
\(586\) −0.214557 1.21681i −0.00886326 0.0502661i
\(587\) −11.1494 + 7.33310i −0.460186 + 0.302669i −0.758352 0.651845i \(-0.773995\pi\)
0.298166 + 0.954514i \(0.403625\pi\)
\(588\) 0 0
\(589\) −17.8383 23.9610i −0.735015 0.987297i
\(590\) 0.209634 3.59928i 0.00863051 0.148180i
\(591\) 0 0
\(592\) 5.79259 + 6.13978i 0.238074 + 0.252344i
\(593\) −17.2045 29.7990i −0.706503 1.22370i −0.966147 0.257994i \(-0.916939\pi\)
0.259644 0.965704i \(-0.416395\pi\)
\(594\) 0 0
\(595\) −0.0212812 + 0.0368601i −0.000872443 + 0.00151112i
\(596\) 28.3260 6.71338i 1.16028 0.274991i
\(597\) 0 0
\(598\) −0.331679 + 0.166575i −0.0135633 + 0.00681177i
\(599\) 39.7896 4.65074i 1.62576 0.190024i 0.746169 0.665757i \(-0.231891\pi\)
0.879590 + 0.475733i \(0.157817\pi\)
\(600\) 0 0
\(601\) −38.5925 19.3819i −1.57422 0.790603i −0.574607 0.818430i \(-0.694845\pi\)
−0.999613 + 0.0278267i \(0.991141\pi\)
\(602\) 1.27856 + 0.465357i 0.0521101 + 0.0189665i
\(603\) 0 0
\(604\) −4.46403 + 1.62477i −0.181639 + 0.0661111i
\(605\) −24.7909 2.89764i −1.00789 0.117806i
\(606\) 0 0
\(607\) −5.05347 16.8798i −0.205114 0.685129i −0.997204 0.0747248i \(-0.976192\pi\)
0.792090 0.610404i \(-0.208993\pi\)
\(608\) −6.06495 20.2583i −0.245966 0.821585i
\(609\) 0 0
\(610\) −1.08886 0.127269i −0.0440866 0.00515298i
\(611\) 27.6577 10.0666i 1.11891 0.407250i
\(612\) 0 0
\(613\) 25.9691 + 9.45198i 1.04888 + 0.381762i 0.808241 0.588852i \(-0.200420\pi\)
0.240641 + 0.970614i \(0.422642\pi\)
\(614\) −9.06077 4.55049i −0.365663 0.183643i
\(615\) 0 0
\(616\) −21.2828 + 2.48760i −0.857507 + 0.100228i
\(617\) 3.94054 1.97901i 0.158640 0.0796720i −0.367708 0.929941i \(-0.619857\pi\)
0.526348 + 0.850269i \(0.323561\pi\)
\(618\) 0 0
\(619\) −24.3417 + 5.76908i −0.978375 + 0.231879i −0.688541 0.725198i \(-0.741748\pi\)
−0.289834 + 0.957077i \(0.593600\pi\)
\(620\) −5.94125 + 10.2905i −0.238606 + 0.413278i
\(621\) 0 0
\(622\) −6.98959 12.1063i −0.280257 0.485420i
\(623\) −13.9816 14.8196i −0.560160 0.593735i
\(624\) 0 0
\(625\) −0.723768 + 12.4266i −0.0289507 + 0.497065i
\(626\) 9.02002 + 12.1160i 0.360513 + 0.484252i
\(627\) 0 0
\(628\) −4.41761 + 2.90551i −0.176282 + 0.115942i
\(629\) 0.0309624 + 0.175596i 0.00123455 + 0.00700148i
\(630\) 0 0
\(631\) 2.45133 13.9022i 0.0975857 0.553436i −0.896339 0.443370i \(-0.853783\pi\)
0.993924 0.110066i \(-0.0351062\pi\)
\(632\) 11.9735 + 27.7576i 0.476279 + 1.10414i
\(633\) 0 0
\(634\) 7.47951 + 1.77268i 0.297049 + 0.0704020i
\(635\) −6.86161 + 7.27288i −0.272295 + 0.288616i
\(636\) 0 0
\(637\) 15.2474 20.4808i 0.604124 0.811479i
\(638\) 1.62660 + 1.36488i 0.0643978 + 0.0540362i
\(639\) 0 0
\(640\) −7.87383 + 6.60693i −0.311241 + 0.261162i
\(641\) −1.98908 34.1512i −0.0785639 1.34889i −0.775314 0.631576i \(-0.782408\pi\)
0.696750 0.717314i \(-0.254629\pi\)
\(642\) 0 0
\(643\) −5.34174 + 12.3835i −0.210658 + 0.488359i −0.990483 0.137639i \(-0.956049\pi\)
0.779825 + 0.625998i \(0.215308\pi\)
\(644\) −0.196756 0.129409i −0.00775328 0.00509941i
\(645\) 0 0
\(646\) 0.0219233 0.0732290i 0.000862562 0.00288116i
\(647\) 3.19249 0.125510 0.0627548 0.998029i \(-0.480011\pi\)
0.0627548 + 0.998029i \(0.480011\pi\)
\(648\) 0 0
\(649\) −34.5785 −1.35733
\(650\) −4.18520 + 13.9795i −0.164157 + 0.548323i
\(651\) 0 0
\(652\) −25.4020 16.7071i −0.994818 0.654302i
\(653\) −12.7409 + 29.5367i −0.498589 + 1.15586i 0.464230 + 0.885715i \(0.346331\pi\)
−0.962819 + 0.270146i \(0.912928\pi\)
\(654\) 0 0
\(655\) −0.782235 13.4305i −0.0305645 0.524772i
\(656\) 4.91404 4.12337i 0.191861 0.160991i
\(657\) 0 0
\(658\) −4.24715 3.56378i −0.165571 0.138931i
\(659\) 8.71506 11.7064i 0.339490 0.456015i −0.599289 0.800532i \(-0.704550\pi\)
0.938780 + 0.344518i \(0.111958\pi\)
\(660\) 0 0
\(661\) 5.34701 5.66750i 0.207975 0.220440i −0.614987 0.788537i \(-0.710839\pi\)
0.822962 + 0.568097i \(0.192320\pi\)
\(662\) 9.48572 + 2.24816i 0.368673 + 0.0873771i
\(663\) 0 0
\(664\) −16.9209 39.2270i −0.656658 1.52230i
\(665\) −0.874754 + 4.96098i −0.0339215 + 0.192378i
\(666\) 0 0
\(667\) 0.00930786 + 0.0527875i 0.000360402 + 0.00204394i
\(668\) −24.9220 + 16.3914i −0.964260 + 0.634204i
\(669\) 0 0
\(670\) 1.04332 + 1.40143i 0.0403071 + 0.0541418i
\(671\) −0.611343 + 10.4963i −0.0236006 + 0.405207i
\(672\) 0 0
\(673\) −5.50205 5.83183i −0.212088 0.224801i 0.612592 0.790399i \(-0.290127\pi\)
−0.824681 + 0.565598i \(0.808645\pi\)
\(674\) 3.35193 + 5.80572i 0.129112 + 0.223628i
\(675\) 0 0
\(676\) 11.2024 19.4031i 0.430862 0.746274i
\(677\) 8.28940 1.96462i 0.318588 0.0755067i −0.0682108 0.997671i \(-0.521729\pi\)
0.386798 + 0.922164i \(0.373581\pi\)
\(678\) 0 0
\(679\) 9.15182 4.59622i 0.351215 0.176387i
\(680\) −0.0693678 + 0.00810794i −0.00266013 + 0.000310925i
\(681\) 0 0
\(682\) −30.2347 15.1844i −1.15775 0.581443i
\(683\) −13.5460 4.93034i −0.518323 0.188654i 0.0695940 0.997575i \(-0.477830\pi\)
−0.587917 + 0.808921i \(0.700052\pi\)
\(684\) 0 0
\(685\) −4.72942 + 1.72137i −0.180702 + 0.0657701i
\(686\) −11.6487 1.36154i −0.444751 0.0519839i
\(687\) 0 0
\(688\) −0.577478 1.92891i −0.0220161 0.0735390i
\(689\) 14.7199 + 49.1680i 0.560785 + 1.87315i
\(690\) 0 0
\(691\) −36.2228 4.23384i −1.37798 0.161063i −0.605371 0.795944i \(-0.706975\pi\)
−0.772610 + 0.634881i \(0.781049\pi\)
\(692\) −8.93742 + 3.25296i −0.339750 + 0.123659i
\(693\) 0 0
\(694\) 2.14799 + 0.781805i 0.0815366 + 0.0296769i
\(695\) −3.45076 1.73304i −0.130895 0.0657378i
\(696\) 0 0
\(697\) 0.134588 0.0157311i 0.00509789 0.000595857i
\(698\) −0.804166 + 0.403867i −0.0304381 + 0.0152866i
\(699\) 0 0
\(700\) −9.00937 + 2.13526i −0.340522 + 0.0807053i
\(701\) −4.76010 + 8.24474i −0.179787 + 0.311399i −0.941807 0.336153i \(-0.890874\pi\)
0.762021 + 0.647553i \(0.224207\pi\)
\(702\) 0 0
\(703\) 10.5517 + 18.2761i 0.397966 + 0.689298i
\(704\) −4.14970 4.39842i −0.156398 0.165772i
\(705\) 0 0
\(706\) −0.463995 + 7.96648i −0.0174627 + 0.299823i
\(707\) 7.58044 + 10.1823i 0.285092 + 0.382945i
\(708\) 0 0
\(709\) −9.99222 + 6.57198i −0.375266 + 0.246816i −0.723105 0.690738i \(-0.757286\pi\)
0.347840 + 0.937554i \(0.386915\pi\)
\(710\) 0.240792 + 1.36560i 0.00903677 + 0.0512501i
\(711\) 0 0
\(712\) 5.80535 32.9238i 0.217565 1.23387i
\(713\) −0.338284 0.784231i −0.0126688 0.0293697i
\(714\) 0 0
\(715\) −29.4725 6.98512i −1.10221 0.261229i
\(716\) −3.66357 + 3.88316i −0.136914 + 0.145120i
\(717\) 0 0
\(718\) −12.0052 + 16.1257i −0.448029 + 0.601807i
\(719\) −16.3766 13.7416i −0.610743 0.512474i 0.284135 0.958784i \(-0.408294\pi\)
−0.894879 + 0.446310i \(0.852738\pi\)
\(720\) 0 0
\(721\) 5.73749 4.81433i 0.213675 0.179295i
\(722\) 0.221472 + 3.80252i 0.00824232 + 0.141515i
\(723\) 0 0
\(724\) 11.6546 27.0185i 0.433141 1.00413i
\(725\) 1.76073 + 1.15805i 0.0653920 + 0.0430090i
\(726\) 0 0
\(727\) 2.26034 7.55006i 0.0838313 0.280016i −0.905788 0.423732i \(-0.860720\pi\)
0.989619 + 0.143716i \(0.0459051\pi\)
\(728\) −18.3679 −0.680760
\(729\) 0 0
\(730\) −5.31685 −0.196785
\(731\) 0.0121984 0.0407456i 0.000451175 0.00150703i
\(732\) 0 0
\(733\) −29.0944 19.1357i −1.07463 0.706794i −0.116516 0.993189i \(-0.537173\pi\)
−0.958112 + 0.286395i \(0.907543\pi\)
\(734\) −2.15126 + 4.98718i −0.0794045 + 0.184080i
\(735\) 0 0
\(736\) −0.0351552 0.603591i −0.00129584 0.0222487i
\(737\) 12.8363 10.7709i 0.472829 0.396751i
\(738\) 0 0
\(739\) 33.5899 + 28.1853i 1.23563 + 1.03681i 0.997853 + 0.0654916i \(0.0208615\pi\)
0.237772 + 0.971321i \(0.423583\pi\)
\(740\) 5.01288 6.73346i 0.184277 0.247527i
\(741\) 0 0
\(742\) 6.63457 7.03224i 0.243563 0.258161i
\(743\) 20.7769 + 4.92421i 0.762229 + 0.180652i 0.593305 0.804978i \(-0.297823\pi\)
0.168924 + 0.985629i \(0.445971\pi\)
\(744\) 0 0
\(745\) −7.05175 16.3478i −0.258356 0.598937i
\(746\) −0.351765 + 1.99496i −0.0128790 + 0.0730407i
\(747\) 0 0
\(748\) 0.0506397 + 0.287192i 0.00185157 + 0.0105008i
\(749\) 12.1460 7.98854i 0.443805 0.291895i
\(750\) 0 0
\(751\) 2.70404 + 3.63215i 0.0986718 + 0.132539i 0.848717 0.528848i \(-0.177376\pi\)
−0.750045 + 0.661387i \(0.769968\pi\)
\(752\) −0.477058 + 8.19078i −0.0173965 + 0.298687i
\(753\) 0 0
\(754\) 1.24908 + 1.32395i 0.0454887 + 0.0482152i
\(755\) 1.45269 + 2.51614i 0.0528689 + 0.0915716i
\(756\) 0 0
\(757\) −15.3969 + 26.6682i −0.559610 + 0.969273i 0.437919 + 0.899014i \(0.355716\pi\)
−0.997529 + 0.0702583i \(0.977618\pi\)
\(758\) −14.5555 + 3.44973i −0.528681 + 0.125300i
\(759\) 0 0
\(760\) −7.38676 + 3.70977i −0.267946 + 0.134567i
\(761\) 3.55461 0.415474i 0.128854 0.0150609i −0.0514212 0.998677i \(-0.516375\pi\)
0.180276 + 0.983616i \(0.442301\pi\)
\(762\) 0 0
\(763\) 16.6255 + 8.34966i 0.601885 + 0.302278i
\(764\) −28.8785 10.5109i −1.04479 0.380271i
\(765\) 0 0
\(766\) −9.12904 + 3.32270i −0.329846 + 0.120054i
\(767\) −29.4405 3.44110i −1.06303 0.124251i
\(768\) 0 0
\(769\) 4.18876 + 13.9914i 0.151051 + 0.504544i 0.999702 0.0244085i \(-0.00777023\pi\)
−0.848652 + 0.528952i \(0.822585\pi\)
\(770\) 1.63637 + 5.46587i 0.0589708 + 0.196976i
\(771\) 0 0
\(772\) −16.4162 1.91877i −0.590831 0.0690582i
\(773\) −18.7983 + 6.84203i −0.676129 + 0.246091i −0.657184 0.753730i \(-0.728253\pi\)
−0.0189442 + 0.999821i \(0.506030\pi\)
\(774\) 0 0
\(775\) −31.5543 11.4848i −1.13346 0.412547i
\(776\) 15.0171 + 7.54188i 0.539083 + 0.270738i
\(777\) 0 0
\(778\) 12.2517 1.43202i 0.439246 0.0513404i
\(779\) 14.3319 7.19773i 0.513492 0.257885i
\(780\) 0 0
\(781\) 12.9408 3.06702i 0.463057 0.109747i
\(782\) 0.00109277 0.00189273i 3.90772e−5 6.76838e-5i
\(783\) 0 0
\(784\) 3.55882 + 6.16407i 0.127101 + 0.220145i
\(785\) 2.21915 + 2.35216i 0.0792049 + 0.0839523i
\(786\) 0 0
\(787\) 0.787575 13.5221i 0.0280740 0.482012i −0.954743 0.297431i \(-0.903870\pi\)
0.982817 0.184581i \(-0.0590928\pi\)
\(788\) 21.8274 + 29.3193i 0.777568 + 1.04446i
\(789\) 0 0
\(790\) 6.72513 4.42319i 0.239269 0.157370i
\(791\) −1.45763 8.26666i −0.0518275 0.293929i
\(792\) 0 0
\(793\) −1.56505 + 8.87585i −0.0555766 + 0.315191i
\(794\) 0.371719 + 0.861743i 0.0131918 + 0.0305821i
\(795\) 0 0
\(796\) −13.1079 3.10662i −0.464595 0.110111i
\(797\) 20.5872 21.8212i 0.729237 0.772946i −0.251588 0.967834i \(-0.580953\pi\)
0.980825 + 0.194888i \(0.0624344\pi\)
\(798\) 0 0
\(799\) −0.103495 + 0.139018i −0.00366138 + 0.00491809i
\(800\) −18.2098 15.2799i −0.643814 0.540225i
\(801\) 0 0
\(802\) 11.4481 9.60610i 0.404247 0.339203i
\(803\) 2.96497 + 50.9066i 0.104632 + 1.79645i
\(804\) 0 0
\(805\) −0.0570470 + 0.132250i −0.00201064 + 0.00466120i
\(806\) −24.2310 15.9370i −0.853502 0.561357i
\(807\) 0 0
\(808\) −5.97404 + 19.9547i −0.210166 + 0.702003i
\(809\) 48.8577 1.71774 0.858872 0.512190i \(-0.171166\pi\)
0.858872 + 0.512190i \(0.171166\pi\)
\(810\) 0 0
\(811\) −14.0558 −0.493566 −0.246783 0.969071i \(-0.579373\pi\)
−0.246783 + 0.969071i \(0.579373\pi\)
\(812\) −0.331227 + 1.10638i −0.0116238 + 0.0388262i
\(813\) 0 0
\(814\) 19.9699 + 13.1344i 0.699946 + 0.460362i
\(815\) −7.36500 + 17.0740i −0.257985 + 0.598075i
\(816\) 0 0
\(817\) −0.292699 5.02544i −0.0102402 0.175818i
\(818\) 0.299277 0.251123i 0.0104640 0.00878032i
\(819\) 0 0
\(820\) −4.88698 4.10067i −0.170661 0.143201i
\(821\) 19.2557 25.8649i 0.672030 0.902692i −0.327075 0.944998i \(-0.606063\pi\)
0.999105 + 0.0423060i \(0.0134704\pi\)
\(822\) 0 0
\(823\) 22.7018 24.0626i 0.791337 0.838768i −0.198629 0.980075i \(-0.563649\pi\)
0.989966 + 0.141307i \(0.0451304\pi\)
\(824\) 11.9586 + 2.83424i 0.416597 + 0.0987353i
\(825\) 0 0
\(826\) 2.21150 + 5.12684i 0.0769481 + 0.178386i
\(827\) 6.93056 39.3051i 0.240999 1.36677i −0.588605 0.808421i \(-0.700323\pi\)
0.829604 0.558352i \(-0.188566\pi\)
\(828\) 0 0
\(829\) −3.03189 17.1947i −0.105302 0.597198i −0.991099 0.133125i \(-0.957499\pi\)
0.885797 0.464073i \(-0.153612\pi\)
\(830\) −9.50395 + 6.25085i −0.329887 + 0.216970i
\(831\) 0 0
\(832\) −3.09538 4.15782i −0.107313 0.144146i
\(833\) −0.00874210 + 0.150096i −0.000302896 + 0.00520052i
\(834\) 0 0
\(835\) 12.5194 + 13.2697i 0.433250 + 0.459218i
\(836\) 17.2576 + 29.8911i 0.596868 + 1.03381i
\(837\) 0 0
\(838\) 4.27349 7.40191i 0.147625 0.255695i
\(839\) −38.4211 + 9.10598i −1.32645 + 0.314373i −0.831971 0.554819i \(-0.812788\pi\)
−0.494474 + 0.869192i \(0.664639\pi\)
\(840\) 0 0
\(841\) −25.6804 + 12.8972i −0.885532 + 0.444731i
\(842\) −14.3997 + 1.68308i −0.496245 + 0.0580027i
\(843\) 0 0
\(844\) 10.0301 + 5.03730i 0.345250 + 0.173391i
\(845\) −12.8763 4.68657i −0.442957 0.161223i
\(846\) 0 0
\(847\) 36.3227 13.2204i 1.24806 0.454258i
\(848\) −14.2104 1.66096i −0.487987 0.0570375i
\(849\) 0 0
\(850\) −0.0246442 0.0823174i −0.000845289 0.00282346i
\(851\) 0.173050 + 0.578029i 0.00593209 + 0.0198146i
\(852\) 0 0
\(853\) 31.1073 + 3.63592i 1.06509 + 0.124491i 0.630541 0.776156i \(-0.282833\pi\)
0.434551 + 0.900647i \(0.356907\pi\)
\(854\) 1.59536 0.580662i 0.0545920 0.0198699i
\(855\) 0 0
\(856\) 22.4160 + 8.15875i 0.766162 + 0.278860i
\(857\) 31.5874 + 15.8638i 1.07901 + 0.541897i 0.897284 0.441453i \(-0.145537\pi\)
0.181721 + 0.983350i \(0.441833\pi\)
\(858\) 0 0
\(859\) −28.0616 + 3.27993i −0.957450 + 0.111910i −0.580443 0.814301i \(-0.697121\pi\)
−0.377007 + 0.926211i \(0.623047\pi\)
\(860\) −1.78942 + 0.898680i −0.0610187 + 0.0306447i
\(861\) 0 0
\(862\) 2.94391 0.697720i 0.100270 0.0237644i
\(863\) −1.91089 + 3.30976i −0.0650475 + 0.112666i −0.896715 0.442608i \(-0.854053\pi\)
0.831668 + 0.555274i \(0.187387\pi\)
\(864\) 0 0
\(865\) 2.90843 + 5.03755i 0.0988896 + 0.171282i
\(866\) −4.24099 4.49518i −0.144115 0.152752i
\(867\) 0 0
\(868\) 1.06997 18.3707i 0.0363172 0.623543i
\(869\) −46.1005 61.9237i −1.56385 2.10062i
\(870\) 0 0
\(871\) 12.0008 7.89303i 0.406631 0.267445i
\(872\) 5.30110 + 30.0640i 0.179518 + 1.01810i
\(873\) 0 0
\(874\) 0.0449177 0.254741i 0.00151936 0.00861674i
\(875\) 4.97117 + 11.5245i 0.168056 + 0.389598i
\(876\) 0 0
\(877\) −33.3655 7.90777i −1.12667 0.267026i −0.375300 0.926904i \(-0.622460\pi\)
−0.751374 + 0.659877i \(0.770608\pi\)
\(878\) −1.32273 + 1.40201i −0.0446399 + 0.0473156i
\(879\) 0 0
\(880\) 5.04203 6.77262i 0.169967 0.228305i
\(881\) 39.1151 + 32.8215i 1.31782 + 1.10578i 0.986762 + 0.162173i \(0.0518502\pi\)
0.331059 + 0.943610i \(0.392594\pi\)
\(882\) 0 0
\(883\) −30.6669 + 25.7326i −1.03202 + 0.865972i −0.991091 0.133190i \(-0.957478\pi\)
−0.0409344 + 0.999162i \(0.513033\pi\)
\(884\) 0.0145351 + 0.249558i 0.000488867 + 0.00839353i
\(885\) 0 0
\(886\) −3.31561 + 7.68646i −0.111390 + 0.258232i
\(887\) −19.1315 12.5830i −0.642374 0.422496i 0.186095 0.982532i \(-0.440417\pi\)
−0.828468 + 0.560036i \(0.810787\pi\)
\(888\) 0 0
\(889\) 4.44106 14.8342i 0.148948 0.497523i
\(890\) −8.90188 −0.298392
\(891\) 0 0
\(892\) −1.15427 −0.0386477
\(893\) −5.88306 + 19.6508i −0.196869 + 0.657588i
\(894\) 0 0
\(895\) 2.72791 + 1.79417i 0.0911839 + 0.0599726i
\(896\) 6.30476 14.6161i 0.210627 0.488289i
\(897\) 0 0
\(898\) −0.675702 11.6014i −0.0225485 0.387142i
\(899\) −3.20854 + 2.69228i −0.107011 + 0.0897927i
\(900\) 0 0
\(901\) −0.231513 0.194262i −0.00771281 0.00647182i
\(902\) 10.8472 14.5703i 0.361171 0.485136i
\(903\) 0 0
\(904\) 9.45224 10.0188i 0.314377 0.333220i
\(905\) −17.5110 4.15018i −0.582085 0.137957i
\(906\) 0 0
\(907\) −9.48338 21.9850i −0.314891 0.729998i −0.999999 0.00155714i \(-0.999504\pi\)
0.685108 0.728441i \(-0.259755\pi\)
\(908\) −2.03683 + 11.5514i −0.0675944 + 0.383347i
\(909\) 0 0
\(910\) 0.849285 + 4.81654i 0.0281535 + 0.159667i
\(911\) 25.7190 16.9157i 0.852110 0.560441i −0.0466357 0.998912i \(-0.514850\pi\)
0.898746 + 0.438470i \(0.144480\pi\)
\(912\) 0 0
\(913\) 65.1492 + 87.5106i 2.15612 + 2.89618i
\(914\) −0.0348093 + 0.597652i −0.00115139 + 0.0197686i
\(915\) 0 0
\(916\) −16.5113 17.5010i −0.545550 0.578249i
\(917\) 10.4172 + 18.0431i 0.344006 + 0.595835i
\(918\) 0 0
\(919\) 21.9894 38.0868i 0.725365 1.25637i −0.233459 0.972367i \(-0.575004\pi\)
0.958824 0.284002i \(-0.0916623\pi\)
\(920\) −0.229965 + 0.0545028i −0.00758173 + 0.00179690i
\(921\) 0 0
\(922\) −9.21017 + 4.62552i −0.303321 + 0.152333i
\(923\) 11.3231 1.32348i 0.372705 0.0435629i
\(924\) 0 0
\(925\) 21.1993 + 10.6467i 0.697029 + 0.350061i
\(926\) −21.3875 7.78440i −0.702836 0.255811i
\(927\) 0 0
\(928\) −2.78624 + 1.01411i −0.0914627 + 0.0332897i
\(929\) 28.1444 + 3.28960i 0.923386 + 0.107928i 0.564481 0.825446i \(-0.309076\pi\)
0.358905 + 0.933374i \(0.383150\pi\)
\(930\) 0 0
\(931\) 5.10363 + 17.0473i 0.167265 + 0.558703i
\(932\) −7.28805 24.3438i −0.238728 0.797407i
\(933\) 0 0
\(934\) −7.41232 0.866376i −0.242539 0.0283487i
\(935\) 0.167598 0.0610008i 0.00548105 0.00199494i
\(936\) 0 0
\(937\) 12.4825 + 4.54327i 0.407787 + 0.148422i 0.537765 0.843095i \(-0.319269\pi\)
−0.129979 + 0.991517i \(0.541491\pi\)
\(938\) −2.41792 1.21432i −0.0789479 0.0396491i
\(939\) 0 0
\(940\) 8.10431 0.947258i 0.264333 0.0308961i
\(941\) −12.6023 + 6.32910i −0.410822 + 0.206323i −0.642193 0.766543i \(-0.721975\pi\)
0.231371 + 0.972866i \(0.425679\pi\)
\(942\) 0 0
\(943\) 0.446181 0.105747i 0.0145296 0.00344359i
\(944\) 4.13135 7.15571i 0.134464 0.232898i
\(945\) 0 0
\(946\) −2.85077 4.93768i −0.0926866 0.160538i
\(947\) −16.6076 17.6030i −0.539673 0.572020i 0.398946 0.916974i \(-0.369376\pi\)
−0.938620 + 0.344954i \(0.887895\pi\)
\(948\) 0 0
\(949\) −2.54159 + 43.6374i −0.0825035 + 1.41653i
\(950\) −6.07311 8.15760i −0.197038 0.264667i
\(951\) 0 0
\(952\) 0.0903646 0.0594338i 0.00292874 0.00192626i
\(953\) −0.315523 1.78942i −0.0102208 0.0579650i 0.979271 0.202555i \(-0.0649246\pi\)
−0.989492 + 0.144590i \(0.953814\pi\)
\(954\) 0 0
\(955\) −3.26378 + 18.5098i −0.105613 + 0.598964i
\(956\) −11.8175 27.3959i −0.382204 0.886048i
\(957\) 0 0
\(958\) −7.84998 1.86048i −0.253621 0.0601094i
\(959\) 5.34876 5.66936i 0.172721 0.183073i
\(960\) 0 0
\(961\) 21.3412 28.6662i 0.688425 0.924716i
\(962\) 15.6955 + 13.1701i 0.506044 + 0.424621i
\(963\) 0 0
\(964\) −6.81044 + 5.71464i −0.219350 + 0.184056i
\(965\) 0.587749 + 10.0913i 0.0189203 + 0.324849i
\(966\) 0 0
\(967\) −0.751265 + 1.74163i −0.0241591 + 0.0560070i −0.929869 0.367892i \(-0.880080\pi\)
0.905709 + 0.423899i \(0.139339\pi\)
\(968\) 52.9922 + 34.8535i 1.70323 + 1.12023i
\(969\) 0 0
\(970\) 1.28332 4.28659i 0.0412050 0.137634i
\(971\) −27.1629 −0.871698 −0.435849 0.900020i \(-0.643552\pi\)
−0.435849 + 0.900020i \(0.643552\pi\)
\(972\) 0 0
\(973\) 5.98012 0.191714
\(974\) −7.42161 + 24.7899i −0.237804 + 0.794320i
\(975\) 0 0
\(976\) −2.09908 1.38059i −0.0671899 0.0441915i
\(977\) −10.1432 + 23.5146i −0.324510 + 0.752298i 0.675380 + 0.737470i \(0.263980\pi\)
−0.999890 + 0.0148287i \(0.995280\pi\)
\(978\) 0 0
\(979\) 4.96419 + 85.2319i 0.158656 + 2.72402i
\(980\) 5.42241 4.54994i 0.173213 0.145343i
\(981\) 0 0
\(982\) 2.19751 + 1.84393i 0.0701255 + 0.0588423i
\(983\) −17.3432 + 23.2960i −0.553163 + 0.743026i −0.987482 0.157733i \(-0.949582\pi\)
0.434319 + 0.900759i \(0.356989\pi\)
\(984\) 0 0
\(985\) 15.3409 16.2604i 0.488802 0.518100i
\(986\) −0.0104290 0.00247173i −0.000332128 7.87158e-5i
\(987\) 0 0
\(988\) 11.7187 + 27.1670i 0.372821 + 0.864297i
\(989\) 0.0249928 0.141741i 0.000794725 0.00450711i
\(990\) 0 0
\(991\) 6.28903 + 35.6669i 0.199778 + 1.13300i 0.905449 + 0.424456i \(0.139534\pi\)
−0.705671 + 0.708539i \(0.749354\pi\)
\(992\) 39.4722 25.9613i 1.25324 0.824272i
\(993\) 0 0
\(994\) −1.28238 1.72253i −0.0406745 0.0546354i
\(995\) −0.479040 + 8.22481i −0.0151866 + 0.260744i
\(996\) 0 0
\(997\) 10.4130 + 11.0372i 0.329784 + 0.349550i 0.870956 0.491362i \(-0.163501\pi\)
−0.541172 + 0.840912i \(0.682019\pi\)
\(998\) −12.6545 21.9182i −0.400571 0.693809i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.c.352.3 144
3.2 odd 2 729.2.g.b.352.6 144
9.2 odd 6 243.2.g.a.118.3 144
9.4 even 3 729.2.g.d.109.3 144
9.5 odd 6 729.2.g.a.109.6 144
9.7 even 3 81.2.g.a.76.6 yes 144
81.11 odd 54 243.2.g.a.208.3 144
81.16 even 27 729.2.g.d.622.3 144
81.23 odd 54 6561.2.a.d.1.27 72
81.38 odd 54 729.2.g.b.379.6 144
81.43 even 27 inner 729.2.g.c.379.3 144
81.58 even 27 6561.2.a.c.1.46 72
81.65 odd 54 729.2.g.a.622.6 144
81.70 even 27 81.2.g.a.16.6 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.6 144 81.70 even 27
81.2.g.a.76.6 yes 144 9.7 even 3
243.2.g.a.118.3 144 9.2 odd 6
243.2.g.a.208.3 144 81.11 odd 54
729.2.g.a.109.6 144 9.5 odd 6
729.2.g.a.622.6 144 81.65 odd 54
729.2.g.b.352.6 144 3.2 odd 2
729.2.g.b.379.6 144 81.38 odd 54
729.2.g.c.352.3 144 1.1 even 1 trivial
729.2.g.c.379.3 144 81.43 even 27 inner
729.2.g.d.109.3 144 9.4 even 3
729.2.g.d.622.3 144 81.16 even 27
6561.2.a.c.1.46 72 81.58 even 27
6561.2.a.d.1.27 72 81.23 odd 54