Properties

Label 729.2.g.c.28.7
Level $729$
Weight $2$
Character 729.28
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 28.7
Character \(\chi\) \(=\) 729.28
Dual form 729.2.g.c.703.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.76769 - 1.16263i) q^{2} +(0.980860 - 2.27389i) q^{4} +(-2.67150 + 2.83162i) q^{5} +(3.31264 + 0.387192i) q^{7} +(-0.175036 - 0.992677i) q^{8} +O(q^{10})\) \(q+(1.76769 - 1.16263i) q^{2} +(0.980860 - 2.27389i) q^{4} +(-2.67150 + 2.83162i) q^{5} +(3.31264 + 0.387192i) q^{7} +(-0.175036 - 0.992677i) q^{8} +(-1.43025 + 8.11138i) q^{10} +(-0.217034 + 0.724944i) q^{11} +(-0.144562 + 2.48203i) q^{13} +(6.30588 - 3.16693i) q^{14} +(1.93533 + 2.05133i) q^{16} +(-0.700932 + 0.255119i) q^{17} +(4.21736 + 1.53499i) q^{19} +(3.81843 + 8.85211i) q^{20} +(0.459191 + 1.53380i) q^{22} +(2.27126 - 0.265472i) q^{23} +(-0.590459 - 10.1378i) q^{25} +(2.63013 + 4.55552i) q^{26} +(4.12967 - 7.15280i) q^{28} +(0.414639 + 0.208240i) q^{29} +(-2.35407 - 3.16206i) q^{31} +(7.76762 + 1.84096i) q^{32} +(-0.942422 + 1.26589i) q^{34} +(-9.94610 + 8.34577i) q^{35} +(-3.64375 - 3.05747i) q^{37} +(9.23961 - 2.18983i) q^{38} +(3.27849 + 2.15630i) q^{40} +(-4.08763 - 2.68847i) q^{41} +(5.78094 - 1.37011i) q^{43} +(1.43556 + 1.20458i) q^{44} +(3.70623 - 3.10990i) q^{46} +(-6.42922 + 8.63594i) q^{47} +(4.01237 + 0.950949i) q^{49} +(-12.8302 - 17.2340i) q^{50} +(5.50206 + 2.76324i) q^{52} +(5.75294 - 9.96438i) q^{53} +(-1.47296 - 2.55124i) q^{55} +(-0.195474 - 3.35616i) q^{56} +(0.975058 - 0.113968i) q^{58} +(1.19000 + 3.97488i) q^{59} +(0.105839 + 0.245363i) q^{61} +(-7.83755 - 2.85264i) q^{62} +(10.5709 - 3.84748i) q^{64} +(-6.64196 - 7.04007i) q^{65} +(-1.71358 + 0.860594i) q^{67} +(-0.107405 + 1.84408i) q^{68} +(-7.87859 + 26.3163i) q^{70} +(1.17278 - 6.65118i) q^{71} +(1.37723 + 7.81064i) q^{73} +(-9.99572 - 1.16833i) q^{74} +(7.62705 - 8.08420i) q^{76} +(-0.999649 + 2.31745i) q^{77} +(-3.60662 + 2.37211i) q^{79} -10.9788 q^{80} -10.3513 q^{82} +(2.12790 - 1.39954i) q^{83} +(1.15014 - 2.66632i) q^{85} +(8.62597 - 9.14299i) q^{86} +(0.757624 + 0.0885535i) q^{88} +(-0.935549 - 5.30576i) q^{89} +(-1.43990 + 8.16609i) q^{91} +(1.62413 - 5.42498i) q^{92} +(-1.32448 + 22.7404i) q^{94} +(-15.6132 + 7.84124i) q^{95} +(-6.51132 - 6.90160i) q^{97} +(8.19821 - 2.98391i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{22}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.76769 1.16263i 1.24994 0.822101i 0.260284 0.965532i \(-0.416184\pi\)
0.989660 + 0.143431i \(0.0458135\pi\)
\(3\) 0 0
\(4\) 0.980860 2.27389i 0.490430 1.13694i
\(5\) −2.67150 + 2.83162i −1.19473 + 1.26634i −0.239359 + 0.970931i \(0.576937\pi\)
−0.955371 + 0.295408i \(0.904544\pi\)
\(6\) 0 0
\(7\) 3.31264 + 0.387192i 1.25206 + 0.146345i 0.716160 0.697936i \(-0.245898\pi\)
0.535901 + 0.844281i \(0.319972\pi\)
\(8\) −0.175036 0.992677i −0.0618845 0.350964i
\(9\) 0 0
\(10\) −1.43025 + 8.11138i −0.452286 + 2.56504i
\(11\) −0.217034 + 0.724944i −0.0654382 + 0.218579i −0.984454 0.175641i \(-0.943800\pi\)
0.919016 + 0.394220i \(0.128985\pi\)
\(12\) 0 0
\(13\) −0.144562 + 2.48203i −0.0400942 + 0.688390i 0.917049 + 0.398775i \(0.130564\pi\)
−0.957143 + 0.289615i \(0.906473\pi\)
\(14\) 6.30588 3.16693i 1.68532 0.846398i
\(15\) 0 0
\(16\) 1.93533 + 2.05133i 0.483831 + 0.512831i
\(17\) −0.700932 + 0.255119i −0.170001 + 0.0618753i −0.425619 0.904903i \(-0.639943\pi\)
0.255617 + 0.966778i \(0.417721\pi\)
\(18\) 0 0
\(19\) 4.21736 + 1.53499i 0.967530 + 0.352152i 0.776980 0.629526i \(-0.216751\pi\)
0.190550 + 0.981678i \(0.438973\pi\)
\(20\) 3.81843 + 8.85211i 0.853827 + 1.97939i
\(21\) 0 0
\(22\) 0.459191 + 1.53380i 0.0978998 + 0.327008i
\(23\) 2.27126 0.265472i 0.473590 0.0553547i 0.124049 0.992276i \(-0.460412\pi\)
0.349540 + 0.936921i \(0.386338\pi\)
\(24\) 0 0
\(25\) −0.590459 10.1378i −0.118092 2.02756i
\(26\) 2.63013 + 4.55552i 0.515811 + 0.893410i
\(27\) 0 0
\(28\) 4.12967 7.15280i 0.780435 1.35175i
\(29\) 0.414639 + 0.208240i 0.0769966 + 0.0386691i 0.486881 0.873468i \(-0.338135\pi\)
−0.409884 + 0.912138i \(0.634431\pi\)
\(30\) 0 0
\(31\) −2.35407 3.16206i −0.422803 0.567923i 0.538777 0.842449i \(-0.318887\pi\)
−0.961580 + 0.274526i \(0.911479\pi\)
\(32\) 7.76762 + 1.84096i 1.37313 + 0.325439i
\(33\) 0 0
\(34\) −0.942422 + 1.26589i −0.161624 + 0.217099i
\(35\) −9.94610 + 8.34577i −1.68120 + 1.41069i
\(36\) 0 0
\(37\) −3.64375 3.05747i −0.599029 0.502645i 0.292104 0.956387i \(-0.405645\pi\)
−0.891134 + 0.453741i \(0.850089\pi\)
\(38\) 9.23961 2.18983i 1.49886 0.355237i
\(39\) 0 0
\(40\) 3.27849 + 2.15630i 0.518375 + 0.340941i
\(41\) −4.08763 2.68847i −0.638380 0.419869i 0.188636 0.982047i \(-0.439593\pi\)
−0.827016 + 0.562178i \(0.809964\pi\)
\(42\) 0 0
\(43\) 5.78094 1.37011i 0.881585 0.208939i 0.235196 0.971948i \(-0.424427\pi\)
0.646388 + 0.763009i \(0.276279\pi\)
\(44\) 1.43556 + 1.20458i 0.216419 + 0.181597i
\(45\) 0 0
\(46\) 3.70623 3.10990i 0.546454 0.458529i
\(47\) −6.42922 + 8.63594i −0.937798 + 1.25968i 0.0277927 + 0.999614i \(0.491152\pi\)
−0.965590 + 0.260067i \(0.916255\pi\)
\(48\) 0 0
\(49\) 4.01237 + 0.950949i 0.573195 + 0.135850i
\(50\) −12.8302 17.2340i −1.81447 2.43725i
\(51\) 0 0
\(52\) 5.50206 + 2.76324i 0.762998 + 0.383192i
\(53\) 5.75294 9.96438i 0.790227 1.36871i −0.135600 0.990764i \(-0.543296\pi\)
0.925826 0.377949i \(-0.123371\pi\)
\(54\) 0 0
\(55\) −1.47296 2.55124i −0.198614 0.344010i
\(56\) −0.195474 3.35616i −0.0261213 0.448485i
\(57\) 0 0
\(58\) 0.975058 0.113968i 0.128031 0.0149647i
\(59\) 1.19000 + 3.97488i 0.154925 + 0.517485i 0.999849 0.0174017i \(-0.00553943\pi\)
−0.844924 + 0.534887i \(0.820354\pi\)
\(60\) 0 0
\(61\) 0.105839 + 0.245363i 0.0135513 + 0.0314155i 0.924857 0.380314i \(-0.124184\pi\)
−0.911306 + 0.411730i \(0.864925\pi\)
\(62\) −7.83755 2.85264i −0.995370 0.362285i
\(63\) 0 0
\(64\) 10.5709 3.84748i 1.32136 0.480935i
\(65\) −6.64196 7.04007i −0.823834 0.873213i
\(66\) 0 0
\(67\) −1.71358 + 0.860594i −0.209348 + 0.105138i −0.550384 0.834912i \(-0.685519\pi\)
0.341036 + 0.940050i \(0.389222\pi\)
\(68\) −0.107405 + 1.84408i −0.0130248 + 0.223627i
\(69\) 0 0
\(70\) −7.87859 + 26.3163i −0.941671 + 3.14540i
\(71\) 1.17278 6.65118i 0.139184 0.789350i −0.832671 0.553768i \(-0.813189\pi\)
0.971855 0.235582i \(-0.0756996\pi\)
\(72\) 0 0
\(73\) 1.37723 + 7.81064i 0.161192 + 0.914167i 0.952904 + 0.303272i \(0.0980791\pi\)
−0.791712 + 0.610895i \(0.790810\pi\)
\(74\) −9.99572 1.16833i −1.16198 0.135816i
\(75\) 0 0
\(76\) 7.62705 8.08420i 0.874883 0.927322i
\(77\) −0.999649 + 2.31745i −0.113921 + 0.264098i
\(78\) 0 0
\(79\) −3.60662 + 2.37211i −0.405777 + 0.266884i −0.735949 0.677037i \(-0.763264\pi\)
0.330172 + 0.943921i \(0.392893\pi\)
\(80\) −10.9788 −1.22747
\(81\) 0 0
\(82\) −10.3513 −1.14311
\(83\) 2.12790 1.39954i 0.233567 0.153620i −0.427331 0.904095i \(-0.640546\pi\)
0.660898 + 0.750476i \(0.270176\pi\)
\(84\) 0 0
\(85\) 1.15014 2.66632i 0.124750 0.289203i
\(86\) 8.62597 9.14299i 0.930162 0.985914i
\(87\) 0 0
\(88\) 0.757624 + 0.0885535i 0.0807630 + 0.00943984i
\(89\) −0.935549 5.30576i −0.0991680 0.562410i −0.993390 0.114786i \(-0.963382\pi\)
0.894222 0.447623i \(-0.147729\pi\)
\(90\) 0 0
\(91\) −1.43990 + 8.16609i −0.150943 + 0.856039i
\(92\) 1.62413 5.42498i 0.169327 0.565593i
\(93\) 0 0
\(94\) −1.32448 + 22.7404i −0.136610 + 2.34550i
\(95\) −15.6132 + 7.84124i −1.60188 + 0.804495i
\(96\) 0 0
\(97\) −6.51132 6.90160i −0.661125 0.700751i 0.306862 0.951754i \(-0.400721\pi\)
−0.967986 + 0.251003i \(0.919240\pi\)
\(98\) 8.19821 2.98391i 0.828145 0.301420i
\(99\) 0 0
\(100\) −23.6314 8.60112i −2.36314 0.860112i
\(101\) −4.87482 11.3011i −0.485063 1.12450i −0.968475 0.249109i \(-0.919862\pi\)
0.483413 0.875392i \(-0.339397\pi\)
\(102\) 0 0
\(103\) −4.78109 15.9700i −0.471095 1.57357i −0.782096 0.623158i \(-0.785849\pi\)
0.311001 0.950410i \(-0.399336\pi\)
\(104\) 2.48915 0.290940i 0.244081 0.0285290i
\(105\) 0 0
\(106\) −1.41546 24.3024i −0.137481 2.36046i
\(107\) 1.84694 + 3.19899i 0.178550 + 0.309258i 0.941384 0.337336i \(-0.109526\pi\)
−0.762834 + 0.646595i \(0.776193\pi\)
\(108\) 0 0
\(109\) 8.66961 15.0162i 0.830398 1.43829i −0.0673245 0.997731i \(-0.521446\pi\)
0.897723 0.440561i \(-0.145220\pi\)
\(110\) −5.56988 2.79730i −0.531067 0.266712i
\(111\) 0 0
\(112\) 5.61678 + 7.54465i 0.530736 + 0.712902i
\(113\) −10.0311 2.37743i −0.943651 0.223649i −0.270135 0.962822i \(-0.587068\pi\)
−0.673516 + 0.739173i \(0.735217\pi\)
\(114\) 0 0
\(115\) −5.31594 + 7.14055i −0.495714 + 0.665859i
\(116\) 0.880217 0.738590i 0.0817261 0.0685764i
\(117\) 0 0
\(118\) 6.72485 + 5.64282i 0.619072 + 0.519464i
\(119\) −2.42072 + 0.573721i −0.221907 + 0.0525929i
\(120\) 0 0
\(121\) 8.71193 + 5.72992i 0.791993 + 0.520902i
\(122\) 0.472356 + 0.310674i 0.0427651 + 0.0281271i
\(123\) 0 0
\(124\) −9.49919 + 2.25135i −0.853052 + 0.202177i
\(125\) 15.3730 + 12.8995i 1.37500 + 1.15376i
\(126\) 0 0
\(127\) −10.1217 + 8.49315i −0.898159 + 0.753645i −0.969830 0.243783i \(-0.921611\pi\)
0.0716705 + 0.997428i \(0.477167\pi\)
\(128\) 4.67882 6.28474i 0.413553 0.555498i
\(129\) 0 0
\(130\) −19.9259 4.72252i −1.74762 0.414192i
\(131\) 6.00822 + 8.07044i 0.524940 + 0.705117i 0.982959 0.183825i \(-0.0588481\pi\)
−0.458018 + 0.888943i \(0.651441\pi\)
\(132\) 0 0
\(133\) 13.3763 + 6.71782i 1.15987 + 0.582509i
\(134\) −2.02853 + 3.51352i −0.175238 + 0.303522i
\(135\) 0 0
\(136\) 0.375938 + 0.651145i 0.0322365 + 0.0558352i
\(137\) 0.550552 + 9.45261i 0.0470368 + 0.807591i 0.936518 + 0.350619i \(0.114029\pi\)
−0.889481 + 0.456972i \(0.848934\pi\)
\(138\) 0 0
\(139\) 10.4293 1.21902i 0.884605 0.103396i 0.338356 0.941018i \(-0.390129\pi\)
0.546249 + 0.837623i \(0.316055\pi\)
\(140\) 9.22162 + 30.8024i 0.779369 + 2.60327i
\(141\) 0 0
\(142\) −5.65973 13.1207i −0.474954 1.10107i
\(143\) −1.76795 0.643483i −0.147844 0.0538107i
\(144\) 0 0
\(145\) −1.69736 + 0.617790i −0.140958 + 0.0513047i
\(146\) 11.5154 + 12.2056i 0.953019 + 1.01014i
\(147\) 0 0
\(148\) −10.5264 + 5.28654i −0.865262 + 0.434551i
\(149\) −0.722705 + 12.4084i −0.0592063 + 1.01653i 0.829632 + 0.558311i \(0.188551\pi\)
−0.888838 + 0.458222i \(0.848487\pi\)
\(150\) 0 0
\(151\) 5.22757 17.4613i 0.425413 1.42098i −0.429904 0.902875i \(-0.641453\pi\)
0.855317 0.518105i \(-0.173362\pi\)
\(152\) 0.785565 4.45516i 0.0637177 0.361361i
\(153\) 0 0
\(154\) 0.927258 + 5.25874i 0.0747206 + 0.423761i
\(155\) 15.2426 + 1.78161i 1.22432 + 0.143102i
\(156\) 0 0
\(157\) −16.0388 + 17.0001i −1.28003 + 1.35675i −0.377573 + 0.925980i \(0.623241\pi\)
−0.902459 + 0.430775i \(0.858240\pi\)
\(158\) −3.61750 + 8.38631i −0.287793 + 0.667179i
\(159\) 0 0
\(160\) −25.9641 + 17.0768i −2.05264 + 1.35004i
\(161\) 7.62665 0.601064
\(162\) 0 0
\(163\) 11.7238 0.918278 0.459139 0.888364i \(-0.348158\pi\)
0.459139 + 0.888364i \(0.348158\pi\)
\(164\) −10.1227 + 6.65780i −0.790449 + 0.519886i
\(165\) 0 0
\(166\) 2.13432 4.94790i 0.165655 0.384032i
\(167\) 16.6160 17.6119i 1.28579 1.36285i 0.388472 0.921461i \(-0.373003\pi\)
0.897314 0.441393i \(-0.145516\pi\)
\(168\) 0 0
\(169\) 6.77255 + 0.791597i 0.520965 + 0.0608921i
\(170\) −1.06685 6.05041i −0.0818237 0.464045i
\(171\) 0 0
\(172\) 2.55482 14.4891i 0.194803 1.10478i
\(173\) 4.44902 14.8608i 0.338253 1.12984i −0.604571 0.796551i \(-0.706655\pi\)
0.942824 0.333292i \(-0.108159\pi\)
\(174\) 0 0
\(175\) 1.96930 33.8115i 0.148865 2.55591i
\(176\) −1.90713 + 0.957795i −0.143755 + 0.0721965i
\(177\) 0 0
\(178\) −7.82238 8.29124i −0.586312 0.621455i
\(179\) 6.75474 2.45852i 0.504873 0.183759i −0.0770114 0.997030i \(-0.524538\pi\)
0.581884 + 0.813271i \(0.302316\pi\)
\(180\) 0 0
\(181\) 7.27112 + 2.64647i 0.540458 + 0.196711i 0.597802 0.801644i \(-0.296041\pi\)
−0.0573439 + 0.998354i \(0.518263\pi\)
\(182\) 6.94882 + 16.1092i 0.515081 + 1.19409i
\(183\) 0 0
\(184\) −0.661079 2.20816i −0.0487354 0.162787i
\(185\) 18.3919 2.14970i 1.35220 0.158049i
\(186\) 0 0
\(187\) −0.0328205 0.563506i −0.00240007 0.0412077i
\(188\) 13.3310 + 23.0900i 0.972264 + 1.68401i
\(189\) 0 0
\(190\) −18.4828 + 32.0132i −1.34089 + 2.32248i
\(191\) −9.00617 4.52307i −0.651664 0.327278i 0.0920711 0.995752i \(-0.470651\pi\)
−0.743735 + 0.668475i \(0.766948\pi\)
\(192\) 0 0
\(193\) −9.54993 12.8278i −0.687419 0.923364i 0.312226 0.950008i \(-0.398925\pi\)
−0.999645 + 0.0266441i \(0.991518\pi\)
\(194\) −19.5340 4.62964i −1.40246 0.332389i
\(195\) 0 0
\(196\) 6.09793 8.19094i 0.435566 0.585067i
\(197\) 8.40349 7.05136i 0.598724 0.502389i −0.292311 0.956323i \(-0.594424\pi\)
0.891035 + 0.453934i \(0.149980\pi\)
\(198\) 0 0
\(199\) 2.68937 + 2.25665i 0.190644 + 0.159970i 0.733114 0.680106i \(-0.238066\pi\)
−0.542470 + 0.840075i \(0.682511\pi\)
\(200\) −9.96020 + 2.36061i −0.704293 + 0.166920i
\(201\) 0 0
\(202\) −21.7561 14.3092i −1.53075 1.00679i
\(203\) 1.29292 + 0.850369i 0.0907454 + 0.0596842i
\(204\) 0 0
\(205\) 18.5328 4.39236i 1.29439 0.306776i
\(206\) −27.0186 22.6713i −1.88247 1.57958i
\(207\) 0 0
\(208\) −5.37122 + 4.50698i −0.372427 + 0.312503i
\(209\) −2.02810 + 2.72421i −0.140286 + 0.188437i
\(210\) 0 0
\(211\) −7.47663 1.77199i −0.514712 0.121989i −0.0349525 0.999389i \(-0.511128\pi\)
−0.479760 + 0.877400i \(0.659276\pi\)
\(212\) −17.0151 22.8552i −1.16860 1.56970i
\(213\) 0 0
\(214\) 6.98404 + 3.50752i 0.477419 + 0.239769i
\(215\) −11.5641 + 20.0297i −0.788667 + 1.36601i
\(216\) 0 0
\(217\) −6.57386 11.3863i −0.446262 0.772949i
\(218\) −2.13308 36.6235i −0.144470 2.48046i
\(219\) 0 0
\(220\) −7.24602 + 0.846938i −0.488526 + 0.0571005i
\(221\) −0.531883 1.77661i −0.0357783 0.119508i
\(222\) 0 0
\(223\) 4.29520 + 9.95739i 0.287628 + 0.666796i 0.999364 0.0356504i \(-0.0113503\pi\)
−0.711737 + 0.702447i \(0.752091\pi\)
\(224\) 25.0185 + 9.10600i 1.67162 + 0.608420i
\(225\) 0 0
\(226\) −20.4960 + 7.45993i −1.36337 + 0.496227i
\(227\) 7.45351 + 7.90026i 0.494707 + 0.524358i 0.925833 0.377933i \(-0.123365\pi\)
−0.431126 + 0.902292i \(0.641884\pi\)
\(228\) 0 0
\(229\) 2.04594 1.02751i 0.135199 0.0678997i −0.379914 0.925022i \(-0.624046\pi\)
0.515113 + 0.857122i \(0.327750\pi\)
\(230\) −1.09513 + 18.8027i −0.0722110 + 1.23981i
\(231\) 0 0
\(232\) 0.134138 0.448052i 0.00880659 0.0294161i
\(233\) 3.09286 17.5405i 0.202620 1.14912i −0.698521 0.715590i \(-0.746158\pi\)
0.901141 0.433526i \(-0.142731\pi\)
\(234\) 0 0
\(235\) −7.27807 41.2760i −0.474769 2.69255i
\(236\) 10.2057 + 1.19287i 0.664332 + 0.0776493i
\(237\) 0 0
\(238\) −3.61205 + 3.82855i −0.234135 + 0.248168i
\(239\) −4.85842 + 11.2631i −0.314265 + 0.728548i 0.685735 + 0.727851i \(0.259481\pi\)
−1.00000 0.000696435i \(0.999778\pi\)
\(240\) 0 0
\(241\) −14.6206 + 9.61612i −0.941795 + 0.619429i −0.924811 0.380427i \(-0.875777\pi\)
−0.0169845 + 0.999856i \(0.505407\pi\)
\(242\) 22.0617 1.41818
\(243\) 0 0
\(244\) 0.661742 0.0423637
\(245\) −13.4118 + 8.82105i −0.856846 + 0.563556i
\(246\) 0 0
\(247\) −4.41956 + 10.2457i −0.281210 + 0.651918i
\(248\) −2.72686 + 2.89030i −0.173156 + 0.183534i
\(249\) 0 0
\(250\) 42.1719 + 4.92919i 2.66719 + 0.311749i
\(251\) 3.26810 + 18.5343i 0.206281 + 1.16988i 0.895412 + 0.445239i \(0.146881\pi\)
−0.689131 + 0.724637i \(0.742008\pi\)
\(252\) 0 0
\(253\) −0.300488 + 1.70415i −0.0188915 + 0.107139i
\(254\) −8.01772 + 26.7810i −0.503076 + 1.68039i
\(255\) 0 0
\(256\) −0.344295 + 5.91131i −0.0215184 + 0.369457i
\(257\) 15.4090 7.73869i 0.961187 0.482726i 0.102222 0.994762i \(-0.467405\pi\)
0.858964 + 0.512035i \(0.171108\pi\)
\(258\) 0 0
\(259\) −10.8866 11.5391i −0.676462 0.717008i
\(260\) −22.5232 + 8.19776i −1.39683 + 0.508404i
\(261\) 0 0
\(262\) 20.0036 + 7.28070i 1.23582 + 0.449803i
\(263\) −9.74813 22.5987i −0.601095 1.39350i −0.898597 0.438774i \(-0.855413\pi\)
0.297502 0.954721i \(-0.403846\pi\)
\(264\) 0 0
\(265\) 12.8464 + 42.9100i 0.789148 + 2.63594i
\(266\) 31.4554 3.67661i 1.92865 0.225427i
\(267\) 0 0
\(268\) 0.276110 + 4.74062i 0.0168661 + 0.289580i
\(269\) −5.32448 9.22227i −0.324639 0.562292i 0.656800 0.754065i \(-0.271910\pi\)
−0.981439 + 0.191773i \(0.938576\pi\)
\(270\) 0 0
\(271\) 2.35817 4.08447i 0.143249 0.248114i −0.785469 0.618900i \(-0.787578\pi\)
0.928718 + 0.370786i \(0.120912\pi\)
\(272\) −1.87986 0.944103i −0.113983 0.0572447i
\(273\) 0 0
\(274\) 11.9631 + 16.0692i 0.722715 + 0.970775i
\(275\) 7.47748 + 1.77220i 0.450909 + 0.106867i
\(276\) 0 0
\(277\) −3.94818 + 5.30333i −0.237223 + 0.318646i −0.904753 0.425937i \(-0.859944\pi\)
0.667529 + 0.744583i \(0.267352\pi\)
\(278\) 17.0186 14.2803i 1.02071 0.856474i
\(279\) 0 0
\(280\) 10.0256 + 8.41245i 0.599142 + 0.502740i
\(281\) −2.40945 + 0.571049i −0.143736 + 0.0340659i −0.301854 0.953354i \(-0.597605\pi\)
0.158118 + 0.987420i \(0.449457\pi\)
\(282\) 0 0
\(283\) −0.774627 0.509480i −0.0460468 0.0302855i 0.526277 0.850313i \(-0.323588\pi\)
−0.572324 + 0.820028i \(0.693958\pi\)
\(284\) −13.9737 9.19066i −0.829188 0.545365i
\(285\) 0 0
\(286\) −3.87332 + 0.917994i −0.229034 + 0.0542821i
\(287\) −12.4999 10.4887i −0.737845 0.619126i
\(288\) 0 0
\(289\) −12.5965 + 10.5697i −0.740973 + 0.621750i
\(290\) −2.28215 + 3.06546i −0.134012 + 0.180010i
\(291\) 0 0
\(292\) 19.1114 + 4.52949i 1.11841 + 0.265068i
\(293\) 1.40037 + 1.88103i 0.0818106 + 0.109891i 0.841144 0.540811i \(-0.181882\pi\)
−0.759334 + 0.650701i \(0.774475\pi\)
\(294\) 0 0
\(295\) −14.4344 7.24925i −0.840405 0.422067i
\(296\) −2.39729 + 4.15224i −0.139340 + 0.241344i
\(297\) 0 0
\(298\) 13.1488 + 22.7744i 0.761688 + 1.31928i
\(299\) 0.330572 + 5.67569i 0.0191174 + 0.328234i
\(300\) 0 0
\(301\) 19.6807 2.30034i 1.13438 0.132589i
\(302\) −11.0603 36.9438i −0.636446 2.12588i
\(303\) 0 0
\(304\) 5.01320 + 11.6219i 0.287527 + 0.666562i
\(305\) −0.977524 0.355790i −0.0559729 0.0203725i
\(306\) 0 0
\(307\) 14.3376 5.21846i 0.818289 0.297833i 0.101246 0.994861i \(-0.467717\pi\)
0.717043 + 0.697028i \(0.245495\pi\)
\(308\) 4.28910 + 4.54618i 0.244394 + 0.259043i
\(309\) 0 0
\(310\) 29.0156 14.5722i 1.64797 0.827644i
\(311\) 0.973556 16.7153i 0.0552053 0.947838i −0.851044 0.525094i \(-0.824030\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(312\) 0 0
\(313\) −9.34214 + 31.2049i −0.528049 + 1.76381i 0.110129 + 0.993917i \(0.464873\pi\)
−0.638178 + 0.769889i \(0.720312\pi\)
\(314\) −8.58676 + 48.6979i −0.484579 + 2.74818i
\(315\) 0 0
\(316\) 1.85633 + 10.5278i 0.104427 + 0.592234i
\(317\) −21.5243 2.51583i −1.20893 0.141303i −0.512344 0.858780i \(-0.671223\pi\)
−0.696582 + 0.717477i \(0.745297\pi\)
\(318\) 0 0
\(319\) −0.240953 + 0.255395i −0.0134908 + 0.0142994i
\(320\) −17.3454 + 40.2112i −0.969639 + 2.24788i
\(321\) 0 0
\(322\) 13.4815 8.86695i 0.751297 0.494136i
\(323\) −3.34769 −0.186271
\(324\) 0 0
\(325\) 25.2476 1.40049
\(326\) 20.7240 13.6304i 1.14780 0.754917i
\(327\) 0 0
\(328\) −1.95331 + 4.52827i −0.107853 + 0.250032i
\(329\) −24.6415 + 26.1184i −1.35853 + 1.43996i
\(330\) 0 0
\(331\) −23.6512 2.76443i −1.29999 0.151947i −0.562212 0.826993i \(-0.690050\pi\)
−0.737775 + 0.675046i \(0.764124\pi\)
\(332\) −1.09523 6.21136i −0.0601086 0.340893i
\(333\) 0 0
\(334\) 8.89581 50.4507i 0.486757 2.76054i
\(335\) 2.14096 7.15130i 0.116973 0.390717i
\(336\) 0 0
\(337\) 1.06959 18.3641i 0.0582643 1.00036i −0.834835 0.550500i \(-0.814437\pi\)
0.893100 0.449859i \(-0.148526\pi\)
\(338\) 12.8921 6.47465i 0.701237 0.352174i
\(339\) 0 0
\(340\) −4.93480 5.23058i −0.267627 0.283668i
\(341\) 2.80323 1.02029i 0.151803 0.0552519i
\(342\) 0 0
\(343\) −9.01506 3.28121i −0.486767 0.177169i
\(344\) −2.37194 5.49878i −0.127887 0.296475i
\(345\) 0 0
\(346\) −9.41304 31.4417i −0.506048 1.69032i
\(347\) 16.7968 1.96326i 0.901698 0.105393i 0.347405 0.937715i \(-0.387063\pi\)
0.554293 + 0.832322i \(0.312989\pi\)
\(348\) 0 0
\(349\) −0.474881 8.15340i −0.0254198 0.436441i −0.986876 0.161482i \(-0.948373\pi\)
0.961456 0.274959i \(-0.0886644\pi\)
\(350\) −35.8291 62.0578i −1.91514 3.31713i
\(351\) 0 0
\(352\) −3.02043 + 5.23154i −0.160989 + 0.278842i
\(353\) 21.9963 + 11.0469i 1.17074 + 0.587969i 0.924479 0.381234i \(-0.124501\pi\)
0.246264 + 0.969203i \(0.420797\pi\)
\(354\) 0 0
\(355\) 15.7005 + 21.0895i 0.833298 + 1.11931i
\(356\) −12.9824 3.07688i −0.688064 0.163074i
\(357\) 0 0
\(358\) 9.08193 12.1991i 0.479995 0.644745i
\(359\) −9.68682 + 8.12821i −0.511251 + 0.428990i −0.861569 0.507640i \(-0.830518\pi\)
0.350318 + 0.936631i \(0.386073\pi\)
\(360\) 0 0
\(361\) 0.875105 + 0.734300i 0.0460582 + 0.0386474i
\(362\) 15.9299 3.77546i 0.837258 0.198434i
\(363\) 0 0
\(364\) 17.1564 + 11.2840i 0.899242 + 0.591441i
\(365\) −25.7960 16.9663i −1.35023 0.888058i
\(366\) 0 0
\(367\) −10.2113 + 2.42012i −0.533025 + 0.126329i −0.488309 0.872671i \(-0.662386\pi\)
−0.0447153 + 0.999000i \(0.514238\pi\)
\(368\) 4.94019 + 4.14531i 0.257525 + 0.216089i
\(369\) 0 0
\(370\) 30.0118 25.1829i 1.56024 1.30920i
\(371\) 22.9156 30.7809i 1.18972 1.59807i
\(372\) 0 0
\(373\) 11.4784 + 2.72044i 0.594330 + 0.140859i 0.516763 0.856128i \(-0.327137\pi\)
0.0775669 + 0.996987i \(0.475285\pi\)
\(374\) −0.713164 0.957945i −0.0368768 0.0495342i
\(375\) 0 0
\(376\) 9.69804 + 4.87054i 0.500138 + 0.251179i
\(377\) −0.576797 + 0.999042i −0.0297066 + 0.0514533i
\(378\) 0 0
\(379\) −9.06853 15.7072i −0.465819 0.806823i 0.533419 0.845851i \(-0.320907\pi\)
−0.999238 + 0.0390286i \(0.987574\pi\)
\(380\) 2.51576 + 43.1939i 0.129056 + 2.21580i
\(381\) 0 0
\(382\) −21.1787 + 2.47544i −1.08360 + 0.126655i
\(383\) −4.45051 14.8657i −0.227410 0.759603i −0.993191 0.116501i \(-0.962832\pi\)
0.765780 0.643102i \(-0.222353\pi\)
\(384\) 0 0
\(385\) −3.89157 9.02168i −0.198333 0.459787i
\(386\) −31.7952 11.5725i −1.61833 0.589025i
\(387\) 0 0
\(388\) −22.0802 + 8.03653i −1.12095 + 0.407993i
\(389\) 10.5917 + 11.2265i 0.537019 + 0.569207i 0.937892 0.346927i \(-0.112775\pi\)
−0.400873 + 0.916133i \(0.631293\pi\)
\(390\) 0 0
\(391\) −1.52427 + 0.765518i −0.0770857 + 0.0387139i
\(392\) 0.241677 4.14943i 0.0122065 0.209578i
\(393\) 0 0
\(394\) 6.65664 22.2347i 0.335357 1.12017i
\(395\) 2.91816 16.5497i 0.146828 0.832705i
\(396\) 0 0
\(397\) 0.354695 + 2.01157i 0.0178016 + 0.100958i 0.992414 0.122941i \(-0.0392326\pi\)
−0.974612 + 0.223899i \(0.928121\pi\)
\(398\) 7.37761 + 0.862319i 0.369806 + 0.0432241i
\(399\) 0 0
\(400\) 19.6532 20.8312i 0.982659 1.04156i
\(401\) 5.92303 13.7311i 0.295782 0.685700i −0.703916 0.710284i \(-0.748567\pi\)
0.999698 + 0.0245834i \(0.00782592\pi\)
\(402\) 0 0
\(403\) 8.18862 5.38574i 0.407904 0.268283i
\(404\) −30.4790 −1.51639
\(405\) 0 0
\(406\) 3.27415 0.162493
\(407\) 3.00731 1.97794i 0.149067 0.0980429i
\(408\) 0 0
\(409\) 4.11470 9.53894i 0.203459 0.471670i −0.785684 0.618628i \(-0.787689\pi\)
0.989143 + 0.146958i \(0.0469481\pi\)
\(410\) 27.6536 29.3111i 1.36571 1.44757i
\(411\) 0 0
\(412\) −41.0035 4.79262i −2.02010 0.236116i
\(413\) 2.40300 + 13.6281i 0.118244 + 0.670595i
\(414\) 0 0
\(415\) −1.72170 + 9.76427i −0.0845151 + 0.479309i
\(416\) −5.69221 + 19.0133i −0.279083 + 0.932203i
\(417\) 0 0
\(418\) −0.417807 + 7.17347i −0.0204356 + 0.350866i
\(419\) 0.473719 0.237911i 0.0231427 0.0116227i −0.437190 0.899369i \(-0.644026\pi\)
0.460333 + 0.887746i \(0.347730\pi\)
\(420\) 0 0
\(421\) 22.0048 + 23.3237i 1.07245 + 1.13673i 0.990134 + 0.140123i \(0.0447497\pi\)
0.0823146 + 0.996606i \(0.473769\pi\)
\(422\) −15.2765 + 5.56019i −0.743649 + 0.270666i
\(423\) 0 0
\(424\) −10.8984 3.96668i −0.529272 0.192639i
\(425\) 3.00021 + 6.95527i 0.145532 + 0.337380i
\(426\) 0 0
\(427\) 0.255605 + 0.853780i 0.0123696 + 0.0413173i
\(428\) 9.08574 1.06197i 0.439176 0.0513323i
\(429\) 0 0
\(430\) 2.84524 + 48.8510i 0.137210 + 2.35580i
\(431\) −2.69146 4.66175i −0.129643 0.224549i 0.793895 0.608055i \(-0.208050\pi\)
−0.923538 + 0.383506i \(0.874717\pi\)
\(432\) 0 0
\(433\) −16.6465 + 28.8325i −0.799978 + 1.38560i 0.119652 + 0.992816i \(0.461822\pi\)
−0.919630 + 0.392787i \(0.871511\pi\)
\(434\) −24.8585 12.4844i −1.19325 0.599270i
\(435\) 0 0
\(436\) −25.6415 34.4425i −1.22801 1.64950i
\(437\) 9.98622 + 2.36678i 0.477705 + 0.113218i
\(438\) 0 0
\(439\) −11.1561 + 14.9852i −0.532451 + 0.715206i −0.984224 0.176927i \(-0.943384\pi\)
0.451773 + 0.892133i \(0.350792\pi\)
\(440\) −2.27474 + 1.90873i −0.108444 + 0.0909953i
\(441\) 0 0
\(442\) −3.00574 2.52212i −0.142968 0.119965i
\(443\) −18.3619 + 4.35184i −0.872398 + 0.206762i −0.642345 0.766416i \(-0.722038\pi\)
−0.230053 + 0.973178i \(0.573890\pi\)
\(444\) 0 0
\(445\) 17.5232 + 11.5252i 0.830681 + 0.546348i
\(446\) 19.1693 + 12.6078i 0.907693 + 0.596999i
\(447\) 0 0
\(448\) 36.5072 8.65237i 1.72480 0.408786i
\(449\) −5.33643 4.47780i −0.251842 0.211320i 0.508123 0.861284i \(-0.330339\pi\)
−0.759965 + 0.649964i \(0.774784\pi\)
\(450\) 0 0
\(451\) 2.83615 2.37981i 0.133549 0.112061i
\(452\) −15.2452 + 20.4778i −0.717072 + 0.963195i
\(453\) 0 0
\(454\) 22.3605 + 5.29954i 1.04943 + 0.248720i
\(455\) −19.2766 25.8929i −0.903700 1.21388i
\(456\) 0 0
\(457\) 33.5985 + 16.8738i 1.57167 + 0.789324i 0.999525 0.0308265i \(-0.00981393\pi\)
0.572148 + 0.820150i \(0.306110\pi\)
\(458\) 2.42197 4.19498i 0.113171 0.196018i
\(459\) 0 0
\(460\) 11.0226 + 19.0917i 0.513932 + 0.890157i
\(461\) 1.60695 + 27.5903i 0.0748432 + 1.28501i 0.801495 + 0.598002i \(0.204038\pi\)
−0.726652 + 0.687006i \(0.758925\pi\)
\(462\) 0 0
\(463\) −24.4012 + 2.85209i −1.13402 + 0.132548i −0.662327 0.749215i \(-0.730431\pi\)
−0.471694 + 0.881763i \(0.656357\pi\)
\(464\) 0.375295 + 1.25357i 0.0174226 + 0.0581956i
\(465\) 0 0
\(466\) −14.9258 34.6020i −0.691426 1.60291i
\(467\) −7.38677 2.68856i −0.341819 0.124412i 0.165406 0.986226i \(-0.447107\pi\)
−0.507225 + 0.861814i \(0.669329\pi\)
\(468\) 0 0
\(469\) −6.00971 + 2.18735i −0.277503 + 0.101003i
\(470\) −60.8539 64.5014i −2.80698 2.97523i
\(471\) 0 0
\(472\) 3.73748 1.87703i 0.172031 0.0863974i
\(473\) −0.261409 + 4.48821i −0.0120196 + 0.206368i
\(474\) 0 0
\(475\) 13.0713 43.6611i 0.599752 2.00331i
\(476\) −1.06981 + 6.06719i −0.0490346 + 0.278089i
\(477\) 0 0
\(478\) 4.50659 + 25.5581i 0.206127 + 1.16900i
\(479\) 17.5918 + 2.05619i 0.803791 + 0.0939497i 0.508060 0.861322i \(-0.330363\pi\)
0.295731 + 0.955271i \(0.404437\pi\)
\(480\) 0 0
\(481\) 8.11547 8.60190i 0.370034 0.392213i
\(482\) −14.6647 + 33.9966i −0.667959 + 1.54850i
\(483\) 0 0
\(484\) 21.5744 14.1897i 0.980654 0.644987i
\(485\) 36.9377 1.67725
\(486\) 0 0
\(487\) −42.1146 −1.90840 −0.954198 0.299175i \(-0.903289\pi\)
−0.954198 + 0.299175i \(0.903289\pi\)
\(488\) 0.225040 0.148011i 0.0101871 0.00670016i
\(489\) 0 0
\(490\) −13.4522 + 31.1857i −0.607709 + 1.40883i
\(491\) 4.99416 5.29350i 0.225383 0.238892i −0.604808 0.796372i \(-0.706750\pi\)
0.830191 + 0.557479i \(0.188231\pi\)
\(492\) 0 0
\(493\) −0.343760 0.0401798i −0.0154822 0.00180961i
\(494\) 4.09952 + 23.2495i 0.184446 + 1.04604i
\(495\) 0 0
\(496\) 1.93053 10.9486i 0.0866833 0.491606i
\(497\) 6.46030 21.5789i 0.289784 0.967946i
\(498\) 0 0
\(499\) −0.937877 + 16.1027i −0.0419851 + 0.720857i 0.909980 + 0.414651i \(0.136096\pi\)
−0.951965 + 0.306205i \(0.900941\pi\)
\(500\) 44.4107 22.3039i 1.98611 0.997461i
\(501\) 0 0
\(502\) 27.3255 + 28.9633i 1.21960 + 1.29270i
\(503\) 34.7114 12.6339i 1.54771 0.563319i 0.579827 0.814739i \(-0.303120\pi\)
0.967878 + 0.251421i \(0.0808977\pi\)
\(504\) 0 0
\(505\) 45.0235 + 16.3872i 2.00352 + 0.729221i
\(506\) 1.45012 + 3.36176i 0.0644658 + 0.149449i
\(507\) 0 0
\(508\) 9.38447 + 31.3463i 0.416369 + 1.39077i
\(509\) −11.6029 + 1.35619i −0.514291 + 0.0601120i −0.369280 0.929318i \(-0.620396\pi\)
−0.145011 + 0.989430i \(0.546322\pi\)
\(510\) 0 0
\(511\) 1.53804 + 26.4071i 0.0680389 + 1.16818i
\(512\) 14.0992 + 24.4205i 0.623101 + 1.07924i
\(513\) 0 0
\(514\) 18.2411 31.5945i 0.804580 1.39357i
\(515\) 57.9936 + 29.1255i 2.55550 + 1.28342i
\(516\) 0 0
\(517\) −4.86521 6.53511i −0.213972 0.287414i
\(518\) −32.6599 7.74053i −1.43499 0.340099i
\(519\) 0 0
\(520\) −5.82593 + 7.82558i −0.255484 + 0.343175i
\(521\) −0.659940 + 0.553755i −0.0289125 + 0.0242605i −0.657129 0.753778i \(-0.728229\pi\)
0.628217 + 0.778038i \(0.283785\pi\)
\(522\) 0 0
\(523\) −6.06895 5.09246i −0.265377 0.222678i 0.500383 0.865804i \(-0.333192\pi\)
−0.765760 + 0.643126i \(0.777637\pi\)
\(524\) 24.2445 5.74605i 1.05913 0.251018i
\(525\) 0 0
\(526\) −43.5055 28.6140i −1.89693 1.24763i
\(527\) 2.45674 + 1.61582i 0.107017 + 0.0703864i
\(528\) 0 0
\(529\) −17.2919 + 4.09826i −0.751822 + 0.178185i
\(530\) 72.5967 + 60.9158i 3.15340 + 2.64601i
\(531\) 0 0
\(532\) 28.3958 23.8269i 1.23112 1.03303i
\(533\) 7.26378 9.75694i 0.314629 0.422620i
\(534\) 0 0
\(535\) −13.9924 3.31627i −0.604945 0.143375i
\(536\) 1.15423 + 1.55040i 0.0498552 + 0.0669671i
\(537\) 0 0
\(538\) −20.1341 10.1117i −0.868042 0.435947i
\(539\) −1.56020 + 2.70235i −0.0672028 + 0.116399i
\(540\) 0 0
\(541\) 6.01461 + 10.4176i 0.258588 + 0.447888i 0.965864 0.259050i \(-0.0834094\pi\)
−0.707276 + 0.706938i \(0.750076\pi\)
\(542\) −0.580206 9.96175i −0.0249220 0.427894i
\(543\) 0 0
\(544\) −5.91424 + 0.691275i −0.253571 + 0.0296382i
\(545\) 19.3594 + 64.6648i 0.829265 + 2.76994i
\(546\) 0 0
\(547\) −2.52741 5.85920i −0.108064 0.250521i 0.855600 0.517638i \(-0.173188\pi\)
−0.963664 + 0.267116i \(0.913929\pi\)
\(548\) 22.0342 + 8.01980i 0.941255 + 0.342589i
\(549\) 0 0
\(550\) 15.2783 5.56083i 0.651467 0.237115i
\(551\) 1.42904 + 1.51469i 0.0608791 + 0.0645280i
\(552\) 0 0
\(553\) −12.8659 + 6.46151i −0.547115 + 0.274771i
\(554\) −0.813362 + 13.9649i −0.0345565 + 0.593311i
\(555\) 0 0
\(556\) 7.45782 24.9109i 0.316282 1.05646i
\(557\) −6.99671 + 39.6803i −0.296460 + 1.68131i 0.364747 + 0.931107i \(0.381156\pi\)
−0.661207 + 0.750203i \(0.729956\pi\)
\(558\) 0 0
\(559\) 2.56494 + 14.5465i 0.108485 + 0.615251i
\(560\) −36.3688 4.25091i −1.53686 0.179634i
\(561\) 0 0
\(562\) −3.59523 + 3.81072i −0.151656 + 0.160746i
\(563\) −0.628050 + 1.45598i −0.0264692 + 0.0613624i −0.930938 0.365177i \(-0.881008\pi\)
0.904469 + 0.426540i \(0.140268\pi\)
\(564\) 0 0
\(565\) 33.5302 22.0531i 1.41062 0.927782i
\(566\) −1.96163 −0.0824536
\(567\) 0 0
\(568\) −6.80775 −0.285647
\(569\) −9.22728 + 6.06888i −0.386828 + 0.254421i −0.727996 0.685582i \(-0.759548\pi\)
0.341168 + 0.940002i \(0.389178\pi\)
\(570\) 0 0
\(571\) 3.13218 7.26120i 0.131078 0.303872i −0.840020 0.542556i \(-0.817457\pi\)
0.971097 + 0.238684i \(0.0767160\pi\)
\(572\) −3.19733 + 3.38897i −0.133687 + 0.141700i
\(573\) 0 0
\(574\) −34.2903 4.00796i −1.43125 0.167289i
\(575\) −4.03238 22.8688i −0.168162 0.953695i
\(576\) 0 0
\(577\) −8.01656 + 45.4642i −0.333734 + 1.89270i 0.105658 + 0.994402i \(0.466305\pi\)
−0.439392 + 0.898295i \(0.644806\pi\)
\(578\) −9.97807 + 33.3291i −0.415033 + 1.38631i
\(579\) 0 0
\(580\) −0.260091 + 4.46558i −0.0107997 + 0.185423i
\(581\) 7.59086 3.81227i 0.314922 0.158160i
\(582\) 0 0
\(583\) 5.97503 + 6.33317i 0.247461 + 0.262293i
\(584\) 7.51238 2.73428i 0.310865 0.113145i
\(585\) 0 0
\(586\) 4.66235 + 1.69696i 0.192600 + 0.0701007i
\(587\) 14.5601 + 33.7540i 0.600959 + 1.39318i 0.898713 + 0.438536i \(0.144503\pi\)
−0.297755 + 0.954642i \(0.596238\pi\)
\(588\) 0 0
\(589\) −5.07421 16.9490i −0.209079 0.698373i
\(590\) −33.9437 + 3.96745i −1.39744 + 0.163337i
\(591\) 0 0
\(592\) −0.779979 13.3917i −0.0320570 0.550397i
\(593\) −7.17407 12.4258i −0.294604 0.510268i 0.680289 0.732944i \(-0.261854\pi\)
−0.974893 + 0.222676i \(0.928521\pi\)
\(594\) 0 0
\(595\) 4.84238 8.38725i 0.198518 0.343844i
\(596\) 27.5064 + 13.8142i 1.12671 + 0.565853i
\(597\) 0 0
\(598\) 7.18306 + 9.64853i 0.293737 + 0.394558i
\(599\) −12.6650 3.00166i −0.517479 0.122645i −0.0364259 0.999336i \(-0.511597\pi\)
−0.481053 + 0.876692i \(0.659745\pi\)
\(600\) 0 0
\(601\) −3.76081 + 5.05165i −0.153407 + 0.206061i −0.872182 0.489181i \(-0.837296\pi\)
0.718775 + 0.695242i \(0.244703\pi\)
\(602\) 32.1148 26.9476i 1.30890 1.09830i
\(603\) 0 0
\(604\) −34.5775 29.0140i −1.40694 1.18056i
\(605\) −39.4989 + 9.36140i −1.60586 + 0.380595i
\(606\) 0 0
\(607\) −10.9863 7.22582i −0.445921 0.293287i 0.306620 0.951832i \(-0.400802\pi\)
−0.752542 + 0.658545i \(0.771172\pi\)
\(608\) 29.9330 + 19.6872i 1.21394 + 0.798423i
\(609\) 0 0
\(610\) −2.14161 + 0.507571i −0.0867112 + 0.0205509i
\(611\) −20.5052 17.2059i −0.829552 0.696076i
\(612\) 0 0
\(613\) −28.3321 + 23.7734i −1.14432 + 0.960200i −0.999572 0.0292684i \(-0.990682\pi\)
−0.144750 + 0.989468i \(0.546238\pi\)
\(614\) 19.2773 25.8939i 0.777967 1.04499i
\(615\) 0 0
\(616\) 2.47545 + 0.586692i 0.0997387 + 0.0236385i
\(617\) 19.3944 + 26.0512i 0.780789 + 1.04878i 0.997367 + 0.0725160i \(0.0231028\pi\)
−0.216579 + 0.976265i \(0.569490\pi\)
\(618\) 0 0
\(619\) −38.3557 19.2630i −1.54165 0.774243i −0.543760 0.839241i \(-0.683000\pi\)
−0.997885 + 0.0649972i \(0.979296\pi\)
\(620\) 19.0021 32.9126i 0.763142 1.32180i
\(621\) 0 0
\(622\) −17.7127 30.6793i −0.710215 1.23013i
\(623\) −1.04479 17.9383i −0.0418586 0.718684i
\(624\) 0 0
\(625\) −27.1638 + 3.17499i −1.08655 + 0.126999i
\(626\) 19.7657 + 66.0220i 0.789995 + 2.63877i
\(627\) 0 0
\(628\) 22.9245 + 53.1451i 0.914789 + 2.12072i
\(629\) 3.33404 + 1.21349i 0.132937 + 0.0483851i
\(630\) 0 0
\(631\) 13.0635 4.75472i 0.520049 0.189282i −0.0686408 0.997641i \(-0.521866\pi\)
0.588690 + 0.808359i \(0.299644\pi\)
\(632\) 2.98603 + 3.16501i 0.118778 + 0.125897i
\(633\) 0 0
\(634\) −40.9732 + 20.5775i −1.62725 + 0.817238i
\(635\) 2.99082 51.3504i 0.118687 2.03778i
\(636\) 0 0
\(637\) −2.94031 + 9.82133i −0.116499 + 0.389135i
\(638\) −0.129000 + 0.731597i −0.00510717 + 0.0289642i
\(639\) 0 0
\(640\) 5.29656 + 30.0383i 0.209365 + 1.18737i
\(641\) 2.60191 + 0.304120i 0.102769 + 0.0120120i 0.167322 0.985902i \(-0.446488\pi\)
−0.0645528 + 0.997914i \(0.520562\pi\)
\(642\) 0 0
\(643\) 0.0703439 0.0745602i 0.00277409 0.00294037i −0.725985 0.687710i \(-0.758616\pi\)
0.728759 + 0.684770i \(0.240097\pi\)
\(644\) 7.48068 17.3422i 0.294780 0.683377i
\(645\) 0 0
\(646\) −5.91768 + 3.89212i −0.232828 + 0.153133i
\(647\) −25.1564 −0.988998 −0.494499 0.869178i \(-0.664649\pi\)
−0.494499 + 0.869178i \(0.664649\pi\)
\(648\) 0 0
\(649\) −3.13983 −0.123249
\(650\) 44.6299 29.3536i 1.75053 1.15134i
\(651\) 0 0
\(652\) 11.4994 26.6586i 0.450351 1.04403i
\(653\) 5.11903 5.42585i 0.200323 0.212330i −0.619423 0.785058i \(-0.712633\pi\)
0.819746 + 0.572728i \(0.194115\pi\)
\(654\) 0 0
\(655\) −38.9034 4.54715i −1.52008 0.177672i
\(656\) −2.39595 13.5881i −0.0935463 0.530527i
\(657\) 0 0
\(658\) −13.1924 + 74.8181i −0.514295 + 2.91671i
\(659\) −4.66341 + 15.5769i −0.181661 + 0.606789i 0.817848 + 0.575435i \(0.195167\pi\)
−0.999508 + 0.0313543i \(0.990018\pi\)
\(660\) 0 0
\(661\) −1.09720 + 18.8381i −0.0426760 + 0.732718i 0.907317 + 0.420447i \(0.138127\pi\)
−0.949993 + 0.312271i \(0.898910\pi\)
\(662\) −45.0219 + 22.6109i −1.74983 + 0.878796i
\(663\) 0 0
\(664\) −1.76175 1.86735i −0.0683691 0.0724670i
\(665\) −54.7570 + 19.9299i −2.12339 + 0.772849i
\(666\) 0 0
\(667\) 0.997034 + 0.362891i 0.0386053 + 0.0140512i
\(668\) −23.7496 55.0578i −0.918901 2.13025i
\(669\) 0 0
\(670\) −4.52974 15.1304i −0.174999 0.584538i
\(671\) −0.200845 + 0.0234754i −0.00775354 + 0.000906259i
\(672\) 0 0
\(673\) 0.475690 + 8.16727i 0.0183365 + 0.314825i 0.994988 + 0.0999952i \(0.0318827\pi\)
−0.976651 + 0.214830i \(0.931080\pi\)
\(674\) −19.4599 33.7056i −0.749569 1.29829i
\(675\) 0 0
\(676\) 8.44293 14.6236i 0.324728 0.562445i
\(677\) −20.6357 10.3637i −0.793096 0.398308i 0.00564403 0.999984i \(-0.498203\pi\)
−0.798740 + 0.601676i \(0.794500\pi\)
\(678\) 0 0
\(679\) −18.8974 25.3837i −0.725217 0.974136i
\(680\) −2.84811 0.675015i −0.109220 0.0258857i
\(681\) 0 0
\(682\) 3.76902 5.06267i 0.144323 0.193860i
\(683\) −14.3566 + 12.0466i −0.549340 + 0.460951i −0.874717 0.484633i \(-0.838953\pi\)
0.325378 + 0.945584i \(0.394509\pi\)
\(684\) 0 0
\(685\) −28.2370 23.6937i −1.07888 0.905289i
\(686\) −19.7506 + 4.68099i −0.754083 + 0.178721i
\(687\) 0 0
\(688\) 13.9985 + 9.20698i 0.533689 + 0.351013i
\(689\) 23.9002 + 15.7194i 0.910525 + 0.598862i
\(690\) 0 0
\(691\) −6.47006 + 1.53343i −0.246133 + 0.0583345i −0.351830 0.936064i \(-0.614441\pi\)
0.105698 + 0.994398i \(0.466292\pi\)
\(692\) −29.4279 24.6929i −1.11868 0.938684i
\(693\) 0 0
\(694\) 27.4089 22.9988i 1.04043 0.873023i
\(695\) −24.4102 + 32.7885i −0.925931 + 1.24374i
\(696\) 0 0
\(697\) 3.55103 + 0.841610i 0.134505 + 0.0318782i
\(698\) −10.3188 13.8605i −0.390572 0.524630i
\(699\) 0 0
\(700\) −74.9521 37.6423i −2.83292 1.42275i
\(701\) 12.1477 21.0405i 0.458813 0.794687i −0.540086 0.841610i \(-0.681608\pi\)
0.998899 + 0.0469230i \(0.0149415\pi\)
\(702\) 0 0
\(703\) −10.6738 18.4876i −0.402571 0.697274i
\(704\) 0.494971 + 8.49832i 0.0186549 + 0.320292i
\(705\) 0 0
\(706\) 51.7260 6.04590i 1.94673 0.227540i
\(707\) −11.7728 39.3240i −0.442763 1.47893i
\(708\) 0 0
\(709\) 11.8515 + 27.4749i 0.445093 + 1.03184i 0.982117 + 0.188274i \(0.0602893\pi\)
−0.537024 + 0.843567i \(0.680451\pi\)
\(710\) 52.2729 + 19.0258i 1.96177 + 0.714024i
\(711\) 0 0
\(712\) −5.10315 + 1.85740i −0.191249 + 0.0696089i
\(713\) −6.18613 6.55691i −0.231672 0.245558i
\(714\) 0 0
\(715\) 6.54519 3.28712i 0.244776 0.122931i
\(716\) 1.03504 17.7710i 0.0386814 0.664134i
\(717\) 0 0
\(718\) −7.67320 + 25.6303i −0.286361 + 0.956514i
\(719\) −2.12889 + 12.0735i −0.0793943 + 0.450267i 0.919032 + 0.394183i \(0.128973\pi\)
−0.998426 + 0.0560838i \(0.982139\pi\)
\(720\) 0 0
\(721\) −9.65461 54.7540i −0.359556 2.03915i
\(722\) 2.40063 + 0.280593i 0.0893422 + 0.0104426i
\(723\) 0 0
\(724\) 13.1497 13.9379i 0.488706 0.517998i
\(725\) 1.86626 4.32649i 0.0693113 0.160682i
\(726\) 0 0
\(727\) 40.9555 26.9369i 1.51896 0.999033i 0.530473 0.847702i \(-0.322014\pi\)
0.988483 0.151331i \(-0.0483560\pi\)
\(728\) 8.35832 0.309780
\(729\) 0 0
\(730\) −65.3249 −2.41778
\(731\) −3.70251 + 2.43518i −0.136942 + 0.0900683i
\(732\) 0 0
\(733\) −8.00055 + 18.5474i −0.295507 + 0.685063i −0.999689 0.0249576i \(-0.992055\pi\)
0.704181 + 0.710020i \(0.251314\pi\)
\(734\) −15.2367 + 16.1499i −0.562396 + 0.596104i
\(735\) 0 0
\(736\) 18.1310 + 2.11921i 0.668317 + 0.0781150i
\(737\) −0.251977 1.42903i −0.00928168 0.0526390i
\(738\) 0 0
\(739\) 0.349401 1.98155i 0.0128529 0.0728925i −0.977707 0.209975i \(-0.932662\pi\)
0.990560 + 0.137083i \(0.0437727\pi\)
\(740\) 13.1517 43.9297i 0.483465 1.61489i
\(741\) 0 0
\(742\) 4.72082 81.0533i 0.173307 2.97556i
\(743\) 19.2775 9.68153i 0.707223 0.355181i −0.0585563 0.998284i \(-0.518650\pi\)
0.765779 + 0.643103i \(0.222353\pi\)
\(744\) 0 0
\(745\) −33.2051 35.1953i −1.21654 1.28946i
\(746\) 23.4531 8.53624i 0.858680 0.312534i
\(747\) 0 0
\(748\) −1.31354 0.478091i −0.0480279 0.0174807i
\(749\) 4.87962 + 11.3122i 0.178298 + 0.413340i
\(750\) 0 0
\(751\) 4.15221 + 13.8693i 0.151516 + 0.506099i 0.999722 0.0235670i \(-0.00750231\pi\)
−0.848206 + 0.529666i \(0.822317\pi\)
\(752\) −30.1577 + 3.52494i −1.09974 + 0.128541i
\(753\) 0 0
\(754\) 0.141915 + 2.43659i 0.00516826 + 0.0887355i
\(755\) 35.4783 + 61.4503i 1.29119 + 2.23640i
\(756\) 0 0
\(757\) −5.26451 + 9.11840i −0.191342 + 0.331414i −0.945695 0.325055i \(-0.894617\pi\)
0.754353 + 0.656469i \(0.227951\pi\)
\(758\) −34.2919 17.2220i −1.24554 0.625533i
\(759\) 0 0
\(760\) 10.5167 + 14.1264i 0.381480 + 0.512417i
\(761\) −41.1358 9.74936i −1.49117 0.353414i −0.597402 0.801942i \(-0.703800\pi\)
−0.893769 + 0.448528i \(0.851949\pi\)
\(762\) 0 0
\(763\) 34.5335 46.3865i 1.25020 1.67930i
\(764\) −19.1188 + 16.0425i −0.691693 + 0.580399i
\(765\) 0 0
\(766\) −25.1504 21.1037i −0.908721 0.762507i
\(767\) −10.0378 + 2.37900i −0.362443 + 0.0859006i
\(768\) 0 0
\(769\) 7.53547 + 4.95616i 0.271736 + 0.178724i 0.678062 0.735005i \(-0.262820\pi\)
−0.406326 + 0.913728i \(0.633190\pi\)
\(770\) −17.3679 11.4231i −0.625897 0.411659i
\(771\) 0 0
\(772\) −38.5361 + 9.13322i −1.38694 + 0.328712i
\(773\) 0.551231 + 0.462537i 0.0198264 + 0.0166363i 0.652647 0.757662i \(-0.273658\pi\)
−0.632821 + 0.774298i \(0.718103\pi\)
\(774\) 0 0
\(775\) −30.6663 + 25.7321i −1.10157 + 0.924325i
\(776\) −5.71134 + 7.67167i −0.205025 + 0.275397i
\(777\) 0 0
\(778\) 31.7750 + 7.53081i 1.13919 + 0.269993i
\(779\) −13.1122 17.6128i −0.469794 0.631043i
\(780\) 0 0
\(781\) 4.56720 + 2.29373i 0.163427 + 0.0820763i
\(782\) −1.80442 + 3.12535i