Properties

Label 729.2.g.c.28.6
Level $729$
Weight $2$
Character 729.28
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 28.6
Character \(\chi\) \(=\) 729.28
Dual form 729.2.g.c.703.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00769 - 0.662771i) q^{2} +(-0.215977 + 0.500690i) q^{4} +(2.69736 - 2.85904i) q^{5} +(-1.84676 - 0.215855i) q^{7} +(0.533084 + 3.02327i) q^{8} +O(q^{10})\) \(q+(1.00769 - 0.662771i) q^{2} +(-0.215977 + 0.500690i) q^{4} +(2.69736 - 2.85904i) q^{5} +(-1.84676 - 0.215855i) q^{7} +(0.533084 + 3.02327i) q^{8} +(0.823230 - 4.66877i) q^{10} +(1.39079 - 4.64556i) q^{11} +(0.0180985 - 0.310740i) q^{13} +(-2.00403 + 1.00646i) q^{14} +(1.79253 + 1.89997i) q^{16} +(3.17561 - 1.15583i) q^{17} +(1.05997 + 0.385798i) q^{19} +(0.848924 + 1.96803i) q^{20} +(-1.67745 - 5.60308i) q^{22} +(-2.26299 + 0.264506i) q^{23} +(-0.607605 - 10.4322i) q^{25} +(-0.187712 - 0.325126i) q^{26} +(0.506934 - 0.878035i) q^{28} +(2.56086 + 1.28611i) q^{29} +(-2.90267 - 3.89896i) q^{31} +(-2.90875 - 0.689387i) q^{32} +(2.43399 - 3.26942i) q^{34} +(-5.59852 + 4.69772i) q^{35} +(8.69541 + 7.29632i) q^{37} +(1.32382 - 0.313752i) q^{38} +(10.0816 + 6.63075i) q^{40} +(-1.20697 - 0.793835i) q^{41} +(4.35354 - 1.03181i) q^{43} +(2.02561 + 1.69969i) q^{44} +(-2.10510 + 1.76639i) q^{46} +(-2.34655 + 3.15196i) q^{47} +(-3.44738 - 0.817044i) q^{49} +(-7.52643 - 10.1097i) q^{50} +(0.151676 + 0.0761743i) q^{52} +(-0.812932 + 1.40804i) q^{53} +(-9.53037 - 16.5071i) q^{55} +(-0.331890 - 5.69833i) q^{56} +(3.43296 - 0.401256i) q^{58} +(2.86545 + 9.57127i) q^{59} +(-0.302918 - 0.702244i) q^{61} +(-5.50912 - 2.00515i) q^{62} +(-8.29717 + 3.01992i) q^{64} +(-0.839599 - 0.889923i) q^{65} +(0.658500 - 0.330711i) q^{67} +(-0.107146 + 1.83963i) q^{68} +(-2.52809 + 8.44441i) q^{70} +(1.18078 - 6.69652i) q^{71} +(-0.692009 - 3.92458i) q^{73} +(13.5981 + 1.58939i) q^{74} +(-0.422094 + 0.447393i) q^{76} +(-3.57123 + 8.27903i) q^{77} +(-10.3755 + 6.82406i) q^{79} +10.2672 q^{80} -1.74239 q^{82} +(-6.18560 + 4.06833i) q^{83} +(5.26121 - 12.1969i) q^{85} +(3.70318 - 3.92515i) q^{86} +(14.7862 + 1.72826i) q^{88} +(0.943990 + 5.35363i) q^{89} +(-0.100499 + 0.569956i) q^{91} +(0.356318 - 1.19018i) q^{92} +(-0.275575 + 4.73143i) q^{94} +(3.96214 - 1.98986i) q^{95} +(-3.16003 - 3.34944i) q^{97} +(-4.01542 + 1.46149i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{22}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00769 0.662771i 0.712548 0.468650i −0.140769 0.990042i \(-0.544958\pi\)
0.853317 + 0.521392i \(0.174587\pi\)
\(3\) 0 0
\(4\) −0.215977 + 0.500690i −0.107988 + 0.250345i
\(5\) 2.69736 2.85904i 1.20630 1.27860i 0.256208 0.966622i \(-0.417527\pi\)
0.950089 0.311979i \(-0.100992\pi\)
\(6\) 0 0
\(7\) −1.84676 0.215855i −0.698010 0.0815857i −0.240315 0.970695i \(-0.577251\pi\)
−0.457695 + 0.889109i \(0.651325\pi\)
\(8\) 0.533084 + 3.02327i 0.188474 + 1.06889i
\(9\) 0 0
\(10\) 0.823230 4.66877i 0.260328 1.47640i
\(11\) 1.39079 4.64556i 0.419339 1.40069i −0.443983 0.896035i \(-0.646435\pi\)
0.863322 0.504654i \(-0.168380\pi\)
\(12\) 0 0
\(13\) 0.0180985 0.310740i 0.00501963 0.0861838i −0.994868 0.101183i \(-0.967737\pi\)
0.999888 + 0.0149987i \(0.00477443\pi\)
\(14\) −2.00403 + 1.00646i −0.535601 + 0.268989i
\(15\) 0 0
\(16\) 1.79253 + 1.89997i 0.448132 + 0.474992i
\(17\) 3.17561 1.15583i 0.770198 0.280329i 0.0731188 0.997323i \(-0.476705\pi\)
0.697079 + 0.716994i \(0.254483\pi\)
\(18\) 0 0
\(19\) 1.05997 + 0.385798i 0.243174 + 0.0885081i 0.460732 0.887539i \(-0.347587\pi\)
−0.217558 + 0.976047i \(0.569809\pi\)
\(20\) 0.848924 + 1.96803i 0.189825 + 0.440064i
\(21\) 0 0
\(22\) −1.67745 5.60308i −0.357634 1.19458i
\(23\) −2.26299 + 0.264506i −0.471866 + 0.0551532i −0.348703 0.937233i \(-0.613378\pi\)
−0.123163 + 0.992386i \(0.539304\pi\)
\(24\) 0 0
\(25\) −0.607605 10.4322i −0.121521 2.08644i
\(26\) −0.187712 0.325126i −0.0368133 0.0637625i
\(27\) 0 0
\(28\) 0.506934 0.878035i 0.0958015 0.165933i
\(29\) 2.56086 + 1.28611i 0.475540 + 0.238825i 0.670391 0.742008i \(-0.266126\pi\)
−0.194852 + 0.980833i \(0.562423\pi\)
\(30\) 0 0
\(31\) −2.90267 3.89896i −0.521334 0.700273i 0.461002 0.887399i \(-0.347490\pi\)
−0.982336 + 0.187126i \(0.940083\pi\)
\(32\) −2.90875 0.689387i −0.514200 0.121868i
\(33\) 0 0
\(34\) 2.43399 3.26942i 0.417427 0.560701i
\(35\) −5.59852 + 4.69772i −0.946323 + 0.794059i
\(36\) 0 0
\(37\) 8.69541 + 7.29632i 1.42952 + 1.19951i 0.945998 + 0.324173i \(0.105086\pi\)
0.483519 + 0.875334i \(0.339358\pi\)
\(38\) 1.32382 0.313752i 0.214752 0.0508973i
\(39\) 0 0
\(40\) 10.0816 + 6.63075i 1.59403 + 1.04841i
\(41\) −1.20697 0.793835i −0.188497 0.123976i 0.451753 0.892143i \(-0.350799\pi\)
−0.640250 + 0.768167i \(0.721169\pi\)
\(42\) 0 0
\(43\) 4.35354 1.03181i 0.663908 0.157349i 0.115173 0.993345i \(-0.463258\pi\)
0.548735 + 0.835996i \(0.315110\pi\)
\(44\) 2.02561 + 1.69969i 0.305372 + 0.256237i
\(45\) 0 0
\(46\) −2.10510 + 1.76639i −0.310380 + 0.260439i
\(47\) −2.34655 + 3.15196i −0.342279 + 0.459760i −0.939616 0.342230i \(-0.888818\pi\)
0.597337 + 0.801990i \(0.296225\pi\)
\(48\) 0 0
\(49\) −3.44738 0.817044i −0.492483 0.116721i
\(50\) −7.52643 10.1097i −1.06440 1.42973i
\(51\) 0 0
\(52\) 0.151676 + 0.0761743i 0.0210336 + 0.0105635i
\(53\) −0.812932 + 1.40804i −0.111665 + 0.193409i −0.916442 0.400168i \(-0.868952\pi\)
0.804777 + 0.593577i \(0.202285\pi\)
\(54\) 0 0
\(55\) −9.53037 16.5071i −1.28507 2.22581i
\(56\) −0.331890 5.69833i −0.0443506 0.761471i
\(57\) 0 0
\(58\) 3.43296 0.401256i 0.450770 0.0526875i
\(59\) 2.86545 + 9.57127i 0.373050 + 1.24607i 0.914240 + 0.405173i \(0.132789\pi\)
−0.541190 + 0.840900i \(0.682026\pi\)
\(60\) 0 0
\(61\) −0.302918 0.702244i −0.0387847 0.0899131i 0.897723 0.440561i \(-0.145221\pi\)
−0.936507 + 0.350648i \(0.885961\pi\)
\(62\) −5.50912 2.00515i −0.699659 0.254655i
\(63\) 0 0
\(64\) −8.29717 + 3.01992i −1.03715 + 0.377490i
\(65\) −0.839599 0.889923i −0.104139 0.110381i
\(66\) 0 0
\(67\) 0.658500 0.330711i 0.0804486 0.0404028i −0.408120 0.912928i \(-0.633816\pi\)
0.488569 + 0.872525i \(0.337519\pi\)
\(68\) −0.107146 + 1.83963i −0.0129934 + 0.223088i
\(69\) 0 0
\(70\) −2.52809 + 8.44441i −0.302164 + 1.00930i
\(71\) 1.18078 6.69652i 0.140133 0.794731i −0.831015 0.556250i \(-0.812240\pi\)
0.971147 0.238481i \(-0.0766493\pi\)
\(72\) 0 0
\(73\) −0.692009 3.92458i −0.0809935 0.459337i −0.998149 0.0608086i \(-0.980632\pi\)
0.917156 0.398529i \(-0.130479\pi\)
\(74\) 13.5981 + 1.58939i 1.58075 + 0.184763i
\(75\) 0 0
\(76\) −0.422094 + 0.447393i −0.0484175 + 0.0513196i
\(77\) −3.57123 + 8.27903i −0.406979 + 0.943483i
\(78\) 0 0
\(79\) −10.3755 + 6.82406i −1.16733 + 0.767767i −0.976850 0.213923i \(-0.931376\pi\)
−0.190483 + 0.981691i \(0.561005\pi\)
\(80\) 10.2672 1.14790
\(81\) 0 0
\(82\) −1.74239 −0.192414
\(83\) −6.18560 + 4.06833i −0.678958 + 0.446558i −0.841581 0.540131i \(-0.818375\pi\)
0.162623 + 0.986688i \(0.448004\pi\)
\(84\) 0 0
\(85\) 5.26121 12.1969i 0.570659 1.32294i
\(86\) 3.70318 3.92515i 0.399325 0.423259i
\(87\) 0 0
\(88\) 14.7862 + 1.72826i 1.57621 + 0.184233i
\(89\) 0.943990 + 5.35363i 0.100063 + 0.567484i 0.993078 + 0.117458i \(0.0374744\pi\)
−0.893015 + 0.450027i \(0.851414\pi\)
\(90\) 0 0
\(91\) −0.100499 + 0.569956i −0.0105351 + 0.0597476i
\(92\) 0.356318 1.19018i 0.0371487 0.124085i
\(93\) 0 0
\(94\) −0.275575 + 4.73143i −0.0284234 + 0.488010i
\(95\) 3.96214 1.98986i 0.406507 0.204155i
\(96\) 0 0
\(97\) −3.16003 3.34944i −0.320852 0.340084i 0.546792 0.837268i \(-0.315849\pi\)
−0.867645 + 0.497185i \(0.834367\pi\)
\(98\) −4.01542 + 1.46149i −0.405619 + 0.147633i
\(99\) 0 0
\(100\) 5.35452 + 1.94888i 0.535452 + 0.194888i
\(101\) 4.25575 + 9.86593i 0.423463 + 0.981697i 0.987740 + 0.156111i \(0.0498958\pi\)
−0.564277 + 0.825586i \(0.690845\pi\)
\(102\) 0 0
\(103\) 3.36931 + 11.2543i 0.331988 + 1.10892i 0.947223 + 0.320575i \(0.103876\pi\)
−0.615235 + 0.788344i \(0.710939\pi\)
\(104\) 0.949099 0.110934i 0.0930668 0.0108779i
\(105\) 0 0
\(106\) 0.114021 + 1.95766i 0.0110747 + 0.190145i
\(107\) 3.20979 + 5.55953i 0.310302 + 0.537460i 0.978428 0.206589i \(-0.0662363\pi\)
−0.668125 + 0.744049i \(0.732903\pi\)
\(108\) 0 0
\(109\) −1.72147 + 2.98167i −0.164887 + 0.285592i −0.936615 0.350360i \(-0.886059\pi\)
0.771728 + 0.635952i \(0.219393\pi\)
\(110\) −20.5441 10.3176i −1.95881 0.983749i
\(111\) 0 0
\(112\) −2.90025 3.89571i −0.274048 0.368110i
\(113\) 15.0849 + 3.57519i 1.41907 + 0.336326i 0.867348 0.497702i \(-0.165823\pi\)
0.551722 + 0.834028i \(0.313971\pi\)
\(114\) 0 0
\(115\) −5.34788 + 7.18344i −0.498692 + 0.669859i
\(116\) −1.19703 + 1.00443i −0.111141 + 0.0932587i
\(117\) 0 0
\(118\) 9.23106 + 7.74578i 0.849788 + 0.713057i
\(119\) −6.11408 + 1.44906i −0.560477 + 0.132835i
\(120\) 0 0
\(121\) −10.4566 6.87740i −0.950598 0.625218i
\(122\) −0.770676 0.506882i −0.0697738 0.0458909i
\(123\) 0 0
\(124\) 2.57908 0.611252i 0.231608 0.0548921i
\(125\) −16.4097 13.7694i −1.46773 1.23157i
\(126\) 0 0
\(127\) −9.04687 + 7.59122i −0.802780 + 0.673612i −0.948873 0.315659i \(-0.897775\pi\)
0.146093 + 0.989271i \(0.453330\pi\)
\(128\) −2.78929 + 3.74666i −0.246540 + 0.331161i
\(129\) 0 0
\(130\) −1.43587 0.340309i −0.125935 0.0298470i
\(131\) −10.5633 14.1890i −0.922923 1.23970i −0.970566 0.240836i \(-0.922578\pi\)
0.0476433 0.998864i \(-0.484829\pi\)
\(132\) 0 0
\(133\) −1.87424 0.941277i −0.162517 0.0816191i
\(134\) 0.444381 0.769691i 0.0383887 0.0664911i
\(135\) 0 0
\(136\) 5.18724 + 8.98457i 0.444802 + 0.770420i
\(137\) 0.405293 + 6.95861i 0.0346265 + 0.594514i 0.970339 + 0.241750i \(0.0777213\pi\)
−0.935712 + 0.352765i \(0.885242\pi\)
\(138\) 0 0
\(139\) −6.26136 + 0.731848i −0.531081 + 0.0620745i −0.377408 0.926047i \(-0.623184\pi\)
−0.153674 + 0.988122i \(0.549110\pi\)
\(140\) −1.14295 3.81772i −0.0965970 0.322656i
\(141\) 0 0
\(142\) −3.24840 7.53064i −0.272600 0.631957i
\(143\) −1.41839 0.516252i −0.118612 0.0431712i
\(144\) 0 0
\(145\) 10.5846 3.85248i 0.879004 0.319931i
\(146\) −3.29843 3.49613i −0.272980 0.289342i
\(147\) 0 0
\(148\) −5.53120 + 2.77787i −0.454662 + 0.228340i
\(149\) −1.31857 + 22.6390i −0.108022 + 1.85466i 0.315688 + 0.948863i \(0.397765\pi\)
−0.423710 + 0.905798i \(0.639272\pi\)
\(150\) 0 0
\(151\) −4.15613 + 13.8824i −0.338221 + 1.12974i 0.604625 + 0.796510i \(0.293323\pi\)
−0.942847 + 0.333227i \(0.891862\pi\)
\(152\) −0.601317 + 3.41024i −0.0487733 + 0.276607i
\(153\) 0 0
\(154\) 1.88840 + 10.7096i 0.152172 + 0.863008i
\(155\) −18.9768 2.21807i −1.52425 0.178160i
\(156\) 0 0
\(157\) −7.80515 + 8.27298i −0.622919 + 0.660256i −0.959602 0.281363i \(-0.909214\pi\)
0.336682 + 0.941618i \(0.390695\pi\)
\(158\) −5.93253 + 13.7531i −0.471967 + 1.09414i
\(159\) 0 0
\(160\) −9.81695 + 6.45671i −0.776098 + 0.510448i
\(161\) 4.23630 0.333867
\(162\) 0 0
\(163\) −0.789620 −0.0618478 −0.0309239 0.999522i \(-0.509845\pi\)
−0.0309239 + 0.999522i \(0.509845\pi\)
\(164\) 0.658142 0.432867i 0.0513923 0.0338012i
\(165\) 0 0
\(166\) −3.53682 + 8.19928i −0.274511 + 0.636387i
\(167\) 3.98342 4.22218i 0.308246 0.326722i −0.554668 0.832071i \(-0.687155\pi\)
0.862915 + 0.505349i \(0.168636\pi\)
\(168\) 0 0
\(169\) 12.8159 + 1.49796i 0.985836 + 0.115228i
\(170\) −2.78203 15.7777i −0.213372 1.21009i
\(171\) 0 0
\(172\) −0.423646 + 2.40262i −0.0323027 + 0.183198i
\(173\) 0.997345 3.33136i 0.0758267 0.253279i −0.911669 0.410926i \(-0.865206\pi\)
0.987496 + 0.157647i \(0.0503907\pi\)
\(174\) 0 0
\(175\) −1.12974 + 19.3969i −0.0854004 + 1.46627i
\(176\) 11.3194 5.68484i 0.853235 0.428511i
\(177\) 0 0
\(178\) 4.49949 + 4.76918i 0.337251 + 0.357465i
\(179\) 7.34454 2.67320i 0.548957 0.199804i −0.0526260 0.998614i \(-0.516759\pi\)
0.601583 + 0.798810i \(0.294537\pi\)
\(180\) 0 0
\(181\) −10.9891 3.99971i −0.816815 0.297296i −0.100379 0.994949i \(-0.532006\pi\)
−0.716436 + 0.697653i \(0.754228\pi\)
\(182\) 0.276478 + 0.640949i 0.0204939 + 0.0475103i
\(183\) 0 0
\(184\) −2.00604 6.70063i −0.147887 0.493977i
\(185\) 44.3151 5.17969i 3.25811 0.380819i
\(186\) 0 0
\(187\) −0.952861 16.3600i −0.0696801 1.19636i
\(188\) −1.07135 1.85564i −0.0781366 0.135337i
\(189\) 0 0
\(190\) 2.67380 4.63116i 0.193978 0.335980i
\(191\) 13.0036 + 6.53063i 0.940904 + 0.472540i 0.852024 0.523502i \(-0.175375\pi\)
0.0888801 + 0.996042i \(0.471671\pi\)
\(192\) 0 0
\(193\) 10.1622 + 13.6503i 0.731494 + 0.982568i 0.999815 + 0.0192379i \(0.00612399\pi\)
−0.268320 + 0.963330i \(0.586469\pi\)
\(194\) −5.40425 1.28083i −0.388003 0.0919584i
\(195\) 0 0
\(196\) 1.15364 1.54961i 0.0824028 0.110686i
\(197\) 9.53813 8.00344i 0.679563 0.570221i −0.236315 0.971676i \(-0.575940\pi\)
0.915879 + 0.401455i \(0.131495\pi\)
\(198\) 0 0
\(199\) −16.5214 13.8631i −1.17117 0.982731i −0.171177 0.985240i \(-0.554757\pi\)
−0.999997 + 0.00250896i \(0.999201\pi\)
\(200\) 31.2154 7.39818i 2.20726 0.523131i
\(201\) 0 0
\(202\) 10.8273 + 7.12126i 0.761809 + 0.501050i
\(203\) −4.45168 2.92792i −0.312447 0.205499i
\(204\) 0 0
\(205\) −5.52524 + 1.30950i −0.385899 + 0.0914598i
\(206\) 10.8543 + 9.10781i 0.756252 + 0.634571i
\(207\) 0 0
\(208\) 0.622838 0.522623i 0.0431860 0.0362374i
\(209\) 3.26644 4.38760i 0.225945 0.303496i
\(210\) 0 0
\(211\) −12.3360 2.92368i −0.849244 0.201275i −0.217123 0.976144i \(-0.569667\pi\)
−0.632121 + 0.774870i \(0.717815\pi\)
\(212\) −0.529417 0.711130i −0.0363605 0.0488406i
\(213\) 0 0
\(214\) 6.91919 + 3.47495i 0.472986 + 0.237542i
\(215\) 8.79309 15.2301i 0.599684 1.03868i
\(216\) 0 0
\(217\) 4.51892 + 7.82700i 0.306764 + 0.531331i
\(218\) 0.241451 + 4.14555i 0.0163531 + 0.280772i
\(219\) 0 0
\(220\) 10.3233 1.20662i 0.695995 0.0813501i
\(221\) −0.301688 1.00771i −0.0202937 0.0677857i
\(222\) 0 0
\(223\) −1.95059 4.52199i −0.130622 0.302815i 0.840336 0.542065i \(-0.182357\pi\)
−0.970958 + 0.239251i \(0.923098\pi\)
\(224\) 5.22297 + 1.90100i 0.348974 + 0.127016i
\(225\) 0 0
\(226\) 17.5705 6.39515i 1.16877 0.425399i
\(227\) 4.41017 + 4.67451i 0.292713 + 0.310258i 0.856995 0.515324i \(-0.172328\pi\)
−0.564282 + 0.825582i \(0.690847\pi\)
\(228\) 0 0
\(229\) 26.5744 13.3462i 1.75608 0.881939i 0.794575 0.607166i \(-0.207694\pi\)
0.961509 0.274773i \(-0.0886026\pi\)
\(230\) −0.628046 + 10.7831i −0.0414121 + 0.711019i
\(231\) 0 0
\(232\) −2.52311 + 8.42777i −0.165650 + 0.553310i
\(233\) 3.77489 21.4085i 0.247301 1.40252i −0.567786 0.823176i \(-0.692200\pi\)
0.815087 0.579339i \(-0.196689\pi\)
\(234\) 0 0
\(235\) 2.68208 + 15.2108i 0.174960 + 0.992245i
\(236\) −5.41111 0.632468i −0.352233 0.0411702i
\(237\) 0 0
\(238\) −5.20073 + 5.51245i −0.337113 + 0.357319i
\(239\) 2.35595 5.46170i 0.152394 0.353288i −0.824868 0.565325i \(-0.808751\pi\)
0.977262 + 0.212037i \(0.0680099\pi\)
\(240\) 0 0
\(241\) 0.990937 0.651749i 0.0638318 0.0419829i −0.517192 0.855869i \(-0.673023\pi\)
0.581024 + 0.813887i \(0.302652\pi\)
\(242\) −15.0952 −0.970355
\(243\) 0 0
\(244\) 0.417030 0.0266976
\(245\) −11.6348 + 7.65233i −0.743320 + 0.488889i
\(246\) 0 0
\(247\) 0.139067 0.322393i 0.00884861 0.0205134i
\(248\) 10.2402 10.8540i 0.650255 0.689230i
\(249\) 0 0
\(250\) −25.6620 2.99945i −1.62301 0.189702i
\(251\) 2.34580 + 13.3037i 0.148066 + 0.839722i 0.964854 + 0.262785i \(0.0846410\pi\)
−0.816789 + 0.576937i \(0.804248\pi\)
\(252\) 0 0
\(253\) −1.91857 + 10.8807i −0.120619 + 0.684066i
\(254\) −4.08524 + 13.6456i −0.256331 + 0.856204i
\(255\) 0 0
\(256\) 0.699229 12.0053i 0.0437018 0.750331i
\(257\) −21.8753 + 10.9862i −1.36454 + 0.685299i −0.972120 0.234486i \(-0.924659\pi\)
−0.392423 + 0.919785i \(0.628363\pi\)
\(258\) 0 0
\(259\) −14.4834 15.3515i −0.899955 0.953896i
\(260\) 0.626909 0.228176i 0.0388793 0.0141509i
\(261\) 0 0
\(262\) −20.0487 7.29712i −1.23861 0.450818i
\(263\) −8.59130 19.9169i −0.529762 1.22813i −0.947557 0.319586i \(-0.896456\pi\)
0.417795 0.908541i \(-0.362803\pi\)
\(264\) 0 0
\(265\) 1.83286 + 6.12219i 0.112592 + 0.376083i
\(266\) −2.51251 + 0.293670i −0.154052 + 0.0180061i
\(267\) 0 0
\(268\) 0.0233632 + 0.401130i 0.00142713 + 0.0245029i
\(269\) −2.87056 4.97195i −0.175021 0.303145i 0.765148 0.643855i \(-0.222666\pi\)
−0.940169 + 0.340710i \(0.889333\pi\)
\(270\) 0 0
\(271\) 7.23998 12.5400i 0.439798 0.761752i −0.557876 0.829924i \(-0.688384\pi\)
0.997674 + 0.0681726i \(0.0217169\pi\)
\(272\) 7.88839 + 3.96170i 0.478304 + 0.240213i
\(273\) 0 0
\(274\) 5.02038 + 6.74354i 0.303292 + 0.407392i
\(275\) −49.3084 11.6863i −2.97341 0.704711i
\(276\) 0 0
\(277\) 7.07774 9.50706i 0.425260 0.571224i −0.536921 0.843632i \(-0.680413\pi\)
0.962182 + 0.272408i \(0.0878202\pi\)
\(278\) −5.82449 + 4.88733i −0.349330 + 0.293122i
\(279\) 0 0
\(280\) −17.1870 14.4216i −1.02712 0.861853i
\(281\) −14.7822 + 3.50346i −0.881835 + 0.208999i −0.646498 0.762915i \(-0.723767\pi\)
−0.235336 + 0.971914i \(0.575619\pi\)
\(282\) 0 0
\(283\) −20.8426 13.7084i −1.23896 0.814880i −0.250764 0.968048i \(-0.580682\pi\)
−0.988200 + 0.153168i \(0.951052\pi\)
\(284\) 3.09786 + 2.03750i 0.183824 + 0.120903i
\(285\) 0 0
\(286\) −1.77146 + 0.419844i −0.104749 + 0.0248259i
\(287\) 2.05763 + 1.72655i 0.121458 + 0.101915i
\(288\) 0 0
\(289\) −4.27421 + 3.58648i −0.251424 + 0.210970i
\(290\) 8.11274 10.8973i 0.476396 0.639912i
\(291\) 0 0
\(292\) 2.11446 + 0.501135i 0.123739 + 0.0293267i
\(293\) −5.12105 6.87876i −0.299175 0.401862i 0.626962 0.779050i \(-0.284298\pi\)
−0.926136 + 0.377189i \(0.876891\pi\)
\(294\) 0 0
\(295\) 35.0938 + 17.6248i 2.04324 + 1.02615i
\(296\) −17.4233 + 30.1781i −1.01271 + 1.75407i
\(297\) 0 0
\(298\) 13.6758 + 23.6871i 0.792216 + 1.37216i
\(299\) 0.0412357 + 0.707989i 0.00238472 + 0.0409441i
\(300\) 0 0
\(301\) −8.26266 + 0.965767i −0.476252 + 0.0556659i
\(302\) 5.01277 + 16.7438i 0.288453 + 0.963499i
\(303\) 0 0
\(304\) 1.16702 + 2.70546i 0.0669333 + 0.155169i
\(305\) −2.82482 1.02815i −0.161749 0.0588718i
\(306\) 0 0
\(307\) 1.80059 0.655362i 0.102765 0.0374035i −0.290126 0.956989i \(-0.593697\pi\)
0.392891 + 0.919585i \(0.371475\pi\)
\(308\) −3.37393 3.57615i −0.192247 0.203770i
\(309\) 0 0
\(310\) −20.5929 + 10.3421i −1.16960 + 0.587394i
\(311\) 0.886900 15.2275i 0.0502915 0.863472i −0.874978 0.484162i \(-0.839124\pi\)
0.925270 0.379310i \(-0.123838\pi\)
\(312\) 0 0
\(313\) 8.80754 29.4192i 0.497832 1.66287i −0.226959 0.973904i \(-0.572878\pi\)
0.724790 0.688969i \(-0.241937\pi\)
\(314\) −2.38212 + 13.5097i −0.134431 + 0.762395i
\(315\) 0 0
\(316\) −1.17588 6.66874i −0.0661484 0.375146i
\(317\) 22.7971 + 2.66460i 1.28042 + 0.149659i 0.728966 0.684549i \(-0.240001\pi\)
0.551449 + 0.834209i \(0.314075\pi\)
\(318\) 0 0
\(319\) 9.53633 10.1079i 0.533932 0.565935i
\(320\) −13.7464 + 31.8677i −0.768447 + 1.78146i
\(321\) 0 0
\(322\) 4.26890 2.80770i 0.237896 0.156467i
\(323\) 3.81197 0.212104
\(324\) 0 0
\(325\) −3.25269 −0.180427
\(326\) −0.795696 + 0.523337i −0.0440695 + 0.0289850i
\(327\) 0 0
\(328\) 1.75656 4.07217i 0.0969900 0.224848i
\(329\) 5.01388 5.31440i 0.276424 0.292992i
\(330\) 0 0
\(331\) 0.894983 + 0.104608i 0.0491927 + 0.00574980i 0.140654 0.990059i \(-0.455080\pi\)
−0.0914610 + 0.995809i \(0.529154\pi\)
\(332\) −0.701029 3.97573i −0.0384740 0.218197i
\(333\) 0 0
\(334\) 1.21573 6.89476i 0.0665219 0.377265i
\(335\) 0.830698 2.77472i 0.0453859 0.151599i
\(336\) 0 0
\(337\) 2.04455 35.1035i 0.111374 1.91221i −0.231511 0.972832i \(-0.574367\pi\)
0.342885 0.939377i \(-0.388596\pi\)
\(338\) 13.9073 6.98450i 0.756457 0.379907i
\(339\) 0 0
\(340\) 4.97055 + 5.26848i 0.269566 + 0.285723i
\(341\) −22.1498 + 8.06188i −1.19948 + 0.436575i
\(342\) 0 0
\(343\) 18.4205 + 6.70453i 0.994616 + 0.362010i
\(344\) 5.44023 + 12.6119i 0.293318 + 0.679987i
\(345\) 0 0
\(346\) −1.20291 4.01801i −0.0646690 0.216010i
\(347\) 15.0726 1.76174i 0.809142 0.0945751i 0.298545 0.954396i \(-0.403499\pi\)
0.510597 + 0.859820i \(0.329425\pi\)
\(348\) 0 0
\(349\) 1.64660 + 28.2711i 0.0881406 + 1.51332i 0.695291 + 0.718728i \(0.255275\pi\)
−0.607151 + 0.794587i \(0.707688\pi\)
\(350\) 11.7173 + 20.2949i 0.626315 + 1.08481i
\(351\) 0 0
\(352\) −7.24806 + 12.5540i −0.386323 + 0.669131i
\(353\) −14.8471 7.45651i −0.790233 0.396870i 0.00743042 0.999972i \(-0.497635\pi\)
−0.797664 + 0.603102i \(0.793931\pi\)
\(354\) 0 0
\(355\) −15.9606 21.4388i −0.847102 1.13786i
\(356\) −2.88439 0.683613i −0.152872 0.0362314i
\(357\) 0 0
\(358\) 5.62934 7.56152i 0.297520 0.399639i
\(359\) −10.7593 + 9.02816i −0.567856 + 0.476488i −0.880934 0.473239i \(-0.843085\pi\)
0.313077 + 0.949728i \(0.398640\pi\)
\(360\) 0 0
\(361\) −13.5801 11.3951i −0.714745 0.599742i
\(362\) −13.7246 + 3.25278i −0.721348 + 0.170963i
\(363\) 0 0
\(364\) −0.263666 0.173416i −0.0138198 0.00908946i
\(365\) −13.0871 8.60753i −0.685011 0.450539i
\(366\) 0 0
\(367\) 5.32264 1.26149i 0.277840 0.0658492i −0.0893336 0.996002i \(-0.528474\pi\)
0.367173 + 0.930153i \(0.380326\pi\)
\(368\) −4.55902 3.82547i −0.237656 0.199417i
\(369\) 0 0
\(370\) 41.2232 34.5903i 2.14309 1.79827i
\(371\) 1.80522 2.42484i 0.0937225 0.125891i
\(372\) 0 0
\(373\) 27.5326 + 6.52534i 1.42558 + 0.337869i 0.869778 0.493443i \(-0.164262\pi\)
0.555805 + 0.831313i \(0.312410\pi\)
\(374\) −11.8031 15.8544i −0.610325 0.819809i
\(375\) 0 0
\(376\) −10.7801 5.41398i −0.555942 0.279205i
\(377\) 0.445994 0.772485i 0.0229699 0.0397850i
\(378\) 0 0
\(379\) −8.11043 14.0477i −0.416605 0.721580i 0.578991 0.815334i \(-0.303447\pi\)
−0.995595 + 0.0937537i \(0.970113\pi\)
\(380\) 0.140574 + 2.41356i 0.00721130 + 0.123813i
\(381\) 0 0
\(382\) 17.4319 2.03750i 0.891895 0.104248i
\(383\) 4.24796 + 14.1892i 0.217061 + 0.725033i 0.995280 + 0.0970408i \(0.0309377\pi\)
−0.778220 + 0.627992i \(0.783877\pi\)
\(384\) 0 0
\(385\) 14.0372 + 32.5418i 0.715401 + 1.65848i
\(386\) 19.2874 + 7.02006i 0.981705 + 0.357311i
\(387\) 0 0
\(388\) 2.35952 0.858795i 0.119787 0.0435987i
\(389\) 5.12493 + 5.43211i 0.259844 + 0.275419i 0.844141 0.536121i \(-0.180111\pi\)
−0.584297 + 0.811540i \(0.698630\pi\)
\(390\) 0 0
\(391\) −6.88065 + 3.45559i −0.347969 + 0.174757i
\(392\) 0.632402 10.8579i 0.0319411 0.548408i
\(393\) 0 0
\(394\) 4.30707 14.3866i 0.216987 0.724787i
\(395\) −8.47619 + 48.0709i −0.426484 + 2.41871i
\(396\) 0 0
\(397\) −5.20739 29.5326i −0.261351 1.48220i −0.779228 0.626741i \(-0.784388\pi\)
0.517876 0.855455i \(-0.326723\pi\)
\(398\) −25.8367 3.01987i −1.29507 0.151372i
\(399\) 0 0
\(400\) 18.7317 19.8544i 0.936583 0.992720i
\(401\) −2.59509 + 6.01608i −0.129592 + 0.300429i −0.970642 0.240529i \(-0.922679\pi\)
0.841050 + 0.540958i \(0.181938\pi\)
\(402\) 0 0
\(403\) −1.26410 + 0.831409i −0.0629691 + 0.0414154i
\(404\) −5.85891 −0.291492
\(405\) 0 0
\(406\) −6.42647 −0.318941
\(407\) 45.9890 30.2474i 2.27959 1.49931i
\(408\) 0 0
\(409\) 0.707379 1.63989i 0.0349776 0.0810873i −0.899832 0.436237i \(-0.856311\pi\)
0.934809 + 0.355150i \(0.115570\pi\)
\(410\) −4.69985 + 4.98155i −0.232109 + 0.246021i
\(411\) 0 0
\(412\) −6.36261 0.743682i −0.313463 0.0366386i
\(413\) −3.22579 18.2944i −0.158731 0.900207i
\(414\) 0 0
\(415\) −5.05329 + 28.6586i −0.248056 + 1.40680i
\(416\) −0.266864 + 0.891389i −0.0130841 + 0.0437040i
\(417\) 0 0
\(418\) 0.383606 6.58626i 0.0187628 0.322145i
\(419\) 18.5168 9.29947i 0.904603 0.454309i 0.0652339 0.997870i \(-0.479221\pi\)
0.839370 + 0.543561i \(0.182924\pi\)
\(420\) 0 0
\(421\) −13.0106 13.7904i −0.634097 0.672103i 0.328042 0.944663i \(-0.393611\pi\)
−0.962139 + 0.272560i \(0.912130\pi\)
\(422\) −14.3686 + 5.22976i −0.699454 + 0.254581i
\(423\) 0 0
\(424\) −4.69024 1.70711i −0.227778 0.0829045i
\(425\) −13.9873 32.4262i −0.678484 1.57290i
\(426\) 0 0
\(427\) 0.407835 + 1.36226i 0.0197365 + 0.0659245i
\(428\) −3.47684 + 0.406384i −0.168059 + 0.0196433i
\(429\) 0 0
\(430\) −1.23331 21.1751i −0.0594754 1.02115i
\(431\) −0.254281 0.440427i −0.0122483 0.0212146i 0.859836 0.510570i \(-0.170566\pi\)
−0.872085 + 0.489355i \(0.837232\pi\)
\(432\) 0 0
\(433\) 10.9606 18.9844i 0.526734 0.912330i −0.472781 0.881180i \(-0.656750\pi\)
0.999515 0.0311498i \(-0.00991689\pi\)
\(434\) 9.74120 + 4.89221i 0.467593 + 0.234834i
\(435\) 0 0
\(436\) −1.12110 1.50589i −0.0536908 0.0721192i
\(437\) −2.50075 0.592689i −0.119627 0.0283521i
\(438\) 0 0
\(439\) −20.1006 + 26.9997i −0.959347 + 1.28863i −0.00190618 + 0.999998i \(0.500607\pi\)
−0.957441 + 0.288629i \(0.906801\pi\)
\(440\) 44.8249 37.6125i 2.13694 1.79311i
\(441\) 0 0
\(442\) −0.971889 0.815511i −0.0462280 0.0387899i
\(443\) −11.9279 + 2.82696i −0.566711 + 0.134313i −0.503976 0.863717i \(-0.668130\pi\)
−0.0627341 + 0.998030i \(0.519982\pi\)
\(444\) 0 0
\(445\) 17.8525 + 11.7418i 0.846291 + 0.556614i
\(446\) −4.96265 3.26398i −0.234988 0.154554i
\(447\) 0 0
\(448\) 15.9748 3.78609i 0.754736 0.178876i
\(449\) 19.3898 + 16.2699i 0.915060 + 0.767826i 0.973075 0.230490i \(-0.0740328\pi\)
−0.0580153 + 0.998316i \(0.518477\pi\)
\(450\) 0 0
\(451\) −5.36645 + 4.50299i −0.252696 + 0.212037i
\(452\) −5.04805 + 6.78071i −0.237440 + 0.318938i
\(453\) 0 0
\(454\) 7.54224 + 1.78754i 0.353975 + 0.0838935i
\(455\) 1.35844 + 1.82471i 0.0636848 + 0.0855436i
\(456\) 0 0
\(457\) −26.1808 13.1485i −1.22469 0.615060i −0.285470 0.958388i \(-0.592150\pi\)
−0.939216 + 0.343327i \(0.888446\pi\)
\(458\) 17.9334 31.0616i 0.837973 1.45141i
\(459\) 0 0
\(460\) −2.44166 4.22908i −0.113843 0.197182i
\(461\) −0.745295 12.7962i −0.0347119 0.595980i −0.970152 0.242496i \(-0.922034\pi\)
0.935441 0.353484i \(-0.115003\pi\)
\(462\) 0 0
\(463\) −10.2547 + 1.19861i −0.476578 + 0.0557040i −0.350992 0.936379i \(-0.614155\pi\)
−0.125587 + 0.992083i \(0.540081\pi\)
\(464\) 2.14684 + 7.17094i 0.0996645 + 0.332902i
\(465\) 0 0
\(466\) −10.3850 24.0751i −0.481075 1.11526i
\(467\) −6.54957 2.38385i −0.303078 0.110311i 0.186005 0.982549i \(-0.440446\pi\)
−0.489083 + 0.872238i \(0.662668\pi\)
\(468\) 0 0
\(469\) −1.28748 + 0.468604i −0.0594502 + 0.0216381i
\(470\) 12.7840 + 13.5503i 0.589683 + 0.625027i
\(471\) 0 0
\(472\) −27.4090 + 13.7653i −1.26160 + 0.633600i
\(473\) 1.26153 21.6596i 0.0580053 0.995912i
\(474\) 0 0
\(475\) 3.38067 11.2922i 0.155116 0.518123i
\(476\) 0.594967 3.37422i 0.0272702 0.154657i
\(477\) 0 0
\(478\) −1.24578 7.06518i −0.0569807 0.323154i
\(479\) 33.2090 + 3.88157i 1.51736 + 0.177354i 0.833605 0.552361i \(-0.186273\pi\)
0.683752 + 0.729714i \(0.260347\pi\)
\(480\) 0 0
\(481\) 2.42463 2.56996i 0.110554 0.117180i
\(482\) 0.566601 1.31353i 0.0258080 0.0598296i
\(483\) 0 0
\(484\) 5.70182 3.75015i 0.259174 0.170461i
\(485\) −18.0999 −0.821874
\(486\) 0 0
\(487\) −8.67546 −0.393122 −0.196561 0.980492i \(-0.562977\pi\)
−0.196561 + 0.980492i \(0.562977\pi\)
\(488\) 1.96159 1.29016i 0.0887971 0.0584028i
\(489\) 0 0
\(490\) −6.65258 + 15.4224i −0.300533 + 0.696714i
\(491\) −11.0320 + 11.6932i −0.497866 + 0.527707i −0.926763 0.375646i \(-0.877421\pi\)
0.428897 + 0.903353i \(0.358902\pi\)
\(492\) 0 0
\(493\) 9.61881 + 1.12428i 0.433209 + 0.0506349i
\(494\) −0.0735360 0.417043i −0.00330854 0.0187637i
\(495\) 0 0
\(496\) 2.20478 12.5040i 0.0989977 0.561444i
\(497\) −3.62609 + 12.1120i −0.162653 + 0.543297i
\(498\) 0 0
\(499\) −0.449179 + 7.71210i −0.0201080 + 0.345241i 0.973217 + 0.229889i \(0.0738365\pi\)
−0.993325 + 0.115351i \(0.963201\pi\)
\(500\) 10.4383 5.24232i 0.466816 0.234444i
\(501\) 0 0
\(502\) 11.1812 + 11.8513i 0.499040 + 0.528951i
\(503\) 30.5447 11.1174i 1.36192 0.495698i 0.445272 0.895395i \(-0.353107\pi\)
0.916647 + 0.399697i \(0.130885\pi\)
\(504\) 0 0
\(505\) 39.6864 + 14.4447i 1.76602 + 0.642778i
\(506\) 5.27811 + 12.2360i 0.234641 + 0.543958i
\(507\) 0 0
\(508\) −1.84694 6.16920i −0.0819446 0.273714i
\(509\) −1.24093 + 0.145044i −0.0550034 + 0.00642898i −0.143550 0.989643i \(-0.545852\pi\)
0.0885467 + 0.996072i \(0.471778\pi\)
\(510\) 0 0
\(511\) 0.430834 + 7.39713i 0.0190590 + 0.327230i
\(512\) −11.9231 20.6514i −0.526931 0.912671i
\(513\) 0 0
\(514\) −14.7623 + 25.5690i −0.651136 + 1.12780i
\(515\) 41.2647 + 20.7239i 1.81834 + 0.913205i
\(516\) 0 0
\(517\) 11.3791 + 15.2847i 0.500451 + 0.672222i
\(518\) −24.7694 5.87045i −1.08830 0.257933i
\(519\) 0 0
\(520\) 2.24290 3.01274i 0.0983577 0.132117i
\(521\) −17.9588 + 15.0692i −0.786787 + 0.660193i −0.944948 0.327220i \(-0.893888\pi\)
0.158161 + 0.987413i \(0.449444\pi\)
\(522\) 0 0
\(523\) 26.2642 + 22.0383i 1.14845 + 0.963666i 0.999682 0.0252058i \(-0.00802411\pi\)
0.148770 + 0.988872i \(0.452469\pi\)
\(524\) 9.38573 2.22446i 0.410018 0.0971760i
\(525\) 0 0
\(526\) −21.8577 14.3761i −0.953043 0.626826i
\(527\) −13.7242 9.02658i −0.597838 0.393204i
\(528\) 0 0
\(529\) −17.3289 + 4.10702i −0.753429 + 0.178566i
\(530\) 5.90458 + 4.95453i 0.256479 + 0.215211i
\(531\) 0 0
\(532\) 0.876079 0.735118i 0.0379828 0.0318714i
\(533\) −0.268521 + 0.360686i −0.0116309 + 0.0156230i
\(534\) 0 0
\(535\) 24.5529 + 5.81914i 1.06151 + 0.251583i
\(536\) 1.35086 + 1.81453i 0.0583485 + 0.0783756i
\(537\) 0 0
\(538\) −6.18791 3.10769i −0.266780 0.133982i
\(539\) −8.59021 + 14.8787i −0.370007 + 0.640870i
\(540\) 0 0
\(541\) 7.30619 + 12.6547i 0.314118 + 0.544068i 0.979250 0.202658i \(-0.0649580\pi\)
−0.665132 + 0.746726i \(0.731625\pi\)
\(542\) −1.01547 17.4350i −0.0436182 0.748896i
\(543\) 0 0
\(544\) −10.0339 + 1.17279i −0.430199 + 0.0502830i
\(545\) 3.88128 + 12.9644i 0.166256 + 0.555334i
\(546\) 0 0
\(547\) −6.01211 13.9376i −0.257059 0.595931i 0.739996 0.672611i \(-0.234827\pi\)
−0.997056 + 0.0766801i \(0.975568\pi\)
\(548\) −3.57164 1.29997i −0.152573 0.0555320i
\(549\) 0 0
\(550\) −57.4331 + 20.9040i −2.44896 + 0.891348i
\(551\) 2.21826 + 2.35121i 0.0945009 + 0.100165i
\(552\) 0 0
\(553\) 20.6341 10.3628i 0.877449 0.440672i
\(554\) 0.831199 14.2711i 0.0353143 0.606323i
\(555\) 0 0
\(556\) 0.985878 3.29306i 0.0418105 0.139657i
\(557\) 2.44666 13.8757i 0.103668 0.587931i −0.888076 0.459697i \(-0.847958\pi\)
0.991744 0.128234i \(-0.0409309\pi\)
\(558\) 0 0
\(559\) −0.241831 1.37149i −0.0102284 0.0580079i
\(560\) −18.9610 2.21622i −0.801249 0.0936526i
\(561\) 0 0
\(562\) −12.5740 + 13.3277i −0.530402 + 0.562193i
\(563\) −14.1864 + 32.8877i −0.597884 + 1.38605i 0.303418 + 0.952858i \(0.401872\pi\)
−0.901302 + 0.433192i \(0.857387\pi\)
\(564\) 0 0
\(565\) 50.9111 33.4848i 2.14185 1.40871i
\(566\) −30.0885 −1.26471
\(567\) 0 0
\(568\) 20.8748 0.875889
\(569\) −23.4530 + 15.4253i −0.983200 + 0.646661i −0.935917 0.352221i \(-0.885427\pi\)
−0.0472828 + 0.998882i \(0.515056\pi\)
\(570\) 0 0
\(571\) −18.5275 + 42.9516i −0.775353 + 1.79747i −0.199536 + 0.979890i \(0.563943\pi\)
−0.575817 + 0.817579i \(0.695316\pi\)
\(572\) 0.564821 0.598676i 0.0236164 0.0250319i
\(573\) 0 0
\(574\) 3.21777 + 0.376104i 0.134307 + 0.0156983i
\(575\) 4.13438 + 23.4472i 0.172415 + 0.977816i
\(576\) 0 0
\(577\) 3.26382 18.5100i 0.135875 0.770583i −0.838372 0.545098i \(-0.816492\pi\)
0.974247 0.225485i \(-0.0723966\pi\)
\(578\) −1.93008 + 6.44690i −0.0802806 + 0.268156i
\(579\) 0 0
\(580\) −0.357128 + 6.13165i −0.0148289 + 0.254603i
\(581\) 12.3015 6.17804i 0.510352 0.256308i
\(582\) 0 0
\(583\) 5.41051 + 5.73481i 0.224081 + 0.237512i
\(584\) 11.4962 4.18426i 0.475714 0.173146i
\(585\) 0 0
\(586\) −9.71950 3.53761i −0.401509 0.146137i
\(587\) 0.387163 + 0.897546i 0.0159799 + 0.0370457i 0.926019 0.377476i \(-0.123208\pi\)
−0.910039 + 0.414522i \(0.863949\pi\)
\(588\) 0 0
\(589\) −1.57253 5.25262i −0.0647950 0.216431i
\(590\) 47.0450 5.49877i 1.93681 0.226381i
\(591\) 0 0
\(592\) 1.72399 + 29.5998i 0.0708557 + 1.21655i
\(593\) −19.3929 33.5896i −0.796372 1.37936i −0.921964 0.387276i \(-0.873416\pi\)
0.125592 0.992082i \(-0.459917\pi\)
\(594\) 0 0
\(595\) −12.3490 + 21.3890i −0.506258 + 0.876865i
\(596\) −11.0504 5.54970i −0.452640 0.227324i
\(597\) 0 0
\(598\) 0.510788 + 0.686107i 0.0208877 + 0.0280570i
\(599\) 32.3773 + 7.67356i 1.32290 + 0.313533i 0.830589 0.556886i \(-0.188004\pi\)
0.492312 + 0.870419i \(0.336152\pi\)
\(600\) 0 0
\(601\) −12.1572 + 16.3299i −0.495901 + 0.666111i −0.977660 0.210193i \(-0.932591\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(602\) −7.68616 + 6.44945i −0.313264 + 0.262860i
\(603\) 0 0
\(604\) −6.05317 5.07922i −0.246300 0.206670i
\(605\) −47.8679 + 11.3449i −1.94611 + 0.461236i
\(606\) 0 0
\(607\) 1.32559 + 0.871857i 0.0538042 + 0.0353876i 0.576126 0.817361i \(-0.304564\pi\)
−0.522322 + 0.852748i \(0.674934\pi\)
\(608\) −2.81723 1.85292i −0.114254 0.0751459i
\(609\) 0 0
\(610\) −3.52799 + 0.836148i −0.142844 + 0.0338547i
\(611\) 0.936970 + 0.786211i 0.0379058 + 0.0318067i
\(612\) 0 0
\(613\) −5.23563 + 4.39322i −0.211465 + 0.177440i −0.742368 0.669992i \(-0.766297\pi\)
0.530903 + 0.847433i \(0.321853\pi\)
\(614\) 1.38009 1.85379i 0.0556960 0.0748127i
\(615\) 0 0
\(616\) −26.9335 6.38336i −1.08518 0.257193i
\(617\) −0.243038 0.326456i −0.00978434 0.0131426i 0.797204 0.603710i \(-0.206311\pi\)
−0.806988 + 0.590567i \(0.798904\pi\)
\(618\) 0 0
\(619\) 8.95900 + 4.49938i 0.360093 + 0.180845i 0.619642 0.784885i \(-0.287278\pi\)
−0.259550 + 0.965730i \(0.583574\pi\)
\(620\) 5.20911 9.02245i 0.209203 0.362350i
\(621\) 0 0
\(622\) −9.19862 15.9325i −0.368831 0.638834i
\(623\) −0.587713 10.0906i −0.0235462 0.404273i
\(624\) 0 0
\(625\) −31.7342 + 3.70920i −1.26937 + 0.148368i
\(626\) −10.6229 35.4830i −0.424577 1.41819i
\(627\) 0 0
\(628\) −2.45647 5.69473i −0.0980237 0.227245i
\(629\) 36.0465 + 13.1199i 1.43727 + 0.523123i
\(630\) 0 0
\(631\) −14.7754 + 5.37779i −0.588198 + 0.214086i −0.618937 0.785441i \(-0.712436\pi\)
0.0307388 + 0.999527i \(0.490214\pi\)
\(632\) −26.1620 27.7301i −1.04067 1.10304i
\(633\) 0 0
\(634\) 24.7386 12.4242i 0.982495 0.493428i
\(635\) −2.69909 + 46.3416i −0.107110 + 1.83901i
\(636\) 0 0
\(637\) −0.316281 + 1.05645i −0.0125315 + 0.0418581i
\(638\) 2.91047 16.5061i 0.115227 0.653483i
\(639\) 0 0
\(640\) 3.18813 + 18.0808i 0.126022 + 0.714706i
\(641\) −7.99000 0.933897i −0.315586 0.0368867i −0.0431744 0.999068i \(-0.513747\pi\)
−0.272412 + 0.962181i \(0.587821\pi\)
\(642\) 0 0
\(643\) 6.55424 6.94709i 0.258474 0.273966i −0.585121 0.810946i \(-0.698953\pi\)
0.843595 + 0.536979i \(0.180435\pi\)
\(644\) −0.914941 + 2.12107i −0.0360537 + 0.0835820i
\(645\) 0 0
\(646\) 3.84130 2.52646i 0.151134 0.0994023i
\(647\) 36.6579 1.44117 0.720586 0.693365i \(-0.243873\pi\)
0.720586 + 0.693365i \(0.243873\pi\)
\(648\) 0 0
\(649\) 48.4492 1.90180
\(650\) −3.27772 + 2.15579i −0.128563 + 0.0845571i
\(651\) 0 0
\(652\) 0.170539 0.395355i 0.00667884 0.0154833i
\(653\) −13.2604 + 14.0552i −0.518918 + 0.550021i −0.932840 0.360292i \(-0.882677\pi\)
0.413922 + 0.910312i \(0.364159\pi\)
\(654\) 0 0
\(655\) −69.0601 8.07196i −2.69840 0.315398i
\(656\) −0.655261 3.71617i −0.0255836 0.145092i
\(657\) 0 0
\(658\) 1.53023 8.67834i 0.0596544 0.338317i
\(659\) 8.84575 29.5469i 0.344582 1.15098i −0.593577 0.804777i \(-0.702285\pi\)
0.938159 0.346205i \(-0.112530\pi\)
\(660\) 0 0
\(661\) −0.928413 + 15.9402i −0.0361111 + 0.620003i 0.930901 + 0.365272i \(0.119024\pi\)
−0.967012 + 0.254731i \(0.918013\pi\)
\(662\) 0.971201 0.487755i 0.0377468 0.0189572i
\(663\) 0 0
\(664\) −15.5971 16.5320i −0.605285 0.641565i
\(665\) −7.74664 + 2.81955i −0.300402 + 0.109337i
\(666\) 0 0
\(667\) −6.13538 2.23310i −0.237563 0.0864659i
\(668\) 1.25368 + 2.90635i 0.0485062 + 0.112450i
\(669\) 0 0
\(670\) −1.00192 3.34664i −0.0387074 0.129292i
\(671\) −3.68361 + 0.430553i −0.142204 + 0.0166213i
\(672\) 0 0
\(673\) 2.23562 + 38.3841i 0.0861768 + 1.47960i 0.713399 + 0.700758i \(0.247155\pi\)
−0.627223 + 0.778840i \(0.715808\pi\)
\(674\) −21.2053 36.7287i −0.816798 1.41474i
\(675\) 0 0
\(676\) −3.51794 + 6.09325i −0.135305 + 0.234356i
\(677\) 11.6642 + 5.85800i 0.448293 + 0.225141i 0.658599 0.752494i \(-0.271150\pi\)
−0.210305 + 0.977636i \(0.567446\pi\)
\(678\) 0 0
\(679\) 5.11283 + 6.86772i 0.196212 + 0.263559i
\(680\) 39.6791 + 9.40411i 1.52162 + 0.360631i
\(681\) 0 0
\(682\) −16.9771 + 22.8042i −0.650087 + 0.873218i
\(683\) −6.97390 + 5.85180i −0.266849 + 0.223913i −0.766387 0.642379i \(-0.777947\pi\)
0.499538 + 0.866292i \(0.333503\pi\)
\(684\) 0 0
\(685\) 20.9882 + 17.6112i 0.801916 + 0.672888i
\(686\) 23.0058 5.45249i 0.878367 0.208177i
\(687\) 0 0
\(688\) 9.76423 + 6.42203i 0.372258 + 0.244838i
\(689\) 0.422821 + 0.278094i 0.0161082 + 0.0105945i
\(690\) 0 0
\(691\) 11.6461 2.76019i 0.443040 0.105002i −0.00304009 0.999995i \(-0.500968\pi\)
0.446080 + 0.894993i \(0.352820\pi\)
\(692\) 1.45258 + 1.21886i 0.0552187 + 0.0463340i
\(693\) 0 0
\(694\) 14.0210 11.7650i 0.532229 0.446594i
\(695\) −14.7968 + 19.8755i −0.561273 + 0.753921i
\(696\) 0 0
\(697\) −4.75039 1.12586i −0.179934 0.0426451i
\(698\) 20.3965 + 27.3973i 0.772020 + 1.03700i
\(699\) 0 0
\(700\) −9.46784 4.75493i −0.357851 0.179719i
\(701\) 0.441721 0.765084i 0.0166836 0.0288968i −0.857563 0.514379i \(-0.828023\pi\)
0.874247 + 0.485482i \(0.161356\pi\)
\(702\) 0 0
\(703\) 6.40198 + 11.0886i 0.241455 + 0.418213i
\(704\) 2.48962 + 42.7451i 0.0938310 + 1.61102i
\(705\) 0 0
\(706\) −19.9033 + 2.32637i −0.749072 + 0.0875540i
\(707\) −5.72973 19.1386i −0.215489 0.719783i
\(708\) 0 0
\(709\) 9.37251 + 21.7279i 0.351992 + 0.816009i 0.998585 + 0.0531741i \(0.0169338\pi\)
−0.646593 + 0.762835i \(0.723807\pi\)
\(710\) −30.2925 11.0256i −1.13686 0.413782i
\(711\) 0 0
\(712\) −15.6823 + 5.70787i −0.587717 + 0.213912i
\(713\) 7.60000 + 8.05553i 0.284622 + 0.301682i
\(714\) 0 0
\(715\) −5.30190 + 2.66271i −0.198280 + 0.0995798i
\(716\) −0.247807 + 4.25469i −0.00926100 + 0.159005i
\(717\) 0 0
\(718\) −4.85853 + 16.2286i −0.181319 + 0.605647i
\(719\) 4.25311 24.1206i 0.158614 0.899547i −0.796792 0.604253i \(-0.793471\pi\)
0.955407 0.295293i \(-0.0954174\pi\)
\(720\) 0 0
\(721\) −3.79302 21.5113i −0.141259 0.801122i
\(722\) −21.2370 2.48225i −0.790359 0.0923797i
\(723\) 0 0
\(724\) 4.37601 4.63830i 0.162633 0.172381i
\(725\) 11.8610 27.4968i 0.440505 1.02121i
\(726\) 0 0
\(727\) 6.90593 4.54210i 0.256127 0.168457i −0.414952 0.909843i \(-0.636202\pi\)
0.671079 + 0.741386i \(0.265831\pi\)
\(728\) −1.77670 −0.0658490
\(729\) 0 0
\(730\) −18.8926 −0.699248
\(731\) 12.6325 8.30855i 0.467231 0.307303i
\(732\) 0 0
\(733\) −6.03471 + 13.9900i −0.222897 + 0.516734i −0.992566 0.121710i \(-0.961162\pi\)
0.769668 + 0.638444i \(0.220422\pi\)
\(734\) 4.52752 4.79889i 0.167114 0.177130i
\(735\) 0 0
\(736\) 6.76483 + 0.790695i 0.249355 + 0.0291454i
\(737\) −0.620504 3.51905i −0.0228565 0.129626i
\(738\) 0 0
\(739\) 4.97375 28.2075i 0.182962 1.03763i −0.745583 0.666413i \(-0.767829\pi\)
0.928545 0.371219i \(-0.121060\pi\)
\(740\) −6.97761 + 23.3068i −0.256502 + 0.856776i
\(741\) 0 0
\(742\) 0.212003 3.63994i 0.00778286 0.133627i
\(743\) 13.1865 6.62253i 0.483767 0.242957i −0.190162 0.981753i \(-0.560901\pi\)
0.673929 + 0.738796i \(0.264605\pi\)
\(744\) 0 0
\(745\) 61.1691 + 64.8355i 2.24106 + 2.37539i
\(746\) 32.0692 11.6723i 1.17414 0.427352i
\(747\) 0 0
\(748\) 8.39708 + 3.05629i 0.307028 + 0.111749i
\(749\) −4.72767 10.9600i −0.172745 0.400468i
\(750\) 0 0
\(751\) 2.13409 + 7.12836i 0.0778741 + 0.260118i 0.988057 0.154089i \(-0.0492443\pi\)
−0.910183 + 0.414207i \(0.864059\pi\)
\(752\) −10.1949 + 1.19161i −0.371768 + 0.0434535i
\(753\) 0 0
\(754\) −0.0625546 1.07402i −0.00227810 0.0391135i
\(755\) 28.4798 + 49.3285i 1.03649 + 1.79525i
\(756\) 0 0
\(757\) −5.40930 + 9.36918i −0.196604 + 0.340529i −0.947425 0.319977i \(-0.896325\pi\)
0.750821 + 0.660506i \(0.229658\pi\)
\(758\) −17.4832 8.78041i −0.635019 0.318919i
\(759\) 0 0
\(760\) 8.12803 + 10.9178i 0.294835 + 0.396032i
\(761\) −5.54356 1.31385i −0.200954 0.0476270i 0.128906 0.991657i \(-0.458853\pi\)
−0.329860 + 0.944030i \(0.607002\pi\)
\(762\) 0 0
\(763\) 3.82275 5.13485i 0.138393 0.185894i
\(764\) −6.07829 + 5.10029i −0.219905 + 0.184522i
\(765\) 0 0
\(766\) 13.6848 + 11.4829i 0.494453 + 0.414895i
\(767\) 3.02604 0.717184i 0.109264 0.0258960i
\(768\) 0 0
\(769\) 13.7817 + 9.06435i 0.496980 + 0.326869i 0.773132 0.634245i \(-0.218689\pi\)
−0.276152 + 0.961114i \(0.589059\pi\)
\(770\) 35.7130 + 23.4888i 1.28701 + 0.846477i
\(771\) 0 0
\(772\) −9.02936 + 2.14000i −0.324974 + 0.0770202i
\(773\) −1.26612 1.06240i −0.0455393 0.0382121i 0.619734 0.784812i \(-0.287241\pi\)
−0.665273 + 0.746600i \(0.731685\pi\)
\(774\) 0 0
\(775\) −38.9109 + 32.6502i −1.39772 + 1.17283i
\(776\) 8.44168 11.3391i 0.303039 0.407052i
\(777\) 0 0
\(778\) 8.76461 + 2.07725i 0.314226 + 0.0744730i
\(779\) −0.973091 1.30709i −0.0348646 0.0468313i
\(780\) 0 0
\(781\) −29.4669 14.7988i −1.05441 0.529544i