Properties

Label 729.2.g.c.28.3
Level $729$
Weight $2$
Character 729.28
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 28.3
Character \(\chi\) \(=\) 729.28
Dual form 729.2.g.c.703.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.695972 + 0.457748i) q^{2} +(-0.517316 + 1.19927i) q^{4} +(0.827713 - 0.877324i) q^{5} +(1.30600 + 0.152650i) q^{7} +(-0.478230 - 2.71217i) q^{8} +O(q^{10})\) \(q+(-0.695972 + 0.457748i) q^{2} +(-0.517316 + 1.19927i) q^{4} +(0.827713 - 0.877324i) q^{5} +(1.30600 + 0.152650i) q^{7} +(-0.478230 - 2.71217i) q^{8} +(-0.174471 + 0.989477i) q^{10} +(-0.623332 + 2.08207i) q^{11} +(-0.264847 + 4.54725i) q^{13} +(-0.978817 + 0.491580i) q^{14} +(-0.218261 - 0.231343i) q^{16} +(3.54217 - 1.28924i) q^{17} +(-2.50517 - 0.911807i) q^{19} +(0.623962 + 1.44651i) q^{20} +(-0.519243 - 1.73439i) q^{22} +(5.99251 - 0.700424i) q^{23} +(0.206135 + 3.53920i) q^{25} +(-1.89717 - 3.28599i) q^{26} +(-0.858686 + 1.48729i) q^{28} +(-3.71556 - 1.86603i) q^{29} +(4.45311 + 5.98156i) q^{31} +(5.61736 + 1.33134i) q^{32} +(-1.87510 + 2.51870i) q^{34} +(1.21492 - 1.01944i) q^{35} +(7.47819 + 6.27494i) q^{37} +(2.16090 - 0.512144i) q^{38} +(-2.77529 - 1.82534i) q^{40} +(-4.83588 - 3.18061i) q^{41} +(-4.91887 + 1.16579i) q^{43} +(-2.17451 - 1.82463i) q^{44} +(-3.85000 + 3.23053i) q^{46} +(-1.79025 + 2.40472i) q^{47} +(-5.12897 - 1.21559i) q^{49} +(-1.76352 - 2.36882i) q^{50} +(-5.31638 - 2.66999i) q^{52} +(-6.22987 + 10.7905i) q^{53} +(1.31071 + 2.27022i) q^{55} +(-0.210556 - 3.61511i) q^{56} +(3.44010 - 0.402090i) q^{58} +(3.12841 + 10.4496i) q^{59} +(4.67102 + 10.8287i) q^{61} +(-5.83728 - 2.12460i) q^{62} +(-3.92120 + 1.42720i) q^{64} +(3.77019 + 3.99617i) q^{65} +(-0.741811 + 0.372552i) q^{67} +(-0.286265 + 4.91497i) q^{68} +(-0.378904 + 1.26563i) q^{70} +(1.25916 - 7.14107i) q^{71} +(-1.41006 - 7.99685i) q^{73} +(-8.07695 - 0.944060i) q^{74} +(2.38947 - 2.53269i) q^{76} +(-1.13190 + 2.62404i) q^{77} +(9.60774 - 6.31911i) q^{79} -0.383620 q^{80} +4.82155 q^{82} +(3.98931 - 2.62381i) q^{83} +(1.80081 - 4.17475i) q^{85} +(2.88975 - 3.06296i) q^{86} +(5.94504 + 0.694876i) q^{88} +(0.578632 + 3.28158i) q^{89} +(-1.04003 + 5.89829i) q^{91} +(-2.26002 + 7.54900i) q^{92} +(0.145207 - 2.49310i) q^{94} +(-2.87351 + 1.44313i) q^{95} +(-0.935521 - 0.991594i) q^{97} +(4.12605 - 1.50176i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{22}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.695972 + 0.457748i −0.492126 + 0.323677i −0.771200 0.636593i \(-0.780343\pi\)
0.279073 + 0.960270i \(0.409973\pi\)
\(3\) 0 0
\(4\) −0.517316 + 1.19927i −0.258658 + 0.599637i
\(5\) 0.827713 0.877324i 0.370164 0.392351i −0.515337 0.856987i \(-0.672333\pi\)
0.885502 + 0.464636i \(0.153815\pi\)
\(6\) 0 0
\(7\) 1.30600 + 0.152650i 0.493623 + 0.0576963i 0.359263 0.933236i \(-0.383028\pi\)
0.134360 + 0.990933i \(0.457102\pi\)
\(8\) −0.478230 2.71217i −0.169080 0.958899i
\(9\) 0 0
\(10\) −0.174471 + 0.989477i −0.0551727 + 0.312900i
\(11\) −0.623332 + 2.08207i −0.187942 + 0.627769i 0.811137 + 0.584856i \(0.198849\pi\)
−0.999079 + 0.0429127i \(0.986336\pi\)
\(12\) 0 0
\(13\) −0.264847 + 4.54725i −0.0734553 + 1.26118i 0.737208 + 0.675666i \(0.236144\pi\)
−0.810663 + 0.585513i \(0.800893\pi\)
\(14\) −0.978817 + 0.491580i −0.261600 + 0.131380i
\(15\) 0 0
\(16\) −0.218261 0.231343i −0.0545652 0.0578357i
\(17\) 3.54217 1.28924i 0.859102 0.312688i 0.125356 0.992112i \(-0.459993\pi\)
0.733746 + 0.679424i \(0.237770\pi\)
\(18\) 0 0
\(19\) −2.50517 0.911807i −0.574725 0.209183i 0.0382728 0.999267i \(-0.487814\pi\)
−0.612998 + 0.790084i \(0.710037\pi\)
\(20\) 0.623962 + 1.44651i 0.139522 + 0.323449i
\(21\) 0 0
\(22\) −0.519243 1.73439i −0.110703 0.369774i
\(23\) 5.99251 0.700424i 1.24952 0.146049i 0.534513 0.845160i \(-0.320495\pi\)
0.715012 + 0.699112i \(0.246421\pi\)
\(24\) 0 0
\(25\) 0.206135 + 3.53920i 0.0412269 + 0.707839i
\(26\) −1.89717 3.28599i −0.372065 0.644435i
\(27\) 0 0
\(28\) −0.858686 + 1.48729i −0.162276 + 0.281071i
\(29\) −3.71556 1.86603i −0.689963 0.346512i 0.0690270 0.997615i \(-0.478011\pi\)
−0.758990 + 0.651102i \(0.774307\pi\)
\(30\) 0 0
\(31\) 4.45311 + 5.98156i 0.799801 + 1.07432i 0.995603 + 0.0936762i \(0.0298618\pi\)
−0.195801 + 0.980644i \(0.562731\pi\)
\(32\) 5.61736 + 1.33134i 0.993018 + 0.235350i
\(33\) 0 0
\(34\) −1.87510 + 2.51870i −0.321577 + 0.431953i
\(35\) 1.21492 1.01944i 0.205359 0.172317i
\(36\) 0 0
\(37\) 7.47819 + 6.27494i 1.22941 + 1.03159i 0.998277 + 0.0586711i \(0.0186863\pi\)
0.231129 + 0.972923i \(0.425758\pi\)
\(38\) 2.16090 0.512144i 0.350545 0.0830807i
\(39\) 0 0
\(40\) −2.77529 1.82534i −0.438812 0.288611i
\(41\) −4.83588 3.18061i −0.755237 0.496727i 0.112561 0.993645i \(-0.464095\pi\)
−0.867798 + 0.496918i \(0.834465\pi\)
\(42\) 0 0
\(43\) −4.91887 + 1.16579i −0.750120 + 0.177782i −0.587856 0.808966i \(-0.700028\pi\)
−0.162264 + 0.986747i \(0.551880\pi\)
\(44\) −2.17451 1.82463i −0.327820 0.275074i
\(45\) 0 0
\(46\) −3.85000 + 3.23053i −0.567652 + 0.476316i
\(47\) −1.79025 + 2.40472i −0.261135 + 0.350765i −0.913282 0.407327i \(-0.866461\pi\)
0.652148 + 0.758092i \(0.273868\pi\)
\(48\) 0 0
\(49\) −5.12897 1.21559i −0.732710 0.173655i
\(50\) −1.76352 2.36882i −0.249400 0.335002i
\(51\) 0 0
\(52\) −5.31638 2.66999i −0.737249 0.370261i
\(53\) −6.22987 + 10.7905i −0.855739 + 1.48218i 0.0202187 + 0.999796i \(0.493564\pi\)
−0.875958 + 0.482388i \(0.839770\pi\)
\(54\) 0 0
\(55\) 1.31071 + 2.27022i 0.176737 + 0.306117i
\(56\) −0.210556 3.61511i −0.0281368 0.483090i
\(57\) 0 0
\(58\) 3.44010 0.402090i 0.451707 0.0527970i
\(59\) 3.12841 + 10.4496i 0.407284 + 1.36042i 0.878221 + 0.478256i \(0.158731\pi\)
−0.470937 + 0.882167i \(0.656084\pi\)
\(60\) 0 0
\(61\) 4.67102 + 10.8287i 0.598063 + 1.38647i 0.901152 + 0.433504i \(0.142723\pi\)
−0.303088 + 0.952962i \(0.598018\pi\)
\(62\) −5.83728 2.12460i −0.741336 0.269824i
\(63\) 0 0
\(64\) −3.92120 + 1.42720i −0.490150 + 0.178400i
\(65\) 3.77019 + 3.99617i 0.467635 + 0.495664i
\(66\) 0 0
\(67\) −0.741811 + 0.372552i −0.0906267 + 0.0455144i −0.493535 0.869726i \(-0.664296\pi\)
0.402909 + 0.915240i \(0.367999\pi\)
\(68\) −0.286265 + 4.91497i −0.0347147 + 0.596028i
\(69\) 0 0
\(70\) −0.378904 + 1.26563i −0.0452877 + 0.151271i
\(71\) 1.25916 7.14107i 0.149435 0.847489i −0.814263 0.580496i \(-0.802859\pi\)
0.963698 0.266993i \(-0.0860301\pi\)
\(72\) 0 0
\(73\) −1.41006 7.99685i −0.165035 0.935960i −0.949028 0.315191i \(-0.897931\pi\)
0.783993 0.620769i \(-0.213180\pi\)
\(74\) −8.07695 0.944060i −0.938926 0.109745i
\(75\) 0 0
\(76\) 2.38947 2.53269i 0.274091 0.290519i
\(77\) −1.13190 + 2.62404i −0.128992 + 0.299037i
\(78\) 0 0
\(79\) 9.60774 6.31911i 1.08096 0.710955i 0.121436 0.992599i \(-0.461250\pi\)
0.959519 + 0.281644i \(0.0908797\pi\)
\(80\) −0.383620 −0.0428900
\(81\) 0 0
\(82\) 4.82155 0.532451
\(83\) 3.98931 2.62381i 0.437884 0.288001i −0.311364 0.950291i \(-0.600786\pi\)
0.749248 + 0.662290i \(0.230415\pi\)
\(84\) 0 0
\(85\) 1.80081 4.17475i 0.195326 0.452816i
\(86\) 2.88975 3.06296i 0.311610 0.330288i
\(87\) 0 0
\(88\) 5.94504 + 0.694876i 0.633743 + 0.0740740i
\(89\) 0.578632 + 3.28158i 0.0613348 + 0.347847i 0.999995 + 0.00300484i \(0.000956472\pi\)
−0.938661 + 0.344842i \(0.887932\pi\)
\(90\) 0 0
\(91\) −1.04003 + 5.89829i −0.109025 + 0.618309i
\(92\) −2.26002 + 7.54900i −0.235624 + 0.787037i
\(93\) 0 0
\(94\) 0.145207 2.49310i 0.0149769 0.257144i
\(95\) −2.87351 + 1.44313i −0.294816 + 0.148062i
\(96\) 0 0
\(97\) −0.935521 0.991594i −0.0949877 0.100681i 0.678136 0.734937i \(-0.262788\pi\)
−0.773123 + 0.634256i \(0.781307\pi\)
\(98\) 4.12605 1.50176i 0.416794 0.151701i
\(99\) 0 0
\(100\) −4.35110 1.58367i −0.435110 0.158367i
\(101\) 0.916862 + 2.12552i 0.0912311 + 0.211498i 0.957722 0.287695i \(-0.0928891\pi\)
−0.866491 + 0.499193i \(0.833630\pi\)
\(102\) 0 0
\(103\) −1.30483 4.35843i −0.128569 0.429449i 0.869331 0.494230i \(-0.164550\pi\)
−0.997899 + 0.0647816i \(0.979365\pi\)
\(104\) 12.4596 1.45632i 1.22176 0.142804i
\(105\) 0 0
\(106\) −0.603492 10.3616i −0.0586164 1.00640i
\(107\) 6.14665 + 10.6463i 0.594219 + 1.02922i 0.993657 + 0.112457i \(0.0358721\pi\)
−0.399438 + 0.916760i \(0.630795\pi\)
\(108\) 0 0
\(109\) 4.45327 7.71330i 0.426546 0.738800i −0.570017 0.821633i \(-0.693063\pi\)
0.996563 + 0.0828329i \(0.0263968\pi\)
\(110\) −1.95141 0.980034i −0.186060 0.0934426i
\(111\) 0 0
\(112\) −0.249735 0.335452i −0.0235977 0.0316973i
\(113\) −16.9220 4.01058i −1.59188 0.377284i −0.663285 0.748367i \(-0.730838\pi\)
−0.928600 + 0.371083i \(0.878986\pi\)
\(114\) 0 0
\(115\) 4.34558 5.83713i 0.405227 0.544315i
\(116\) 4.16000 3.49065i 0.386246 0.324099i
\(117\) 0 0
\(118\) −6.96056 5.84061i −0.640772 0.537671i
\(119\) 4.82289 1.14305i 0.442113 0.104783i
\(120\) 0 0
\(121\) 5.24388 + 3.44896i 0.476717 + 0.313541i
\(122\) −8.20769 5.39828i −0.743089 0.488738i
\(123\) 0 0
\(124\) −9.47719 + 2.24613i −0.851076 + 0.201709i
\(125\) 7.89548 + 6.62509i 0.706193 + 0.592566i
\(126\) 0 0
\(127\) 4.35255 3.65222i 0.386226 0.324082i −0.428915 0.903345i \(-0.641104\pi\)
0.815141 + 0.579263i \(0.196660\pi\)
\(128\) −4.81901 + 6.47306i −0.425945 + 0.572143i
\(129\) 0 0
\(130\) −4.45319 1.05542i −0.390570 0.0925669i
\(131\) −11.6556 15.6562i −1.01836 1.36789i −0.928250 0.371958i \(-0.878687\pi\)
−0.0901070 0.995932i \(-0.528721\pi\)
\(132\) 0 0
\(133\) −3.13257 1.57324i −0.271628 0.136417i
\(134\) 0.345745 0.598848i 0.0298678 0.0517326i
\(135\) 0 0
\(136\) −5.19062 8.99042i −0.445092 0.770922i
\(137\) −0.921841 15.8274i −0.0787582 1.35223i −0.773879 0.633333i \(-0.781686\pi\)
0.695121 0.718893i \(-0.255351\pi\)
\(138\) 0 0
\(139\) 10.3686 1.21192i 0.879457 0.102794i 0.335633 0.941993i \(-0.391050\pi\)
0.543824 + 0.839199i \(0.316976\pi\)
\(140\) 0.594088 + 1.98439i 0.0502096 + 0.167712i
\(141\) 0 0
\(142\) 2.39247 + 5.54636i 0.200771 + 0.465440i
\(143\) −9.30261 3.38587i −0.777923 0.283141i
\(144\) 0 0
\(145\) −4.71253 + 1.71522i −0.391354 + 0.142441i
\(146\) 4.64190 + 4.92013i 0.384166 + 0.407193i
\(147\) 0 0
\(148\) −11.3940 + 5.72226i −0.936577 + 0.470367i
\(149\) 0.169499 2.91018i 0.0138859 0.238411i −0.984223 0.176935i \(-0.943382\pi\)
0.998109 0.0614769i \(-0.0195810\pi\)
\(150\) 0 0
\(151\) 3.65956 12.2238i 0.297811 0.994758i −0.669849 0.742498i \(-0.733641\pi\)
0.967659 0.252260i \(-0.0811738\pi\)
\(152\) −1.27493 + 7.23051i −0.103411 + 0.586472i
\(153\) 0 0
\(154\) −0.413378 2.34439i −0.0333110 0.188916i
\(155\) 8.93366 + 1.04420i 0.717569 + 0.0838718i
\(156\) 0 0
\(157\) 0.871963 0.924227i 0.0695902 0.0737613i −0.691643 0.722240i \(-0.743113\pi\)
0.761233 + 0.648478i \(0.224594\pi\)
\(158\) −3.79416 + 8.79584i −0.301847 + 0.699760i
\(159\) 0 0
\(160\) 5.81758 3.82628i 0.459920 0.302494i
\(161\) 7.93316 0.625221
\(162\) 0 0
\(163\) 12.3636 0.968391 0.484195 0.874960i \(-0.339112\pi\)
0.484195 + 0.874960i \(0.339112\pi\)
\(164\) 6.31609 4.15416i 0.493204 0.324385i
\(165\) 0 0
\(166\) −1.57541 + 3.65220i −0.122275 + 0.283466i
\(167\) −2.61701 + 2.77387i −0.202511 + 0.214649i −0.820667 0.571406i \(-0.806398\pi\)
0.618157 + 0.786055i \(0.287880\pi\)
\(168\) 0 0
\(169\) −7.69521 0.899441i −0.591939 0.0691877i
\(170\) 0.657669 + 3.72983i 0.0504409 + 0.286065i
\(171\) 0 0
\(172\) 1.14650 6.50215i 0.0874201 0.495784i
\(173\) 6.90339 23.0589i 0.524855 1.75314i −0.124056 0.992275i \(-0.539590\pi\)
0.648912 0.760864i \(-0.275224\pi\)
\(174\) 0 0
\(175\) −0.271045 + 4.65367i −0.0204891 + 0.351784i
\(176\) 0.617722 0.310231i 0.0465625 0.0233846i
\(177\) 0 0
\(178\) −1.90485 2.01902i −0.142774 0.151332i
\(179\) 5.95691 2.16814i 0.445240 0.162054i −0.109664 0.993969i \(-0.534977\pi\)
0.554904 + 0.831915i \(0.312755\pi\)
\(180\) 0 0
\(181\) −5.82014 2.11836i −0.432608 0.157456i 0.116532 0.993187i \(-0.462822\pi\)
−0.549140 + 0.835731i \(0.685045\pi\)
\(182\) −1.97610 4.58112i −0.146478 0.339575i
\(183\) 0 0
\(184\) −4.76547 15.9178i −0.351315 1.17347i
\(185\) 11.6950 1.36694i 0.859830 0.100500i
\(186\) 0 0
\(187\) 0.476354 + 8.17868i 0.0348344 + 0.598084i
\(188\) −1.95779 3.39100i −0.142787 0.247314i
\(189\) 0 0
\(190\) 1.33929 2.31972i 0.0971625 0.168290i
\(191\) 6.03439 + 3.03058i 0.436633 + 0.219285i 0.653517 0.756912i \(-0.273293\pi\)
−0.216884 + 0.976197i \(0.569589\pi\)
\(192\) 0 0
\(193\) −9.50172 12.7630i −0.683949 0.918703i 0.315595 0.948894i \(-0.397796\pi\)
−0.999544 + 0.0301912i \(0.990388\pi\)
\(194\) 1.10500 + 0.261889i 0.0793341 + 0.0188025i
\(195\) 0 0
\(196\) 4.11112 5.52219i 0.293651 0.394442i
\(197\) −8.88023 + 7.45140i −0.632690 + 0.530890i −0.901764 0.432229i \(-0.857727\pi\)
0.269073 + 0.963120i \(0.413283\pi\)
\(198\) 0 0
\(199\) 3.29385 + 2.76387i 0.233495 + 0.195925i 0.752026 0.659133i \(-0.229077\pi\)
−0.518531 + 0.855059i \(0.673521\pi\)
\(200\) 9.50034 2.25162i 0.671775 0.159214i
\(201\) 0 0
\(202\) −1.61106 1.05961i −0.113354 0.0745541i
\(203\) −4.56769 3.00422i −0.320589 0.210855i
\(204\) 0 0
\(205\) −6.79314 + 1.61000i −0.474453 + 0.112448i
\(206\) 2.90318 + 2.43606i 0.202274 + 0.169728i
\(207\) 0 0
\(208\) 1.10978 0.931215i 0.0769493 0.0645682i
\(209\) 3.46000 4.64759i 0.239333 0.321480i
\(210\) 0 0
\(211\) 13.8963 + 3.29348i 0.956660 + 0.226733i 0.679158 0.733992i \(-0.262345\pi\)
0.277502 + 0.960725i \(0.410493\pi\)
\(212\) −9.71789 13.0534i −0.667428 0.896511i
\(213\) 0 0
\(214\) −9.15122 4.59591i −0.625564 0.314170i
\(215\) −3.04863 + 5.28038i −0.207915 + 0.360119i
\(216\) 0 0
\(217\) 4.90269 + 8.49171i 0.332816 + 0.576455i
\(218\) 0.431392 + 7.40671i 0.0292175 + 0.501646i
\(219\) 0 0
\(220\) −3.40067 + 0.397481i −0.229273 + 0.0267982i
\(221\) 4.92438 + 16.4486i 0.331249 + 1.10645i
\(222\) 0 0
\(223\) −7.99694 18.5390i −0.535515 1.24146i −0.944376 0.328866i \(-0.893333\pi\)
0.408862 0.912596i \(-0.365926\pi\)
\(224\) 7.13306 + 2.59622i 0.476598 + 0.173467i
\(225\) 0 0
\(226\) 13.6130 4.95474i 0.905526 0.329585i
\(227\) −1.86894 1.98096i −0.124046 0.131481i 0.662374 0.749173i \(-0.269549\pi\)
−0.786420 + 0.617693i \(0.788068\pi\)
\(228\) 0 0
\(229\) 1.36418 0.685117i 0.0901476 0.0452738i −0.403154 0.915132i \(-0.632086\pi\)
0.493302 + 0.869858i \(0.335790\pi\)
\(230\) −0.352469 + 6.05165i −0.0232411 + 0.399034i
\(231\) 0 0
\(232\) −3.28410 + 10.9696i −0.215612 + 0.720193i
\(233\) −1.13347 + 6.42825i −0.0742563 + 0.421128i 0.924906 + 0.380197i \(0.124144\pi\)
−0.999162 + 0.0409317i \(0.986967\pi\)
\(234\) 0 0
\(235\) 0.627909 + 3.56105i 0.0409602 + 0.232297i
\(236\) −14.1503 1.65393i −0.921106 0.107662i
\(237\) 0 0
\(238\) −2.83337 + 3.00319i −0.183660 + 0.194668i
\(239\) −6.69279 + 15.5156i −0.432921 + 1.00362i 0.552504 + 0.833510i \(0.313672\pi\)
−0.985425 + 0.170112i \(0.945587\pi\)
\(240\) 0 0
\(241\) 10.5263 6.92323i 0.678056 0.445964i −0.163206 0.986592i \(-0.552184\pi\)
0.841262 + 0.540628i \(0.181813\pi\)
\(242\) −5.22835 −0.336091
\(243\) 0 0
\(244\) −15.4029 −0.986070
\(245\) −5.31178 + 3.49361i −0.339357 + 0.223199i
\(246\) 0 0
\(247\) 4.80970 11.1501i 0.306034 0.709466i
\(248\) 14.0934 14.9382i 0.894934 0.948574i
\(249\) 0 0
\(250\) −8.52765 0.996740i −0.539336 0.0630393i
\(251\) −4.48052 25.4103i −0.282808 1.60388i −0.713012 0.701152i \(-0.752669\pi\)
0.430204 0.902732i \(-0.358442\pi\)
\(252\) 0 0
\(253\) −2.27699 + 12.9134i −0.143153 + 0.811861i
\(254\) −1.35745 + 4.53421i −0.0851742 + 0.284502i
\(255\) 0 0
\(256\) 0.876128 15.0425i 0.0547580 0.940159i
\(257\) 12.9329 6.49515i 0.806733 0.405156i 0.00288824 0.999996i \(-0.499081\pi\)
0.803845 + 0.594839i \(0.202784\pi\)
\(258\) 0 0
\(259\) 8.80867 + 9.33664i 0.547344 + 0.580151i
\(260\) −6.74288 + 2.45421i −0.418176 + 0.152204i
\(261\) 0 0
\(262\) 15.2786 + 5.56095i 0.943914 + 0.343557i
\(263\) −4.14086 9.59959i −0.255336 0.591936i 0.741541 0.670908i \(-0.234095\pi\)
−0.996877 + 0.0789721i \(0.974836\pi\)
\(264\) 0 0
\(265\) 4.31019 + 14.3970i 0.264773 + 0.884402i
\(266\) 2.90033 0.339000i 0.177831 0.0207854i
\(267\) 0 0
\(268\) −0.0630404 1.08236i −0.00385080 0.0661157i
\(269\) 0.105374 + 0.182513i 0.00642476 + 0.0111280i 0.869220 0.494426i \(-0.164622\pi\)
−0.862795 + 0.505554i \(0.831288\pi\)
\(270\) 0 0
\(271\) 5.70846 9.88735i 0.346765 0.600614i −0.638908 0.769283i \(-0.720614\pi\)
0.985673 + 0.168669i \(0.0539470\pi\)
\(272\) −1.07137 0.538064i −0.0649616 0.0326249i
\(273\) 0 0
\(274\) 7.88653 + 10.5935i 0.476443 + 0.639974i
\(275\) −7.49735 1.77691i −0.452107 0.107151i
\(276\) 0 0
\(277\) −6.65798 + 8.94322i −0.400039 + 0.537346i −0.955808 0.293991i \(-0.905017\pi\)
0.555769 + 0.831337i \(0.312424\pi\)
\(278\) −6.66153 + 5.58969i −0.399532 + 0.335247i
\(279\) 0 0
\(280\) −3.34591 2.80755i −0.199956 0.167783i
\(281\) −21.1181 + 5.00509i −1.25980 + 0.298579i −0.805675 0.592358i \(-0.798197\pi\)
−0.454128 + 0.890937i \(0.650049\pi\)
\(282\) 0 0
\(283\) 0.247741 + 0.162942i 0.0147267 + 0.00968587i 0.556851 0.830612i \(-0.312009\pi\)
−0.542124 + 0.840298i \(0.682380\pi\)
\(284\) 7.91270 + 5.20427i 0.469533 + 0.308816i
\(285\) 0 0
\(286\) 8.02423 1.90178i 0.474483 0.112454i
\(287\) −5.83015 4.89208i −0.344143 0.288770i
\(288\) 0 0
\(289\) −2.13795 + 1.79396i −0.125762 + 0.105527i
\(290\) 2.49465 3.35090i 0.146491 0.196771i
\(291\) 0 0
\(292\) 10.3199 + 2.44585i 0.603924 + 0.143133i
\(293\) −8.66275 11.6361i −0.506083 0.679788i 0.473508 0.880790i \(-0.342988\pi\)
−0.979591 + 0.201002i \(0.935580\pi\)
\(294\) 0 0
\(295\) 11.7571 + 5.90464i 0.684526 + 0.343782i
\(296\) 13.4425 23.2830i 0.781327 1.35330i
\(297\) 0 0
\(298\) 1.21416 + 2.10299i 0.0703346 + 0.121823i
\(299\) 1.59790 + 27.4349i 0.0924091 + 1.58660i
\(300\) 0 0
\(301\) −6.60202 + 0.771665i −0.380534 + 0.0444781i
\(302\) 3.04846 + 10.1826i 0.175419 + 0.585941i
\(303\) 0 0
\(304\) 0.335840 + 0.778565i 0.0192617 + 0.0446538i
\(305\) 13.3665 + 4.86501i 0.765364 + 0.278570i
\(306\) 0 0
\(307\) −3.56052 + 1.29592i −0.203210 + 0.0739622i −0.441620 0.897202i \(-0.645596\pi\)
0.238410 + 0.971165i \(0.423374\pi\)
\(308\) −2.56139 2.71492i −0.145949 0.154697i
\(309\) 0 0
\(310\) −6.69555 + 3.36263i −0.380282 + 0.190985i
\(311\) −0.716898 + 12.3087i −0.0406516 + 0.697961i 0.914999 + 0.403457i \(0.132191\pi\)
−0.955650 + 0.294504i \(0.904846\pi\)
\(312\) 0 0
\(313\) −1.95193 + 6.51991i −0.110330 + 0.368527i −0.995266 0.0971844i \(-0.969016\pi\)
0.884937 + 0.465711i \(0.154202\pi\)
\(314\) −0.183799 + 1.04238i −0.0103724 + 0.0588246i
\(315\) 0 0
\(316\) 2.60810 + 14.7913i 0.146717 + 0.832074i
\(317\) 14.8355 + 1.73402i 0.833246 + 0.0973925i 0.522009 0.852940i \(-0.325183\pi\)
0.311237 + 0.950332i \(0.399257\pi\)
\(318\) 0 0
\(319\) 6.20123 6.57292i 0.347202 0.368013i
\(320\) −1.99351 + 4.62147i −0.111441 + 0.258348i
\(321\) 0 0
\(322\) −5.52126 + 3.63139i −0.307688 + 0.202369i
\(323\) −10.0493 −0.559156
\(324\) 0 0
\(325\) −16.1482 −0.895740
\(326\) −8.60471 + 5.65940i −0.476571 + 0.313445i
\(327\) 0 0
\(328\) −6.31370 + 14.6368i −0.348616 + 0.808182i
\(329\) −2.70515 + 2.86729i −0.149140 + 0.158079i
\(330\) 0 0
\(331\) 3.66884 + 0.428825i 0.201657 + 0.0235704i 0.216322 0.976322i \(-0.430594\pi\)
−0.0146645 + 0.999892i \(0.504668\pi\)
\(332\) 1.08293 + 6.14162i 0.0594337 + 0.337065i
\(333\) 0 0
\(334\) 0.551633 3.12847i 0.0301840 0.171182i
\(335\) −0.287158 + 0.959175i −0.0156891 + 0.0524053i
\(336\) 0 0
\(337\) −1.07246 + 18.4134i −0.0584206 + 1.00304i 0.833979 + 0.551796i \(0.186057\pi\)
−0.892400 + 0.451246i \(0.850980\pi\)
\(338\) 5.76736 2.89648i 0.313703 0.157548i
\(339\) 0 0
\(340\) 4.07508 + 4.31933i 0.221002 + 0.234249i
\(341\) −15.2298 + 5.54319i −0.824740 + 0.300181i
\(342\) 0 0
\(343\) −15.1621 5.51854i −0.818675 0.297973i
\(344\) 5.51418 + 12.7833i 0.297305 + 0.689230i
\(345\) 0 0
\(346\) 5.75061 + 19.2084i 0.309155 + 1.03265i
\(347\) 33.3689 3.90026i 1.79133 0.209377i 0.845488 0.533994i \(-0.179309\pi\)
0.945846 + 0.324617i \(0.105235\pi\)
\(348\) 0 0
\(349\) 1.91515 + 32.8819i 0.102516 + 1.76013i 0.522541 + 0.852614i \(0.324984\pi\)
−0.420026 + 0.907512i \(0.637979\pi\)
\(350\) −1.94157 3.36289i −0.103781 0.179754i
\(351\) 0 0
\(352\) −6.27342 + 10.8659i −0.334374 + 0.579154i
\(353\) 11.9223 + 5.98761i 0.634561 + 0.318688i 0.736840 0.676067i \(-0.236317\pi\)
−0.102279 + 0.994756i \(0.532613\pi\)
\(354\) 0 0
\(355\) −5.22281 7.01545i −0.277198 0.372341i
\(356\) −4.23485 1.00368i −0.224447 0.0531948i
\(357\) 0 0
\(358\) −3.15338 + 4.23572i −0.166661 + 0.223865i
\(359\) 6.91454 5.80199i 0.364936 0.306217i −0.441819 0.897104i \(-0.645667\pi\)
0.806754 + 0.590887i \(0.201222\pi\)
\(360\) 0 0
\(361\) −9.11037 7.64450i −0.479493 0.402342i
\(362\) 5.02033 1.18984i 0.263863 0.0625366i
\(363\) 0 0
\(364\) −6.53564 4.29856i −0.342561 0.225306i
\(365\) −8.18295 5.38201i −0.428315 0.281707i
\(366\) 0 0
\(367\) 24.9138 5.90467i 1.30049 0.308221i 0.478682 0.877988i \(-0.341115\pi\)
0.821806 + 0.569767i \(0.192967\pi\)
\(368\) −1.46997 1.23345i −0.0766274 0.0642980i
\(369\) 0 0
\(370\) −7.51364 + 6.30469i −0.390616 + 0.327765i
\(371\) −9.78340 + 13.1414i −0.507929 + 0.682267i
\(372\) 0 0
\(373\) −21.2782 5.04304i −1.10175 0.261118i −0.360773 0.932654i \(-0.617487\pi\)
−0.740973 + 0.671535i \(0.765635\pi\)
\(374\) −4.07530 5.47408i −0.210729 0.283058i
\(375\) 0 0
\(376\) 7.37817 + 3.70546i 0.380500 + 0.191094i
\(377\) 9.46934 16.4014i 0.487696 0.844714i
\(378\) 0 0
\(379\) −5.26717 9.12300i −0.270556 0.468617i 0.698448 0.715661i \(-0.253874\pi\)
−0.969004 + 0.247043i \(0.920541\pi\)
\(380\) −0.244196 4.19268i −0.0125270 0.215080i
\(381\) 0 0
\(382\) −5.58701 + 0.653027i −0.285856 + 0.0334118i
\(383\) −6.27198 20.9499i −0.320483 1.07049i −0.954759 0.297382i \(-0.903887\pi\)
0.634275 0.773107i \(-0.281299\pi\)
\(384\) 0 0
\(385\) 1.36525 + 3.16500i 0.0695794 + 0.161303i
\(386\) 12.4552 + 4.53331i 0.633952 + 0.230740i
\(387\) 0 0
\(388\) 1.67315 0.608977i 0.0849414 0.0309161i
\(389\) −16.7379 17.7411i −0.848643 0.899510i 0.147336 0.989086i \(-0.452930\pi\)
−0.995980 + 0.0895769i \(0.971449\pi\)
\(390\) 0 0
\(391\) 20.3235 10.2068i 1.02780 0.516181i
\(392\) −0.844062 + 14.4920i −0.0426316 + 0.731956i
\(393\) 0 0
\(394\) 2.76953 9.25087i 0.139527 0.466052i
\(395\) 2.40854 13.6595i 0.121187 0.687285i
\(396\) 0 0
\(397\) 4.16728 + 23.6338i 0.209150 + 1.18615i 0.890775 + 0.454445i \(0.150163\pi\)
−0.681625 + 0.731702i \(0.738726\pi\)
\(398\) −3.55758 0.415822i −0.178325 0.0208433i
\(399\) 0 0
\(400\) 0.773777 0.820155i 0.0386888 0.0410078i
\(401\) −14.6208 + 33.8948i −0.730127 + 1.69263i −0.00886741 + 0.999961i \(0.502823\pi\)
−0.721260 + 0.692665i \(0.756437\pi\)
\(402\) 0 0
\(403\) −28.3790 + 18.6652i −1.41366 + 0.929778i
\(404\) −3.02339 −0.150419
\(405\) 0 0
\(406\) 4.55416 0.226019
\(407\) −17.7263 + 11.6588i −0.878659 + 0.577903i
\(408\) 0 0
\(409\) −1.13089 + 2.62170i −0.0559190 + 0.129635i −0.943885 0.330274i \(-0.892859\pi\)
0.887966 + 0.459909i \(0.152118\pi\)
\(410\) 3.99086 4.23006i 0.197094 0.208908i
\(411\) 0 0
\(412\) 5.90196 + 0.689840i 0.290768 + 0.0339860i
\(413\) 2.49058 + 14.1248i 0.122553 + 0.695035i
\(414\) 0 0
\(415\) 1.00007 5.67169i 0.0490916 0.278412i
\(416\) −7.54166 + 25.1909i −0.369761 + 1.23509i
\(417\) 0 0
\(418\) −0.280640 + 4.81839i −0.0137265 + 0.235675i
\(419\) 30.7184 15.4274i 1.50069 0.753677i 0.506598 0.862182i \(-0.330903\pi\)
0.994096 + 0.108505i \(0.0346064\pi\)
\(420\) 0 0
\(421\) −4.29013 4.54727i −0.209088 0.221620i 0.614339 0.789042i \(-0.289423\pi\)
−0.823428 + 0.567421i \(0.807941\pi\)
\(422\) −11.1790 + 4.06883i −0.544186 + 0.198067i
\(423\) 0 0
\(424\) 32.2449 + 11.7362i 1.56595 + 0.569960i
\(425\) 5.29305 + 12.2707i 0.256751 + 0.595215i
\(426\) 0 0
\(427\) 4.44738 + 14.8553i 0.215224 + 0.718898i
\(428\) −15.9476 + 1.86401i −0.770856 + 0.0901001i
\(429\) 0 0
\(430\) −0.295323 5.07050i −0.0142417 0.244521i
\(431\) −1.50862 2.61301i −0.0726679 0.125864i 0.827402 0.561610i \(-0.189818\pi\)
−0.900070 + 0.435746i \(0.856485\pi\)
\(432\) 0 0
\(433\) −15.3659 + 26.6146i −0.738439 + 1.27901i 0.214759 + 0.976667i \(0.431104\pi\)
−0.953198 + 0.302347i \(0.902230\pi\)
\(434\) −7.29919 3.66579i −0.350372 0.175964i
\(435\) 0 0
\(436\) 6.94660 + 9.33090i 0.332682 + 0.446869i
\(437\) −15.6509 3.70933i −0.748684 0.177441i
\(438\) 0 0
\(439\) 0.273278 0.367076i 0.0130428 0.0175196i −0.795554 0.605883i \(-0.792820\pi\)
0.808597 + 0.588363i \(0.200227\pi\)
\(440\) 5.53042 4.64057i 0.263652 0.221231i
\(441\) 0 0
\(442\) −10.9565 9.19361i −0.521148 0.437296i
\(443\) −33.9676 + 8.05047i −1.61385 + 0.382489i −0.935801 0.352528i \(-0.885322\pi\)
−0.678048 + 0.735018i \(0.737174\pi\)
\(444\) 0 0
\(445\) 3.35795 + 2.20856i 0.159182 + 0.104696i
\(446\) 14.0518 + 9.24203i 0.665373 + 0.437623i
\(447\) 0 0
\(448\) −5.33896 + 1.26536i −0.252242 + 0.0597825i
\(449\) −5.48196 4.59991i −0.258710 0.217083i 0.504202 0.863586i \(-0.331787\pi\)
−0.762912 + 0.646502i \(0.776231\pi\)
\(450\) 0 0
\(451\) 9.63661 8.08607i 0.453770 0.380758i
\(452\) 13.5638 18.2193i 0.637987 0.856965i
\(453\) 0 0
\(454\) 2.20751 + 0.523189i 0.103603 + 0.0245545i
\(455\) 4.31387 + 5.79453i 0.202237 + 0.271652i
\(456\) 0 0
\(457\) −11.3334 5.69186i −0.530155 0.266254i 0.163522 0.986540i \(-0.447714\pi\)
−0.693677 + 0.720286i \(0.744011\pi\)
\(458\) −0.635820 + 1.10127i −0.0297099 + 0.0514591i
\(459\) 0 0
\(460\) 4.75227 + 8.23117i 0.221576 + 0.383780i
\(461\) −0.0268522 0.461034i −0.00125063 0.0214725i 0.997625 0.0688777i \(-0.0219418\pi\)
−0.998876 + 0.0474052i \(0.984905\pi\)
\(462\) 0 0
\(463\) −36.8501 + 4.30715i −1.71257 + 0.200170i −0.915110 0.403205i \(-0.867896\pi\)
−0.797457 + 0.603375i \(0.793822\pi\)
\(464\) 0.379270 + 1.26685i 0.0176072 + 0.0588120i
\(465\) 0 0
\(466\) −2.15365 4.99272i −0.0997659 0.231283i
\(467\) −25.8480 9.40792i −1.19611 0.435347i −0.334242 0.942487i \(-0.608480\pi\)
−0.861863 + 0.507141i \(0.830702\pi\)
\(468\) 0 0
\(469\) −1.02568 + 0.373316i −0.0473614 + 0.0172381i
\(470\) −2.06707 2.19096i −0.0953467 0.101062i
\(471\) 0 0
\(472\) 26.8451 13.4821i 1.23564 0.620564i
\(473\) 0.638820 10.9681i 0.0293730 0.504315i
\(474\) 0 0
\(475\) 2.71066 9.05424i 0.124374 0.415437i
\(476\) −1.12413 + 6.37527i −0.0515245 + 0.292210i
\(477\) 0 0
\(478\) −2.44425 13.8620i −0.111798 0.634035i
\(479\) 14.1641 + 1.65554i 0.647173 + 0.0756436i 0.433346 0.901228i \(-0.357333\pi\)
0.213827 + 0.976871i \(0.431407\pi\)
\(480\) 0 0
\(481\) −30.5143 + 32.3433i −1.39133 + 1.47473i
\(482\) −4.15689 + 9.63674i −0.189341 + 0.438942i
\(483\) 0 0
\(484\) −6.84898 + 4.50465i −0.311317 + 0.204757i
\(485\) −1.64429 −0.0746634
\(486\) 0 0
\(487\) 9.07752 0.411342 0.205671 0.978621i \(-0.434062\pi\)
0.205671 + 0.978621i \(0.434062\pi\)
\(488\) 27.1354 17.8472i 1.22836 0.807905i
\(489\) 0 0
\(490\) 2.09766 4.86291i 0.0947624 0.219684i
\(491\) 19.1344 20.2813i 0.863524 0.915282i −0.133602 0.991035i \(-0.542654\pi\)
0.997127 + 0.0757527i \(0.0241359\pi\)
\(492\) 0 0
\(493\) −15.5669 1.81951i −0.701098 0.0819467i
\(494\) 1.75653 + 9.96180i 0.0790302 + 0.448203i
\(495\) 0 0
\(496\) 0.411853 2.33573i 0.0184927 0.104878i
\(497\) 2.73455 9.13405i 0.122662 0.409718i
\(498\) 0 0
\(499\) 1.38333 23.7509i 0.0619266 1.06324i −0.814022 0.580834i \(-0.802727\pi\)
0.875949 0.482404i \(-0.160236\pi\)
\(500\) −12.0298 + 6.04157i −0.537987 + 0.270187i
\(501\) 0 0
\(502\) 14.7498 + 15.6339i 0.658317 + 0.697775i
\(503\) 7.57016 2.75531i 0.337537 0.122853i −0.167690 0.985840i \(-0.553631\pi\)
0.505227 + 0.862986i \(0.331409\pi\)
\(504\) 0 0
\(505\) 2.62367 + 0.954939i 0.116752 + 0.0424942i
\(506\) −4.32638 10.0297i −0.192331 0.445873i
\(507\) 0 0
\(508\) 2.12837 + 7.10924i 0.0944310 + 0.315422i
\(509\) 19.1743 2.24115i 0.849884 0.0993372i 0.320011 0.947414i \(-0.396313\pi\)
0.529874 + 0.848077i \(0.322239\pi\)
\(510\) 0 0
\(511\) −0.620825 10.6592i −0.0274637 0.471533i
\(512\) −1.79397 3.10725i −0.0792832 0.137323i
\(513\) 0 0
\(514\) −6.02780 + 10.4405i −0.265875 + 0.460509i
\(515\) −4.90378 2.46277i −0.216086 0.108523i
\(516\) 0 0
\(517\) −3.89088 5.22637i −0.171121 0.229855i
\(518\) −10.4044 2.46589i −0.457144 0.108345i
\(519\) 0 0
\(520\) 9.03530 12.1365i 0.396224 0.532221i
\(521\) 2.04454 1.71557i 0.0895727 0.0751604i −0.596902 0.802314i \(-0.703602\pi\)
0.686474 + 0.727154i \(0.259157\pi\)
\(522\) 0 0
\(523\) 11.7693 + 9.87562i 0.514636 + 0.431831i 0.862757 0.505619i \(-0.168736\pi\)
−0.348121 + 0.937450i \(0.613180\pi\)
\(524\) 24.8057 5.87906i 1.08364 0.256828i
\(525\) 0 0
\(526\) 7.27611 + 4.78557i 0.317253 + 0.208661i
\(527\) 23.4853 + 15.4465i 1.02304 + 0.672862i
\(528\) 0 0
\(529\) 13.0396 3.09043i 0.566938 0.134367i
\(530\) −9.58997 8.04694i −0.416562 0.349537i
\(531\) 0 0
\(532\) 3.50727 2.94295i 0.152059 0.127593i
\(533\) 15.7438 21.1475i 0.681938 0.916002i
\(534\) 0 0
\(535\) 14.4279 + 3.41948i 0.623774 + 0.147837i
\(536\) 1.36518 + 1.83376i 0.0589668 + 0.0792062i
\(537\) 0 0
\(538\) −0.156882 0.0787892i −0.00676368 0.00339685i
\(539\) 5.72799 9.92117i 0.246722 0.427335i
\(540\) 0 0
\(541\) 9.39421 + 16.2713i 0.403889 + 0.699556i 0.994191 0.107626i \(-0.0343250\pi\)
−0.590303 + 0.807182i \(0.700992\pi\)
\(542\) 0.552983 + 9.49435i 0.0237527 + 0.407817i
\(543\) 0 0
\(544\) 21.6140 2.52632i 0.926695 0.108315i
\(545\) −3.08103 10.2914i −0.131977 0.440833i
\(546\) 0 0
\(547\) −4.53941 10.5235i −0.194091 0.449954i 0.793182 0.608984i \(-0.208423\pi\)
−0.987274 + 0.159030i \(0.949163\pi\)
\(548\) 19.4583 + 7.08223i 0.831216 + 0.302538i
\(549\) 0 0
\(550\) 6.03132 2.19522i 0.257176 0.0936045i
\(551\) 7.60666 + 8.06259i 0.324055 + 0.343478i
\(552\) 0 0
\(553\) 13.5124 6.78616i 0.574604 0.288577i
\(554\) 0.540027 9.27191i 0.0229436 0.393926i
\(555\) 0 0
\(556\) −3.91044 + 13.0618i −0.165840 + 0.553943i
\(557\) 4.33665 24.5943i 0.183750 1.04210i −0.743802 0.668400i \(-0.766979\pi\)
0.927551 0.373695i \(-0.121909\pi\)
\(558\) 0 0
\(559\) −3.99840 22.6761i −0.169114 0.959095i
\(560\) −0.501009 0.0585596i −0.0211715 0.00247459i
\(561\) 0 0
\(562\) 12.4066 13.1502i 0.523339 0.554707i
\(563\) −6.96357 + 16.1434i −0.293479 + 0.680362i −0.999616 0.0277141i \(-0.991177\pi\)
0.706137 + 0.708076i \(0.250436\pi\)
\(564\) 0 0
\(565\) −17.5251 + 11.5264i −0.737287 + 0.484921i
\(566\) −0.247007 −0.0103825
\(567\) 0 0
\(568\) −19.9700 −0.837922
\(569\) −13.3587 + 8.78615i −0.560026 + 0.368335i −0.797741 0.603000i \(-0.793972\pi\)
0.237715 + 0.971335i \(0.423601\pi\)
\(570\) 0 0
\(571\) 4.09156 9.48530i 0.171226 0.396947i −0.810896 0.585190i \(-0.801020\pi\)
0.982123 + 0.188243i \(0.0602791\pi\)
\(572\) 8.87297 9.40480i 0.370998 0.393235i
\(573\) 0 0
\(574\) 6.29696 + 0.736009i 0.262830 + 0.0307204i
\(575\) 3.71420 + 21.0643i 0.154893 + 0.878441i
\(576\) 0 0
\(577\) 6.79785 38.5525i 0.282998 1.60496i −0.429351 0.903138i \(-0.641258\pi\)
0.712349 0.701825i \(-0.247631\pi\)
\(578\) 0.666776 2.22719i 0.0277342 0.0926387i
\(579\) 0 0
\(580\) 0.380849 6.53892i 0.0158139 0.271514i
\(581\) 5.61058 2.81774i 0.232766 0.116900i
\(582\) 0 0
\(583\) −18.5832 19.6971i −0.769639 0.815770i
\(584\) −21.0145 + 7.64866i −0.869587 + 0.316504i
\(585\) 0 0
\(586\) 11.3554 + 4.13304i 0.469088 + 0.170734i
\(587\) −7.05091 16.3458i −0.291022 0.674665i 0.708496 0.705715i \(-0.249374\pi\)
−0.999518 + 0.0310501i \(0.990115\pi\)
\(588\) 0 0
\(589\) −5.70176 19.0452i −0.234937 0.784743i
\(590\) −10.8855 + 1.27233i −0.448147 + 0.0523809i
\(591\) 0 0
\(592\) −0.180531 3.09960i −0.00741978 0.127393i
\(593\) 6.92687 + 11.9977i 0.284452 + 0.492686i 0.972476 0.233002i \(-0.0748549\pi\)
−0.688024 + 0.725688i \(0.741522\pi\)
\(594\) 0 0
\(595\) 2.98914 5.17735i 0.122543 0.212251i
\(596\) 3.40242 + 1.70876i 0.139369 + 0.0699935i
\(597\) 0 0
\(598\) −13.6704 18.3625i −0.559023 0.750898i
\(599\) 3.52152 + 0.834615i 0.143885 + 0.0341014i 0.301927 0.953331i \(-0.402370\pi\)
−0.158042 + 0.987432i \(0.550518\pi\)
\(600\) 0 0
\(601\) −6.20029 + 8.32844i −0.252915 + 0.339724i −0.910389 0.413753i \(-0.864218\pi\)
0.657474 + 0.753477i \(0.271625\pi\)
\(602\) 4.24159 3.55912i 0.172874 0.145059i
\(603\) 0 0
\(604\) 12.7665 + 10.7124i 0.519462 + 0.435880i
\(605\) 7.36628 1.74584i 0.299482 0.0709785i
\(606\) 0 0
\(607\) −11.2230 7.38148i −0.455527 0.299605i 0.300932 0.953646i \(-0.402702\pi\)
−0.756459 + 0.654041i \(0.773073\pi\)
\(608\) −12.8585 8.45717i −0.521481 0.342984i
\(609\) 0 0
\(610\) −11.5297 + 2.73258i −0.466822 + 0.110639i
\(611\) −10.4607 8.77758i −0.423195 0.355103i
\(612\) 0 0
\(613\) 22.2652 18.6827i 0.899281 0.754587i −0.0707686 0.997493i \(-0.522545\pi\)
0.970050 + 0.242906i \(0.0781007\pi\)
\(614\) 1.88481 2.53175i 0.0760649 0.102173i
\(615\) 0 0
\(616\) 7.65817 + 1.81502i 0.308557 + 0.0731292i
\(617\) 7.42289 + 9.97068i 0.298834 + 0.401404i 0.926025 0.377461i \(-0.123203\pi\)
−0.627191 + 0.778866i \(0.715795\pi\)
\(618\) 0 0
\(619\) 30.8888 + 15.5129i 1.24153 + 0.623518i 0.943605 0.331073i \(-0.107411\pi\)
0.297921 + 0.954591i \(0.403707\pi\)
\(620\) −5.87380 + 10.1737i −0.235898 + 0.408586i
\(621\) 0 0
\(622\) −5.13533 8.89464i −0.205908 0.356643i
\(623\) 0.254762 + 4.37409i 0.0102068 + 0.175244i
\(624\) 0 0
\(625\) −5.25856 + 0.614638i −0.210343 + 0.0245855i
\(626\) −1.62598 5.43116i −0.0649874 0.217073i
\(627\) 0 0
\(628\) 0.657320 + 1.52384i 0.0262299 + 0.0608078i
\(629\) 34.5789 + 12.5857i 1.37875 + 0.501825i
\(630\) 0 0
\(631\) 12.4258 4.52262i 0.494663 0.180042i −0.0826292 0.996580i \(-0.526332\pi\)
0.577292 + 0.816538i \(0.304109\pi\)
\(632\) −21.7332 23.0359i −0.864502 0.916318i
\(633\) 0 0
\(634\) −11.1189 + 5.58410i −0.441586 + 0.221773i
\(635\) 0.398477 6.84158i 0.0158131 0.271500i
\(636\) 0 0
\(637\) 6.88597 23.0007i 0.272832 0.911323i
\(638\) −1.30714 + 7.41317i −0.0517502 + 0.293490i
\(639\) 0 0
\(640\) 1.69021 + 9.58567i 0.0668115 + 0.378907i
\(641\) 5.23723 + 0.612144i 0.206858 + 0.0241782i 0.218891 0.975749i \(-0.429756\pi\)
−0.0120327 + 0.999928i \(0.503830\pi\)
\(642\) 0 0
\(643\) −3.00341 + 3.18343i −0.118443 + 0.125542i −0.783882 0.620910i \(-0.786763\pi\)
0.665439 + 0.746453i \(0.268245\pi\)
\(644\) −4.10395 + 9.51403i −0.161718 + 0.374905i
\(645\) 0 0
\(646\) 6.99401 4.60003i 0.275176 0.180986i
\(647\) 5.42624 0.213327 0.106664 0.994295i \(-0.465983\pi\)
0.106664 + 0.994295i \(0.465983\pi\)
\(648\) 0 0
\(649\) −23.7069 −0.930576
\(650\) 11.2387 7.39180i 0.440817 0.289930i
\(651\) 0 0
\(652\) −6.39588 + 14.8273i −0.250482 + 0.580683i
\(653\) −7.61797 + 8.07457i −0.298114 + 0.315982i −0.859065 0.511867i \(-0.828954\pi\)
0.560951 + 0.827849i \(0.310436\pi\)
\(654\) 0 0
\(655\) −23.3831 2.73309i −0.913653 0.106791i
\(656\) 0.319672 + 1.81295i 0.0124811 + 0.0707837i
\(657\) 0 0
\(658\) 0.570212 3.23383i 0.0222292 0.126068i
\(659\) 2.13247 7.12294i 0.0830691 0.277470i −0.906356 0.422515i \(-0.861147\pi\)
0.989425 + 0.145045i \(0.0463326\pi\)
\(660\) 0 0
\(661\) 0.222789 3.82514i 0.00866548 0.148781i −0.991200 0.132373i \(-0.957740\pi\)
0.999865 0.0164071i \(-0.00522278\pi\)
\(662\) −2.74970 + 1.38095i −0.106870 + 0.0536722i
\(663\) 0 0
\(664\) −9.02405 9.56493i −0.350201 0.371191i
\(665\) −3.97311 + 1.44609i −0.154071 + 0.0560771i
\(666\) 0 0
\(667\) −23.5726 8.57971i −0.912733 0.332208i
\(668\) −1.97281 4.57348i −0.0763302 0.176953i
\(669\) 0 0
\(670\) −0.239206 0.799005i −0.00924134 0.0308682i
\(671\) −25.4576 + 2.97557i −0.982781 + 0.114871i
\(672\) 0 0
\(673\) −2.44739 42.0201i −0.0943400 1.61975i −0.630880 0.775880i \(-0.717306\pi\)
0.536540 0.843875i \(-0.319731\pi\)
\(674\) −7.68230 13.3061i −0.295911 0.512533i
\(675\) 0 0
\(676\) 5.05953 8.76336i 0.194597 0.337052i
\(677\) −2.22728 1.11858i −0.0856012 0.0429906i 0.405484 0.914102i \(-0.367103\pi\)
−0.491085 + 0.871112i \(0.663399\pi\)
\(678\) 0 0
\(679\) −1.07043 1.43783i −0.0410792 0.0551789i
\(680\) −12.1839 2.88763i −0.467230 0.110735i
\(681\) 0 0
\(682\) 8.06213 10.8293i 0.308715 0.414676i
\(683\) −11.7411 + 9.85194i −0.449260 + 0.376974i −0.839161 0.543883i \(-0.816954\pi\)
0.389901 + 0.920857i \(0.372509\pi\)
\(684\) 0 0
\(685\) −14.6488 12.2918i −0.559701 0.469645i
\(686\) 13.0785 3.09966i 0.499338 0.118345i
\(687\) 0 0
\(688\) 1.34329 + 0.883498i 0.0512126 + 0.0336831i
\(689\) −47.4169 31.1866i −1.80644 1.18811i
\(690\) 0 0
\(691\) 36.1088 8.55795i 1.37364 0.325560i 0.523462 0.852049i \(-0.324640\pi\)
0.850182 + 0.526489i \(0.176492\pi\)
\(692\) 24.0827 + 20.2078i 0.915488 + 0.768186i
\(693\) 0 0
\(694\) −21.4384 + 17.9890i −0.813792 + 0.682853i
\(695\) 7.51902 10.0998i 0.285213 0.383107i
\(696\) 0 0
\(697\) −21.2301 5.03162i −0.804146 0.190586i
\(698\) −16.3845 22.0082i −0.620162 0.833023i
\(699\) 0 0
\(700\) −5.44080 2.73247i −0.205643 0.103278i
\(701\) −3.35489 + 5.81083i −0.126712 + 0.219472i −0.922401 0.386234i \(-0.873776\pi\)
0.795689 + 0.605706i \(0.207109\pi\)
\(702\) 0 0
\(703\) −13.0126 22.5385i −0.490779 0.850054i
\(704\) −0.527326 9.05384i −0.0198743 0.341229i
\(705\) 0 0
\(706\) −11.0384 + 1.29021i −0.415436 + 0.0485575i
\(707\) 0.872964 + 2.91590i 0.0328312 + 0.109664i
\(708\) 0 0
\(709\) −9.41920 21.8362i −0.353745 0.820074i −0.998451 0.0556428i \(-0.982279\pi\)
0.644705 0.764431i \(-0.276980\pi\)
\(710\) 6.84623 + 2.49182i 0.256934 + 0.0935165i
\(711\) 0 0
\(712\) 8.62351 3.13870i 0.323180 0.117628i
\(713\) 30.8749 + 32.7255i 1.15627 + 1.22558i
\(714\) 0 0
\(715\) −10.6704 + 5.35888i −0.399050 + 0.200411i
\(716\) −0.481415 + 8.26557i −0.0179913 + 0.308899i
\(717\) 0 0
\(718\) −2.15648 + 7.20314i −0.0804790 + 0.268819i
\(719\) −7.41202 + 42.0356i −0.276422 + 1.56766i 0.457988 + 0.888958i \(0.348570\pi\)
−0.734410 + 0.678706i \(0.762541\pi\)
\(720\) 0 0
\(721\) −1.03880 5.89131i −0.0386868 0.219404i
\(722\) 9.83981 + 1.15011i 0.366200 + 0.0428026i
\(723\) 0 0
\(724\) 5.55134 5.88408i 0.206314 0.218680i
\(725\) 5.83833 13.5348i 0.216830 0.502668i
\(726\) 0 0
\(727\) −15.9209 + 10.4713i −0.590472 + 0.388360i −0.809293 0.587405i \(-0.800149\pi\)
0.218821 + 0.975765i \(0.429779\pi\)
\(728\) 16.4946 0.611329
\(729\) 0 0
\(730\) 8.15871 0.301967
\(731\) −15.9205 + 10.4711i −0.588840 + 0.387286i
\(732\) 0 0
\(733\) −7.11488 + 16.4941i −0.262794 + 0.609225i −0.997614 0.0690370i \(-0.978007\pi\)
0.734820 + 0.678262i \(0.237267\pi\)
\(734\) −14.6364 + 15.5137i −0.540240 + 0.572621i
\(735\) 0 0
\(736\) 34.5946 + 4.04353i 1.27517 + 0.149046i
\(737\) −0.313285 1.77673i −0.0115400 0.0654466i
\(738\) 0 0
\(739\) 2.16602 12.2841i 0.0796782 0.451878i −0.918700 0.394955i \(-0.870760\pi\)
0.998379 0.0569224i \(-0.0181288\pi\)
\(740\) −4.41065 + 14.7326i −0.162139 + 0.541580i
\(741\) 0 0
\(742\) 0.793529 13.6244i 0.0291314 0.500166i
\(743\) −23.1603 + 11.6315i −0.849668 + 0.426719i −0.819674 0.572831i \(-0.805845\pi\)
−0.0299942 + 0.999550i \(0.509549\pi\)
\(744\) 0 0
\(745\) −2.41288 2.55750i −0.0884010 0.0936996i
\(746\) 17.1175 6.23026i 0.626716 0.228106i
\(747\) 0 0
\(748\) −10.0549 3.65968i −0.367643 0.133811i
\(749\) 6.40239 + 14.8424i 0.233938 + 0.542330i
\(750\) 0 0
\(751\) −3.01027 10.0550i −0.109846 0.366913i 0.885336 0.464951i \(-0.153928\pi\)
−0.995183 + 0.0980389i \(0.968743\pi\)
\(752\) 0.947056 0.110695i 0.0345356 0.00403663i
\(753\) 0 0
\(754\) 0.917302 + 15.7495i 0.0334062 + 0.573562i
\(755\) −7.69516 13.3284i −0.280056 0.485070i
\(756\) 0 0
\(757\) −0.0864170 + 0.149679i −0.00314088 + 0.00544016i −0.867592 0.497277i \(-0.834333\pi\)
0.864451 + 0.502718i \(0.167666\pi\)
\(758\) 7.84184 + 3.93832i 0.284828 + 0.143046i
\(759\) 0 0
\(760\) 5.28822 + 7.10331i 0.191824 + 0.257664i
\(761\) 1.82265 + 0.431977i 0.0660711 + 0.0156591i 0.263518 0.964654i \(-0.415117\pi\)
−0.197447 + 0.980313i \(0.563265\pi\)
\(762\) 0 0
\(763\) 6.99343 9.39380i 0.253179 0.340079i
\(764\) −6.75618 + 5.66911i −0.244430 + 0.205101i
\(765\) 0 0
\(766\) 13.9549 + 11.7095i 0.504211 + 0.423083i
\(767\) −48.3455 + 11.4581i −1.74565 + 0.413728i
\(768\) 0 0
\(769\) 23.3184 + 15.3368i 0.840885 + 0.553059i 0.895302 0.445460i \(-0.146960\pi\)
−0.0544173 + 0.998518i \(0.517330\pi\)
\(770\) −2.39895 1.57781i −0.0864520 0.0568604i
\(771\) 0 0
\(772\) 20.2217 4.79264i 0.727797 0.172491i
\(773\) 0.0418155 + 0.0350873i 0.00150400 + 0.00126200i 0.643539 0.765413i \(-0.277465\pi\)
−0.642035 + 0.766675i \(0.721910\pi\)
\(774\) 0 0
\(775\) −20.2520 + 16.9934i −0.727472 + 0.610422i
\(776\) −2.24198 + 3.01150i −0.0804825 + 0.108107i
\(777\) 0 0
\(778\) 19.7700 + 4.68558i 0.708790 + 0.167986i
\(779\) 9.21459 + 12.3773i 0.330147 + 0.443464i
\(780\) 0 0
\(781\) 14.0833 + 7.07292i 0.503942 + 0.253089i