Properties

Label 729.2.g.c.109.4
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.4
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.c.622.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.388502 - 0.411788i) q^{2} +(0.0976541 - 1.67666i) q^{4} +(1.51980 - 0.177639i) q^{5} +(-1.38566 - 0.695905i) q^{7} +(-1.59573 + 1.33897i) q^{8} +O(q^{10})\) \(q+(-0.388502 - 0.411788i) q^{2} +(0.0976541 - 1.67666i) q^{4} +(1.51980 - 0.177639i) q^{5} +(-1.38566 - 0.695905i) q^{7} +(-1.59573 + 1.33897i) q^{8} +(-0.663594 - 0.556821i) q^{10} +(0.219760 + 0.509460i) q^{11} +(-2.50971 - 0.594813i) q^{13} +(0.251767 + 0.840960i) q^{14} +(-2.16496 - 0.253048i) q^{16} +(0.994500 - 5.64009i) q^{17} +(-1.11056 - 6.29830i) q^{19} +(-0.149425 - 2.56552i) q^{20} +(0.124413 - 0.288421i) q^{22} +(4.93448 - 2.47819i) q^{23} +(-2.58700 + 0.613129i) q^{25} +(0.730091 + 1.26456i) q^{26} +(-1.30211 + 2.25532i) q^{28} +(-1.93433 + 6.46110i) q^{29} +(-0.637429 - 0.419244i) q^{31} +(3.22474 + 4.33158i) q^{32} +(-2.70889 + 1.78166i) q^{34} +(-2.22954 - 0.811488i) q^{35} +(-7.41710 + 2.69960i) q^{37} +(-2.16211 + 2.90422i) q^{38} +(-2.18733 + 2.31843i) q^{40} +(-0.471839 + 0.500120i) q^{41} +(4.70771 - 6.32356i) q^{43} +(0.875649 - 0.318710i) q^{44} +(-2.93754 - 1.06918i) q^{46} +(-4.72615 + 3.10844i) q^{47} +(-2.74434 - 3.68628i) q^{49} +(1.25753 + 0.827092i) q^{50} +(-1.24238 + 4.14984i) q^{52} +(5.99254 - 10.3794i) q^{53} +(0.424490 + 0.735238i) q^{55} +(3.14294 - 0.744890i) q^{56} +(3.41210 - 1.71362i) q^{58} +(-0.926748 + 2.14844i) q^{59} +(-0.637878 - 10.9520i) q^{61} +(0.0750029 + 0.425363i) q^{62} +(-0.226129 + 1.28244i) q^{64} +(-3.91991 - 0.458172i) q^{65} +(2.89108 + 9.65687i) q^{67} +(-9.35937 - 2.21821i) q^{68} +(0.532022 + 1.23336i) q^{70} +(-5.17589 - 4.34309i) q^{71} +(5.85966 - 4.91684i) q^{73} +(3.99322 + 2.00547i) q^{74} +(-10.6685 + 1.24697i) q^{76} +(0.0500235 - 0.858871i) q^{77} +(3.31160 + 3.51009i) q^{79} -3.33526 q^{80} +0.389254 q^{82} +(6.22581 + 6.59897i) q^{83} +(0.509539 - 8.74845i) q^{85} +(-4.43292 + 0.518134i) q^{86} +(-1.03283 - 0.518707i) q^{88} +(-10.4080 + 8.73338i) q^{89} +(3.06368 + 2.57073i) q^{91} +(-3.67319 - 8.51542i) q^{92} +(3.11613 + 0.738537i) q^{94} +(-2.80665 - 9.37486i) q^{95} +(6.78651 + 0.793230i) q^{97} +(-0.451787 + 2.56221i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.388502 0.411788i −0.274712 0.291178i 0.575298 0.817944i \(-0.304886\pi\)
−0.850011 + 0.526766i \(0.823405\pi\)
\(3\) 0 0
\(4\) 0.0976541 1.67666i 0.0488270 0.838328i
\(5\) 1.51980 0.177639i 0.679674 0.0794425i 0.230751 0.973013i \(-0.425882\pi\)
0.448923 + 0.893570i \(0.351808\pi\)
\(6\) 0 0
\(7\) −1.38566 0.695905i −0.523731 0.263028i 0.167232 0.985918i \(-0.446517\pi\)
−0.690963 + 0.722890i \(0.742813\pi\)
\(8\) −1.59573 + 1.33897i −0.564175 + 0.473399i
\(9\) 0 0
\(10\) −0.663594 0.556821i −0.209847 0.176082i
\(11\) 0.219760 + 0.509460i 0.0662600 + 0.153608i 0.948128 0.317888i \(-0.102974\pi\)
−0.881868 + 0.471496i \(0.843714\pi\)
\(12\) 0 0
\(13\) −2.50971 0.594813i −0.696069 0.164971i −0.132675 0.991160i \(-0.542357\pi\)
−0.563394 + 0.826188i \(0.690505\pi\)
\(14\) 0.251767 + 0.840960i 0.0672875 + 0.224756i
\(15\) 0 0
\(16\) −2.16496 0.253048i −0.541241 0.0632620i
\(17\) 0.994500 5.64009i 0.241202 1.36792i −0.587949 0.808898i \(-0.700065\pi\)
0.829151 0.559025i \(-0.188824\pi\)
\(18\) 0 0
\(19\) −1.11056 6.29830i −0.254780 1.44493i −0.796637 0.604458i \(-0.793390\pi\)
0.541857 0.840471i \(-0.317721\pi\)
\(20\) −0.149425 2.56552i −0.0334124 0.573668i
\(21\) 0 0
\(22\) 0.124413 0.288421i 0.0265248 0.0614915i
\(23\) 4.93448 2.47819i 1.02891 0.516738i 0.147486 0.989064i \(-0.452882\pi\)
0.881424 + 0.472326i \(0.156586\pi\)
\(24\) 0 0
\(25\) −2.58700 + 0.613129i −0.517399 + 0.122626i
\(26\) 0.730091 + 1.26456i 0.143183 + 0.248000i
\(27\) 0 0
\(28\) −1.30211 + 2.25532i −0.246075 + 0.426215i
\(29\) −1.93433 + 6.46110i −0.359196 + 1.19980i 0.567306 + 0.823507i \(0.307986\pi\)
−0.926502 + 0.376290i \(0.877200\pi\)
\(30\) 0 0
\(31\) −0.637429 0.419244i −0.114486 0.0752984i 0.490975 0.871174i \(-0.336641\pi\)
−0.605461 + 0.795875i \(0.707011\pi\)
\(32\) 3.22474 + 4.33158i 0.570059 + 0.765722i
\(33\) 0 0
\(34\) −2.70889 + 1.78166i −0.464570 + 0.305553i
\(35\) −2.22954 0.811488i −0.376862 0.137166i
\(36\) 0 0
\(37\) −7.41710 + 2.69960i −1.21936 + 0.443812i −0.869942 0.493153i \(-0.835844\pi\)
−0.349422 + 0.936966i \(0.613622\pi\)
\(38\) −2.16211 + 2.90422i −0.350740 + 0.471126i
\(39\) 0 0
\(40\) −2.18733 + 2.31843i −0.345847 + 0.366576i
\(41\) −0.471839 + 0.500120i −0.0736889 + 0.0781056i −0.763169 0.646199i \(-0.776358\pi\)
0.689480 + 0.724305i \(0.257839\pi\)
\(42\) 0 0
\(43\) 4.70771 6.32356i 0.717920 0.964333i −0.282068 0.959394i \(-0.591020\pi\)
0.999988 0.00493908i \(-0.00157216\pi\)
\(44\) 0.875649 0.318710i 0.132009 0.0480474i
\(45\) 0 0
\(46\) −2.93754 1.06918i −0.433117 0.157642i
\(47\) −4.72615 + 3.10844i −0.689379 + 0.453412i −0.845254 0.534365i \(-0.820551\pi\)
0.155875 + 0.987777i \(0.450180\pi\)
\(48\) 0 0
\(49\) −2.74434 3.68628i −0.392048 0.526612i
\(50\) 1.25753 + 0.827092i 0.177842 + 0.116968i
\(51\) 0 0
\(52\) −1.24238 + 4.14984i −0.172287 + 0.575479i
\(53\) 5.99254 10.3794i 0.823138 1.42572i −0.0801956 0.996779i \(-0.525555\pi\)
0.903334 0.428938i \(-0.141112\pi\)
\(54\) 0 0
\(55\) 0.424490 + 0.735238i 0.0572382 + 0.0991395i
\(56\) 3.14294 0.744890i 0.419993 0.0995401i
\(57\) 0 0
\(58\) 3.41210 1.71362i 0.448030 0.225009i
\(59\) −0.926748 + 2.14844i −0.120652 + 0.279703i −0.967829 0.251607i \(-0.919041\pi\)
0.847177 + 0.531310i \(0.178300\pi\)
\(60\) 0 0
\(61\) −0.637878 10.9520i −0.0816720 1.40225i −0.751498 0.659735i \(-0.770668\pi\)
0.669826 0.742518i \(-0.266369\pi\)
\(62\) 0.0750029 + 0.425363i 0.00952538 + 0.0540211i
\(63\) 0 0
\(64\) −0.226129 + 1.28244i −0.0282661 + 0.160305i
\(65\) −3.91991 0.458172i −0.486206 0.0568293i
\(66\) 0 0
\(67\) 2.89108 + 9.65687i 0.353201 + 1.17977i 0.931436 + 0.363904i \(0.118556\pi\)
−0.578235 + 0.815870i \(0.696258\pi\)
\(68\) −9.35937 2.21821i −1.13499 0.268998i
\(69\) 0 0
\(70\) 0.532022 + 1.23336i 0.0635887 + 0.147415i
\(71\) −5.17589 4.34309i −0.614265 0.515430i 0.281730 0.959494i \(-0.409092\pi\)
−0.895995 + 0.444064i \(0.853536\pi\)
\(72\) 0 0
\(73\) 5.85966 4.91684i 0.685821 0.575472i −0.231880 0.972744i \(-0.574488\pi\)
0.917701 + 0.397272i \(0.130043\pi\)
\(74\) 3.99322 + 2.00547i 0.464203 + 0.233131i
\(75\) 0 0
\(76\) −10.6685 + 1.24697i −1.22376 + 0.143037i
\(77\) 0.0500235 0.858871i 0.00570071 0.0978774i
\(78\) 0 0
\(79\) 3.31160 + 3.51009i 0.372584 + 0.394916i 0.886351 0.463014i \(-0.153232\pi\)
−0.513767 + 0.857930i \(0.671750\pi\)
\(80\) −3.33526 −0.372893
\(81\) 0 0
\(82\) 0.389254 0.0429859
\(83\) 6.22581 + 6.59897i 0.683371 + 0.724331i 0.972486 0.232963i \(-0.0748422\pi\)
−0.289114 + 0.957295i \(0.593361\pi\)
\(84\) 0 0
\(85\) 0.509539 8.74845i 0.0552673 0.948903i
\(86\) −4.43292 + 0.518134i −0.478014 + 0.0558719i
\(87\) 0 0
\(88\) −1.03283 0.518707i −0.110100 0.0552943i
\(89\) −10.4080 + 8.73338i −1.10325 + 0.925736i −0.997639 0.0686717i \(-0.978124\pi\)
−0.105610 + 0.994408i \(0.533679\pi\)
\(90\) 0 0
\(91\) 3.06368 + 2.57073i 0.321161 + 0.269486i
\(92\) −3.67319 8.51542i −0.382957 0.887794i
\(93\) 0 0
\(94\) 3.11613 + 0.738537i 0.321405 + 0.0761743i
\(95\) −2.80665 9.37486i −0.287956 0.961840i
\(96\) 0 0
\(97\) 6.78651 + 0.793230i 0.689066 + 0.0805403i 0.453418 0.891298i \(-0.350205\pi\)
0.235648 + 0.971838i \(0.424279\pi\)
\(98\) −0.451787 + 2.56221i −0.0456374 + 0.258823i
\(99\) 0 0
\(100\) 0.775376 + 4.39737i 0.0775376 + 0.439737i
\(101\) −1.02027 17.5174i −0.101521 1.74305i −0.537653 0.843166i \(-0.680689\pi\)
0.436132 0.899883i \(-0.356348\pi\)
\(102\) 0 0
\(103\) 0.794793 1.84254i 0.0783133 0.181551i −0.874561 0.484915i \(-0.838851\pi\)
0.952875 + 0.303364i \(0.0981099\pi\)
\(104\) 4.80125 2.41128i 0.470802 0.236445i
\(105\) 0 0
\(106\) −6.60222 + 1.56475i −0.641264 + 0.151982i
\(107\) 10.0295 + 17.3715i 0.969584 + 1.67937i 0.696760 + 0.717304i \(0.254624\pi\)
0.272823 + 0.962064i \(0.412043\pi\)
\(108\) 0 0
\(109\) 3.01856 5.22830i 0.289126 0.500780i −0.684476 0.729036i \(-0.739969\pi\)
0.973601 + 0.228256i \(0.0733022\pi\)
\(110\) 0.137847 0.460441i 0.0131432 0.0439014i
\(111\) 0 0
\(112\) 2.82381 + 1.85725i 0.266825 + 0.175494i
\(113\) −0.116771 0.156851i −0.0109849 0.0147553i 0.796597 0.604511i \(-0.206631\pi\)
−0.807582 + 0.589756i \(0.799224\pi\)
\(114\) 0 0
\(115\) 7.05918 4.64290i 0.658272 0.432952i
\(116\) 10.6441 + 3.87415i 0.988284 + 0.359706i
\(117\) 0 0
\(118\) 1.24475 0.453051i 0.114588 0.0417067i
\(119\) −5.30301 + 7.12318i −0.486126 + 0.652980i
\(120\) 0 0
\(121\) 7.33740 7.77719i 0.667037 0.707018i
\(122\) −4.26207 + 4.51753i −0.385869 + 0.408998i
\(123\) 0 0
\(124\) −0.765175 + 1.02781i −0.0687147 + 0.0922999i
\(125\) −11.0121 + 4.00808i −0.984954 + 0.358494i
\(126\) 0 0
\(127\) 2.47378 + 0.900382i 0.219512 + 0.0798959i 0.449435 0.893313i \(-0.351625\pi\)
−0.229923 + 0.973209i \(0.573847\pi\)
\(128\) 9.63945 6.33997i 0.852015 0.560379i
\(129\) 0 0
\(130\) 1.33422 + 1.79218i 0.117019 + 0.157184i
\(131\) 7.65077 + 5.03199i 0.668451 + 0.439647i 0.837850 0.545900i \(-0.183812\pi\)
−0.169399 + 0.985548i \(0.554183\pi\)
\(132\) 0 0
\(133\) −2.84416 + 9.50015i −0.246620 + 0.823768i
\(134\) 2.85339 4.94222i 0.246496 0.426943i
\(135\) 0 0
\(136\) 5.96498 + 10.3317i 0.511493 + 0.885932i
\(137\) 10.3872 2.46181i 0.887438 0.210327i 0.238477 0.971148i \(-0.423352\pi\)
0.648961 + 0.760822i \(0.275204\pi\)
\(138\) 0 0
\(139\) 2.20466 1.10722i 0.186997 0.0939134i −0.352837 0.935685i \(-0.614783\pi\)
0.539834 + 0.841771i \(0.318487\pi\)
\(140\) −1.57831 + 3.65893i −0.133391 + 0.309236i
\(141\) 0 0
\(142\) 0.222412 + 3.81867i 0.0186644 + 0.320456i
\(143\) −0.248500 1.40931i −0.0207806 0.117853i
\(144\) 0 0
\(145\) −1.79204 + 10.1632i −0.148821 + 0.844006i
\(146\) −4.30118 0.502736i −0.355969 0.0416068i
\(147\) 0 0
\(148\) 3.80200 + 12.6995i 0.312522 + 1.04390i
\(149\) 1.15987 + 0.274895i 0.0950204 + 0.0225203i 0.277851 0.960624i \(-0.410378\pi\)
−0.182831 + 0.983144i \(0.558526\pi\)
\(150\) 0 0
\(151\) 5.97206 + 13.8448i 0.485999 + 1.12667i 0.968102 + 0.250558i \(0.0806140\pi\)
−0.482102 + 0.876115i \(0.660127\pi\)
\(152\) 10.2054 + 8.56335i 0.827768 + 0.694580i
\(153\) 0 0
\(154\) −0.373107 + 0.313074i −0.0300658 + 0.0252282i
\(155\) −1.04324 0.523933i −0.0837948 0.0420833i
\(156\) 0 0
\(157\) 0.220147 0.0257314i 0.0175696 0.00205359i −0.107304 0.994226i \(-0.534222\pi\)
0.124873 + 0.992173i \(0.460148\pi\)
\(158\) 0.158850 2.72735i 0.0126375 0.216977i
\(159\) 0 0
\(160\) 5.67041 + 6.01028i 0.448285 + 0.475155i
\(161\) −8.56210 −0.674788
\(162\) 0 0
\(163\) 17.3001 1.35505 0.677524 0.735501i \(-0.263053\pi\)
0.677524 + 0.735501i \(0.263053\pi\)
\(164\) 0.792452 + 0.839950i 0.0618801 + 0.0655891i
\(165\) 0 0
\(166\) 0.298639 5.12743i 0.0231789 0.397966i
\(167\) −0.0920849 + 0.0107632i −0.00712574 + 0.000832880i −0.119655 0.992816i \(-0.538179\pi\)
0.112529 + 0.993648i \(0.464105\pi\)
\(168\) 0 0
\(169\) −5.67237 2.84877i −0.436336 0.219136i
\(170\) −3.80047 + 3.18897i −0.291482 + 0.244583i
\(171\) 0 0
\(172\) −10.1427 8.51073i −0.773374 0.648937i
\(173\) 3.19933 + 7.41688i 0.243241 + 0.563895i 0.995477 0.0949977i \(-0.0302844\pi\)
−0.752237 + 0.658893i \(0.771025\pi\)
\(174\) 0 0
\(175\) 4.01138 + 0.950715i 0.303232 + 0.0718673i
\(176\) −0.346854 1.15857i −0.0261451 0.0873307i
\(177\) 0 0
\(178\) 7.63984 + 0.892969i 0.572630 + 0.0669309i
\(179\) 3.38574 19.2015i 0.253062 1.43519i −0.547936 0.836520i \(-0.684586\pi\)
0.800998 0.598667i \(-0.204303\pi\)
\(180\) 0 0
\(181\) −1.07822 6.11490i −0.0801436 0.454517i −0.998299 0.0582970i \(-0.981433\pi\)
0.918156 0.396220i \(-0.129678\pi\)
\(182\) −0.131649 2.26032i −0.00975845 0.167546i
\(183\) 0 0
\(184\) −4.55585 + 10.5616i −0.335862 + 0.778615i
\(185\) −10.7929 + 5.42042i −0.793512 + 0.398517i
\(186\) 0 0
\(187\) 3.09195 0.732806i 0.226106 0.0535881i
\(188\) 4.75025 + 8.22767i 0.346447 + 0.600064i
\(189\) 0 0
\(190\) −2.77007 + 4.79790i −0.200962 + 0.348076i
\(191\) 2.51720 8.40803i 0.182138 0.608384i −0.817342 0.576152i \(-0.804553\pi\)
0.999480 0.0322315i \(-0.0102614\pi\)
\(192\) 0 0
\(193\) 11.5993 + 7.62896i 0.834934 + 0.549145i 0.893461 0.449141i \(-0.148270\pi\)
−0.0585270 + 0.998286i \(0.518640\pi\)
\(194\) −2.30993 3.10278i −0.165843 0.222766i
\(195\) 0 0
\(196\) −6.44862 + 4.24133i −0.460616 + 0.302952i
\(197\) 11.0092 + 4.00701i 0.784371 + 0.285488i 0.702994 0.711196i \(-0.251846\pi\)
0.0813770 + 0.996683i \(0.474068\pi\)
\(198\) 0 0
\(199\) 6.43206 2.34108i 0.455957 0.165955i −0.103824 0.994596i \(-0.533108\pi\)
0.559780 + 0.828641i \(0.310886\pi\)
\(200\) 3.30718 4.44231i 0.233853 0.314119i
\(201\) 0 0
\(202\) −6.81709 + 7.22569i −0.479649 + 0.508398i
\(203\) 7.17664 7.60679i 0.503701 0.533892i
\(204\) 0 0
\(205\) −0.628259 + 0.843898i −0.0438795 + 0.0589404i
\(206\) −1.06751 + 0.388543i −0.0743772 + 0.0270711i
\(207\) 0 0
\(208\) 5.28292 + 1.92283i 0.366305 + 0.133324i
\(209\) 2.96467 1.94990i 0.205071 0.134877i
\(210\) 0 0
\(211\) 4.27769 + 5.74593i 0.294488 + 0.395566i 0.924601 0.380938i \(-0.124399\pi\)
−0.630113 + 0.776504i \(0.716991\pi\)
\(212\) −16.8174 11.0610i −1.15503 0.759673i
\(213\) 0 0
\(214\) 3.25692 10.8789i 0.222639 0.743665i
\(215\) 6.03146 10.4468i 0.411342 0.712466i
\(216\) 0 0
\(217\) 0.591507 + 1.02452i 0.0401541 + 0.0695490i
\(218\) −3.32567 + 0.788198i −0.225243 + 0.0533835i
\(219\) 0 0
\(220\) 1.27419 0.639924i 0.0859061 0.0431437i
\(221\) −5.85070 + 13.5635i −0.393561 + 0.912377i
\(222\) 0 0
\(223\) 0.198760 + 3.41258i 0.0133099 + 0.228523i 0.998403 + 0.0564987i \(0.0179937\pi\)
−0.985093 + 0.172024i \(0.944969\pi\)
\(224\) −1.45403 8.24622i −0.0971515 0.550974i
\(225\) 0 0
\(226\) −0.0192235 + 0.109022i −0.00127873 + 0.00725202i
\(227\) 5.60340 + 0.654943i 0.371911 + 0.0434701i 0.299995 0.953941i \(-0.403015\pi\)
0.0719151 + 0.997411i \(0.477089\pi\)
\(228\) 0 0
\(229\) −2.35125 7.85374i −0.155375 0.518989i 0.844487 0.535576i \(-0.179905\pi\)
−0.999862 + 0.0165863i \(0.994720\pi\)
\(230\) −4.65440 1.10311i −0.306902 0.0727371i
\(231\) 0 0
\(232\) −5.56459 12.9002i −0.365333 0.846938i
\(233\) −0.223451 0.187498i −0.0146388 0.0122834i 0.635439 0.772151i \(-0.280819\pi\)
−0.650078 + 0.759868i \(0.725264\pi\)
\(234\) 0 0
\(235\) −6.63061 + 5.56374i −0.432533 + 0.362938i
\(236\) 3.51170 + 1.76364i 0.228592 + 0.114803i
\(237\) 0 0
\(238\) 4.99347 0.583653i 0.323678 0.0378326i
\(239\) 0.971145 16.6739i 0.0628181 1.07855i −0.808712 0.588204i \(-0.799835\pi\)
0.871530 0.490341i \(-0.163128\pi\)
\(240\) 0 0
\(241\) −14.7816 15.6675i −0.952163 1.00923i −0.999946 0.0103764i \(-0.996697\pi\)
0.0477828 0.998858i \(-0.484784\pi\)
\(242\) −6.05315 −0.389111
\(243\) 0 0
\(244\) −18.4249 −1.17954
\(245\) −4.82566 5.11490i −0.308300 0.326779i
\(246\) 0 0
\(247\) −0.959122 + 16.4675i −0.0610275 + 1.04780i
\(248\) 1.57852 0.184502i 0.100236 0.0117159i
\(249\) 0 0
\(250\) 5.92871 + 2.97751i 0.374965 + 0.188314i
\(251\) −10.4865 + 8.79918i −0.661899 + 0.555399i −0.910655 0.413167i \(-0.864423\pi\)
0.248756 + 0.968566i \(0.419978\pi\)
\(252\) 0 0
\(253\) 2.34694 + 1.96931i 0.147551 + 0.123810i
\(254\) −0.590301 1.36847i −0.0370388 0.0858656i
\(255\) 0 0
\(256\) −3.82143 0.905695i −0.238839 0.0566059i
\(257\) 2.14362 + 7.16020i 0.133716 + 0.446641i 0.998454 0.0555810i \(-0.0177011\pi\)
−0.864739 + 0.502222i \(0.832516\pi\)
\(258\) 0 0
\(259\) 12.1563 + 1.42086i 0.755353 + 0.0882881i
\(260\) −1.15099 + 6.52760i −0.0713815 + 0.404825i
\(261\) 0 0
\(262\) −0.900226 5.10544i −0.0556162 0.315415i
\(263\) 1.61650 + 27.7542i 0.0996775 + 1.71140i 0.564036 + 0.825750i \(0.309248\pi\)
−0.464359 + 0.885647i \(0.653715\pi\)
\(264\) 0 0
\(265\) 7.26366 16.8391i 0.446203 1.03442i
\(266\) 5.01701 2.51964i 0.307613 0.154489i
\(267\) 0 0
\(268\) 16.4736 3.90431i 1.00628 0.238493i
\(269\) 12.3392 + 21.3722i 0.752337 + 1.30309i 0.946688 + 0.322153i \(0.104407\pi\)
−0.194351 + 0.980932i \(0.562260\pi\)
\(270\) 0 0
\(271\) 2.61782 4.53419i 0.159021 0.275432i −0.775495 0.631354i \(-0.782500\pi\)
0.934516 + 0.355921i \(0.115833\pi\)
\(272\) −3.58027 + 11.9589i −0.217086 + 0.725117i
\(273\) 0 0
\(274\) −5.04919 3.32090i −0.305033 0.200623i
\(275\) −0.880882 1.18323i −0.0531192 0.0713514i
\(276\) 0 0
\(277\) −0.378193 + 0.248742i −0.0227234 + 0.0149454i −0.560820 0.827938i \(-0.689514\pi\)
0.538096 + 0.842883i \(0.319144\pi\)
\(278\) −1.31246 0.477695i −0.0787159 0.0286502i
\(279\) 0 0
\(280\) 4.64431 1.69039i 0.277550 0.101020i
\(281\) 8.30803 11.1596i 0.495616 0.665727i −0.481989 0.876177i \(-0.660085\pi\)
0.977605 + 0.210450i \(0.0674929\pi\)
\(282\) 0 0
\(283\) 10.6410 11.2788i 0.632540 0.670453i −0.329249 0.944243i \(-0.606796\pi\)
0.961790 + 0.273790i \(0.0882772\pi\)
\(284\) −7.78731 + 8.25407i −0.462092 + 0.489789i
\(285\) 0 0
\(286\) −0.483796 + 0.649850i −0.0286074 + 0.0384265i
\(287\) 1.00185 0.364642i 0.0591371 0.0215241i
\(288\) 0 0
\(289\) −14.8468 5.40379i −0.873341 0.317870i
\(290\) 4.88129 3.21047i 0.286639 0.188526i
\(291\) 0 0
\(292\) −7.67162 10.3048i −0.448948 0.603041i
\(293\) 10.6137 + 6.98073i 0.620058 + 0.407819i 0.820305 0.571927i \(-0.193804\pi\)
−0.200246 + 0.979746i \(0.564174\pi\)
\(294\) 0 0
\(295\) −1.02682 + 3.42982i −0.0597839 + 0.199692i
\(296\) 8.22097 14.2391i 0.477834 0.827633i
\(297\) 0 0
\(298\) −0.337414 0.584419i −0.0195459 0.0338545i
\(299\) −13.8582 + 3.28445i −0.801439 + 0.189944i
\(300\) 0 0
\(301\) −10.9239 + 5.48619i −0.629643 + 0.316219i
\(302\) 3.38096 7.83795i 0.194552 0.451023i
\(303\) 0 0
\(304\) 0.810551 + 13.9166i 0.0464883 + 0.798173i
\(305\) −2.91494 16.5314i −0.166909 0.946587i
\(306\) 0 0
\(307\) 2.09466 11.8794i 0.119548 0.677993i −0.864849 0.502032i \(-0.832586\pi\)
0.984397 0.175960i \(-0.0563031\pi\)
\(308\) −1.43515 0.167744i −0.0817750 0.00955813i
\(309\) 0 0
\(310\) 0.189550 + 0.633142i 0.0107657 + 0.0359600i
\(311\) 18.9624 + 4.49416i 1.07526 + 0.254840i 0.729846 0.683611i \(-0.239592\pi\)
0.345410 + 0.938452i \(0.387740\pi\)
\(312\) 0 0
\(313\) −7.31968 16.9689i −0.413733 0.959141i −0.989895 0.141805i \(-0.954709\pi\)
0.576162 0.817336i \(-0.304550\pi\)
\(314\) −0.0961233 0.0806570i −0.00542455 0.00455174i
\(315\) 0 0
\(316\) 6.20860 5.20964i 0.349261 0.293065i
\(317\) −15.8725 7.97145i −0.891486 0.447721i −0.0567610 0.998388i \(-0.518077\pi\)
−0.834725 + 0.550667i \(0.814374\pi\)
\(318\) 0 0
\(319\) −3.71676 + 0.434427i −0.208099 + 0.0243232i
\(320\) −0.115859 + 1.98922i −0.00647669 + 0.111201i
\(321\) 0 0
\(322\) 3.32639 + 3.52577i 0.185373 + 0.196483i
\(323\) −36.6274 −2.03800
\(324\) 0 0
\(325\) 6.85731 0.380375
\(326\) −6.72112 7.12397i −0.372249 0.394560i
\(327\) 0 0
\(328\) 0.0832784 1.42984i 0.00459828 0.0789495i
\(329\) 8.71202 1.01829i 0.480309 0.0561401i
\(330\) 0 0
\(331\) −9.22416 4.63255i −0.507005 0.254628i 0.176860 0.984236i \(-0.443406\pi\)
−0.683865 + 0.729608i \(0.739702\pi\)
\(332\) 11.6722 9.79412i 0.640594 0.537522i
\(333\) 0 0
\(334\) 0.0402073 + 0.0337380i 0.00220005 + 0.00184606i
\(335\) 6.10928 + 14.1629i 0.333786 + 0.773803i
\(336\) 0 0
\(337\) −26.9086 6.37746i −1.46581 0.347402i −0.581207 0.813756i \(-0.697419\pi\)
−0.884598 + 0.466353i \(0.845567\pi\)
\(338\) 1.03064 + 3.44257i 0.0560593 + 0.187251i
\(339\) 0 0
\(340\) −14.6184 1.70864i −0.792793 0.0926642i
\(341\) 0.0735067 0.416877i 0.00398061 0.0225752i
\(342\) 0 0
\(343\) 3.12222 + 17.7070i 0.168584 + 0.956088i
\(344\) 0.954852 + 16.3942i 0.0514822 + 0.883915i
\(345\) 0 0
\(346\) 1.81124 4.19892i 0.0973727 0.225735i
\(347\) −16.4381 + 8.25552i −0.882443 + 0.443180i −0.831502 0.555522i \(-0.812519\pi\)
−0.0509416 + 0.998702i \(0.516222\pi\)
\(348\) 0 0
\(349\) −1.06469 + 0.252335i −0.0569913 + 0.0135072i −0.259013 0.965874i \(-0.583397\pi\)
0.202021 + 0.979381i \(0.435249\pi\)
\(350\) −1.16694 2.02119i −0.0623754 0.108037i
\(351\) 0 0
\(352\) −1.49810 + 2.59478i −0.0798489 + 0.138302i
\(353\) 6.48166 21.6503i 0.344984 1.15233i −0.592870 0.805298i \(-0.702005\pi\)
0.937854 0.347029i \(-0.112809\pi\)
\(354\) 0 0
\(355\) −8.63781 5.68118i −0.458447 0.301525i
\(356\) 13.6265 + 18.3035i 0.722202 + 0.970085i
\(357\) 0 0
\(358\) −9.22231 + 6.06561i −0.487414 + 0.320577i
\(359\) 1.21503 + 0.442236i 0.0641270 + 0.0233403i 0.373884 0.927475i \(-0.378026\pi\)
−0.309758 + 0.950816i \(0.600248\pi\)
\(360\) 0 0
\(361\) −20.5811 + 7.49089i −1.08321 + 0.394257i
\(362\) −2.09915 + 2.81965i −0.110329 + 0.148197i
\(363\) 0 0
\(364\) 4.60941 4.88569i 0.241599 0.256080i
\(365\) 8.03207 8.51350i 0.420418 0.445617i
\(366\) 0 0
\(367\) −16.2845 + 21.8739i −0.850046 + 1.14181i 0.138421 + 0.990373i \(0.455797\pi\)
−0.988467 + 0.151436i \(0.951610\pi\)
\(368\) −11.3101 + 4.11653i −0.589578 + 0.214589i
\(369\) 0 0
\(370\) 6.42514 + 2.33856i 0.334027 + 0.121576i
\(371\) −15.5267 + 10.2121i −0.806106 + 0.530184i
\(372\) 0 0
\(373\) 3.58766 + 4.81906i 0.185762 + 0.249521i 0.885242 0.465130i \(-0.153993\pi\)
−0.699480 + 0.714652i \(0.746585\pi\)
\(374\) −1.50299 0.988532i −0.0777177 0.0511158i
\(375\) 0 0
\(376\) 3.37953 11.2884i 0.174286 0.582155i
\(377\) 8.69775 15.0649i 0.447957 0.775884i
\(378\) 0 0
\(379\) −12.1466 21.0386i −0.623931 1.08068i −0.988747 0.149601i \(-0.952201\pi\)
0.364815 0.931080i \(-0.381132\pi\)
\(380\) −15.9925 + 3.79029i −0.820397 + 0.194438i
\(381\) 0 0
\(382\) −4.44027 + 2.22999i −0.227184 + 0.114096i
\(383\) 9.87965 22.9036i 0.504827 1.17032i −0.455195 0.890392i \(-0.650430\pi\)
0.960021 0.279928i \(-0.0903105\pi\)
\(384\) 0 0
\(385\) −0.0765432 1.31420i −0.00390100 0.0669776i
\(386\) −1.36483 7.74031i −0.0694678 0.393971i
\(387\) 0 0
\(388\) 1.99270 11.3012i 0.101164 0.573731i
\(389\) −7.03720 0.822530i −0.356800 0.0417039i −0.0641951 0.997937i \(-0.520448\pi\)
−0.292605 + 0.956233i \(0.594522\pi\)
\(390\) 0 0
\(391\) −9.06986 30.2954i −0.458682 1.53211i
\(392\) 9.31505 + 2.20771i 0.470481 + 0.111506i
\(393\) 0 0
\(394\) −2.62705 6.09018i −0.132349 0.306819i
\(395\) 5.65649 + 4.74636i 0.284609 + 0.238815i
\(396\) 0 0
\(397\) −8.11749 + 6.81138i −0.407405 + 0.341854i −0.823348 0.567537i \(-0.807896\pi\)
0.415942 + 0.909391i \(0.363452\pi\)
\(398\) −3.46290 1.73913i −0.173579 0.0871748i
\(399\) 0 0
\(400\) 5.75591 0.672769i 0.287795 0.0336384i
\(401\) −2.16882 + 37.2372i −0.108306 + 1.85954i 0.309370 + 0.950942i \(0.399882\pi\)
−0.417675 + 0.908596i \(0.637155\pi\)
\(402\) 0 0
\(403\) 1.35039 + 1.43133i 0.0672678 + 0.0712997i
\(404\) −29.4703 −1.46620
\(405\) 0 0
\(406\) −5.92053 −0.293831
\(407\) −3.00532 3.18545i −0.148968 0.157897i
\(408\) 0 0
\(409\) −0.145832 + 2.50384i −0.00721094 + 0.123807i 0.992782 + 0.119937i \(0.0382691\pi\)
−0.999993 + 0.00387063i \(0.998768\pi\)
\(410\) 0.591587 0.0691466i 0.0292164 0.00341491i
\(411\) 0 0
\(412\) −3.01169 1.51253i −0.148375 0.0745168i
\(413\) 2.77927 2.33209i 0.136759 0.114754i
\(414\) 0 0
\(415\) 10.6342 + 8.92316i 0.522013 + 0.438021i
\(416\) −5.51669 12.7891i −0.270478 0.627039i
\(417\) 0 0
\(418\) −1.95473 0.463279i −0.0956088 0.0226597i
\(419\) 1.70938 + 5.70974i 0.0835088 + 0.278939i 0.989537 0.144278i \(-0.0460860\pi\)
−0.906028 + 0.423217i \(0.860901\pi\)
\(420\) 0 0
\(421\) −37.4970 4.38277i −1.82749 0.213603i −0.868239 0.496147i \(-0.834748\pi\)
−0.959255 + 0.282543i \(0.908822\pi\)
\(422\) 0.704216 3.99380i 0.0342807 0.194415i
\(423\) 0 0
\(424\) 4.33526 + 24.5865i 0.210539 + 1.19403i
\(425\) 0.885337 + 15.2006i 0.0429451 + 0.737339i
\(426\) 0 0
\(427\) −6.73764 + 15.6196i −0.326057 + 0.755885i
\(428\) 30.1055 15.1195i 1.45520 0.730830i
\(429\) 0 0
\(430\) −6.64510 + 1.57492i −0.320455 + 0.0759493i
\(431\) 3.59352 + 6.22416i 0.173094 + 0.299807i 0.939500 0.342549i \(-0.111290\pi\)
−0.766406 + 0.642356i \(0.777957\pi\)
\(432\) 0 0
\(433\) 0.408870 0.708184i 0.0196490 0.0340331i −0.856034 0.516920i \(-0.827078\pi\)
0.875683 + 0.482887i \(0.160412\pi\)
\(434\) 0.192084 0.641604i 0.00922031 0.0307980i
\(435\) 0 0
\(436\) −8.47128 5.57165i −0.405701 0.266834i
\(437\) −21.0884 28.3266i −1.00879 1.35505i
\(438\) 0 0
\(439\) 26.6153 17.5051i 1.27028 0.835475i 0.278130 0.960544i \(-0.410285\pi\)
0.992148 + 0.125069i \(0.0399151\pi\)
\(440\) −1.66183 0.604858i −0.0792249 0.0288355i
\(441\) 0 0
\(442\) 7.85828 2.86018i 0.373780 0.136045i
\(443\) −4.15638 + 5.58298i −0.197475 + 0.265255i −0.889820 0.456311i \(-0.849170\pi\)
0.692345 + 0.721567i \(0.256578\pi\)
\(444\) 0 0
\(445\) −14.2667 + 15.1218i −0.676307 + 0.716844i
\(446\) 1.32804 1.40764i 0.0628845 0.0666537i
\(447\) 0 0
\(448\) 1.20579 1.61966i 0.0569684 0.0765218i
\(449\) 0.124194 0.0452028i 0.00586106 0.00213325i −0.339088 0.940755i \(-0.610118\pi\)
0.344949 + 0.938621i \(0.387896\pi\)
\(450\) 0 0
\(451\) −0.358482 0.130477i −0.0168803 0.00614392i
\(452\) −0.274388 + 0.180468i −0.0129061 + 0.00848849i
\(453\) 0 0
\(454\) −1.90723 2.56186i −0.0895109 0.120234i
\(455\) 5.11283 + 3.36276i 0.239693 + 0.157649i
\(456\) 0 0
\(457\) 3.25090 10.8588i 0.152071 0.507951i −0.847675 0.530516i \(-0.821998\pi\)
0.999745 + 0.0225649i \(0.00718325\pi\)
\(458\) −2.32061 + 4.01941i −0.108435 + 0.187815i
\(459\) 0 0
\(460\) −7.09518 12.2892i −0.330814 0.572987i
\(461\) −2.65502 + 0.629252i −0.123657 + 0.0293072i −0.291978 0.956425i \(-0.594313\pi\)
0.168322 + 0.985732i \(0.446165\pi\)
\(462\) 0 0
\(463\) −26.1753 + 13.1457i −1.21647 + 0.610933i −0.937036 0.349232i \(-0.886443\pi\)
−0.279432 + 0.960165i \(0.590146\pi\)
\(464\) 5.82272 13.4986i 0.270313 0.626656i
\(465\) 0 0
\(466\) 0.00960187 + 0.164858i 0.000444798 + 0.00763689i
\(467\) −4.38748 24.8826i −0.203028 1.15143i −0.900512 0.434831i \(-0.856808\pi\)
0.697484 0.716600i \(-0.254303\pi\)
\(468\) 0 0
\(469\) 2.71421 15.3931i 0.125331 0.710786i
\(470\) 4.86709 + 0.568881i 0.224502 + 0.0262405i
\(471\) 0 0
\(472\) −1.39787 4.66922i −0.0643423 0.214918i
\(473\) 4.25616 + 1.00873i 0.195699 + 0.0463814i
\(474\) 0 0
\(475\) 6.73468 + 15.6128i 0.309009 + 0.716362i
\(476\) 11.4253 + 9.58692i 0.523675 + 0.439416i
\(477\) 0 0
\(478\) −7.24341 + 6.07794i −0.331306 + 0.277999i
\(479\) −2.17396 1.09180i −0.0993307 0.0498858i 0.398440 0.917194i \(-0.369552\pi\)
−0.497771 + 0.867309i \(0.665848\pi\)
\(480\) 0 0
\(481\) 20.2205 2.36344i 0.921977 0.107764i
\(482\) −0.709039 + 12.1737i −0.0322959 + 0.554498i
\(483\) 0 0
\(484\) −12.3231 13.0618i −0.560143 0.593717i
\(485\) 10.4550 0.474739
\(486\) 0 0
\(487\) −36.5650 −1.65692 −0.828458 0.560051i \(-0.810782\pi\)
−0.828458 + 0.560051i \(0.810782\pi\)
\(488\) 15.6823 + 16.6222i 0.709902 + 0.752453i
\(489\) 0 0
\(490\) −0.231477 + 3.97430i −0.0104570 + 0.179541i
\(491\) −6.53557 + 0.763899i −0.294946 + 0.0344743i −0.262279 0.964992i \(-0.584474\pi\)
−0.0326670 + 0.999466i \(0.510400\pi\)
\(492\) 0 0
\(493\) 34.5175 + 17.3353i 1.55459 + 0.780745i
\(494\) 7.15374 6.00270i 0.321862 0.270074i
\(495\) 0 0
\(496\) 1.27392 + 1.06895i 0.0572008 + 0.0479972i
\(497\) 4.14966 + 9.61998i 0.186137 + 0.431515i
\(498\) 0 0
\(499\) 31.8682 + 7.55291i 1.42662 + 0.338115i 0.870164 0.492763i \(-0.164013\pi\)
0.556455 + 0.830878i \(0.312161\pi\)
\(500\) 5.64480 + 18.8549i 0.252443 + 0.843218i
\(501\) 0 0
\(502\) 7.69741 + 0.899698i 0.343552 + 0.0401555i
\(503\) −0.367724 + 2.08547i −0.0163960 + 0.0929864i −0.991908 0.126961i \(-0.959478\pi\)
0.975512 + 0.219948i \(0.0705887\pi\)
\(504\) 0 0
\(505\) −4.66238 26.4417i −0.207473 1.17664i
\(506\) −0.100850 1.73152i −0.00448331 0.0769755i
\(507\) 0 0
\(508\) 1.75120 4.05975i 0.0776971 0.180122i
\(509\) −40.0232 + 20.1004i −1.77400 + 0.890934i −0.832412 + 0.554158i \(0.813040\pi\)
−0.941585 + 0.336777i \(0.890663\pi\)
\(510\) 0 0
\(511\) −11.5412 + 2.73530i −0.510551 + 0.121003i
\(512\) −10.4258 18.0581i −0.460761 0.798062i
\(513\) 0 0
\(514\) 2.11568 3.66447i 0.0933188 0.161633i
\(515\) 0.880618 2.94147i 0.0388047 0.129617i
\(516\) 0 0
\(517\) −2.62224 1.72467i −0.115326 0.0758511i
\(518\) −4.13764 5.55781i −0.181797 0.244196i
\(519\) 0 0
\(520\) 6.86860 4.51755i 0.301208 0.198108i
\(521\) 33.1780 + 12.0758i 1.45356 + 0.529051i 0.943582 0.331139i \(-0.107433\pi\)
0.509973 + 0.860190i \(0.329655\pi\)
\(522\) 0 0
\(523\) 19.7616 7.19262i 0.864113 0.314511i 0.128332 0.991731i \(-0.459038\pi\)
0.735781 + 0.677220i \(0.236815\pi\)
\(524\) 9.18405 12.3363i 0.401207 0.538915i
\(525\) 0 0
\(526\) 10.8008 11.4482i 0.470939 0.499166i
\(527\) −2.99849 + 3.17822i −0.130616 + 0.138445i
\(528\) 0 0
\(529\) 4.47299 6.00827i 0.194478 0.261229i
\(530\) −9.75607 + 3.55092i −0.423777 + 0.154242i
\(531\) 0 0
\(532\) 15.6507 + 5.69640i 0.678546 + 0.246970i
\(533\) 1.48166 0.974502i 0.0641777 0.0422103i
\(534\) 0 0
\(535\) 18.3286 + 24.6196i 0.792414 + 1.06440i
\(536\) −17.5437 11.5386i −0.757771 0.498394i
\(537\) 0 0
\(538\) 4.00699 13.3843i 0.172754 0.577038i
\(539\) 1.27492 2.20823i 0.0549147 0.0951150i
\(540\) 0 0
\(541\) −7.11418 12.3221i −0.305863 0.529770i 0.671590 0.740923i \(-0.265611\pi\)
−0.977453 + 0.211153i \(0.932278\pi\)
\(542\) −2.88415 + 0.683557i −0.123885 + 0.0293613i
\(543\) 0 0
\(544\) 27.6375 13.8801i 1.18495 0.595103i
\(545\) 3.65885 8.48217i 0.156728 0.363336i
\(546\) 0 0
\(547\) −0.134083 2.30212i −0.00573299 0.0984316i 0.994228 0.107290i \(-0.0342173\pi\)
−0.999961 + 0.00885834i \(0.997180\pi\)
\(548\) −3.11325 17.6561i −0.132992 0.754233i
\(549\) 0 0
\(550\) −0.145016 + 0.822424i −0.00618348 + 0.0350683i
\(551\) 42.8421 + 5.00753i 1.82514 + 0.213328i
\(552\) 0 0
\(553\) −2.14607 7.16836i −0.0912600 0.304830i
\(554\) 0.249358 + 0.0590989i 0.0105942 + 0.00251087i
\(555\) 0 0
\(556\) −1.64114 3.80458i −0.0695997 0.161350i
\(557\) 31.5724 + 26.4924i 1.33777 + 1.12252i 0.982194 + 0.187871i \(0.0601586\pi\)
0.355573 + 0.934649i \(0.384286\pi\)
\(558\) 0 0
\(559\) −15.5763 + 13.0701i −0.658809 + 0.552806i
\(560\) 4.62154 + 2.32102i 0.195296 + 0.0980812i
\(561\) 0 0
\(562\) −7.82309 + 0.914388i −0.329997 + 0.0385711i
\(563\) 0.722839 12.4107i 0.0304640 0.523047i −0.948212 0.317638i \(-0.897110\pi\)
0.978676 0.205409i \(-0.0658526\pi\)
\(564\) 0 0
\(565\) −0.205331 0.217638i −0.00863835 0.00915612i
\(566\) −8.77850 −0.368988
\(567\) 0 0
\(568\) 14.0746 0.590557
\(569\) −5.21404 5.52656i −0.218584 0.231685i 0.608798 0.793325i \(-0.291652\pi\)
−0.827382 + 0.561640i \(0.810171\pi\)
\(570\) 0 0
\(571\) −0.970116 + 16.6562i −0.0405981 + 0.697042i 0.915197 + 0.403008i \(0.132035\pi\)
−0.955795 + 0.294035i \(0.905002\pi\)
\(572\) −2.38720 + 0.279024i −0.0998138 + 0.0116666i
\(573\) 0 0
\(574\) −0.539374 0.270884i −0.0225130 0.0113065i
\(575\) −11.2460 + 9.43653i −0.468991 + 0.393531i
\(576\) 0 0
\(577\) 7.89417 + 6.62400i 0.328639 + 0.275761i 0.792145 0.610333i \(-0.208964\pi\)
−0.463506 + 0.886094i \(0.653409\pi\)
\(578\) 3.54279 + 8.21312i 0.147361 + 0.341621i
\(579\) 0 0
\(580\) 16.8652 + 3.99711i 0.700287 + 0.165971i
\(581\) −4.03461 13.4765i −0.167384 0.559100i
\(582\) 0 0
\(583\) 6.60479 + 0.771990i 0.273543 + 0.0319726i
\(584\) −2.76690 + 15.6919i −0.114495 + 0.649334i
\(585\) 0 0
\(586\) −1.24886 7.08262i −0.0515898 0.292580i
\(587\) −0.721063 12.3802i −0.0297614 0.510984i −0.979942 0.199284i \(-0.936138\pi\)
0.950180 0.311700i \(-0.100899\pi\)
\(588\) 0 0
\(589\) −1.93262 + 4.48031i −0.0796322 + 0.184608i
\(590\) 1.81128 0.909660i 0.0745693 0.0374501i
\(591\) 0 0
\(592\) 16.7409 3.96766i 0.688046 0.163070i
\(593\) −6.28620 10.8880i −0.258143 0.447117i 0.707601 0.706612i \(-0.249777\pi\)
−0.965745 + 0.259495i \(0.916444\pi\)
\(594\) 0 0
\(595\) −6.79414 + 11.7678i −0.278533 + 0.482433i
\(596\) 0.574170 1.91786i 0.0235189 0.0785587i
\(597\) 0 0
\(598\) 6.73642 + 4.43061i 0.275473 + 0.181181i
\(599\) −6.33816 8.51362i −0.258970 0.347857i 0.653554 0.756880i \(-0.273277\pi\)
−0.912524 + 0.409023i \(0.865870\pi\)
\(600\) 0 0
\(601\) −27.2363 + 17.9136i −1.11099 + 0.730711i −0.965954 0.258714i \(-0.916701\pi\)
−0.145039 + 0.989426i \(0.546331\pi\)
\(602\) 6.50310 + 2.36694i 0.265047 + 0.0964691i
\(603\) 0 0
\(604\) 23.7961 8.66108i 0.968251 0.352414i
\(605\) 9.76983 13.1232i 0.397200 0.533533i
\(606\) 0 0
\(607\) −6.61094 + 7.00718i −0.268330 + 0.284413i −0.847502 0.530792i \(-0.821894\pi\)
0.579172 + 0.815205i \(0.303376\pi\)
\(608\) 23.7003 25.1209i 0.961175 1.01879i
\(609\) 0 0
\(610\) −5.67499 + 7.62283i −0.229774 + 0.308639i
\(611\) 13.7102 4.99010i 0.554655 0.201878i
\(612\) 0 0
\(613\) 1.91768 + 0.697977i 0.0774542 + 0.0281910i 0.380457 0.924799i \(-0.375767\pi\)
−0.303002 + 0.952990i \(0.597989\pi\)
\(614\) −5.70557 + 3.75261i −0.230258 + 0.151443i
\(615\) 0 0
\(616\) 1.07018 + 1.43750i 0.0431189 + 0.0579187i
\(617\) −1.76446 1.16050i −0.0710345 0.0467201i 0.513495 0.858093i \(-0.328351\pi\)
−0.584529 + 0.811372i \(0.698721\pi\)
\(618\) 0 0
\(619\) −6.56125 + 21.9161i −0.263719 + 0.880882i 0.718879 + 0.695135i \(0.244656\pi\)
−0.982598 + 0.185747i \(0.940530\pi\)
\(620\) −0.980332 + 1.69798i −0.0393711 + 0.0681927i
\(621\) 0 0
\(622\) −5.51627 9.55446i −0.221182 0.383099i
\(623\) 20.4996 4.85850i 0.821300 0.194652i
\(624\) 0 0
\(625\) −4.14487 + 2.08163i −0.165795 + 0.0832652i
\(626\) −4.14389 + 9.60662i −0.165623 + 0.383958i
\(627\) 0 0
\(628\) −0.0216446 0.371623i −0.000863712 0.0148294i
\(629\) 7.84970 + 44.5179i 0.312988 + 1.77504i
\(630\) 0 0
\(631\) −5.86931 + 33.2865i −0.233654 + 1.32512i 0.611777 + 0.791030i \(0.290455\pi\)
−0.845431 + 0.534085i \(0.820656\pi\)
\(632\) −9.98433 1.16700i −0.397155 0.0464208i
\(633\) 0 0
\(634\) 2.88394 + 9.63302i 0.114536 + 0.382576i
\(635\) 3.91958 + 0.928959i 0.155544 + 0.0368646i
\(636\) 0 0
\(637\) 4.69485 + 10.8839i 0.186017 + 0.431235i
\(638\) 1.62286 + 1.36174i 0.0642497 + 0.0539119i
\(639\) 0 0
\(640\) 13.5238 11.3478i 0.534575 0.448561i
\(641\) 1.48538 + 0.745985i 0.0586689 + 0.0294646i 0.477892 0.878419i \(-0.341401\pi\)
−0.419223 + 0.907883i \(0.637697\pi\)
\(642\) 0 0
\(643\) 40.1211 4.68949i 1.58222 0.184935i 0.720917 0.693022i \(-0.243721\pi\)
0.861306 + 0.508087i \(0.169647\pi\)
\(644\) −0.836123 + 14.3557i −0.0329479 + 0.565693i
\(645\) 0 0
\(646\) 14.2298 + 15.0827i 0.559865 + 0.593422i
\(647\) −18.1307 −0.712790 −0.356395 0.934335i \(-0.615994\pi\)
−0.356395 + 0.934335i \(0.615994\pi\)
\(648\) 0 0
\(649\) −1.29821 −0.0509591
\(650\) −2.66408 2.82376i −0.104494 0.110757i
\(651\) 0 0
\(652\) 1.68942 29.0063i 0.0661630 1.13597i
\(653\) −21.7635 + 2.54379i −0.851672 + 0.0995462i −0.530718 0.847549i \(-0.678078\pi\)
−0.320954 + 0.947095i \(0.604004\pi\)
\(654\) 0 0
\(655\) 12.5215 + 6.28854i 0.489256 + 0.245713i
\(656\) 1.14807 0.963344i 0.0448246 0.0376123i
\(657\) 0 0
\(658\) −3.80395 3.19190i −0.148294 0.124433i
\(659\) −11.8101 27.3790i −0.460058 1.06653i −0.977523 0.210830i \(-0.932383\pi\)
0.517465 0.855704i \(-0.326876\pi\)
\(660\) 0 0
\(661\) −40.0583 9.49398i −1.55809 0.369273i −0.640865 0.767653i \(-0.721424\pi\)
−0.917220 + 0.398380i \(0.869572\pi\)
\(662\) 1.67598 + 5.59815i 0.0651387 + 0.217578i
\(663\) 0 0
\(664\) −18.7705 2.19396i −0.728439 0.0851423i
\(665\) −2.63495 + 14.9435i −0.102179 + 0.579486i
\(666\) 0 0
\(667\) 6.46693 + 36.6758i 0.250401 + 1.42009i
\(668\) 0.00905368 + 0.155446i 0.000350297 + 0.00601438i
\(669\) 0 0
\(670\) 3.45865 8.01805i 0.133619 0.309764i
\(671\) 5.43940 2.73177i 0.209986 0.105459i
\(672\) 0 0
\(673\) 15.6718 3.71429i 0.604104 0.143175i 0.0828284 0.996564i \(-0.473605\pi\)
0.521275 + 0.853389i \(0.325457\pi\)
\(674\) 7.82789 + 13.5583i 0.301519 + 0.522246i
\(675\) 0 0
\(676\) −5.33034 + 9.23242i −0.205013 + 0.355093i
\(677\) −2.21576 + 7.40115i −0.0851585 + 0.284449i −0.989953 0.141400i \(-0.954840\pi\)
0.904794 + 0.425850i \(0.140025\pi\)
\(678\) 0 0
\(679\) −8.85180 5.82192i −0.339701 0.223425i
\(680\) 10.9009 + 14.6424i 0.418029 + 0.561511i
\(681\) 0 0
\(682\) −0.200223 + 0.131689i −0.00766692 + 0.00504261i
\(683\) −12.5132 4.55444i −0.478805 0.174271i 0.0913320 0.995820i \(-0.470888\pi\)
−0.570137 + 0.821550i \(0.693110\pi\)
\(684\) 0 0
\(685\) 15.3491 5.58662i 0.586459 0.213454i
\(686\) 6.07854 8.16490i 0.232080 0.311737i
\(687\) 0 0
\(688\) −11.7922 + 12.4990i −0.449573 + 0.476520i
\(689\) −21.2133 + 22.4848i −0.808163 + 0.856603i
\(690\) 0 0
\(691\) 9.99890 13.4308i 0.380376 0.510934i −0.570166 0.821529i \(-0.693121\pi\)
0.950542 + 0.310596i \(0.100529\pi\)
\(692\) 12.7480 4.63988i 0.484605 0.176382i
\(693\) 0 0
\(694\) 9.78576 + 3.56173i 0.371462 + 0.135201i
\(695\) 3.15395 2.07439i 0.119636 0.0786860i
\(696\) 0 0
\(697\) 2.35148 + 3.15858i 0.0890686 + 0.119640i
\(698\) 0.517541 + 0.340392i 0.0195892 + 0.0128840i
\(699\) 0 0
\(700\) 1.98575 6.63286i 0.0750542 0.250699i
\(701\) 1.93133 3.34516i 0.0729452 0.126345i −0.827246 0.561840i \(-0.810094\pi\)
0.900191 + 0.435496i \(0.143427\pi\)
\(702\) 0 0
\(703\) 25.2400 + 43.7170i 0.951946 + 1.64882i
\(704\) −0.703045 + 0.166625i −0.0264970 + 0.00627991i
\(705\) 0 0
\(706\) −11.4335 + 5.74210i −0.430304 + 0.216107i
\(707\) −10.7767 + 24.9832i −0.405300 + 0.939591i
\(708\) 0 0
\(709\) 1.51553 + 26.0207i 0.0569170 + 0.977227i 0.899019 + 0.437909i \(0.144281\pi\)
−0.842102 + 0.539318i \(0.818682\pi\)
\(710\) 1.01637 + 5.76409i 0.0381435 + 0.216323i
\(711\) 0 0
\(712\) 4.91462 27.8722i 0.184183 1.04455i
\(713\) −4.18434 0.489080i −0.156705 0.0183162i
\(714\) 0 0
\(715\) −0.628018 2.09773i −0.0234866 0.0784506i
\(716\) −31.8637 7.55182i −1.19080 0.282225i
\(717\) 0 0
\(718\) −0.289935 0.672145i −0.0108203 0.0250842i
\(719\) −23.6830 19.8724i −0.883225 0.741114i 0.0836145 0.996498i \(-0.473354\pi\)
−0.966840 + 0.255384i \(0.917798\pi\)
\(720\) 0 0
\(721\) −2.38355 + 2.00003i −0.0887679 + 0.0744851i
\(722\) 11.0804 + 5.56481i 0.412371 + 0.207101i
\(723\) 0 0
\(724\) −10.3579 + 1.21066i −0.384947 + 0.0449939i
\(725\) 1.04261 17.9008i 0.0387214 0.664821i
\(726\) 0 0
\(727\) −5.52707 5.85835i −0.204988 0.217274i 0.616721 0.787182i \(-0.288461\pi\)
−0.821709 + 0.569907i \(0.806979\pi\)
\(728\) −8.33093 −0.308765
\(729\) 0 0
\(730\) −6.62623 −0.245248
\(731\) −30.9836 32.8407i −1.14597 1.21466i
\(732\) 0 0
\(733\) −2.55023 + 43.7857i −0.0941947 + 1.61726i 0.538339 + 0.842728i \(0.319052\pi\)
−0.632534 + 0.774533i \(0.717985\pi\)
\(734\) 15.3340 1.79229i 0.565988 0.0661545i
\(735\) 0 0
\(736\) 26.6469 + 13.3826i 0.982217 + 0.493288i
\(737\) −4.28445 + 3.59508i −0.157820 + 0.132426i
\(738\) 0 0
\(739\) 14.3344 + 12.0280i 0.527300 + 0.442457i 0.867168 0.498016i \(-0.165938\pi\)
−0.339868 + 0.940473i \(0.610382\pi\)
\(740\) 8.03420 + 18.6254i 0.295343 + 0.684682i
\(741\) 0 0
\(742\) 10.2374 + 2.42630i 0.375825 + 0.0890722i
\(743\) −3.17887 10.6182i −0.116622 0.389543i 0.879670 0.475584i \(-0.157763\pi\)
−0.996292 + 0.0860415i \(0.972578\pi\)
\(744\) 0 0
\(745\) 1.81160 + 0.211746i 0.0663720 + 0.00775777i
\(746\) 0.590619 3.34957i 0.0216241 0.122636i
\(747\) 0 0
\(748\) −0.926721 5.25570i −0.0338843 0.192167i
\(749\) −1.80849 31.0506i −0.0660808 1.13456i
\(750\) 0 0
\(751\) −3.26992 + 7.58052i −0.119321 + 0.276617i −0.967400 0.253252i \(-0.918500\pi\)
0.848079 + 0.529869i \(0.177759\pi\)
\(752\) 11.0185 5.53371i 0.401804 0.201794i
\(753\) 0 0
\(754\) −9.58266 + 2.27113i −0.348980 + 0.0827097i
\(755\) 11.5357 + 19.9804i 0.419827 + 0.727161i
\(756\) 0 0
\(757\) 11.2400 19.4682i 0.408524 0.707583i −0.586201 0.810166i \(-0.699377\pi\)
0.994725 + 0.102582i \(0.0327105\pi\)
\(758\) −3.94445 + 13.1754i −0.143269 + 0.478551i
\(759\) 0 0
\(760\) 17.0313 + 11.2017i 0.617791 + 0.406328i
\(761\) −18.1438 24.3714i −0.657713 0.883462i 0.340677 0.940180i \(-0.389344\pi\)
−0.998390 + 0.0567187i \(0.981936\pi\)
\(762\) 0 0
\(763\) −7.82110 + 5.14402i −0.283143 + 0.186226i
\(764\) −13.8516 5.04156i −0.501132 0.182397i
\(765\) 0 0
\(766\) −13.2697 + 4.82977i −0.479454 + 0.174507i
\(767\) 3.60379 4.84073i 0.130125 0.174789i
\(768\) 0 0
\(769\) −3.76312 + 3.98867i −0.135702 + 0.143835i −0.791660 0.610961i \(-0.790783\pi\)
0.655959 + 0.754797i \(0.272265\pi\)
\(770\) −0.511433 + 0.542087i −0.0184308 + 0.0195355i
\(771\) 0 0
\(772\) 13.9239 18.7030i 0.501130 0.673135i
\(773\) −5.96931 + 2.17265i −0.214701 + 0.0781448i −0.447132 0.894468i \(-0.647554\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(774\) 0 0
\(775\) 1.90608 + 0.693755i 0.0684683 + 0.0249204i
\(776\) −11.8915 + 7.82119i −0.426881 + 0.280764i
\(777\) 0 0
\(778\) 2.39526 + 3.21739i 0.0858741 + 0.115349i
\(779\) 3.67391 + 2.41637i 0.131632 + 0.0865754i
\(780\) 0 0
\(781\) 1.07518 3.59134i 0.0384729 0.128508i