Properties

Label 729.2.g.c.109.3
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.3
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.c.622.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.947282 - 1.00406i) q^{2} +(0.00549590 - 0.0943610i) q^{4} +(-4.01017 + 0.468722i) q^{5} +(-3.17727 - 1.59569i) q^{7} +(-2.21483 + 1.85846i) q^{8} +O(q^{10})\) \(q+(-0.947282 - 1.00406i) q^{2} +(0.00549590 - 0.0943610i) q^{4} +(-4.01017 + 0.468722i) q^{5} +(-3.17727 - 1.59569i) q^{7} +(-2.21483 + 1.85846i) q^{8} +(4.26939 + 3.58244i) q^{10} +(0.0643574 + 0.149197i) q^{11} +(0.339729 + 0.0805173i) q^{13} +(1.40761 + 4.70174i) q^{14} +(3.77632 + 0.441388i) q^{16} +(-0.388085 + 2.20094i) q^{17} +(-0.215481 - 1.22205i) q^{19} +(0.0221896 + 0.380980i) q^{20} +(0.0888384 - 0.205951i) q^{22} +(2.70748 - 1.35975i) q^{23} +(10.9966 - 2.60623i) q^{25} +(-0.240975 - 0.417381i) q^{26} +(-0.168033 + 0.291041i) q^{28} +(2.03874 - 6.80987i) q^{29} +(0.722935 + 0.475482i) q^{31} +(0.319024 + 0.428523i) q^{32} +(2.57750 - 1.69525i) q^{34} +(13.4893 + 4.90972i) q^{35} +(4.23271 - 1.54058i) q^{37} +(-1.02289 + 1.37399i) q^{38} +(8.01076 - 8.49090i) q^{40} +(-4.85103 + 5.14179i) q^{41} +(-5.63505 + 7.56918i) q^{43} +(0.0144321 - 0.00525286i) q^{44} +(-3.93001 - 1.43041i) q^{46} +(-3.65368 + 2.40306i) q^{47} +(3.36873 + 4.52499i) q^{49} +(-13.0337 - 8.57237i) q^{50} +(0.00946482 - 0.0316147i) q^{52} +(2.32646 - 4.02955i) q^{53} +(-0.328016 - 0.568141i) q^{55} +(10.0026 - 2.37067i) q^{56} +(-8.76878 + 4.40385i) q^{58} +(2.00630 - 4.65114i) q^{59} +(0.536580 + 9.21273i) q^{61} +(-0.207411 - 1.17629i) q^{62} +(1.44849 - 8.21478i) q^{64} +(-1.40011 - 0.163650i) q^{65} +(3.72757 + 12.4510i) q^{67} +(0.205550 + 0.0487163i) q^{68} +(-7.84856 - 18.1950i) q^{70} +(-1.23797 - 1.03878i) q^{71} +(-8.94621 + 7.50676i) q^{73} +(-5.55640 - 2.79053i) q^{74} +(-0.116499 + 0.0136167i) q^{76} +(0.0335910 - 0.576734i) q^{77} +(4.94986 + 5.24655i) q^{79} -15.3506 q^{80} +9.75795 q^{82} +(1.57700 + 1.67153i) q^{83} +(0.524660 - 9.00806i) q^{85} +(12.9379 - 1.51222i) q^{86} +(-0.419819 - 0.210841i) q^{88} +(8.92827 - 7.49171i) q^{89} +(-0.950932 - 0.797927i) q^{91} +(-0.113427 - 0.262953i) q^{92} +(5.87389 + 1.39214i) q^{94} +(1.43692 + 4.79965i) q^{95} +(4.17332 + 0.487791i) q^{97} +(1.35223 - 7.66885i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.947282 1.00406i −0.669829 0.709978i 0.299952 0.953954i \(-0.403029\pi\)
−0.969781 + 0.243977i \(0.921548\pi\)
\(3\) 0 0
\(4\) 0.00549590 0.0943610i 0.00274795 0.0471805i
\(5\) −4.01017 + 0.468722i −1.79340 + 0.209619i −0.946627 0.322330i \(-0.895534\pi\)
−0.846777 + 0.531949i \(0.821460\pi\)
\(6\) 0 0
\(7\) −3.17727 1.59569i −1.20090 0.603113i −0.268056 0.963403i \(-0.586381\pi\)
−0.932840 + 0.360291i \(0.882677\pi\)
\(8\) −2.21483 + 1.85846i −0.783061 + 0.657066i
\(9\) 0 0
\(10\) 4.26939 + 3.58244i 1.35010 + 1.13287i
\(11\) 0.0643574 + 0.149197i 0.0194045 + 0.0449847i 0.927643 0.373469i \(-0.121832\pi\)
−0.908238 + 0.418453i \(0.862572\pi\)
\(12\) 0 0
\(13\) 0.339729 + 0.0805173i 0.0942240 + 0.0223315i 0.277457 0.960738i \(-0.410508\pi\)
−0.183233 + 0.983069i \(0.558656\pi\)
\(14\) 1.40761 + 4.70174i 0.376199 + 1.25659i
\(15\) 0 0
\(16\) 3.77632 + 0.441388i 0.944079 + 0.110347i
\(17\) −0.388085 + 2.20094i −0.0941245 + 0.533807i 0.900888 + 0.434053i \(0.142917\pi\)
−0.995012 + 0.0997542i \(0.968194\pi\)
\(18\) 0 0
\(19\) −0.215481 1.22205i −0.0494348 0.280358i 0.950063 0.312059i \(-0.101019\pi\)
−0.999497 + 0.0317008i \(0.989908\pi\)
\(20\) 0.0221896 + 0.380980i 0.00496174 + 0.0851897i
\(21\) 0 0
\(22\) 0.0888384 0.205951i 0.0189404 0.0439088i
\(23\) 2.70748 1.35975i 0.564548 0.283527i −0.143547 0.989643i \(-0.545851\pi\)
0.708095 + 0.706117i \(0.249555\pi\)
\(24\) 0 0
\(25\) 10.9966 2.60623i 2.19931 0.521247i
\(26\) −0.240975 0.417381i −0.0472591 0.0818552i
\(27\) 0 0
\(28\) −0.168033 + 0.291041i −0.0317552 + 0.0550016i
\(29\) 2.03874 6.80987i 0.378585 1.26456i −0.530406 0.847744i \(-0.677960\pi\)
0.908990 0.416817i \(-0.136854\pi\)
\(30\) 0 0
\(31\) 0.722935 + 0.475482i 0.129843 + 0.0853991i 0.612769 0.790262i \(-0.290056\pi\)
−0.482926 + 0.875661i \(0.660426\pi\)
\(32\) 0.319024 + 0.428523i 0.0563960 + 0.0757529i
\(33\) 0 0
\(34\) 2.57750 1.69525i 0.442038 0.290733i
\(35\) 13.4893 + 4.90972i 2.28012 + 0.829894i
\(36\) 0 0
\(37\) 4.23271 1.54058i 0.695853 0.253270i 0.0302136 0.999543i \(-0.490381\pi\)
0.665639 + 0.746274i \(0.268159\pi\)
\(38\) −1.02289 + 1.37399i −0.165935 + 0.222890i
\(39\) 0 0
\(40\) 8.01076 8.49090i 1.26661 1.34253i
\(41\) −4.85103 + 5.14179i −0.757603 + 0.803012i −0.985320 0.170715i \(-0.945392\pi\)
0.227717 + 0.973727i \(0.426874\pi\)
\(42\) 0 0
\(43\) −5.63505 + 7.56918i −0.859336 + 1.15429i 0.127383 + 0.991854i \(0.459342\pi\)
−0.986719 + 0.162435i \(0.948065\pi\)
\(44\) 0.0144321 0.00525286i 0.00217572 0.000791898i
\(45\) 0 0
\(46\) −3.93001 1.43041i −0.579448 0.210902i
\(47\) −3.65368 + 2.40306i −0.532944 + 0.350523i −0.787283 0.616592i \(-0.788513\pi\)
0.254338 + 0.967115i \(0.418142\pi\)
\(48\) 0 0
\(49\) 3.36873 + 4.52499i 0.481248 + 0.646428i
\(50\) −13.0337 8.57237i −1.84324 1.21232i
\(51\) 0 0
\(52\) 0.00946482 0.0316147i 0.00131253 0.00438417i
\(53\) 2.32646 4.02955i 0.319564 0.553502i −0.660833 0.750533i \(-0.729797\pi\)
0.980397 + 0.197031i \(0.0631301\pi\)
\(54\) 0 0
\(55\) −0.328016 0.568141i −0.0442297 0.0766081i
\(56\) 10.0026 2.37067i 1.33666 0.316794i
\(57\) 0 0
\(58\) −8.76878 + 4.40385i −1.15140 + 0.578253i
\(59\) 2.00630 4.65114i 0.261199 0.605526i −0.736266 0.676692i \(-0.763413\pi\)
0.997464 + 0.0711659i \(0.0226720\pi\)
\(60\) 0 0
\(61\) 0.536580 + 9.21273i 0.0687021 + 1.17957i 0.839816 + 0.542872i \(0.182663\pi\)
−0.771114 + 0.636698i \(0.780300\pi\)
\(62\) −0.207411 1.17629i −0.0263412 0.149388i
\(63\) 0 0
\(64\) 1.44849 8.21478i 0.181061 1.02685i
\(65\) −1.40011 0.163650i −0.173663 0.0202983i
\(66\) 0 0
\(67\) 3.72757 + 12.4510i 0.455395 + 1.52113i 0.810182 + 0.586179i \(0.199368\pi\)
−0.354786 + 0.934947i \(0.615446\pi\)
\(68\) 0.205550 + 0.0487163i 0.0249266 + 0.00590772i
\(69\) 0 0
\(70\) −7.84856 18.1950i −0.938082 2.17472i
\(71\) −1.23797 1.03878i −0.146921 0.123281i 0.566365 0.824155i \(-0.308349\pi\)
−0.713286 + 0.700874i \(0.752794\pi\)
\(72\) 0 0
\(73\) −8.94621 + 7.50676i −1.04707 + 0.878600i −0.992783 0.119925i \(-0.961734\pi\)
−0.0542914 + 0.998525i \(0.517290\pi\)
\(74\) −5.55640 2.79053i −0.645918 0.324392i
\(75\) 0 0
\(76\) −0.116499 + 0.0136167i −0.0133633 + 0.00156195i
\(77\) 0.0335910 0.576734i 0.00382805 0.0657250i
\(78\) 0 0
\(79\) 4.94986 + 5.24655i 0.556903 + 0.590283i 0.943255 0.332068i \(-0.107746\pi\)
−0.386352 + 0.922351i \(0.626265\pi\)
\(80\) −15.3506 −1.71625
\(81\) 0 0
\(82\) 9.75795 1.07759
\(83\) 1.57700 + 1.67153i 0.173099 + 0.183474i 0.808115 0.589025i \(-0.200488\pi\)
−0.635016 + 0.772499i \(0.719007\pi\)
\(84\) 0 0
\(85\) 0.524660 9.00806i 0.0569073 0.977061i
\(86\) 12.9379 1.51222i 1.39513 0.163067i
\(87\) 0 0
\(88\) −0.419819 0.210841i −0.0447528 0.0224757i
\(89\) 8.92827 7.49171i 0.946395 0.794119i −0.0322920 0.999478i \(-0.510281\pi\)
0.978687 + 0.205359i \(0.0658362\pi\)
\(90\) 0 0
\(91\) −0.950932 0.797927i −0.0996848 0.0836455i
\(92\) −0.113427 0.262953i −0.0118256 0.0274148i
\(93\) 0 0
\(94\) 5.87389 + 1.39214i 0.605845 + 0.143588i
\(95\) 1.43692 + 4.79965i 0.147425 + 0.492434i
\(96\) 0 0
\(97\) 4.17332 + 0.487791i 0.423736 + 0.0495277i 0.325289 0.945615i \(-0.394538\pi\)
0.0984472 + 0.995142i \(0.468612\pi\)
\(98\) 1.35223 7.66885i 0.136595 0.774671i
\(99\) 0 0
\(100\) −0.185491 1.05197i −0.0185491 0.105197i
\(101\) 0.0974081 + 1.67243i 0.00969247 + 0.166413i 0.999681 + 0.0252641i \(0.00804267\pi\)
−0.989988 + 0.141149i \(0.954920\pi\)
\(102\) 0 0
\(103\) 1.33015 3.08363i 0.131064 0.303839i −0.840030 0.542541i \(-0.817462\pi\)
0.971093 + 0.238701i \(0.0767217\pi\)
\(104\) −0.902082 + 0.453043i −0.0884564 + 0.0444245i
\(105\) 0 0
\(106\) −6.24973 + 1.48121i −0.607027 + 0.143868i
\(107\) 5.90368 + 10.2255i 0.570730 + 0.988534i 0.996491 + 0.0836983i \(0.0266732\pi\)
−0.425761 + 0.904836i \(0.639993\pi\)
\(108\) 0 0
\(109\) 5.03157 8.71493i 0.481937 0.834739i −0.517848 0.855472i \(-0.673267\pi\)
0.999785 + 0.0207336i \(0.00660019\pi\)
\(110\) −0.259724 + 0.867538i −0.0247637 + 0.0827165i
\(111\) 0 0
\(112\) −11.2941 7.42822i −1.06719 0.701901i
\(113\) 2.33029 + 3.13013i 0.219215 + 0.294457i 0.898103 0.439784i \(-0.144945\pi\)
−0.678888 + 0.734242i \(0.737538\pi\)
\(114\) 0 0
\(115\) −10.2201 + 6.72187i −0.953030 + 0.626818i
\(116\) −0.631382 0.229804i −0.0586223 0.0213368i
\(117\) 0 0
\(118\) −6.57056 + 2.39149i −0.604869 + 0.220154i
\(119\) 4.74506 6.37373i 0.434979 0.584279i
\(120\) 0 0
\(121\) 7.53054 7.98191i 0.684595 0.725628i
\(122\) 8.74184 9.26581i 0.791449 0.838887i
\(123\) 0 0
\(124\) 0.0488401 0.0656037i 0.00438597 0.00589139i
\(125\) −23.9066 + 8.70129i −2.13827 + 0.778267i
\(126\) 0 0
\(127\) −8.01819 2.91838i −0.711499 0.258965i −0.0391867 0.999232i \(-0.512477\pi\)
−0.672313 + 0.740267i \(0.734699\pi\)
\(128\) −8.72756 + 5.74020i −0.771414 + 0.507367i
\(129\) 0 0
\(130\) 1.16199 + 1.56082i 0.101913 + 0.136893i
\(131\) 13.5133 + 8.88786i 1.18066 + 0.776536i 0.979188 0.202958i \(-0.0650554\pi\)
0.201477 + 0.979493i \(0.435426\pi\)
\(132\) 0 0
\(133\) −1.26537 + 4.22664i −0.109722 + 0.366496i
\(134\) 8.97045 15.5373i 0.774929 1.34222i
\(135\) 0 0
\(136\) −3.23083 5.59596i −0.277041 0.479849i
\(137\) −3.32647 + 0.788388i −0.284200 + 0.0673566i −0.370243 0.928935i \(-0.620726\pi\)
0.0860437 + 0.996291i \(0.472578\pi\)
\(138\) 0 0
\(139\) −10.0773 + 5.06102i −0.854747 + 0.429270i −0.821521 0.570178i \(-0.806874\pi\)
−0.0332254 + 0.999448i \(0.510578\pi\)
\(140\) 0.537422 1.24589i 0.0454205 0.105297i
\(141\) 0 0
\(142\) 0.129709 + 2.22702i 0.0108850 + 0.186888i
\(143\) 0.00985114 + 0.0558686i 0.000823793 + 0.00467196i
\(144\) 0 0
\(145\) −4.98377 + 28.2644i −0.413879 + 2.34723i
\(146\) 16.0118 + 1.87151i 1.32515 + 0.154887i
\(147\) 0 0
\(148\) −0.122108 0.407870i −0.0100372 0.0335267i
\(149\) −0.581605 0.137843i −0.0476470 0.0112925i 0.206723 0.978399i \(-0.433720\pi\)
−0.254370 + 0.967107i \(0.581868\pi\)
\(150\) 0 0
\(151\) 0.664309 + 1.54004i 0.0540607 + 0.125327i 0.943106 0.332493i \(-0.107890\pi\)
−0.889045 + 0.457820i \(0.848631\pi\)
\(152\) 2.74840 + 2.30618i 0.222925 + 0.187056i
\(153\) 0 0
\(154\) −0.610896 + 0.512603i −0.0492274 + 0.0413067i
\(155\) −3.12196 1.56791i −0.250762 0.125937i
\(156\) 0 0
\(157\) −9.06055 + 1.05903i −0.723110 + 0.0845195i −0.469683 0.882835i \(-0.655632\pi\)
−0.253427 + 0.967354i \(0.581558\pi\)
\(158\) 0.578935 9.93992i 0.0460576 0.790778i
\(159\) 0 0
\(160\) −1.48020 1.56892i −0.117020 0.124034i
\(161\) −10.7721 −0.848962
\(162\) 0 0
\(163\) −21.8751 −1.71339 −0.856697 0.515821i \(-0.827487\pi\)
−0.856697 + 0.515821i \(0.827487\pi\)
\(164\) 0.458524 + 0.486007i 0.0358047 + 0.0379508i
\(165\) 0 0
\(166\) 0.184446 3.16681i 0.0143158 0.245792i
\(167\) 5.17360 0.604707i 0.400345 0.0467936i 0.0864616 0.996255i \(-0.472444\pi\)
0.313883 + 0.949462i \(0.398370\pi\)
\(168\) 0 0
\(169\) −11.5083 5.77968i −0.885253 0.444591i
\(170\) −9.54163 + 8.00638i −0.731810 + 0.614061i
\(171\) 0 0
\(172\) 0.683266 + 0.573328i 0.0520985 + 0.0437159i
\(173\) 8.26239 + 19.1544i 0.628178 + 1.45628i 0.873493 + 0.486837i \(0.161849\pi\)
−0.245315 + 0.969444i \(0.578891\pi\)
\(174\) 0 0
\(175\) −39.0978 9.26635i −2.95552 0.700470i
\(176\) 0.177180 + 0.591823i 0.0133554 + 0.0446103i
\(177\) 0 0
\(178\) −15.9797 1.86776i −1.19773 0.139995i
\(179\) −0.709018 + 4.02104i −0.0529945 + 0.300547i −0.999772 0.0213413i \(-0.993206\pi\)
0.946778 + 0.321888i \(0.104317\pi\)
\(180\) 0 0
\(181\) 2.85517 + 16.1925i 0.212223 + 1.20358i 0.885661 + 0.464333i \(0.153706\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(182\) 0.0996343 + 1.71065i 0.00738538 + 0.126802i
\(183\) 0 0
\(184\) −3.46957 + 8.04336i −0.255780 + 0.592964i
\(185\) −16.2518 + 8.16195i −1.19485 + 0.600079i
\(186\) 0 0
\(187\) −0.353351 + 0.0837456i −0.0258396 + 0.00612409i
\(188\) 0.206675 + 0.357972i 0.0150734 + 0.0261078i
\(189\) 0 0
\(190\) 3.45797 5.98937i 0.250867 0.434515i
\(191\) 0.00119573 0.00399401i 8.65198e−5 0.000288996i −0.957946 0.286948i \(-0.907359\pi\)
0.958033 + 0.286659i \(0.0925446\pi\)
\(192\) 0 0
\(193\) 17.5348 + 11.5328i 1.26218 + 0.830150i 0.991192 0.132432i \(-0.0422785\pi\)
0.270990 + 0.962582i \(0.412649\pi\)
\(194\) −3.46354 4.65234i −0.248667 0.334018i
\(195\) 0 0
\(196\) 0.445497 0.293008i 0.0318212 0.0209292i
\(197\) −9.14507 3.32853i −0.651559 0.237148i −0.00497138 0.999988i \(-0.501582\pi\)
−0.646588 + 0.762839i \(0.723805\pi\)
\(198\) 0 0
\(199\) 22.6674 8.25026i 1.60685 0.584846i 0.626036 0.779794i \(-0.284676\pi\)
0.980814 + 0.194948i \(0.0624539\pi\)
\(200\) −19.5119 + 26.2091i −1.37970 + 1.85326i
\(201\) 0 0
\(202\) 1.58695 1.68207i 0.111657 0.118350i
\(203\) −17.3440 + 18.3836i −1.21731 + 1.29028i
\(204\) 0 0
\(205\) 17.0434 22.8932i 1.19036 1.59893i
\(206\) −4.35618 + 1.58552i −0.303509 + 0.110468i
\(207\) 0 0
\(208\) 1.24739 + 0.454011i 0.0864907 + 0.0314800i
\(209\) 0.168459 0.110797i 0.0116526 0.00766402i
\(210\) 0 0
\(211\) 8.98577 + 12.0700i 0.618606 + 0.830932i 0.995444 0.0953471i \(-0.0303961\pi\)
−0.376838 + 0.926279i \(0.622989\pi\)
\(212\) −0.367447 0.241674i −0.0252364 0.0165982i
\(213\) 0 0
\(214\) 4.67454 15.6141i 0.319545 1.06735i
\(215\) 19.0497 32.9950i 1.29918 2.25024i
\(216\) 0 0
\(217\) −1.53824 2.66431i −0.104423 0.180865i
\(218\) −13.5166 + 3.20350i −0.915461 + 0.216968i
\(219\) 0 0
\(220\) −0.0554131 + 0.0278295i −0.00373595 + 0.00187627i
\(221\) −0.309058 + 0.716477i −0.0207895 + 0.0481954i
\(222\) 0 0
\(223\) −0.553847 9.50919i −0.0370883 0.636782i −0.964719 0.263283i \(-0.915195\pi\)
0.927630 0.373500i \(-0.121842\pi\)
\(224\) −0.329837 1.87060i −0.0220381 0.124984i
\(225\) 0 0
\(226\) 0.935391 5.30486i 0.0622213 0.352874i
\(227\) −12.1670 1.42212i −0.807553 0.0943894i −0.297709 0.954657i \(-0.596223\pi\)
−0.509843 + 0.860267i \(0.670297\pi\)
\(228\) 0 0
\(229\) −1.07081 3.57674i −0.0707608 0.236358i 0.915292 0.402791i \(-0.131960\pi\)
−0.986053 + 0.166434i \(0.946775\pi\)
\(230\) 16.4305 + 3.89410i 1.08339 + 0.256769i
\(231\) 0 0
\(232\) 8.14043 + 18.8716i 0.534446 + 1.23898i
\(233\) 15.7065 + 13.1793i 1.02896 + 0.863404i 0.990727 0.135865i \(-0.0433813\pi\)
0.0382373 + 0.999269i \(0.487826\pi\)
\(234\) 0 0
\(235\) 13.5255 11.3493i 0.882308 0.740344i
\(236\) −0.427860 0.214879i −0.0278513 0.0139874i
\(237\) 0 0
\(238\) −10.8945 + 1.27339i −0.706187 + 0.0825414i
\(239\) 0.753096 12.9302i 0.0487137 0.836382i −0.882139 0.470989i \(-0.843897\pi\)
0.930853 0.365394i \(-0.119066\pi\)
\(240\) 0 0
\(241\) −8.32147 8.82024i −0.536033 0.568162i 0.401588 0.915820i \(-0.368458\pi\)
−0.937621 + 0.347659i \(0.886977\pi\)
\(242\) −15.1479 −0.973741
\(243\) 0 0
\(244\) 0.872272 0.0558415
\(245\) −15.6302 16.5670i −0.998575 1.05843i
\(246\) 0 0
\(247\) 0.0251913 0.432518i 0.00160288 0.0275204i
\(248\) −2.48485 + 0.290437i −0.157788 + 0.0184428i
\(249\) 0 0
\(250\) 31.3829 + 15.7611i 1.98483 + 0.996819i
\(251\) −21.7457 + 18.2468i −1.37257 + 1.15173i −0.400705 + 0.916207i \(0.631235\pi\)
−0.971869 + 0.235520i \(0.924321\pi\)
\(252\) 0 0
\(253\) 0.377117 + 0.316438i 0.0237091 + 0.0198943i
\(254\) 4.66525 + 10.8153i 0.292724 + 0.678611i
\(255\) 0 0
\(256\) −2.20235 0.521966i −0.137647 0.0326229i
\(257\) −7.88365 26.3332i −0.491768 1.64262i −0.739031 0.673672i \(-0.764716\pi\)
0.247262 0.968949i \(-0.420469\pi\)
\(258\) 0 0
\(259\) −15.9067 1.85923i −0.988397 0.115527i
\(260\) −0.0231371 + 0.131217i −0.00143490 + 0.00813772i
\(261\) 0 0
\(262\) −3.87699 21.9875i −0.239521 1.35839i
\(263\) −0.270011 4.63592i −0.0166496 0.285863i −0.996348 0.0853856i \(-0.972788\pi\)
0.979698 0.200477i \(-0.0642493\pi\)
\(264\) 0 0
\(265\) −7.44078 + 17.2497i −0.457084 + 1.05964i
\(266\) 5.44246 2.73331i 0.333699 0.167590i
\(267\) 0 0
\(268\) 1.19537 0.283308i 0.0730189 0.0173058i
\(269\) 2.50768 + 4.34343i 0.152896 + 0.264824i 0.932291 0.361709i \(-0.117807\pi\)
−0.779395 + 0.626533i \(0.784473\pi\)
\(270\) 0 0
\(271\) −8.04356 + 13.9319i −0.488612 + 0.846300i −0.999914 0.0131007i \(-0.995830\pi\)
0.511303 + 0.859401i \(0.329163\pi\)
\(272\) −2.43700 + 8.14015i −0.147765 + 0.493569i
\(273\) 0 0
\(274\) 3.94270 + 2.59315i 0.238187 + 0.156658i
\(275\) 1.09655 + 1.47293i 0.0661246 + 0.0888208i
\(276\) 0 0
\(277\) −8.22220 + 5.40783i −0.494024 + 0.324925i −0.771956 0.635676i \(-0.780721\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(278\) 14.6276 + 5.32402i 0.877306 + 0.319313i
\(279\) 0 0
\(280\) −39.0012 + 14.1953i −2.33077 + 0.848329i
\(281\) 12.9836 17.4400i 0.774537 1.04038i −0.223307 0.974748i \(-0.571685\pi\)
0.997844 0.0656355i \(-0.0209075\pi\)
\(282\) 0 0
\(283\) 3.29612 3.49368i 0.195934 0.207678i −0.621956 0.783052i \(-0.713662\pi\)
0.817891 + 0.575374i \(0.195143\pi\)
\(284\) −0.104825 + 0.111108i −0.00622019 + 0.00659302i
\(285\) 0 0
\(286\) 0.0467636 0.0628144i 0.00276519 0.00371429i
\(287\) 23.6177 8.59614i 1.39411 0.507414i
\(288\) 0 0
\(289\) 11.2812 + 4.10604i 0.663602 + 0.241532i
\(290\) 33.1001 21.7703i 1.94371 1.27840i
\(291\) 0 0
\(292\) 0.659178 + 0.885430i 0.0385755 + 0.0518159i
\(293\) 4.72054 + 3.10475i 0.275777 + 0.181381i 0.679862 0.733340i \(-0.262040\pi\)
−0.404085 + 0.914721i \(0.632410\pi\)
\(294\) 0 0
\(295\) −5.86554 + 19.5923i −0.341505 + 1.14071i
\(296\) −6.51162 + 11.2785i −0.378480 + 0.655547i
\(297\) 0 0
\(298\) 0.412542 + 0.714543i 0.0238979 + 0.0413924i
\(299\) 1.02929 0.243947i 0.0595255 0.0141078i
\(300\) 0 0
\(301\) 29.9821 15.0576i 1.72814 0.867904i
\(302\) 0.917006 2.12586i 0.0527678 0.122329i
\(303\) 0 0
\(304\) −0.274325 4.70997i −0.0157336 0.270136i
\(305\) −6.46999 36.6931i −0.370470 2.10104i
\(306\) 0 0
\(307\) 1.38619 7.86146i 0.0791139 0.448677i −0.919358 0.393421i \(-0.871291\pi\)
0.998472 0.0552559i \(-0.0175975\pi\)
\(308\) −0.0542367 0.00633936i −0.00309042 0.000361218i
\(309\) 0 0
\(310\) 1.38310 + 4.61989i 0.0785550 + 0.262392i
\(311\) −20.0883 4.76101i −1.13910 0.269972i −0.382569 0.923927i \(-0.624961\pi\)
−0.756534 + 0.653955i \(0.773109\pi\)
\(312\) 0 0
\(313\) 7.69699 + 17.8436i 0.435060 + 1.00858i 0.984870 + 0.173293i \(0.0554407\pi\)
−0.549811 + 0.835289i \(0.685300\pi\)
\(314\) 9.64622 + 8.09414i 0.544367 + 0.456779i
\(315\) 0 0
\(316\) 0.522274 0.438240i 0.0293802 0.0246529i
\(317\) 25.9928 + 13.0541i 1.45990 + 0.733189i 0.988850 0.148918i \(-0.0475789\pi\)
0.471050 + 0.882107i \(0.343875\pi\)
\(318\) 0 0
\(319\) 1.14722 0.134091i 0.0642321 0.00750766i
\(320\) −1.95824 + 33.6216i −0.109469 + 1.87951i
\(321\) 0 0
\(322\) 10.2042 + 10.8159i 0.568659 + 0.602744i
\(323\) 2.77330 0.154310
\(324\) 0 0
\(325\) 3.94570 0.218868
\(326\) 20.7219 + 21.9640i 1.14768 + 1.21647i
\(327\) 0 0
\(328\) 1.18838 20.4037i 0.0656172 1.12660i
\(329\) 15.4433 1.80506i 0.851415 0.0995162i
\(330\) 0 0
\(331\) 2.74452 + 1.37835i 0.150853 + 0.0757611i 0.522624 0.852563i \(-0.324953\pi\)
−0.371771 + 0.928324i \(0.621249\pi\)
\(332\) 0.166394 0.139621i 0.00913206 0.00766271i
\(333\) 0 0
\(334\) −5.50801 4.62177i −0.301385 0.252892i
\(335\) −20.7842 48.1833i −1.13556 2.63253i
\(336\) 0 0
\(337\) 27.0527 + 6.41162i 1.47366 + 0.349263i 0.887452 0.460900i \(-0.152473\pi\)
0.586205 + 0.810163i \(0.300621\pi\)
\(338\) 5.09845 + 17.0300i 0.277319 + 0.926310i
\(339\) 0 0
\(340\) −0.847126 0.0990149i −0.0459419 0.00536984i
\(341\) −0.0244144 + 0.138461i −0.00132211 + 0.00749807i
\(342\) 0 0
\(343\) 0.838878 + 4.75751i 0.0452951 + 0.256882i
\(344\) −1.58637 27.2370i −0.0855316 1.46852i
\(345\) 0 0
\(346\) 11.4053 26.4405i 0.613154 1.42145i
\(347\) −3.13174 + 1.57282i −0.168120 + 0.0844332i −0.530869 0.847454i \(-0.678135\pi\)
0.362749 + 0.931887i \(0.381838\pi\)
\(348\) 0 0
\(349\) −11.1318 + 2.63829i −0.595874 + 0.141225i −0.517476 0.855698i \(-0.673128\pi\)
−0.0783974 + 0.996922i \(0.524980\pi\)
\(350\) 27.7327 + 48.0344i 1.48237 + 2.56755i
\(351\) 0 0
\(352\) −0.0434029 + 0.0751761i −0.00231338 + 0.00400690i
\(353\) 0.526163 1.75751i 0.0280048 0.0935426i −0.942845 0.333233i \(-0.891861\pi\)
0.970849 + 0.239690i \(0.0770458\pi\)
\(354\) 0 0
\(355\) 5.45139 + 3.58544i 0.289330 + 0.190295i
\(356\) −0.657856 0.883655i −0.0348663 0.0468336i
\(357\) 0 0
\(358\) 4.70901 3.09716i 0.248879 0.163690i
\(359\) 18.9025 + 6.87995i 0.997636 + 0.363110i 0.788673 0.614814i \(-0.210769\pi\)
0.208964 + 0.977923i \(0.432991\pi\)
\(360\) 0 0
\(361\) 16.4072 5.97172i 0.863536 0.314301i
\(362\) 13.5536 18.2056i 0.712360 0.956865i
\(363\) 0 0
\(364\) −0.0805194 + 0.0853456i −0.00422036 + 0.00447333i
\(365\) 32.3573 34.2967i 1.69366 1.79517i
\(366\) 0 0
\(367\) 15.7712 21.1845i 0.823252 1.10582i −0.169487 0.985532i \(-0.554211\pi\)
0.992739 0.120287i \(-0.0383816\pi\)
\(368\) 10.8245 3.93978i 0.564264 0.205375i
\(369\) 0 0
\(370\) 23.5901 + 8.58610i 1.22639 + 0.446370i
\(371\) −13.8217 + 9.09068i −0.717587 + 0.471965i
\(372\) 0 0
\(373\) −17.6990 23.7739i −0.916420 1.23097i −0.972586 0.232544i \(-0.925295\pi\)
0.0561660 0.998421i \(-0.482112\pi\)
\(374\) 0.418808 + 0.275455i 0.0216561 + 0.0142434i
\(375\) 0 0
\(376\) 3.62628 12.1126i 0.187011 0.624661i
\(377\) 1.24093 2.14936i 0.0639113 0.110698i
\(378\) 0 0
\(379\) 5.75292 + 9.96436i 0.295508 + 0.511835i 0.975103 0.221753i \(-0.0711778\pi\)
−0.679595 + 0.733587i \(0.737844\pi\)
\(380\) 0.460797 0.109211i 0.0236384 0.00560240i
\(381\) 0 0
\(382\) −0.00514291 + 0.00258287i −0.000263134 + 0.000132151i
\(383\) −11.3929 + 26.4116i −0.582149 + 1.34957i 0.331649 + 0.943403i \(0.392395\pi\)
−0.913798 + 0.406169i \(0.866864\pi\)
\(384\) 0 0
\(385\) 0.135623 + 2.32855i 0.00691197 + 0.118674i
\(386\) −5.03075 28.5308i −0.256059 1.45218i
\(387\) 0 0
\(388\) 0.0689646 0.391118i 0.00350115 0.0198560i
\(389\) 11.3779 + 1.32988i 0.576881 + 0.0674277i 0.399530 0.916720i \(-0.369173\pi\)
0.177351 + 0.984148i \(0.443247\pi\)
\(390\) 0 0
\(391\) 1.94199 + 6.48669i 0.0982106 + 0.328046i
\(392\) −15.8707 3.76143i −0.801592 0.189981i
\(393\) 0 0
\(394\) 5.32091 + 12.3353i 0.268064 + 0.621441i
\(395\) −22.3090 18.7195i −1.12249 0.941878i
\(396\) 0 0
\(397\) 8.38197 7.03331i 0.420679 0.352992i −0.407742 0.913097i \(-0.633684\pi\)
0.828421 + 0.560105i \(0.189239\pi\)
\(398\) −29.7562 14.9441i −1.49154 0.749081i
\(399\) 0 0
\(400\) 42.6769 4.98821i 2.13384 0.249410i
\(401\) −0.0202092 + 0.346979i −0.00100920 + 0.0173273i −0.998775 0.0494790i \(-0.984244\pi\)
0.997766 + 0.0668063i \(0.0212810\pi\)
\(402\) 0 0
\(403\) 0.207318 + 0.219744i 0.0103272 + 0.0109462i
\(404\) 0.158348 0.00787810
\(405\) 0 0
\(406\) 34.8880 1.73146
\(407\) 0.502256 + 0.532361i 0.0248959 + 0.0263881i
\(408\) 0 0
\(409\) −1.54674 + 26.5565i −0.0764813 + 1.31313i 0.713783 + 0.700367i \(0.246980\pi\)
−0.790264 + 0.612766i \(0.790057\pi\)
\(410\) −39.1311 + 4.57377i −1.93255 + 0.225882i
\(411\) 0 0
\(412\) −0.283664 0.142462i −0.0139751 0.00701858i
\(413\) −13.7963 + 11.5765i −0.678873 + 0.569642i
\(414\) 0 0
\(415\) −7.10754 5.96393i −0.348895 0.292758i
\(416\) 0.0738782 + 0.171269i 0.00362218 + 0.00839715i
\(417\) 0 0
\(418\) −0.270826 0.0641869i −0.0132465 0.00313948i
\(419\) −3.66857 12.2539i −0.179221 0.598641i −0.999639 0.0268761i \(-0.991444\pi\)
0.820417 0.571765i \(-0.193741\pi\)
\(420\) 0 0
\(421\) 10.8013 + 1.26249i 0.526424 + 0.0615302i 0.375154 0.926962i \(-0.377590\pi\)
0.151270 + 0.988493i \(0.451664\pi\)
\(422\) 3.60693 20.4559i 0.175583 0.995779i
\(423\) 0 0
\(424\) 2.33606 + 13.2484i 0.113449 + 0.643401i
\(425\) 1.46856 + 25.2142i 0.0712357 + 1.22307i
\(426\) 0 0
\(427\) 12.9958 30.1276i 0.628909 1.45797i
\(428\) 0.997333 0.500879i 0.0482079 0.0242109i
\(429\) 0 0
\(430\) −51.1743 + 12.1285i −2.46785 + 0.584890i
\(431\) 1.22970 + 2.12989i 0.0592323 + 0.102593i 0.894121 0.447825i \(-0.147801\pi\)
−0.834889 + 0.550419i \(0.814468\pi\)
\(432\) 0 0
\(433\) 6.44336 11.1602i 0.309648 0.536326i −0.668637 0.743589i \(-0.733122\pi\)
0.978285 + 0.207263i \(0.0664554\pi\)
\(434\) −1.21798 + 4.06834i −0.0584650 + 0.195287i
\(435\) 0 0
\(436\) −0.794697 0.522680i −0.0380591 0.0250318i
\(437\) −2.24509 3.01568i −0.107397 0.144260i
\(438\) 0 0
\(439\) 23.0314 15.1480i 1.09923 0.722975i 0.135746 0.990744i \(-0.456657\pi\)
0.963483 + 0.267769i \(0.0862864\pi\)
\(440\) 1.78237 + 0.648730i 0.0849712 + 0.0309270i
\(441\) 0 0
\(442\) 1.01215 0.368393i 0.0481431 0.0175227i
\(443\) 3.42388 4.59907i 0.162673 0.218508i −0.713311 0.700848i \(-0.752805\pi\)
0.875985 + 0.482339i \(0.160213\pi\)
\(444\) 0 0
\(445\) −32.2924 + 34.2279i −1.53081 + 1.62256i
\(446\) −9.02315 + 9.56398i −0.427258 + 0.452867i
\(447\) 0 0
\(448\) −17.7104 + 23.7892i −0.836740 + 1.12394i
\(449\) −32.3537 + 11.7758i −1.52687 + 0.555734i −0.962852 0.270030i \(-0.912966\pi\)
−0.564015 + 0.825764i \(0.690744\pi\)
\(450\) 0 0
\(451\) −1.07934 0.392848i −0.0508242 0.0184985i
\(452\) 0.308169 0.202686i 0.0144951 0.00953354i
\(453\) 0 0
\(454\) 10.0977 + 13.5636i 0.473908 + 0.636569i
\(455\) 4.18741 + 2.75410i 0.196309 + 0.129114i
\(456\) 0 0
\(457\) 2.17602 7.26841i 0.101790 0.340002i −0.891890 0.452252i \(-0.850621\pi\)
0.993680 + 0.112250i \(0.0358059\pi\)
\(458\) −2.57691 + 4.46333i −0.120411 + 0.208558i
\(459\) 0 0
\(460\) 0.578114 + 1.00132i 0.0269547 + 0.0466869i
\(461\) −1.79155 + 0.424604i −0.0834406 + 0.0197758i −0.272124 0.962262i \(-0.587726\pi\)
0.188683 + 0.982038i \(0.439578\pi\)
\(462\) 0 0
\(463\) −20.1099 + 10.0996i −0.934588 + 0.469368i −0.849844 0.527035i \(-0.823304\pi\)
−0.0847444 + 0.996403i \(0.527007\pi\)
\(464\) 10.7047 24.8163i 0.496954 1.15207i
\(465\) 0 0
\(466\) −1.64565 28.2547i −0.0762333 1.30888i
\(467\) 6.84563 + 38.8235i 0.316778 + 1.79654i 0.562071 + 0.827089i \(0.310005\pi\)
−0.245292 + 0.969449i \(0.578884\pi\)
\(468\) 0 0
\(469\) 8.02431 45.5081i 0.370528 2.10137i
\(470\) −24.2078 2.82949i −1.11662 0.130515i
\(471\) 0 0
\(472\) 4.20035 + 14.0301i 0.193337 + 0.645789i
\(473\) −1.49196 0.353600i −0.0686003 0.0162586i
\(474\) 0 0
\(475\) −5.55451 12.8768i −0.254858 0.590828i
\(476\) −0.575353 0.482779i −0.0263713 0.0221281i
\(477\) 0 0
\(478\) −13.6960 + 11.4923i −0.626443 + 0.525648i
\(479\) −2.35856 1.18451i −0.107765 0.0541217i 0.394100 0.919068i \(-0.371056\pi\)
−0.501865 + 0.864946i \(0.667353\pi\)
\(480\) 0 0
\(481\) 1.56202 0.182574i 0.0712219 0.00832465i
\(482\) −0.973276 + 16.7105i −0.0443315 + 0.761143i
\(483\) 0 0
\(484\) −0.711794 0.754457i −0.0323543 0.0342935i
\(485\) −16.9644 −0.770312
\(486\) 0 0
\(487\) −25.0040 −1.13304 −0.566519 0.824048i \(-0.691710\pi\)
−0.566519 + 0.824048i \(0.691710\pi\)
\(488\) −18.3100 19.4074i −0.828853 0.878533i
\(489\) 0 0
\(490\) −1.82810 + 31.3872i −0.0825851 + 1.41793i
\(491\) −29.9031 + 3.49517i −1.34951 + 0.157735i −0.759944 0.649988i \(-0.774774\pi\)
−0.589563 + 0.807723i \(0.700700\pi\)
\(492\) 0 0
\(493\) 14.1969 + 7.12996i 0.639397 + 0.321117i
\(494\) −0.458137 + 0.384423i −0.0206126 + 0.0172960i
\(495\) 0 0
\(496\) 2.52016 + 2.11466i 0.113158 + 0.0949512i
\(497\) 2.27581 + 5.27592i 0.102084 + 0.236657i
\(498\) 0 0
\(499\) −5.48586 1.30017i −0.245581 0.0582037i 0.105982 0.994368i \(-0.466201\pi\)
−0.351563 + 0.936164i \(0.614350\pi\)
\(500\) 0.689674 + 2.30367i 0.0308432 + 0.103023i
\(501\) 0 0
\(502\) 38.9202 + 4.54911i 1.73709 + 0.203037i
\(503\) 2.01083 11.4040i 0.0896587 0.508479i −0.906595 0.422002i \(-0.861328\pi\)
0.996254 0.0864779i \(-0.0275612\pi\)
\(504\) 0 0
\(505\) −1.17453 6.66108i −0.0522659 0.296414i
\(506\) −0.0395125 0.678404i −0.00175655 0.0301587i
\(507\) 0 0
\(508\) −0.319449 + 0.740566i −0.0141732 + 0.0328573i
\(509\) 32.0484 16.0953i 1.42052 0.713413i 0.437899 0.899024i \(-0.355723\pi\)
0.982623 + 0.185611i \(0.0594265\pi\)
\(510\) 0 0
\(511\) 40.4030 9.57568i 1.78732 0.423603i
\(512\) 12.0082 + 20.7988i 0.530693 + 0.919188i
\(513\) 0 0
\(514\) −18.9721 + 32.8606i −0.836823 + 1.44942i
\(515\) −3.88876 + 12.9894i −0.171359 + 0.572380i
\(516\) 0 0
\(517\) −0.593672 0.390464i −0.0261097 0.0171726i
\(518\) 13.2014 + 17.7325i 0.580036 + 0.779123i
\(519\) 0 0
\(520\) 3.40515 2.23960i 0.149326 0.0982132i
\(521\) 8.36834 + 3.04583i 0.366624 + 0.133440i 0.518761 0.854919i \(-0.326393\pi\)
−0.152137 + 0.988359i \(0.548616\pi\)
\(522\) 0 0
\(523\) −15.1809 + 5.52540i −0.663815 + 0.241609i −0.651883 0.758320i \(-0.726021\pi\)
−0.0119324 + 0.999929i \(0.503798\pi\)
\(524\) 0.912935 1.22628i 0.0398818 0.0535705i
\(525\) 0 0
\(526\) −4.39896 + 4.66263i −0.191804 + 0.203300i
\(527\) −1.32707 + 1.40661i −0.0578080 + 0.0612729i
\(528\) 0 0
\(529\) −8.25313 + 11.0859i −0.358832 + 0.481995i
\(530\) 24.3682 8.86931i 1.05849 0.385258i
\(531\) 0 0
\(532\) 0.391876 + 0.142631i 0.0169900 + 0.00618384i
\(533\) −2.06204 + 1.35622i −0.0893168 + 0.0587446i
\(534\) 0 0
\(535\) −28.4677 38.2387i −1.23077 1.65321i
\(536\) −31.3956 20.6492i −1.35608 0.891910i
\(537\) 0 0
\(538\) 1.98559 6.63232i 0.0856047 0.285940i
\(539\) −0.458314 + 0.793823i −0.0197410 + 0.0341924i
\(540\) 0 0
\(541\) 4.75257 + 8.23170i 0.204329 + 0.353908i 0.949919 0.312497i \(-0.101165\pi\)
−0.745590 + 0.666405i \(0.767832\pi\)
\(542\) 21.6079 5.12118i 0.928140 0.219973i
\(543\) 0 0
\(544\) −1.06696 + 0.535849i −0.0457457 + 0.0229743i
\(545\) −16.0926 + 37.3068i −0.689330 + 1.59805i
\(546\) 0 0
\(547\) −0.308516 5.29702i −0.0131912 0.226484i −0.998460 0.0554726i \(-0.982333\pi\)
0.985269 0.171012i \(-0.0547036\pi\)
\(548\) 0.0561112 + 0.318222i 0.00239695 + 0.0135938i
\(549\) 0 0
\(550\) 0.440162 2.49628i 0.0187686 0.106442i
\(551\) −8.76134 1.02405i −0.373246 0.0436262i
\(552\) 0 0
\(553\) −7.35522 24.5681i −0.312776 1.04474i
\(554\) 13.2185 + 3.13285i 0.561601 + 0.133102i
\(555\) 0 0
\(556\) 0.422179 + 0.978721i 0.0179044 + 0.0415070i
\(557\) 25.1867 + 21.1341i 1.06719 + 0.895481i 0.994795 0.101895i \(-0.0324904\pi\)
0.0723978 + 0.997376i \(0.476935\pi\)
\(558\) 0 0
\(559\) −2.52384 + 2.11775i −0.106747 + 0.0895714i
\(560\) 48.7729 + 24.4947i 2.06103 + 1.03509i
\(561\) 0 0
\(562\) −29.8099 + 3.48428i −1.25746 + 0.146976i
\(563\) −0.742347 + 12.7456i −0.0312862 + 0.537163i 0.945857 + 0.324583i \(0.105224\pi\)
−0.977144 + 0.212581i \(0.931813\pi\)
\(564\) 0 0
\(565\) −10.8120 11.4601i −0.454866 0.482130i
\(566\) −6.63022 −0.278689
\(567\) 0 0
\(568\) 4.67245 0.196052
\(569\) 29.4927 + 31.2604i 1.23640 + 1.31050i 0.933979 + 0.357329i \(0.116313\pi\)
0.302419 + 0.953175i \(0.402206\pi\)
\(570\) 0 0
\(571\) 0.221256 3.79881i 0.00925926 0.158975i −0.990509 0.137448i \(-0.956110\pi\)
0.999768 0.0215274i \(-0.00685292\pi\)
\(572\) 0.00532596 0.000622515i 0.000222689 2.60287e-5i
\(573\) 0 0
\(574\) −31.0037 15.5706i −1.29407 0.649905i
\(575\) 26.2291 22.0088i 1.09383 0.917832i
\(576\) 0 0
\(577\) 11.5311 + 9.67573i 0.480045 + 0.402806i 0.850443 0.526067i \(-0.176334\pi\)
−0.370397 + 0.928873i \(0.620779\pi\)
\(578\) −6.56381 15.2166i −0.273018 0.632928i
\(579\) 0 0
\(580\) 2.63966 + 0.625612i 0.109606 + 0.0259771i
\(581\) −2.34334 7.82729i −0.0972181 0.324731i
\(582\) 0 0
\(583\) 0.750924 + 0.0877704i 0.0311001 + 0.00363508i
\(584\) 5.86330 33.2524i 0.242625 1.37599i
\(585\) 0 0
\(586\) −1.35433 7.68078i −0.0559468 0.317290i
\(587\) 2.21700 + 38.0644i 0.0915054 + 1.57109i 0.661822 + 0.749661i \(0.269784\pi\)
−0.570316 + 0.821425i \(0.693179\pi\)
\(588\) 0 0
\(589\) 0.425286 0.985923i 0.0175236 0.0406243i
\(590\) 25.2281 12.6700i 1.03863 0.521617i
\(591\) 0 0
\(592\) 16.6640 3.94945i 0.684888 0.162321i
\(593\) 5.81375 + 10.0697i 0.238742 + 0.413513i 0.960354 0.278785i \(-0.0899317\pi\)
−0.721612 + 0.692298i \(0.756598\pi\)
\(594\) 0 0
\(595\) −16.0410 + 27.7839i −0.657618 + 1.13903i
\(596\) −0.0162035 + 0.0541233i −0.000663720 + 0.00221698i
\(597\) 0 0
\(598\) −1.21997 0.802385i −0.0498882 0.0328120i
\(599\) −24.1107 32.3863i −0.985136 1.32327i −0.946046 0.324032i \(-0.894961\pi\)
−0.0390903 0.999236i \(-0.512446\pi\)
\(600\) 0 0
\(601\) 16.4724 10.8341i 0.671925 0.441932i −0.167162 0.985929i \(-0.553460\pi\)
0.839087 + 0.543998i \(0.183090\pi\)
\(602\) −43.5202 15.8401i −1.77375 0.645593i
\(603\) 0 0
\(604\) 0.148971 0.0542210i 0.00606154 0.00220622i
\(605\) −26.4575 + 35.5386i −1.07565 + 1.44485i
\(606\) 0 0
\(607\) −1.26194 + 1.33758i −0.0512205 + 0.0542906i −0.752477 0.658618i \(-0.771141\pi\)
0.701257 + 0.712909i \(0.252623\pi\)
\(608\) 0.454935 0.482203i 0.0184501 0.0195559i
\(609\) 0 0
\(610\) −30.7132 + 41.2550i −1.24354 + 1.67037i
\(611\) −1.43475 + 0.522207i −0.0580438 + 0.0211262i
\(612\) 0 0
\(613\) −33.2921 12.1173i −1.34465 0.489414i −0.433379 0.901212i \(-0.642679\pi\)
−0.911275 + 0.411797i \(0.864901\pi\)
\(614\) −9.20649 + 6.05520i −0.371544 + 0.244368i
\(615\) 0 0
\(616\) 0.997442 + 1.33980i 0.0401881 + 0.0539820i
\(617\) 31.0126 + 20.3973i 1.24852 + 0.821165i 0.989476 0.144700i \(-0.0462217\pi\)
0.259045 + 0.965865i \(0.416592\pi\)
\(618\) 0 0
\(619\) −9.74402 + 32.5473i −0.391645 + 1.30819i 0.504110 + 0.863639i \(0.331821\pi\)
−0.895755 + 0.444547i \(0.853365\pi\)
\(620\) −0.165108 + 0.285975i −0.00663088 + 0.0114850i
\(621\) 0 0
\(622\) 14.2489 + 24.6799i 0.571330 + 0.989573i
\(623\) −40.3220 + 9.55648i −1.61546 + 0.382872i
\(624\) 0 0
\(625\) 41.2956 20.7394i 1.65182 0.829577i
\(626\) 10.6249 24.6312i 0.424655 0.984461i
\(627\) 0 0
\(628\) 0.0501349 + 0.860783i 0.00200060 + 0.0343490i
\(629\) 1.74807 + 9.91382i 0.0697003 + 0.395290i
\(630\) 0 0
\(631\) −1.91892 + 10.8828i −0.0763912 + 0.433236i 0.922493 + 0.386013i \(0.126148\pi\)
−0.998884 + 0.0472226i \(0.984963\pi\)
\(632\) −20.7136 2.42108i −0.823945 0.0963053i
\(633\) 0 0
\(634\) −11.5154 38.4642i −0.457336 1.52761i
\(635\) 33.5222 + 7.94492i 1.33029 + 0.315284i
\(636\) 0 0
\(637\) 0.780117 + 1.80851i 0.0309094 + 0.0716560i
\(638\) −1.22138 1.02486i −0.0483548 0.0405745i
\(639\) 0 0
\(640\) 32.3085 27.1100i 1.27710 1.07162i
\(641\) 14.5321 + 7.29830i 0.573984 + 0.288265i 0.712017 0.702162i \(-0.247782\pi\)
−0.138033 + 0.990428i \(0.544078\pi\)
\(642\) 0 0
\(643\) −14.1768 + 1.65703i −0.559078 + 0.0653468i −0.390939 0.920416i \(-0.627850\pi\)
−0.168139 + 0.985763i \(0.553776\pi\)
\(644\) −0.0592025 + 1.01647i −0.00233291 + 0.0400545i
\(645\) 0 0
\(646\) −2.62709 2.78455i −0.103362 0.109557i
\(647\) −40.7899 −1.60362 −0.801808 0.597582i \(-0.796128\pi\)
−0.801808 + 0.597582i \(0.796128\pi\)
\(648\) 0 0
\(649\) 0.823057 0.0323078
\(650\) −3.73769 3.96172i −0.146604 0.155391i
\(651\) 0 0
\(652\) −0.120224 + 2.06416i −0.00470832 + 0.0808388i
\(653\) −2.55616 + 0.298772i −0.100030 + 0.0116918i −0.165961 0.986132i \(-0.553072\pi\)
0.0659306 + 0.997824i \(0.478998\pi\)
\(654\) 0 0
\(655\) −58.3567 29.3078i −2.28019 1.14515i
\(656\) −20.5885 + 17.2758i −0.803847 + 0.674508i
\(657\) 0 0
\(658\) −16.4415 13.7961i −0.640957 0.537827i
\(659\) −3.40053 7.88331i −0.132466 0.307090i 0.839054 0.544048i \(-0.183109\pi\)
−0.971520 + 0.236958i \(0.923850\pi\)
\(660\) 0 0
\(661\) 36.0921 + 8.55398i 1.40382 + 0.332711i 0.861626 0.507543i \(-0.169446\pi\)
0.542192 + 0.840254i \(0.317594\pi\)
\(662\) −1.21589 4.06135i −0.0472569 0.157849i
\(663\) 0 0
\(664\) −6.59927 0.771344i −0.256101 0.0299340i
\(665\) 3.09324 17.5427i 0.119951 0.680275i
\(666\) 0 0
\(667\) −3.73985 21.2097i −0.144807 0.821244i
\(668\) −0.0286272 0.491509i −0.00110762 0.0190171i
\(669\) 0 0
\(670\) −28.6904 + 66.5118i −1.10841 + 2.56957i
\(671\) −1.33998 + 0.672964i −0.0517294 + 0.0259795i
\(672\) 0 0
\(673\) 21.5825 5.11516i 0.831946 0.197175i 0.207492 0.978237i \(-0.433470\pi\)
0.624454 + 0.781062i \(0.285322\pi\)
\(674\) −19.1889 33.2362i −0.739130 1.28021i
\(675\) 0 0
\(676\) −0.608625 + 1.05417i −0.0234087 + 0.0405450i
\(677\) −1.24236 + 4.14976i −0.0477477 + 0.159488i −0.978539 0.206064i \(-0.933935\pi\)
0.930791 + 0.365552i \(0.119120\pi\)
\(678\) 0 0
\(679\) −12.4814 8.20915i −0.478992 0.315038i
\(680\) 15.5791 + 20.9264i 0.597432 + 0.802491i
\(681\) 0 0
\(682\) 0.162150 0.106648i 0.00620905 0.00408376i
\(683\) −38.0275 13.8409i −1.45508 0.529607i −0.511077 0.859535i \(-0.670753\pi\)
−0.944006 + 0.329928i \(0.892976\pi\)
\(684\) 0 0
\(685\) 12.9702 4.72076i 0.495566 0.180371i
\(686\) 3.98217 5.34899i 0.152040 0.204225i
\(687\) 0 0
\(688\) −24.6207 + 26.0964i −0.938654 + 0.994915i
\(689\) 1.11482 1.18164i 0.0424711 0.0450168i
\(690\) 0 0
\(691\) −13.9201 + 18.6980i −0.529547 + 0.711305i −0.983740 0.179598i \(-0.942520\pi\)
0.454193 + 0.890903i \(0.349928\pi\)
\(692\) 1.85284 0.674377i 0.0704343 0.0256360i
\(693\) 0 0
\(694\) 4.54584 + 1.65455i 0.172558 + 0.0628058i
\(695\) 38.0396 25.0190i 1.44292 0.949025i
\(696\) 0 0
\(697\) −9.43416 12.6723i −0.357344 0.479997i
\(698\) 13.1940 + 8.67783i 0.499400 + 0.328461i
\(699\) 0 0
\(700\) −1.08926 + 3.63838i −0.0411702 + 0.137518i
\(701\) −5.97599 + 10.3507i −0.225710 + 0.390941i −0.956532 0.291627i \(-0.905804\pi\)
0.730822 + 0.682568i \(0.239137\pi\)
\(702\) 0 0
\(703\) −2.79474 4.84063i −0.105406 0.182568i
\(704\) 1.31884 0.312572i 0.0497058 0.0117805i
\(705\) 0 0
\(706\) −2.26307 + 1.13655i −0.0851716 + 0.0427748i
\(707\) 2.35918 5.46920i 0.0887263 0.205691i
\(708\) 0 0
\(709\) 0.831035 + 14.2683i 0.0312102 + 0.535858i 0.977288 + 0.211918i \(0.0679708\pi\)
−0.946077 + 0.323941i \(0.894992\pi\)
\(710\) −1.56401 8.86995i −0.0586963 0.332883i
\(711\) 0 0
\(712\) −5.85154 + 33.1857i −0.219296 + 1.24369i
\(713\) 2.60386 + 0.304348i 0.0975155 + 0.0113979i
\(714\) 0 0
\(715\) −0.0656916 0.219425i −0.00245673 0.00820604i
\(716\) 0.375533 + 0.0890029i 0.0140343 + 0.00332620i
\(717\) 0 0
\(718\) −10.9981 25.4965i −0.410446 0.951521i
\(719\) −10.2202 8.57578i −0.381150 0.319823i 0.432004 0.901872i \(-0.357807\pi\)
−0.813154 + 0.582049i \(0.802251\pi\)
\(720\) 0 0
\(721\) −9.14676 + 7.67504i −0.340643 + 0.285833i
\(722\) −21.5382 10.8169i −0.801568 0.402563i
\(723\) 0 0
\(724\) 1.54363 0.180425i 0.0573686 0.00670543i
\(725\) 4.67104 80.1986i 0.173478 2.97850i
\(726\) 0 0
\(727\) −28.2910 29.9867i −1.04925 1.11214i −0.993515 0.113698i \(-0.963730\pi\)
−0.0557382 0.998445i \(-0.517751\pi\)
\(728\) 3.58907 0.133020
\(729\) 0 0
\(730\) −65.0874 −2.40899
\(731\) −14.4724 15.3399i −0.535283 0.567366i
\(732\) 0 0
\(733\) −0.675142 + 11.5917i −0.0249369 + 0.428151i 0.962617 + 0.270868i \(0.0873106\pi\)
−0.987554 + 0.157283i \(0.949726\pi\)
\(734\) −36.2103 + 4.23238i −1.33655 + 0.156220i
\(735\) 0 0
\(736\) 1.44643 + 0.726425i 0.0533162 + 0.0267764i
\(737\) −1.61775 + 1.35745i −0.0595907 + 0.0500025i
\(738\) 0 0
\(739\) −27.7185 23.2586i −1.01964 0.855581i −0.0300588 0.999548i \(-0.509569\pi\)
−0.989582 + 0.143968i \(0.954014\pi\)
\(740\) 0.680852 + 1.57839i 0.0250286 + 0.0580229i
\(741\) 0 0
\(742\) 22.2206 + 5.26639i 0.815745 + 0.193335i
\(743\) 14.5076 + 48.4588i 0.532233 + 1.77778i 0.623352 + 0.781941i \(0.285770\pi\)
−0.0911193 + 0.995840i \(0.529044\pi\)
\(744\) 0 0
\(745\) 2.39695 + 0.280163i 0.0878174 + 0.0102644i
\(746\) −7.10447 + 40.2914i −0.260113 + 1.47517i
\(747\) 0 0
\(748\) 0.00596034 + 0.0338028i 0.000217932 + 0.00123595i
\(749\) −2.44095 41.9095i −0.0891905 1.53134i
\(750\) 0 0
\(751\) 15.9854 37.0582i 0.583314 1.35227i −0.329599 0.944121i \(-0.606914\pi\)
0.912913 0.408154i \(-0.133827\pi\)
\(752\) −14.8581 + 7.46204i −0.541821 + 0.272113i
\(753\) 0 0
\(754\) −3.33360 + 0.790077i −0.121402 + 0.0287729i
\(755\) −3.38584 5.86446i −0.123224 0.213429i
\(756\) 0 0
\(757\) 23.2499 40.2700i 0.845032 1.46364i −0.0405607 0.999177i \(-0.512914\pi\)
0.885593 0.464462i \(-0.153752\pi\)
\(758\) 4.55517 15.2153i 0.165451 0.552646i
\(759\) 0 0
\(760\) −12.1025 7.95995i −0.439004 0.288738i
\(761\) −4.01868 5.39803i −0.145677 0.195678i 0.723295 0.690539i \(-0.242627\pi\)
−0.868972 + 0.494860i \(0.835219\pi\)
\(762\) 0 0
\(763\) −29.8929 + 19.6609i −1.08220 + 0.711772i
\(764\) −0.000370307 0 0.000134781i −1.33972e−5 0 4.87620e-6i
\(765\) 0 0
\(766\) 37.3111 13.5801i 1.34811 0.490671i
\(767\) 1.05610 1.41859i 0.0381335 0.0512221i
\(768\) 0 0
\(769\) −17.9772 + 19.0547i −0.648273 + 0.687129i −0.965257 0.261302i \(-0.915848\pi\)
0.316984 + 0.948431i \(0.397330\pi\)
\(770\) 2.20953 2.34197i 0.0796260 0.0843986i
\(771\) 0 0
\(772\) 1.18462 1.59122i 0.0426353 0.0572692i
\(773\) 15.5434 5.65735i 0.559059 0.203481i −0.0470079 0.998895i \(-0.514969\pi\)
0.606067 + 0.795414i \(0.292746\pi\)
\(774\) 0 0
\(775\) 9.18902 + 3.34453i 0.330079 + 0.120139i
\(776\) −10.1497 + 6.67559i −0.364355 + 0.239640i
\(777\) 0 0
\(778\) −9.44276 12.6838i −0.338539 0.454737i
\(779\) 7.32885 + 4.82026i 0.262583 + 0.172704i
\(780\) 0 0
\(781\) 0.0753109 0.251556i 0.00269484 0.00900138i