Properties

Label 729.2.g.c.109.2
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.2
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.c.622.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07889 - 1.14356i) q^{2} +(-0.0274281 + 0.470923i) q^{4} +(-0.852512 + 0.0996444i) q^{5} +(2.97559 + 1.49440i) q^{7} +(-1.84059 + 1.54444i) q^{8} +O(q^{10})\) \(q+(-1.07889 - 1.14356i) q^{2} +(-0.0274281 + 0.470923i) q^{4} +(-0.852512 + 0.0996444i) q^{5} +(2.97559 + 1.49440i) q^{7} +(-1.84059 + 1.54444i) q^{8} +(1.03372 + 0.867390i) q^{10} +(0.146107 + 0.338713i) q^{11} +(-3.77713 - 0.895197i) q^{13} +(-1.50140 - 5.01504i) q^{14} +(4.68900 + 0.548065i) q^{16} +(-0.384378 + 2.17991i) q^{17} +(0.607044 + 3.44272i) q^{19} +(-0.0235420 - 0.404201i) q^{20} +(0.229704 - 0.532515i) q^{22} +(-7.28429 + 3.65831i) q^{23} +(-4.14838 + 0.983183i) q^{25} +(3.05140 + 5.28518i) q^{26} +(-0.785360 + 1.36028i) q^{28} +(-0.892472 + 2.98106i) q^{29} +(7.30581 + 4.80511i) q^{31} +(-1.56256 - 2.09889i) q^{32} +(2.90755 - 1.91233i) q^{34} +(-2.68563 - 0.977491i) q^{35} +(-6.17440 + 2.24730i) q^{37} +(3.28201 - 4.40850i) q^{38} +(1.41523 - 1.50006i) q^{40} +(2.19157 - 2.32293i) q^{41} +(-1.40273 + 1.88419i) q^{43} +(-0.163515 + 0.0595146i) q^{44} +(12.0424 + 4.38308i) q^{46} +(10.8880 - 7.16113i) q^{47} +(2.44079 + 3.27855i) q^{49} +(5.59996 + 3.68315i) q^{50} +(0.525168 - 1.75418i) q^{52} +(0.417342 - 0.722857i) q^{53} +(-0.158309 - 0.274198i) q^{55} +(-7.78483 + 1.84504i) q^{56} +(4.37189 - 2.19565i) q^{58} +(-2.21866 + 5.14344i) q^{59} +(0.489280 + 8.40062i) q^{61} +(-2.38725 - 13.5388i) q^{62} +(0.925198 - 5.24706i) q^{64} +(3.30926 + 0.386796i) q^{65} +(2.75718 + 9.20962i) q^{67} +(-1.01603 - 0.240803i) q^{68} +(1.77969 + 4.12577i) q^{70} +(11.0657 + 9.28524i) q^{71} +(5.24785 - 4.40347i) q^{73} +(9.23140 + 4.63618i) q^{74} +(-1.63790 + 0.191443i) q^{76} +(-0.0714187 + 1.22621i) q^{77} +(-10.1589 - 10.7678i) q^{79} -4.05204 q^{80} -5.02087 q^{82} +(1.03296 + 1.09488i) q^{83} +(0.110470 - 1.89670i) q^{85} +(3.66806 - 0.428735i) q^{86} +(-0.792043 - 0.397779i) q^{88} +(-3.47858 + 2.91888i) q^{89} +(-9.90141 - 8.30827i) q^{91} +(-1.52299 - 3.53068i) q^{92} +(-19.9361 - 4.72493i) q^{94} +(-0.860560 - 2.87447i) q^{95} +(-4.70641 - 0.550100i) q^{97} +(1.11586 - 6.32837i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07889 1.14356i −0.762890 0.808616i 0.223210 0.974770i \(-0.428346\pi\)
−0.986100 + 0.166155i \(0.946865\pi\)
\(3\) 0 0
\(4\) −0.0274281 + 0.470923i −0.0137141 + 0.235461i
\(5\) −0.852512 + 0.0996444i −0.381255 + 0.0445623i −0.304562 0.952492i \(-0.598510\pi\)
−0.0766929 + 0.997055i \(0.524436\pi\)
\(6\) 0 0
\(7\) 2.97559 + 1.49440i 1.12467 + 0.564829i 0.911135 0.412108i \(-0.135207\pi\)
0.213531 + 0.976936i \(0.431504\pi\)
\(8\) −1.84059 + 1.54444i −0.650746 + 0.546041i
\(9\) 0 0
\(10\) 1.03372 + 0.867390i 0.326889 + 0.274293i
\(11\) 0.146107 + 0.338713i 0.0440528 + 0.102126i 0.938822 0.344404i \(-0.111919\pi\)
−0.894769 + 0.446530i \(0.852660\pi\)
\(12\) 0 0
\(13\) −3.77713 0.895197i −1.04759 0.248283i −0.329443 0.944176i \(-0.606861\pi\)
−0.718146 + 0.695893i \(0.755009\pi\)
\(14\) −1.50140 5.01504i −0.401267 1.34032i
\(15\) 0 0
\(16\) 4.68900 + 0.548065i 1.17225 + 0.137016i
\(17\) −0.384378 + 2.17991i −0.0932253 + 0.528707i 0.902051 + 0.431628i \(0.142061\pi\)
−0.995277 + 0.0970783i \(0.969050\pi\)
\(18\) 0 0
\(19\) 0.607044 + 3.44272i 0.139265 + 0.789813i 0.971794 + 0.235831i \(0.0757813\pi\)
−0.832529 + 0.553982i \(0.813108\pi\)
\(20\) −0.0235420 0.404201i −0.00526415 0.0903820i
\(21\) 0 0
\(22\) 0.229704 0.532515i 0.0489732 0.113533i
\(23\) −7.28429 + 3.65831i −1.51888 + 0.762810i −0.995979 0.0895845i \(-0.971446\pi\)
−0.522900 + 0.852394i \(0.675150\pi\)
\(24\) 0 0
\(25\) −4.14838 + 0.983183i −0.829675 + 0.196637i
\(26\) 3.05140 + 5.28518i 0.598429 + 1.03651i
\(27\) 0 0
\(28\) −0.785360 + 1.36028i −0.148419 + 0.257069i
\(29\) −0.892472 + 2.98106i −0.165728 + 0.553570i 0.834270 + 0.551357i \(0.185890\pi\)
−0.999998 + 0.00221315i \(0.999296\pi\)
\(30\) 0 0
\(31\) 7.30581 + 4.80511i 1.31216 + 0.863023i 0.996314 0.0857865i \(-0.0273403\pi\)
0.315849 + 0.948809i \(0.397711\pi\)
\(32\) −1.56256 2.09889i −0.276225 0.371034i
\(33\) 0 0
\(34\) 2.90755 1.91233i 0.498641 0.327962i
\(35\) −2.68563 0.977491i −0.453955 0.165226i
\(36\) 0 0
\(37\) −6.17440 + 2.24730i −1.01506 + 0.369453i −0.795376 0.606117i \(-0.792726\pi\)
−0.219689 + 0.975570i \(0.570504\pi\)
\(38\) 3.28201 4.40850i 0.532412 0.715153i
\(39\) 0 0
\(40\) 1.41523 1.50006i 0.223767 0.237180i
\(41\) 2.19157 2.32293i 0.342266 0.362781i −0.533260 0.845951i \(-0.679033\pi\)
0.875526 + 0.483170i \(0.160515\pi\)
\(42\) 0 0
\(43\) −1.40273 + 1.88419i −0.213914 + 0.287336i −0.896109 0.443834i \(-0.853618\pi\)
0.682195 + 0.731170i \(0.261025\pi\)
\(44\) −0.163515 + 0.0595146i −0.0246508 + 0.00897217i
\(45\) 0 0
\(46\) 12.0424 + 4.38308i 1.77556 + 0.646250i
\(47\) 10.8880 7.16113i 1.58817 1.04456i 0.623252 0.782021i \(-0.285811\pi\)
0.964922 0.262537i \(-0.0845593\pi\)
\(48\) 0 0
\(49\) 2.44079 + 3.27855i 0.348684 + 0.468364i
\(50\) 5.59996 + 3.68315i 0.791954 + 0.520876i
\(51\) 0 0
\(52\) 0.525168 1.75418i 0.0728278 0.243262i
\(53\) 0.417342 0.722857i 0.0573263 0.0992920i −0.835938 0.548824i \(-0.815076\pi\)
0.893264 + 0.449532i \(0.148409\pi\)
\(54\) 0 0
\(55\) −0.158309 0.274198i −0.0213463 0.0369729i
\(56\) −7.78483 + 1.84504i −1.04029 + 0.246554i
\(57\) 0 0
\(58\) 4.37189 2.19565i 0.574058 0.288303i
\(59\) −2.21866 + 5.14344i −0.288845 + 0.669619i −0.999422 0.0340010i \(-0.989175\pi\)
0.710576 + 0.703620i \(0.248434\pi\)
\(60\) 0 0
\(61\) 0.489280 + 8.40062i 0.0626459 + 1.07559i 0.872391 + 0.488808i \(0.162568\pi\)
−0.809745 + 0.586781i \(0.800395\pi\)
\(62\) −2.38725 13.5388i −0.303181 1.71943i
\(63\) 0 0
\(64\) 0.925198 5.24706i 0.115650 0.655882i
\(65\) 3.30926 + 0.386796i 0.410463 + 0.0479762i
\(66\) 0 0
\(67\) 2.75718 + 9.20962i 0.336843 + 1.12513i 0.943832 + 0.330425i \(0.107192\pi\)
−0.606989 + 0.794710i \(0.707623\pi\)
\(68\) −1.01603 0.240803i −0.123212 0.0292017i
\(69\) 0 0
\(70\) 1.77969 + 4.12577i 0.212713 + 0.493124i
\(71\) 11.0657 + 9.28524i 1.31326 + 1.10196i 0.987688 + 0.156438i \(0.0500011\pi\)
0.325571 + 0.945517i \(0.394443\pi\)
\(72\) 0 0
\(73\) 5.24785 4.40347i 0.614214 0.515387i −0.281765 0.959484i \(-0.590920\pi\)
0.895979 + 0.444097i \(0.146475\pi\)
\(74\) 9.23140 + 4.63618i 1.07313 + 0.538945i
\(75\) 0 0
\(76\) −1.63790 + 0.191443i −0.187880 + 0.0219601i
\(77\) −0.0714187 + 1.22621i −0.00813891 + 0.139740i
\(78\) 0 0
\(79\) −10.1589 10.7678i −1.14296 1.21147i −0.974170 0.225817i \(-0.927495\pi\)
−0.168792 0.985652i \(-0.553987\pi\)
\(80\) −4.05204 −0.453032
\(81\) 0 0
\(82\) −5.02087 −0.554462
\(83\) 1.03296 + 1.09488i 0.113382 + 0.120178i 0.781579 0.623807i \(-0.214415\pi\)
−0.668196 + 0.743985i \(0.732933\pi\)
\(84\) 0 0
\(85\) 0.110470 1.89670i 0.0119822 0.205727i
\(86\) 3.66806 0.428735i 0.395537 0.0462317i
\(87\) 0 0
\(88\) −0.792043 0.397779i −0.0844320 0.0424034i
\(89\) −3.47858 + 2.91888i −0.368729 + 0.309400i −0.808259 0.588828i \(-0.799590\pi\)
0.439530 + 0.898228i \(0.355145\pi\)
\(90\) 0 0
\(91\) −9.90141 8.30827i −1.03795 0.870944i
\(92\) −1.52299 3.53068i −0.158782 0.368099i
\(93\) 0 0
\(94\) −19.9361 4.72493i −2.05625 0.487340i
\(95\) −0.860560 2.87447i −0.0882916 0.294914i
\(96\) 0 0
\(97\) −4.70641 0.550100i −0.477863 0.0558542i −0.126248 0.991999i \(-0.540293\pi\)
−0.351616 + 0.936145i \(0.614368\pi\)
\(98\) 1.11586 6.32837i 0.112719 0.639262i
\(99\) 0 0
\(100\) −0.349221 1.98053i −0.0349221 0.198053i
\(101\) −0.0201885 0.346623i −0.00200883 0.0344902i 0.997155 0.0753813i \(-0.0240174\pi\)
−0.999164 + 0.0408910i \(0.986980\pi\)
\(102\) 0 0
\(103\) 3.34563 7.75604i 0.329654 0.764225i −0.670104 0.742267i \(-0.733751\pi\)
0.999759 0.0219581i \(-0.00699004\pi\)
\(104\) 8.33472 4.18585i 0.817287 0.410457i
\(105\) 0 0
\(106\) −1.27689 + 0.302629i −0.124023 + 0.0293939i
\(107\) 8.01529 + 13.8829i 0.774868 + 1.34211i 0.934869 + 0.354993i \(0.115517\pi\)
−0.160001 + 0.987117i \(0.551150\pi\)
\(108\) 0 0
\(109\) −2.57355 + 4.45751i −0.246501 + 0.426952i −0.962553 0.271095i \(-0.912614\pi\)
0.716052 + 0.698047i \(0.245948\pi\)
\(110\) −0.142764 + 0.476864i −0.0136120 + 0.0454672i
\(111\) 0 0
\(112\) 13.1335 + 8.63804i 1.24100 + 0.816218i
\(113\) −1.91053 2.56629i −0.179728 0.241417i 0.703125 0.711066i \(-0.251788\pi\)
−0.882853 + 0.469650i \(0.844380\pi\)
\(114\) 0 0
\(115\) 5.84542 3.84459i 0.545088 0.358510i
\(116\) −1.37937 0.502050i −0.128072 0.0466142i
\(117\) 0 0
\(118\) 8.27550 3.01204i 0.761822 0.277281i
\(119\) −4.40140 + 5.91211i −0.403476 + 0.541962i
\(120\) 0 0
\(121\) 7.45528 7.90213i 0.677753 0.718376i
\(122\) 9.07870 9.62286i 0.821947 0.871213i
\(123\) 0 0
\(124\) −2.46322 + 3.30868i −0.221204 + 0.297128i
\(125\) 7.47134 2.71935i 0.668257 0.243226i
\(126\) 0 0
\(127\) −4.34690 1.58214i −0.385725 0.140392i 0.141877 0.989884i \(-0.454686\pi\)
−0.527601 + 0.849492i \(0.676909\pi\)
\(128\) −11.3709 + 7.47874i −1.00505 + 0.661033i
\(129\) 0 0
\(130\) −3.12800 4.20163i −0.274343 0.368507i
\(131\) 2.09407 + 1.37729i 0.182960 + 0.120335i 0.637685 0.770297i \(-0.279892\pi\)
−0.454725 + 0.890632i \(0.650262\pi\)
\(132\) 0 0
\(133\) −3.33847 + 11.1513i −0.289482 + 0.966938i
\(134\) 7.55703 13.0892i 0.652828 1.13073i
\(135\) 0 0
\(136\) −2.65926 4.60597i −0.228029 0.394959i
\(137\) −9.33406 + 2.21221i −0.797462 + 0.189002i −0.609096 0.793097i \(-0.708467\pi\)
−0.188367 + 0.982099i \(0.560319\pi\)
\(138\) 0 0
\(139\) −17.8753 + 8.97732i −1.51616 + 0.761446i −0.995717 0.0924483i \(-0.970531\pi\)
−0.520446 + 0.853894i \(0.674234\pi\)
\(140\) 0.533984 1.23791i 0.0451299 0.104623i
\(141\) 0 0
\(142\) −1.32049 22.6720i −0.110813 1.90259i
\(143\) −0.248649 1.41016i −0.0207931 0.117923i
\(144\) 0 0
\(145\) 0.463797 2.63032i 0.0385163 0.218437i
\(146\) −10.6975 1.25035i −0.885328 0.103480i
\(147\) 0 0
\(148\) −0.888951 2.96930i −0.0730713 0.244075i
\(149\) 11.1322 + 2.63838i 0.911986 + 0.216145i 0.659718 0.751513i \(-0.270676\pi\)
0.252267 + 0.967658i \(0.418824\pi\)
\(150\) 0 0
\(151\) 1.45308 + 3.36861i 0.118250 + 0.274134i 0.967053 0.254575i \(-0.0819356\pi\)
−0.848803 + 0.528709i \(0.822676\pi\)
\(152\) −6.43437 5.39908i −0.521897 0.437923i
\(153\) 0 0
\(154\) 1.47929 1.24127i 0.119205 0.100025i
\(155\) −6.70710 3.36843i −0.538727 0.270559i
\(156\) 0 0
\(157\) −7.74028 + 0.904710i −0.617742 + 0.0722037i −0.419208 0.907890i \(-0.637692\pi\)
−0.198534 + 0.980094i \(0.563618\pi\)
\(158\) −1.35325 + 23.2345i −0.107659 + 1.84843i
\(159\) 0 0
\(160\) 1.54125 + 1.63363i 0.121846 + 0.129149i
\(161\) −27.1420 −2.13909
\(162\) 0 0
\(163\) −6.86435 −0.537657 −0.268829 0.963188i \(-0.586637\pi\)
−0.268829 + 0.963188i \(0.586637\pi\)
\(164\) 1.03381 + 1.09578i 0.0807270 + 0.0855657i
\(165\) 0 0
\(166\) 0.137600 2.36250i 0.0106798 0.183366i
\(167\) −17.8511 + 2.08649i −1.38136 + 0.161458i −0.774109 0.633053i \(-0.781802\pi\)
−0.607250 + 0.794511i \(0.707728\pi\)
\(168\) 0 0
\(169\) 1.84814 + 0.928172i 0.142165 + 0.0713978i
\(170\) −2.28817 + 1.92000i −0.175495 + 0.147258i
\(171\) 0 0
\(172\) −0.848833 0.712256i −0.0647229 0.0543090i
\(173\) −4.50040 10.4331i −0.342159 0.793213i −0.999224 0.0393799i \(-0.987462\pi\)
0.657065 0.753834i \(-0.271798\pi\)
\(174\) 0 0
\(175\) −13.8131 3.27377i −1.04417 0.247474i
\(176\) 0.499457 + 1.66830i 0.0376480 + 0.125753i
\(177\) 0 0
\(178\) 7.09090 + 0.828808i 0.531486 + 0.0621218i
\(179\) 3.90136 22.1257i 0.291601 1.65375i −0.389102 0.921194i \(-0.627215\pi\)
0.680704 0.732559i \(-0.261674\pi\)
\(180\) 0 0
\(181\) 0.281757 + 1.59792i 0.0209428 + 0.118773i 0.993487 0.113946i \(-0.0363490\pi\)
−0.972544 + 0.232718i \(0.925238\pi\)
\(182\) 1.18156 + 20.2865i 0.0875827 + 1.50374i
\(183\) 0 0
\(184\) 7.75735 17.9835i 0.571879 1.32576i
\(185\) 5.03982 2.53109i 0.370535 0.186090i
\(186\) 0 0
\(187\) −0.794526 + 0.188306i −0.0581015 + 0.0137703i
\(188\) 3.07370 + 5.32381i 0.224173 + 0.388279i
\(189\) 0 0
\(190\) −2.35867 + 4.08533i −0.171116 + 0.296381i
\(191\) −1.04911 + 3.50427i −0.0759110 + 0.253560i −0.987519 0.157500i \(-0.949656\pi\)
0.911608 + 0.411061i \(0.134842\pi\)
\(192\) 0 0
\(193\) −18.0937 11.9004i −1.30241 0.856611i −0.306948 0.951726i \(-0.599308\pi\)
−0.995466 + 0.0951151i \(0.969678\pi\)
\(194\) 4.44862 + 5.97554i 0.319392 + 0.429019i
\(195\) 0 0
\(196\) −1.61089 + 1.05950i −0.115064 + 0.0756785i
\(197\) 3.46682 + 1.26182i 0.247001 + 0.0899010i 0.462554 0.886591i \(-0.346933\pi\)
−0.215553 + 0.976492i \(0.569155\pi\)
\(198\) 0 0
\(199\) 1.25063 0.455191i 0.0886546 0.0322676i −0.297312 0.954780i \(-0.596090\pi\)
0.385967 + 0.922513i \(0.373868\pi\)
\(200\) 6.11698 8.21654i 0.432536 0.580997i
\(201\) 0 0
\(202\) −0.374601 + 0.397054i −0.0263568 + 0.0279366i
\(203\) −7.11052 + 7.53671i −0.499061 + 0.528973i
\(204\) 0 0
\(205\) −1.63688 + 2.19871i −0.114324 + 0.153564i
\(206\) −12.4790 + 4.54199i −0.869454 + 0.316456i
\(207\) 0 0
\(208\) −17.2204 6.26770i −1.19402 0.434587i
\(209\) −1.07740 + 0.708617i −0.0745253 + 0.0490161i
\(210\) 0 0
\(211\) −2.82054 3.78864i −0.194174 0.260821i 0.694364 0.719624i \(-0.255686\pi\)
−0.888538 + 0.458803i \(0.848278\pi\)
\(212\) 0.328963 + 0.216362i 0.0225933 + 0.0148598i
\(213\) 0 0
\(214\) 7.22825 24.1440i 0.494113 1.65045i
\(215\) 1.00809 1.74607i 0.0687514 0.119081i
\(216\) 0 0
\(217\) 14.5583 + 25.2158i 0.988285 + 1.71176i
\(218\) 7.87398 1.86617i 0.533294 0.126393i
\(219\) 0 0
\(220\) 0.133468 0.0670303i 0.00899844 0.00451918i
\(221\) 3.40330 7.88973i 0.228931 0.530721i
\(222\) 0 0
\(223\) −0.175101 3.00636i −0.0117256 0.201321i −0.999083 0.0428119i \(-0.986368\pi\)
0.987358 0.158509i \(-0.0506687\pi\)
\(224\) −1.51297 8.58050i −0.101090 0.573309i
\(225\) 0 0
\(226\) −0.873444 + 4.95355i −0.0581006 + 0.329505i
\(227\) −1.93582 0.226265i −0.128485 0.0150177i 0.0516073 0.998667i \(-0.483566\pi\)
−0.180092 + 0.983650i \(0.557640\pi\)
\(228\) 0 0
\(229\) 8.12873 + 27.1519i 0.537162 + 1.79425i 0.604609 + 0.796522i \(0.293329\pi\)
−0.0674471 + 0.997723i \(0.521485\pi\)
\(230\) −10.7031 2.53667i −0.705739 0.167263i
\(231\) 0 0
\(232\) −2.96139 6.86528i −0.194425 0.450727i
\(233\) −1.21591 1.02027i −0.0796571 0.0668402i 0.602090 0.798428i \(-0.294335\pi\)
−0.681747 + 0.731588i \(0.738779\pi\)
\(234\) 0 0
\(235\) −8.56856 + 7.18988i −0.558952 + 0.469016i
\(236\) −2.36131 1.18589i −0.153708 0.0771952i
\(237\) 0 0
\(238\) 11.5095 1.34526i 0.746047 0.0872004i
\(239\) 1.28265 22.0222i 0.0829676 1.42450i −0.658031 0.752991i \(-0.728610\pi\)
0.740998 0.671507i \(-0.234353\pi\)
\(240\) 0 0
\(241\) 4.63403 + 4.91178i 0.298504 + 0.316396i 0.859214 0.511617i \(-0.170953\pi\)
−0.560710 + 0.828012i \(0.689472\pi\)
\(242\) −17.0799 −1.09794
\(243\) 0 0
\(244\) −3.96946 −0.254119
\(245\) −2.40749 2.55179i −0.153809 0.163028i
\(246\) 0 0
\(247\) 0.789025 13.5470i 0.0502044 0.861977i
\(248\) −20.8682 + 2.43914i −1.32513 + 0.154885i
\(249\) 0 0
\(250\) −11.1705 5.61002i −0.706482 0.354809i
\(251\) −7.86828 + 6.60227i −0.496642 + 0.416732i −0.856399 0.516314i \(-0.827304\pi\)
0.359758 + 0.933046i \(0.382859\pi\)
\(252\) 0 0
\(253\) −2.30340 1.93278i −0.144813 0.121513i
\(254\) 2.88055 + 6.67787i 0.180742 + 0.419007i
\(255\) 0 0
\(256\) 10.4515 + 2.47705i 0.653218 + 0.154815i
\(257\) 6.96201 + 23.2547i 0.434278 + 1.45059i 0.842991 + 0.537927i \(0.180792\pi\)
−0.408713 + 0.912663i \(0.634022\pi\)
\(258\) 0 0
\(259\) −21.7308 2.53997i −1.35029 0.157826i
\(260\) −0.272918 + 1.54779i −0.0169257 + 0.0959901i
\(261\) 0 0
\(262\) −0.684261 3.88064i −0.0422738 0.239746i
\(263\) −0.844614 14.5015i −0.0520811 0.894198i −0.918633 0.395111i \(-0.870706\pi\)
0.866552 0.499087i \(-0.166331\pi\)
\(264\) 0 0
\(265\) −0.283760 + 0.657830i −0.0174313 + 0.0404102i
\(266\) 16.3539 8.21325i 1.00272 0.503587i
\(267\) 0 0
\(268\) −4.41265 + 1.04582i −0.269545 + 0.0638834i
\(269\) 5.88635 + 10.1955i 0.358897 + 0.621628i 0.987777 0.155874i \(-0.0498195\pi\)
−0.628880 + 0.777503i \(0.716486\pi\)
\(270\) 0 0
\(271\) 2.10182 3.64046i 0.127677 0.221142i −0.795099 0.606479i \(-0.792581\pi\)
0.922776 + 0.385337i \(0.125915\pi\)
\(272\) −2.99708 + 10.0110i −0.181725 + 0.607003i
\(273\) 0 0
\(274\) 12.6002 + 8.28728i 0.761206 + 0.500653i
\(275\) −0.939122 1.26146i −0.0566312 0.0760689i
\(276\) 0 0
\(277\) 5.36017 3.52544i 0.322061 0.211823i −0.378175 0.925734i \(-0.623448\pi\)
0.700236 + 0.713911i \(0.253078\pi\)
\(278\) 29.5515 + 10.7559i 1.77238 + 0.645095i
\(279\) 0 0
\(280\) 6.45281 2.34863i 0.385629 0.140358i
\(281\) 1.21369 1.63027i 0.0724028 0.0972539i −0.764446 0.644687i \(-0.776988\pi\)
0.836849 + 0.547433i \(0.184395\pi\)
\(282\) 0 0
\(283\) 5.11762 5.42436i 0.304211 0.322445i −0.557176 0.830395i \(-0.688115\pi\)
0.861387 + 0.507950i \(0.169596\pi\)
\(284\) −4.67614 + 4.95642i −0.277478 + 0.294110i
\(285\) 0 0
\(286\) −1.34433 + 1.80575i −0.0794919 + 0.106776i
\(287\) 9.99260 3.63701i 0.589844 0.214686i
\(288\) 0 0
\(289\) 11.3705 + 4.13852i 0.668853 + 0.243442i
\(290\) −3.50831 + 2.30745i −0.206015 + 0.135498i
\(291\) 0 0
\(292\) 1.92975 + 2.59211i 0.112930 + 0.151692i
\(293\) −18.3030 12.0381i −1.06927 0.703271i −0.112365 0.993667i \(-0.535843\pi\)
−0.956907 + 0.290396i \(0.906213\pi\)
\(294\) 0 0
\(295\) 1.37892 4.60593i 0.0802840 0.268167i
\(296\) 7.89371 13.6723i 0.458812 0.794687i
\(297\) 0 0
\(298\) −8.99328 15.5768i −0.520967 0.902341i
\(299\) 30.7886 7.29704i 1.78055 0.421999i
\(300\) 0 0
\(301\) −6.98966 + 3.51034i −0.402877 + 0.202333i
\(302\) 2.28449 5.29604i 0.131457 0.304753i
\(303\) 0 0
\(304\) 0.959594 + 16.4756i 0.0550365 + 0.944940i
\(305\) −1.25419 7.11288i −0.0718149 0.407282i
\(306\) 0 0
\(307\) 0.875956 4.96780i 0.0499935 0.283527i −0.949554 0.313603i \(-0.898464\pi\)
0.999548 + 0.0300761i \(0.00957496\pi\)
\(308\) −0.575492 0.0672654i −0.0327917 0.00383280i
\(309\) 0 0
\(310\) 3.38423 + 11.3041i 0.192211 + 0.642030i
\(311\) 4.65636 + 1.10358i 0.264038 + 0.0625782i 0.360502 0.932758i \(-0.382605\pi\)
−0.0964644 + 0.995336i \(0.530753\pi\)
\(312\) 0 0
\(313\) 5.72173 + 13.2645i 0.323411 + 0.749752i 0.999911 + 0.0133092i \(0.00423657\pi\)
−0.676500 + 0.736443i \(0.736504\pi\)
\(314\) 9.38549 + 7.87536i 0.529654 + 0.444433i
\(315\) 0 0
\(316\) 5.34943 4.48870i 0.300929 0.252509i
\(317\) 8.60906 + 4.32363i 0.483533 + 0.242839i 0.673829 0.738887i \(-0.264648\pi\)
−0.190296 + 0.981727i \(0.560945\pi\)
\(318\) 0 0
\(319\) −1.14012 + 0.133261i −0.0638346 + 0.00746119i
\(320\) −0.265903 + 4.56537i −0.0148644 + 0.255212i
\(321\) 0 0
\(322\) 29.2832 + 31.0384i 1.63189 + 1.72970i
\(323\) −7.73816 −0.430563
\(324\) 0 0
\(325\) 16.5491 0.917980
\(326\) 7.40587 + 7.84976i 0.410173 + 0.434758i
\(327\) 0 0
\(328\) −0.446162 + 7.66030i −0.0246352 + 0.422969i
\(329\) 43.0997 5.03763i 2.37616 0.277733i
\(330\) 0 0
\(331\) 9.47900 + 4.76053i 0.521013 + 0.261663i 0.689813 0.723988i \(-0.257693\pi\)
−0.168800 + 0.985650i \(0.553989\pi\)
\(332\) −0.543935 + 0.456416i −0.0298523 + 0.0250491i
\(333\) 0 0
\(334\) 21.6454 + 18.1626i 1.18438 + 0.993814i
\(335\) −3.26822 7.57658i −0.178562 0.413953i
\(336\) 0 0
\(337\) 22.9186 + 5.43181i 1.24846 + 0.295889i 0.801135 0.598484i \(-0.204230\pi\)
0.447321 + 0.894373i \(0.352378\pi\)
\(338\) −0.932524 3.11485i −0.0507226 0.169425i
\(339\) 0 0
\(340\) 0.890171 + 0.104046i 0.0482763 + 0.00564269i
\(341\) −0.560126 + 3.17663i −0.0303325 + 0.172024i
\(342\) 0 0
\(343\) −1.68412 9.55114i −0.0909341 0.515713i
\(344\) −0.328168 5.63444i −0.0176937 0.303788i
\(345\) 0 0
\(346\) −7.07539 + 16.4026i −0.380375 + 0.881809i
\(347\) −12.9825 + 6.52006i −0.696938 + 0.350015i −0.761740 0.647883i \(-0.775655\pi\)
0.0648023 + 0.997898i \(0.479358\pi\)
\(348\) 0 0
\(349\) 25.9860 6.15879i 1.39100 0.329673i 0.534215 0.845349i \(-0.320607\pi\)
0.856784 + 0.515676i \(0.172459\pi\)
\(350\) 11.1591 + 19.3281i 0.596478 + 1.03313i
\(351\) 0 0
\(352\) 0.482619 0.835921i 0.0257237 0.0445548i
\(353\) 3.21627 10.7431i 0.171185 0.571797i −0.828741 0.559632i \(-0.810943\pi\)
0.999926 0.0121648i \(-0.00387227\pi\)
\(354\) 0 0
\(355\) −10.3589 6.81315i −0.549793 0.361604i
\(356\) −1.27915 1.71820i −0.0677950 0.0910646i
\(357\) 0 0
\(358\) −29.5111 + 19.4098i −1.55971 + 1.02584i
\(359\) 25.7279 + 9.36419i 1.35787 + 0.494223i 0.915394 0.402559i \(-0.131879\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(360\) 0 0
\(361\) 6.37036 2.31862i 0.335282 0.122033i
\(362\) 1.52333 2.04618i 0.0800643 0.107545i
\(363\) 0 0
\(364\) 4.18413 4.43492i 0.219308 0.232453i
\(365\) −4.03507 + 4.27693i −0.211205 + 0.223865i
\(366\) 0 0
\(367\) 1.89511 2.54558i 0.0989241 0.132878i −0.749905 0.661546i \(-0.769901\pi\)
0.848829 + 0.528668i \(0.177308\pi\)
\(368\) −36.1610 + 13.1615i −1.88502 + 0.686092i
\(369\) 0 0
\(370\) −8.33185 3.03255i −0.433152 0.157655i
\(371\) 2.32207 1.52725i 0.120556 0.0792909i
\(372\) 0 0
\(373\) 14.3282 + 19.2462i 0.741888 + 0.996529i 0.999541 + 0.0302912i \(0.00964347\pi\)
−0.257653 + 0.966238i \(0.582949\pi\)
\(374\) 1.07254 + 0.705423i 0.0554599 + 0.0364765i
\(375\) 0 0
\(376\) −8.98035 + 29.9965i −0.463126 + 1.54695i
\(377\) 6.03963 10.4609i 0.311057 0.538766i
\(378\) 0 0
\(379\) −4.78175 8.28224i −0.245622 0.425430i 0.716684 0.697398i \(-0.245659\pi\)
−0.962306 + 0.271968i \(0.912326\pi\)
\(380\) 1.37726 0.326416i 0.0706518 0.0167448i
\(381\) 0 0
\(382\) 5.13920 2.58101i 0.262945 0.132056i
\(383\) −3.40102 + 7.88446i −0.173784 + 0.402877i −0.982740 0.184993i \(-0.940774\pi\)
0.808956 + 0.587869i \(0.200033\pi\)
\(384\) 0 0
\(385\) −0.0612998 1.05248i −0.00312413 0.0536392i
\(386\) 5.91232 + 33.5304i 0.300929 + 1.70665i
\(387\) 0 0
\(388\) 0.388143 2.20127i 0.0197050 0.111752i
\(389\) 14.3485 + 1.67710i 0.727498 + 0.0850323i 0.471776 0.881718i \(-0.343613\pi\)
0.255721 + 0.966751i \(0.417687\pi\)
\(390\) 0 0
\(391\) −5.17488 17.2853i −0.261705 0.874155i
\(392\) −9.55599 2.26481i −0.482651 0.114390i
\(393\) 0 0
\(394\) −2.29736 5.32587i −0.115739 0.268313i
\(395\) 9.73351 + 8.16738i 0.489746 + 0.410946i
\(396\) 0 0
\(397\) −0.858484 + 0.720353i −0.0430861 + 0.0361535i −0.664076 0.747665i \(-0.731175\pi\)
0.620990 + 0.783818i \(0.286731\pi\)
\(398\) −1.86982 0.939061i −0.0937258 0.0470709i
\(399\) 0 0
\(400\) −19.9906 + 2.33656i −0.999529 + 0.116828i
\(401\) 1.55567 26.7098i 0.0776863 1.33382i −0.704022 0.710179i \(-0.748614\pi\)
0.781708 0.623645i \(-0.214349\pi\)
\(402\) 0 0
\(403\) −23.2935 24.6897i −1.16033 1.22988i
\(404\) 0.163786 0.00814867
\(405\) 0 0
\(406\) 16.2901 0.808465
\(407\) −1.66331 1.76300i −0.0824471 0.0873889i
\(408\) 0 0
\(409\) −0.296489 + 5.09052i −0.0146604 + 0.251710i 0.983013 + 0.183536i \(0.0587543\pi\)
−0.997673 + 0.0681740i \(0.978283\pi\)
\(410\) 4.28035 0.500301i 0.211391 0.0247081i
\(411\) 0 0
\(412\) 3.56073 + 1.78827i 0.175425 + 0.0881015i
\(413\) −14.2882 + 11.9892i −0.703075 + 0.589950i
\(414\) 0 0
\(415\) −0.989713 0.830467i −0.0485831 0.0407660i
\(416\) 4.02309 + 9.32657i 0.197248 + 0.457273i
\(417\) 0 0
\(418\) 1.97274 + 0.467548i 0.0964898 + 0.0228685i
\(419\) −5.50879 18.4006i −0.269122 0.898930i −0.980566 0.196188i \(-0.937144\pi\)
0.711444 0.702742i \(-0.248041\pi\)
\(420\) 0 0
\(421\) 7.90539 + 0.924007i 0.385285 + 0.0450334i 0.306531 0.951861i \(-0.400832\pi\)
0.0787541 + 0.996894i \(0.474906\pi\)
\(422\) −1.28947 + 7.31297i −0.0627706 + 0.355990i
\(423\) 0 0
\(424\) 0.348253 + 1.97504i 0.0169126 + 0.0959164i
\(425\) −0.548712 9.42102i −0.0266164 0.456986i
\(426\) 0 0
\(427\) −11.0980 + 25.7280i −0.537068 + 1.24506i
\(428\) −6.75762 + 3.39380i −0.326642 + 0.164046i
\(429\) 0 0
\(430\) −3.08435 + 0.731004i −0.148740 + 0.0352521i
\(431\) −7.16012 12.4017i −0.344891 0.597368i 0.640443 0.768005i \(-0.278751\pi\)
−0.985334 + 0.170637i \(0.945417\pi\)
\(432\) 0 0
\(433\) −0.564188 + 0.977202i −0.0271131 + 0.0469613i −0.879264 0.476336i \(-0.841965\pi\)
0.852150 + 0.523297i \(0.175298\pi\)
\(434\) 13.1288 43.8533i 0.630204 2.10503i
\(435\) 0 0
\(436\) −2.02856 1.33420i −0.0971502 0.0638967i
\(437\) −17.0164 22.8570i −0.814005 1.09340i
\(438\) 0 0
\(439\) 9.26133 6.09127i 0.442019 0.290721i −0.308925 0.951086i \(-0.599969\pi\)
0.750944 + 0.660366i \(0.229599\pi\)
\(440\) 0.714863 + 0.260189i 0.0340797 + 0.0124040i
\(441\) 0 0
\(442\) −12.6941 + 4.62029i −0.603798 + 0.219765i
\(443\) −17.8223 + 23.9395i −0.846763 + 1.13740i 0.142288 + 0.989825i \(0.454554\pi\)
−0.989051 + 0.147574i \(0.952853\pi\)
\(444\) 0 0
\(445\) 2.67468 2.83500i 0.126792 0.134392i
\(446\) −3.24903 + 3.44377i −0.153846 + 0.163067i
\(447\) 0 0
\(448\) 10.5942 14.2305i 0.500528 0.672326i
\(449\) 1.80790 0.658020i 0.0853199 0.0310539i −0.299008 0.954251i \(-0.596656\pi\)
0.384327 + 0.923197i \(0.374433\pi\)
\(450\) 0 0
\(451\) 1.10701 + 0.402919i 0.0521271 + 0.0189727i
\(452\) 1.26093 0.829325i 0.0593091 0.0390082i
\(453\) 0 0
\(454\) 1.82979 + 2.45783i 0.0858763 + 0.115352i
\(455\) 9.26895 + 6.09628i 0.434535 + 0.285798i
\(456\) 0 0
\(457\) −6.11136 + 20.4134i −0.285877 + 0.954897i 0.687595 + 0.726094i \(0.258666\pi\)
−0.973473 + 0.228803i \(0.926519\pi\)
\(458\) 22.2797 38.5895i 1.04106 1.80317i
\(459\) 0 0
\(460\) 1.65018 + 2.85819i 0.0769399 + 0.133264i
\(461\) −6.98761 + 1.65609i −0.325446 + 0.0771320i −0.390091 0.920776i \(-0.627556\pi\)
0.0646455 + 0.997908i \(0.479408\pi\)
\(462\) 0 0
\(463\) 14.8572 7.46155i 0.690472 0.346768i −0.0687192 0.997636i \(-0.521891\pi\)
0.759191 + 0.650868i \(0.225595\pi\)
\(464\) −5.81862 + 13.4891i −0.270123 + 0.626215i
\(465\) 0 0
\(466\) 0.145097 + 2.49122i 0.00672150 + 0.115404i
\(467\) −4.26068 24.1635i −0.197161 1.11815i −0.909308 0.416124i \(-0.863388\pi\)
0.712147 0.702031i \(-0.247723\pi\)
\(468\) 0 0
\(469\) −5.55860 + 31.5244i −0.256672 + 1.45566i
\(470\) 17.4666 + 2.04155i 0.805672 + 0.0941696i
\(471\) 0 0
\(472\) −3.86007 12.8935i −0.177674 0.593473i
\(473\) −0.843147 0.199830i −0.0387679 0.00918817i
\(474\) 0 0
\(475\) −5.90307 13.6848i −0.270851 0.627904i
\(476\) −2.66343 2.23488i −0.122078 0.102436i
\(477\) 0 0
\(478\) −26.5674 + 22.2927i −1.21517 + 1.01965i
\(479\) −18.6901 9.38653i −0.853973 0.428881i −0.0327330 0.999464i \(-0.510421\pi\)
−0.821240 + 0.570583i \(0.806717\pi\)
\(480\) 0 0
\(481\) 25.3333 2.96104i 1.15510 0.135012i
\(482\) 0.617294 10.5985i 0.0281170 0.482750i
\(483\) 0 0
\(484\) 3.51681 + 3.72760i 0.159855 + 0.169436i
\(485\) 4.06709 0.184677
\(486\) 0 0
\(487\) 19.1462 0.867597 0.433799 0.901010i \(-0.357173\pi\)
0.433799 + 0.901010i \(0.357173\pi\)
\(488\) −13.8748 14.7064i −0.628082 0.665728i
\(489\) 0 0
\(490\) −0.320700 + 5.50620i −0.0144877 + 0.248745i
\(491\) 7.08967 0.828664i 0.319952 0.0373971i 0.0453990 0.998969i \(-0.485544\pi\)
0.274553 + 0.961572i \(0.411470\pi\)
\(492\) 0 0
\(493\) −6.15542 3.09137i −0.277226 0.139228i
\(494\) −16.3430 + 13.7134i −0.735309 + 0.616997i
\(495\) 0 0
\(496\) 31.6234 + 26.5352i 1.41993 + 1.19147i
\(497\) 19.0512 + 44.1656i 0.854562 + 1.98110i
\(498\) 0 0
\(499\) 19.8325 + 4.70039i 0.887825 + 0.210418i 0.649131 0.760676i \(-0.275133\pi\)
0.238694 + 0.971095i \(0.423281\pi\)
\(500\) 1.07568 + 3.59301i 0.0481057 + 0.160684i
\(501\) 0 0
\(502\) 16.0391 + 1.87470i 0.715859 + 0.0836719i
\(503\) −2.25196 + 12.7715i −0.100410 + 0.569453i 0.892545 + 0.450959i \(0.148918\pi\)
−0.992955 + 0.118494i \(0.962193\pi\)
\(504\) 0 0
\(505\) 0.0517499 + 0.293488i 0.00230284 + 0.0130601i
\(506\) 0.274869 + 4.71932i 0.0122194 + 0.209799i
\(507\) 0 0
\(508\) 0.864293 2.00366i 0.0383468 0.0888979i
\(509\) −34.2187 + 17.1853i −1.51672 + 0.761724i −0.995771 0.0918658i \(-0.970717\pi\)
−0.520946 + 0.853590i \(0.674421\pi\)
\(510\) 0 0
\(511\) 22.1960 5.26054i 0.981891 0.232712i
\(512\) 5.16650 + 8.94865i 0.228329 + 0.395478i
\(513\) 0 0
\(514\) 19.0818 33.0507i 0.841664 1.45780i
\(515\) −2.07934 + 6.94549i −0.0916268 + 0.306055i
\(516\) 0 0
\(517\) 4.01637 + 2.64161i 0.176640 + 0.116178i
\(518\) 20.5405 + 27.5907i 0.902499 + 1.21227i
\(519\) 0 0
\(520\) −6.68836 + 4.39900i −0.293304 + 0.192909i
\(521\) −30.1989 10.9915i −1.32304 0.481546i −0.418607 0.908167i \(-0.637482\pi\)
−0.904431 + 0.426621i \(0.859704\pi\)
\(522\) 0 0
\(523\) −29.9071 + 10.8853i −1.30775 + 0.475980i −0.899512 0.436897i \(-0.856077\pi\)
−0.408234 + 0.912877i \(0.633855\pi\)
\(524\) −0.706035 + 0.948370i −0.0308433 + 0.0414297i
\(525\) 0 0
\(526\) −15.6720 + 16.6113i −0.683331 + 0.724288i
\(527\) −13.2829 + 14.0791i −0.578613 + 0.613294i
\(528\) 0 0
\(529\) 25.9430 34.8475i 1.12796 1.51511i
\(530\) 1.05841 0.385230i 0.0459745 0.0167333i
\(531\) 0 0
\(532\) −5.15982 1.87802i −0.223706 0.0814225i
\(533\) −10.3573 + 6.81214i −0.448627 + 0.295066i
\(534\) 0 0
\(535\) −8.21649 11.0367i −0.355230 0.477156i
\(536\) −19.2985 12.6928i −0.833569 0.548247i
\(537\) 0 0
\(538\) 5.30835 17.7311i 0.228859 0.764444i
\(539\) −0.753872 + 1.30574i −0.0324716 + 0.0562424i
\(540\) 0 0
\(541\) −5.24207 9.07953i −0.225374 0.390360i 0.731057 0.682316i \(-0.239027\pi\)
−0.956432 + 0.291956i \(0.905694\pi\)
\(542\) −6.43070 + 1.52410i −0.276222 + 0.0654659i
\(543\) 0 0
\(544\) 5.17600 2.59949i 0.221919 0.111452i
\(545\) 1.74981 4.05652i 0.0749538 0.173762i
\(546\) 0 0
\(547\) 1.46720 + 25.1908i 0.0627329 + 1.07708i 0.871957 + 0.489582i \(0.162851\pi\)
−0.809224 + 0.587500i \(0.800112\pi\)
\(548\) −0.785765 4.45630i −0.0335662 0.190364i
\(549\) 0 0
\(550\) −0.429341 + 2.43491i −0.0183072 + 0.103825i
\(551\) −10.8047 1.26289i −0.460297 0.0538010i
\(552\) 0 0
\(553\) −14.1373 47.2218i −0.601178 2.00808i
\(554\) −9.81456 2.32609i −0.416981 0.0988263i
\(555\) 0 0
\(556\) −3.73734 8.66412i −0.158498 0.367441i
\(557\) −24.7834 20.7958i −1.05011 0.881145i −0.0570029 0.998374i \(-0.518154\pi\)
−0.993105 + 0.117229i \(0.962599\pi\)
\(558\) 0 0
\(559\) 6.98501 5.86112i 0.295434 0.247899i
\(560\) −12.0572 6.05536i −0.509510 0.255885i
\(561\) 0 0
\(562\) −3.17375 + 0.370958i −0.133876 + 0.0156479i
\(563\) −0.705719 + 12.1167i −0.0297425 + 0.510659i 0.950233 + 0.311541i \(0.100845\pi\)
−0.979975 + 0.199119i \(0.936192\pi\)
\(564\) 0 0
\(565\) 1.88447 + 1.99742i 0.0792803 + 0.0840322i
\(566\) −11.7244 −0.492814
\(567\) 0 0
\(568\) −34.7079 −1.45631
\(569\) 18.3928 + 19.4953i 0.771068 + 0.817284i 0.987268 0.159065i \(-0.0508479\pi\)
−0.216200 + 0.976349i \(0.569366\pi\)
\(570\) 0 0
\(571\) 1.30152 22.3462i 0.0544668 0.935159i −0.854803 0.518952i \(-0.826322\pi\)
0.909270 0.416207i \(-0.136641\pi\)
\(572\) 0.670896 0.0784165i 0.0280516 0.00327876i
\(573\) 0 0
\(574\) −14.9400 7.50316i −0.623585 0.313176i
\(575\) 26.6212 22.3378i 1.11018 0.931552i
\(576\) 0 0
\(577\) −4.82667 4.05006i −0.200937 0.168606i 0.536767 0.843731i \(-0.319645\pi\)
−0.737704 + 0.675124i \(0.764090\pi\)
\(578\) −7.53487 17.4678i −0.313409 0.726565i
\(579\) 0 0
\(580\) 1.22596 + 0.290558i 0.0509052 + 0.0120647i
\(581\) 1.43749 + 4.80156i 0.0596372 + 0.199202i
\(582\) 0 0
\(583\) 0.305818 + 0.0357449i 0.0126657 + 0.00148040i
\(584\) −2.85825 + 16.2099i −0.118275 + 0.670772i
\(585\) 0 0
\(586\) 5.98069 + 33.9182i 0.247060 + 1.40115i
\(587\) −2.10905 36.2109i −0.0870496 1.49458i −0.705472 0.708738i \(-0.749265\pi\)
0.618422 0.785846i \(-0.287772\pi\)
\(588\) 0 0
\(589\) −12.1077 + 28.0688i −0.498888 + 1.15655i
\(590\) −6.75484 + 3.39241i −0.278092 + 0.139663i
\(591\) 0 0
\(592\) −30.1834 + 7.15360i −1.24053 + 0.294011i
\(593\) 5.74524 + 9.95104i 0.235929 + 0.408640i 0.959542 0.281565i \(-0.0908535\pi\)
−0.723614 + 0.690205i \(0.757520\pi\)
\(594\) 0 0
\(595\) 3.16314 5.47872i 0.129676 0.224606i
\(596\) −1.54781 + 5.17004i −0.0634007 + 0.211773i
\(597\) 0 0
\(598\) −41.5621 27.3358i −1.69960 1.11784i
\(599\) 17.7397 + 23.8285i 0.724824 + 0.973607i 0.999926 + 0.0121920i \(0.00388092\pi\)
−0.275102 + 0.961415i \(0.588712\pi\)
\(600\) 0 0
\(601\) −5.63532 + 3.70641i −0.229869 + 0.151188i −0.659219 0.751951i \(-0.729113\pi\)
0.429350 + 0.903138i \(0.358743\pi\)
\(602\) 11.5553 + 4.20580i 0.470960 + 0.171416i
\(603\) 0 0
\(604\) −1.62621 + 0.591893i −0.0661696 + 0.0240838i
\(605\) −5.56831 + 7.47954i −0.226384 + 0.304087i
\(606\) 0 0
\(607\) 0.115854 0.122798i 0.00470238 0.00498423i −0.725018 0.688730i \(-0.758169\pi\)
0.729721 + 0.683745i \(0.239650\pi\)
\(608\) 6.27732 6.65358i 0.254579 0.269838i
\(609\) 0 0
\(610\) −6.78084 + 9.10825i −0.274548 + 0.368782i
\(611\) −47.5360 + 17.3017i −1.92310 + 0.699951i
\(612\) 0 0
\(613\) −0.0309827 0.0112768i −0.00125138 0.000455465i 0.341394 0.939920i \(-0.389101\pi\)
−0.342646 + 0.939465i \(0.611323\pi\)
\(614\) −6.62601 + 4.35800i −0.267404 + 0.175874i
\(615\) 0 0
\(616\) −1.76235 2.36725i −0.0710072 0.0953792i
\(617\) 33.1193 + 21.7829i 1.33333 + 0.876947i 0.997878 0.0651098i \(-0.0207398\pi\)
0.335454 + 0.942056i \(0.391110\pi\)
\(618\) 0 0
\(619\) 7.37777 24.6435i 0.296538 0.990505i −0.671773 0.740757i \(-0.734467\pi\)
0.968311 0.249748i \(-0.0803478\pi\)
\(620\) 1.77023 3.06614i 0.0710943 0.123139i
\(621\) 0 0
\(622\) −3.76169 6.51544i −0.150830 0.261246i
\(623\) −14.7128 + 3.48699i −0.589455 + 0.139703i
\(624\) 0 0
\(625\) 12.9506 6.50406i 0.518026 0.260162i
\(626\) 8.99554 20.8540i 0.359534 0.833493i
\(627\) 0 0
\(628\) −0.213747 3.66989i −0.00852942 0.146445i
\(629\) −2.52561 14.3235i −0.100703 0.571114i
\(630\) 0 0
\(631\) −1.47077 + 8.34112i −0.0585502 + 0.332055i −0.999987 0.00513523i \(-0.998365\pi\)
0.941437 + 0.337190i \(0.109477\pi\)
\(632\) 35.3284 + 4.12930i 1.40529 + 0.164255i
\(633\) 0 0
\(634\) −4.34391 14.5097i −0.172519 0.576252i
\(635\) 3.86343 + 0.915651i 0.153316 + 0.0363365i
\(636\) 0 0
\(637\) −6.28424 14.5685i −0.248991 0.577225i
\(638\) 1.38246 + 1.16002i 0.0547320 + 0.0459256i
\(639\) 0 0
\(640\) 8.94859 7.50876i 0.353724 0.296810i
\(641\) 5.86128 + 2.94365i 0.231507 + 0.116267i 0.560772 0.827971i \(-0.310505\pi\)
−0.329265 + 0.944238i \(0.606801\pi\)
\(642\) 0 0
\(643\) −30.8147 + 3.60172i −1.21521 + 0.142038i −0.699442 0.714690i \(-0.746568\pi\)
−0.515770 + 0.856727i \(0.672494\pi\)
\(644\) 0.744454 12.7818i 0.0293356 0.503673i
\(645\) 0 0
\(646\) 8.34862 + 8.84902i 0.328472 + 0.348160i
\(647\) −2.59717 −0.102105 −0.0510526 0.998696i \(-0.516258\pi\)
−0.0510526 + 0.998696i \(0.516258\pi\)
\(648\) 0 0
\(649\) −2.06631 −0.0811099
\(650\) −17.8547 18.9248i −0.700317 0.742293i
\(651\) 0 0
\(652\) 0.188276 3.23258i 0.00737347 0.126598i
\(653\) 36.3516 4.24890i 1.42255 0.166272i 0.630244 0.776397i \(-0.282955\pi\)
0.792305 + 0.610125i \(0.208881\pi\)
\(654\) 0 0
\(655\) −1.92246 0.965497i −0.0751168 0.0377251i
\(656\) 11.5494 9.69110i 0.450929 0.378374i
\(657\) 0 0
\(658\) −52.2606 43.8518i −2.03733 1.70952i
\(659\) 5.31974 + 12.3325i 0.207228 + 0.480408i 0.989855 0.142083i \(-0.0453800\pi\)
−0.782627 + 0.622491i \(0.786121\pi\)
\(660\) 0 0
\(661\) 24.3664 + 5.77494i 0.947742 + 0.224619i 0.675292 0.737551i \(-0.264018\pi\)
0.272450 + 0.962170i \(0.412166\pi\)
\(662\) −4.78286 15.9759i −0.185891 0.620919i
\(663\) 0 0
\(664\) −3.59223 0.419871i −0.139405 0.0162942i
\(665\) 1.73493 9.83925i 0.0672775 0.381550i
\(666\) 0 0
\(667\) −4.40463 24.9799i −0.170548 0.967224i
\(668\) −0.492955 8.46371i −0.0190730 0.327471i
\(669\) 0 0
\(670\) −5.13820 + 11.9117i −0.198506 + 0.460188i
\(671\) −2.77391 + 1.39311i −0.107086 + 0.0537805i
\(672\) 0 0
\(673\) −7.49673 + 1.77676i −0.288978 + 0.0684890i −0.372548 0.928013i \(-0.621516\pi\)
0.0835703 + 0.996502i \(0.473368\pi\)
\(674\) −18.5151 32.0690i −0.713173 1.23525i
\(675\) 0 0
\(676\) −0.487788 + 0.844874i −0.0187611 + 0.0324951i
\(677\) −12.3771 + 41.3424i −0.475691 + 1.58892i 0.297485 + 0.954727i \(0.403852\pi\)
−0.773176 + 0.634192i \(0.781333\pi\)
\(678\) 0 0
\(679\) −13.1823 8.67011i −0.505889 0.332728i
\(680\) 2.72601 + 3.66167i 0.104538 + 0.140418i
\(681\) 0 0
\(682\) 4.23697 2.78670i 0.162242 0.106708i
\(683\) 0.663970 + 0.241665i 0.0254061 + 0.00924707i 0.354692 0.934983i \(-0.384586\pi\)
−0.329286 + 0.944230i \(0.606808\pi\)
\(684\) 0 0
\(685\) 7.73697 2.81603i 0.295614 0.107595i
\(686\) −9.10528 + 12.2305i −0.347641 + 0.466963i
\(687\) 0 0
\(688\) −7.61004 + 8.06618i −0.290130 + 0.307520i
\(689\) −2.22346 + 2.35672i −0.0847069 + 0.0897841i
\(690\) 0 0
\(691\) −17.4581 + 23.4502i −0.664136 + 0.892089i −0.998736 0.0502714i \(-0.983991\pi\)
0.334600 + 0.942360i \(0.391399\pi\)
\(692\) 5.03662 1.83318i 0.191463 0.0696870i
\(693\) 0 0
\(694\) 21.4627 + 7.81180i 0.814714 + 0.296532i
\(695\) 14.3444 9.43445i 0.544113 0.357869i
\(696\) 0 0
\(697\) 4.22140 + 5.67032i 0.159897 + 0.214779i
\(698\) −35.0789 23.0718i −1.32776 0.873280i
\(699\) 0 0
\(700\) 1.92056 6.41512i 0.0725904 0.242469i
\(701\) 15.3606 26.6053i 0.580160 1.00487i −0.415299 0.909685i \(-0.636323\pi\)
0.995460 0.0951826i \(-0.0303435\pi\)
\(702\) 0 0
\(703\) −11.4849 19.8925i −0.433163 0.750259i
\(704\) 1.91242 0.453253i 0.0720772 0.0170826i
\(705\) 0 0
\(706\) −15.7553 + 7.91261i −0.592959 + 0.297795i
\(707\) 0.457919 1.06158i 0.0172218 0.0399247i
\(708\) 0 0
\(709\) 1.55476 + 26.6942i 0.0583902 + 1.00252i 0.892536 + 0.450976i \(0.148924\pi\)
−0.834146 + 0.551544i \(0.814039\pi\)
\(710\) 3.38488 + 19.1966i 0.127032 + 0.720435i
\(711\) 0 0
\(712\) 1.89461 10.7449i 0.0710037 0.402682i
\(713\) −70.7962 8.27489i −2.65134 0.309897i
\(714\) 0 0
\(715\) 0.352491 + 1.17740i 0.0131824 + 0.0440323i
\(716\) 10.3125 + 2.44411i 0.385396 + 0.0913405i
\(717\) 0 0
\(718\) −17.0491 39.5242i −0.636266 1.47503i
\(719\) 32.8645 + 27.5766i 1.22564 + 1.02843i 0.998510 + 0.0545678i \(0.0173781\pi\)
0.227128 + 0.973865i \(0.427066\pi\)
\(720\) 0 0
\(721\) 21.5458 18.0791i 0.802407 0.673300i
\(722\) −9.52439 4.78333i −0.354461 0.178017i
\(723\) 0 0
\(724\) −0.760226 + 0.0888576i −0.0282536 + 0.00330237i
\(725\) 0.771378 13.2440i 0.0286482 0.491871i
\(726\) 0 0
\(727\) −14.0051 14.8445i −0.519419 0.550552i 0.413563 0.910475i \(-0.364284\pi\)
−0.932982 + 0.359924i \(0.882803\pi\)
\(728\) 31.0560 1.15101
\(729\) 0 0
\(730\) 9.24430 0.342147
\(731\) −3.56819 3.78206i −0.131974 0.139885i
\(732\) 0 0
\(733\) −1.57474 + 27.0372i −0.0581642 + 0.998641i 0.835382 + 0.549670i \(0.185247\pi\)
−0.893546 + 0.448971i \(0.851791\pi\)
\(734\) −4.95563 + 0.579230i −0.182916 + 0.0213798i
\(735\) 0 0
\(736\) 19.0605 + 9.57255i 0.702580 + 0.352849i
\(737\) −2.71658 + 2.27948i −0.100066 + 0.0839657i
\(738\) 0 0
\(739\) 5.94808 + 4.99103i 0.218804 + 0.183598i 0.745601 0.666393i \(-0.232163\pi\)
−0.526797 + 0.849991i \(0.676607\pi\)
\(740\) 1.05372 + 2.44279i 0.0387354 + 0.0897987i
\(741\) 0 0
\(742\) −4.25175 1.00768i −0.156087 0.0369932i
\(743\) 2.95781 + 9.87977i 0.108511 + 0.362454i 0.994947 0.100398i \(-0.0320115\pi\)
−0.886436 + 0.462851i \(0.846826\pi\)
\(744\) 0 0
\(745\) −9.75324 1.13999i −0.357331 0.0417660i
\(746\) 6.55048 37.1496i 0.239830 1.36014i
\(747\) 0 0
\(748\) −0.0668852 0.379325i −0.00244557 0.0138695i
\(749\) 3.10366 + 53.2878i 0.113405 + 1.94709i
\(750\) 0 0
\(751\) 11.2748 26.1378i 0.411422 0.953783i −0.578952 0.815362i \(-0.696538\pi\)
0.990373 0.138421i \(-0.0442027\pi\)
\(752\) 54.9785 27.6112i 2.00486 1.00688i
\(753\) 0 0
\(754\) −18.4788 + 4.37955i −0.672957 + 0.159494i
\(755\) −1.57443 2.72699i −0.0572994 0.0992455i
\(756\) 0 0
\(757\) 3.85089 6.66993i 0.139963 0.242423i −0.787519 0.616290i \(-0.788635\pi\)
0.927482 + 0.373867i \(0.121968\pi\)
\(758\) −4.31222 + 14.4038i −0.156627 + 0.523170i
\(759\) 0 0
\(760\) 6.02337 + 3.96163i 0.218491 + 0.143704i
\(761\) 9.20606 + 12.3659i 0.333720 + 0.448263i 0.937033 0.349241i \(-0.113561\pi\)
−0.603313 + 0.797504i \(0.706153\pi\)
\(762\) 0 0
\(763\) −14.3191 + 9.41782i −0.518386 + 0.340948i
\(764\) −1.62147 0.590166i −0.0586626 0.0213514i
\(765\) 0 0
\(766\) 12.6856 4.61720i 0.458351 0.166826i
\(767\) 12.9846 17.4413i 0.468846 0.629770i
\(768\) 0 0
\(769\) −25.1067 + 26.6115i −0.905369 + 0.959635i −0.999354 0.0359382i \(-0.988558\pi\)
0.0939847 + 0.995574i \(0.470040\pi\)
\(770\) −1.13743 + 1.20561i −0.0409901 + 0.0434470i
\(771\) 0 0
\(772\) 6.10046 8.19434i 0.219560 0.294921i
\(773\) 30.9114 11.2508i 1.11180 0.404664i 0.280149 0.959956i \(-0.409616\pi\)
0.831655 + 0.555293i \(0.187394\pi\)
\(774\) 0 0
\(775\) −35.0316 12.7504i −1.25837 0.458009i
\(776\) 9.51215 6.25624i 0.341466 0.224586i
\(777\) 0 0
\(778\) −13.5626 18.2177i −0.486242 0.653136i
\(779\) 9.32758 + 6.13484i 0.334195 + 0.219804i
\(780\) 0 0
\(781\) −1.52826 + 5.10474i −0.0546854 + 0.182662i