Properties

Label 729.2.g.c.109.1
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.1
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.c.622.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.74340 - 1.84790i) q^{2} +(-0.258987 + 4.44663i) q^{4} +(3.16528 - 0.369969i) q^{5} +(-1.48402 - 0.745301i) q^{7} +(4.77615 - 4.00766i) q^{8} +O(q^{10})\) \(q+(-1.74340 - 1.84790i) q^{2} +(-0.258987 + 4.44663i) q^{4} +(3.16528 - 0.369969i) q^{5} +(-1.48402 - 0.745301i) q^{7} +(4.77615 - 4.00766i) q^{8} +(-6.20202 - 5.20411i) q^{10} +(0.777030 + 1.80136i) q^{11} +(-3.77585 - 0.894892i) q^{13} +(1.21000 + 4.04167i) q^{14} +(-6.88438 - 0.804669i) q^{16} +(0.757018 - 4.29326i) q^{17} +(0.245992 + 1.39509i) q^{19} +(0.825347 + 14.1707i) q^{20} +(1.97405 - 4.57636i) q^{22} +(2.02703 - 1.01801i) q^{23} +(5.01692 - 1.18903i) q^{25} +(4.92914 + 8.53753i) q^{26} +(3.69842 - 6.40585i) q^{28} +(2.70787 - 9.04493i) q^{29} +(3.49112 + 2.29614i) q^{31} +(3.06894 + 4.12230i) q^{32} +(-9.25329 + 6.08598i) q^{34} +(-4.97307 - 1.81005i) q^{35} +(6.43466 - 2.34203i) q^{37} +(2.14912 - 2.88676i) q^{38} +(13.6351 - 14.4524i) q^{40} +(2.44835 - 2.59510i) q^{41} +(4.45230 - 5.98048i) q^{43} +(-8.21121 + 2.98864i) q^{44} +(-5.41510 - 1.97094i) q^{46} +(5.79465 - 3.81120i) q^{47} +(-2.53328 - 3.40278i) q^{49} +(-10.9437 - 7.19779i) q^{50} +(4.95715 - 16.5580i) q^{52} +(1.35317 - 2.34375i) q^{53} +(3.12597 + 5.41433i) q^{55} +(-10.0748 + 2.38777i) q^{56} +(-21.4350 + 10.7651i) q^{58} +(-1.40028 + 3.24620i) q^{59} +(0.162221 + 2.78523i) q^{61} +(-1.84338 - 10.4543i) q^{62} +(-0.140001 + 0.793987i) q^{64} +(-12.2827 - 1.43564i) q^{65} +(0.528909 + 1.76668i) q^{67} +(18.8945 + 4.47807i) q^{68} +(5.32527 + 12.3454i) q^{70} +(1.75933 + 1.47625i) q^{71} +(-8.76373 + 7.35364i) q^{73} +(-15.5460 - 7.80750i) q^{74} +(-6.26714 + 0.732524i) q^{76} +(0.189429 - 3.25237i) q^{77} +(-4.78302 - 5.06970i) q^{79} -22.0887 q^{80} -9.06394 q^{82} +(0.0736322 + 0.0780456i) q^{83} +(0.807804 - 13.8695i) q^{85} +(-18.8134 + 2.19898i) q^{86} +(10.9304 + 5.48947i) q^{88} +(4.04918 - 3.39767i) q^{89} +(4.93645 + 4.14218i) q^{91} +(4.00175 + 9.27709i) q^{92} +(-17.1451 - 4.06347i) q^{94} +(1.29477 + 4.32484i) q^{95} +(4.32681 + 0.505732i) q^{97} +(-1.87147 + 10.6136i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28} - 45 q^{29} + 9 q^{31} + 63 q^{32} + 9 q^{34} + 9 q^{35} - 18 q^{37} - 9 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} + 54 q^{44} - 18 q^{46} + 63 q^{47} + 9 q^{49} - 225 q^{50} + 27 q^{52} + 45 q^{53} - 9 q^{55} + 99 q^{56} + 9 q^{58} - 117 q^{59} + 9 q^{61} + 81 q^{62} - 18 q^{64} + 81 q^{65} + 36 q^{67} - 18 q^{68} + 63 q^{70} - 90 q^{71} - 18 q^{73} + 81 q^{74} + 90 q^{76} + 81 q^{77} + 63 q^{79} - 288 q^{80} - 36 q^{82} + 45 q^{83} + 63 q^{85} + 81 q^{86} + 90 q^{88} - 81 q^{89} - 18 q^{91} - 63 q^{92} + 63 q^{94} + 153 q^{95} + 36 q^{97} + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.74340 1.84790i −1.23277 1.30666i −0.936123 0.351673i \(-0.885613\pi\)
−0.296647 0.954987i \(-0.595868\pi\)
\(3\) 0 0
\(4\) −0.258987 + 4.44663i −0.129493 + 2.22331i
\(5\) 3.16528 0.369969i 1.41556 0.165455i 0.626331 0.779557i \(-0.284556\pi\)
0.789227 + 0.614102i \(0.210482\pi\)
\(6\) 0 0
\(7\) −1.48402 0.745301i −0.560906 0.281697i 0.145672 0.989333i \(-0.453466\pi\)
−0.706578 + 0.707636i \(0.749762\pi\)
\(8\) 4.77615 4.00766i 1.68862 1.41692i
\(9\) 0 0
\(10\) −6.20202 5.20411i −1.96125 1.64568i
\(11\) 0.777030 + 1.80136i 0.234283 + 0.543130i 0.994281 0.106796i \(-0.0340592\pi\)
−0.759998 + 0.649926i \(0.774800\pi\)
\(12\) 0 0
\(13\) −3.77585 0.894892i −1.04723 0.248198i −0.329237 0.944247i \(-0.606791\pi\)
−0.717994 + 0.696049i \(0.754940\pi\)
\(14\) 1.21000 + 4.04167i 0.323385 + 1.08018i
\(15\) 0 0
\(16\) −6.88438 0.804669i −1.72110 0.201167i
\(17\) 0.757018 4.29326i 0.183604 1.04127i −0.744132 0.668032i \(-0.767137\pi\)
0.927736 0.373237i \(-0.121752\pi\)
\(18\) 0 0
\(19\) 0.245992 + 1.39509i 0.0564343 + 0.320055i 0.999936 0.0113127i \(-0.00360103\pi\)
−0.943502 + 0.331368i \(0.892490\pi\)
\(20\) 0.825347 + 14.1707i 0.184553 + 3.16866i
\(21\) 0 0
\(22\) 1.97405 4.57636i 0.420868 0.975683i
\(23\) 2.02703 1.01801i 0.422665 0.212270i −0.224737 0.974420i \(-0.572152\pi\)
0.647401 + 0.762149i \(0.275856\pi\)
\(24\) 0 0
\(25\) 5.01692 1.18903i 1.00338 0.237806i
\(26\) 4.92914 + 8.53753i 0.966684 + 1.67435i
\(27\) 0 0
\(28\) 3.69842 6.40585i 0.698935 1.21059i
\(29\) 2.70787 9.04493i 0.502840 1.67960i −0.209535 0.977801i \(-0.567195\pi\)
0.712374 0.701800i \(-0.247620\pi\)
\(30\) 0 0
\(31\) 3.49112 + 2.29614i 0.627023 + 0.412399i 0.822866 0.568236i \(-0.192374\pi\)
−0.195843 + 0.980635i \(0.562744\pi\)
\(32\) 3.06894 + 4.12230i 0.542517 + 0.728727i
\(33\) 0 0
\(34\) −9.25329 + 6.08598i −1.58693 + 1.04374i
\(35\) −4.97307 1.81005i −0.840603 0.305954i
\(36\) 0 0
\(37\) 6.43466 2.34203i 1.05785 0.385027i 0.246231 0.969211i \(-0.420808\pi\)
0.811621 + 0.584185i \(0.198586\pi\)
\(38\) 2.14912 2.88676i 0.348633 0.468295i
\(39\) 0 0
\(40\) 13.6351 14.4524i 2.15591 2.28513i
\(41\) 2.44835 2.59510i 0.382368 0.405287i −0.507392 0.861716i \(-0.669390\pi\)
0.889760 + 0.456429i \(0.150872\pi\)
\(42\) 0 0
\(43\) 4.45230 5.98048i 0.678970 0.912014i −0.320408 0.947279i \(-0.603820\pi\)
0.999378 + 0.0352651i \(0.0112276\pi\)
\(44\) −8.21121 + 2.98864i −1.23789 + 0.450554i
\(45\) 0 0
\(46\) −5.41510 1.97094i −0.798413 0.290599i
\(47\) 5.79465 3.81120i 0.845237 0.555921i −0.0514047 0.998678i \(-0.516370\pi\)
0.896642 + 0.442757i \(0.145999\pi\)
\(48\) 0 0
\(49\) −2.53328 3.40278i −0.361897 0.486112i
\(50\) −10.9437 7.19779i −1.54767 1.01792i
\(51\) 0 0
\(52\) 4.95715 16.5580i 0.687432 2.29618i
\(53\) 1.35317 2.34375i 0.185872 0.321939i −0.757998 0.652257i \(-0.773822\pi\)
0.943870 + 0.330317i \(0.107156\pi\)
\(54\) 0 0
\(55\) 3.12597 + 5.41433i 0.421505 + 0.730068i
\(56\) −10.0748 + 2.38777i −1.34630 + 0.319079i
\(57\) 0 0
\(58\) −21.4350 + 10.7651i −2.81455 + 1.41352i
\(59\) −1.40028 + 3.24620i −0.182300 + 0.422620i −0.984721 0.174139i \(-0.944286\pi\)
0.802421 + 0.596759i \(0.203545\pi\)
\(60\) 0 0
\(61\) 0.162221 + 2.78523i 0.0207703 + 0.356613i 0.992641 + 0.121097i \(0.0386411\pi\)
−0.971870 + 0.235516i \(0.924322\pi\)
\(62\) −1.84338 10.4543i −0.234109 1.32770i
\(63\) 0 0
\(64\) −0.140001 + 0.793987i −0.0175002 + 0.0992484i
\(65\) −12.2827 1.43564i −1.52348 0.178070i
\(66\) 0 0
\(67\) 0.528909 + 1.76668i 0.0646165 + 0.215834i 0.984200 0.177061i \(-0.0566588\pi\)
−0.919583 + 0.392895i \(0.871474\pi\)
\(68\) 18.8945 + 4.47807i 2.29129 + 0.543046i
\(69\) 0 0
\(70\) 5.32527 + 12.3454i 0.636491 + 1.47555i
\(71\) 1.75933 + 1.47625i 0.208794 + 0.175199i 0.741187 0.671298i \(-0.234263\pi\)
−0.532394 + 0.846497i \(0.678707\pi\)
\(72\) 0 0
\(73\) −8.76373 + 7.35364i −1.02572 + 0.860679i −0.990335 0.138695i \(-0.955709\pi\)
−0.0353822 + 0.999374i \(0.511265\pi\)
\(74\) −15.5460 7.80750i −1.80719 0.907603i
\(75\) 0 0
\(76\) −6.26714 + 0.732524i −0.718891 + 0.0840263i
\(77\) 0.189429 3.25237i 0.0215874 0.370641i
\(78\) 0 0
\(79\) −4.78302 5.06970i −0.538132 0.570386i 0.400066 0.916486i \(-0.368987\pi\)
−0.938198 + 0.346100i \(0.887506\pi\)
\(80\) −22.0887 −2.46959
\(81\) 0 0
\(82\) −9.06394 −1.00094
\(83\) 0.0736322 + 0.0780456i 0.00808219 + 0.00856662i 0.731402 0.681946i \(-0.238866\pi\)
−0.723320 + 0.690513i \(0.757385\pi\)
\(84\) 0 0
\(85\) 0.807804 13.8695i 0.0876187 1.50435i
\(86\) −18.8134 + 2.19898i −2.02871 + 0.237122i
\(87\) 0 0
\(88\) 10.9304 + 5.48947i 1.16519 + 0.585180i
\(89\) 4.04918 3.39767i 0.429212 0.360152i −0.402442 0.915445i \(-0.631838\pi\)
0.831654 + 0.555293i \(0.187394\pi\)
\(90\) 0 0
\(91\) 4.93645 + 4.14218i 0.517481 + 0.434218i
\(92\) 4.00175 + 9.27709i 0.417211 + 0.967204i
\(93\) 0 0
\(94\) −17.1451 4.06347i −1.76838 0.419114i
\(95\) 1.29477 + 4.32484i 0.132841 + 0.443719i
\(96\) 0 0
\(97\) 4.32681 + 0.505732i 0.439321 + 0.0513493i 0.332879 0.942970i \(-0.391980\pi\)
0.106442 + 0.994319i \(0.466054\pi\)
\(98\) −1.87147 + 10.6136i −0.189047 + 1.07214i
\(99\) 0 0
\(100\) 3.98787 + 22.6163i 0.398787 + 2.26163i
\(101\) 0.651395 + 11.1840i 0.0648163 + 1.11285i 0.861268 + 0.508150i \(0.169671\pi\)
−0.796452 + 0.604702i \(0.793292\pi\)
\(102\) 0 0
\(103\) −1.59549 + 3.69875i −0.157208 + 0.364449i −0.978557 0.205977i \(-0.933963\pi\)
0.821349 + 0.570426i \(0.193222\pi\)
\(104\) −21.6204 + 10.8582i −2.12006 + 1.06473i
\(105\) 0 0
\(106\) −6.69012 + 1.58559i −0.649802 + 0.154006i
\(107\) −8.10012 14.0298i −0.783068 1.35631i −0.930147 0.367188i \(-0.880320\pi\)
0.147079 0.989125i \(-0.453013\pi\)
\(108\) 0 0
\(109\) −6.44548 + 11.1639i −0.617365 + 1.06931i 0.372600 + 0.927992i \(0.378466\pi\)
−0.989965 + 0.141315i \(0.954867\pi\)
\(110\) 4.55531 15.2158i 0.434332 1.45077i
\(111\) 0 0
\(112\) 9.61682 + 6.32508i 0.908704 + 0.597664i
\(113\) −9.63364 12.9402i −0.906256 1.21731i −0.975563 0.219718i \(-0.929486\pi\)
0.0693069 0.997595i \(-0.477921\pi\)
\(114\) 0 0
\(115\) 6.03949 3.97223i 0.563185 0.370413i
\(116\) 39.5181 + 14.3834i 3.66917 + 1.33547i
\(117\) 0 0
\(118\) 8.43989 3.07187i 0.776955 0.282788i
\(119\) −4.32320 + 5.80707i −0.396307 + 0.532333i
\(120\) 0 0
\(121\) 4.90754 5.20169i 0.446140 0.472881i
\(122\) 4.86401 5.15555i 0.440367 0.466761i
\(123\) 0 0
\(124\) −11.1142 + 14.9290i −0.998089 + 1.34067i
\(125\) 0.466861 0.169924i 0.0417573 0.0151984i
\(126\) 0 0
\(127\) 3.75129 + 1.36536i 0.332873 + 0.121156i 0.503049 0.864258i \(-0.332211\pi\)
−0.170176 + 0.985414i \(0.554434\pi\)
\(128\) 10.2988 6.77365i 0.910296 0.598711i
\(129\) 0 0
\(130\) 18.7608 + 25.2001i 1.64543 + 2.21019i
\(131\) 8.15796 + 5.36557i 0.712764 + 0.468792i 0.853392 0.521270i \(-0.174542\pi\)
−0.140628 + 0.990063i \(0.544912\pi\)
\(132\) 0 0
\(133\) 0.674705 2.25367i 0.0585043 0.195418i
\(134\) 2.34254 4.05740i 0.202365 0.350506i
\(135\) 0 0
\(136\) −13.5903 23.5391i −1.16536 2.01846i
\(137\) −7.22924 + 1.71336i −0.617636 + 0.146382i −0.527511 0.849548i \(-0.676875\pi\)
−0.0901247 + 0.995930i \(0.528727\pi\)
\(138\) 0 0
\(139\) 15.8653 7.96784i 1.34567 0.675823i 0.377479 0.926018i \(-0.376791\pi\)
0.968195 + 0.250195i \(0.0804947\pi\)
\(140\) 9.33658 21.6446i 0.789085 1.82930i
\(141\) 0 0
\(142\) −0.339253 5.82475i −0.0284695 0.488802i
\(143\) −1.32192 7.49701i −0.110545 0.626931i
\(144\) 0 0
\(145\) 5.22485 29.6316i 0.433900 2.46077i
\(146\) 28.8675 + 3.37412i 2.38909 + 0.279244i
\(147\) 0 0
\(148\) 8.74762 + 29.2191i 0.719050 + 2.40180i
\(149\) −13.6664 3.23898i −1.11959 0.265348i −0.371166 0.928567i \(-0.621042\pi\)
−0.748426 + 0.663219i \(0.769190\pi\)
\(150\) 0 0
\(151\) 1.09547 + 2.53958i 0.0891481 + 0.206668i 0.956957 0.290229i \(-0.0937316\pi\)
−0.867809 + 0.496898i \(0.834472\pi\)
\(152\) 6.76593 + 5.67729i 0.548789 + 0.460489i
\(153\) 0 0
\(154\) −6.34028 + 5.32013i −0.510915 + 0.428708i
\(155\) 11.8999 + 5.97634i 0.955821 + 0.480031i
\(156\) 0 0
\(157\) −4.96356 + 0.580157i −0.396135 + 0.0463016i −0.311829 0.950138i \(-0.600942\pi\)
−0.0843064 + 0.996440i \(0.526867\pi\)
\(158\) −1.02957 + 17.6770i −0.0819082 + 1.40631i
\(159\) 0 0
\(160\) 11.2392 + 11.9128i 0.888536 + 0.941793i
\(161\) −3.76687 −0.296871
\(162\) 0 0
\(163\) 12.7147 0.995894 0.497947 0.867208i \(-0.334087\pi\)
0.497947 + 0.867208i \(0.334087\pi\)
\(164\) 10.9054 + 11.5590i 0.851566 + 0.902607i
\(165\) 0 0
\(166\) 0.0158497 0.272129i 0.00123018 0.0211213i
\(167\) 20.1090 2.35041i 1.55608 0.181880i 0.705879 0.708333i \(-0.250552\pi\)
0.850205 + 0.526452i \(0.176478\pi\)
\(168\) 0 0
\(169\) 1.83896 + 0.923560i 0.141458 + 0.0710430i
\(170\) −27.0377 + 22.6873i −2.07369 + 1.74004i
\(171\) 0 0
\(172\) 25.4399 + 21.3466i 1.93977 + 1.62766i
\(173\) −2.69120 6.23889i −0.204608 0.474334i 0.784754 0.619807i \(-0.212789\pi\)
−0.989362 + 0.145472i \(0.953530\pi\)
\(174\) 0 0
\(175\) −8.33138 1.97457i −0.629793 0.149264i
\(176\) −3.89987 13.0265i −0.293964 0.981908i
\(177\) 0 0
\(178\) −13.3379 1.55897i −0.999716 0.116850i
\(179\) −3.89030 + 22.0630i −0.290775 + 1.64907i 0.393122 + 0.919486i \(0.371395\pi\)
−0.683897 + 0.729579i \(0.739716\pi\)
\(180\) 0 0
\(181\) −3.94361 22.3653i −0.293126 1.66240i −0.674721 0.738073i \(-0.735736\pi\)
0.381595 0.924330i \(-0.375375\pi\)
\(182\) −0.951902 16.3435i −0.0705597 1.21146i
\(183\) 0 0
\(184\) 5.60153 12.9858i 0.412950 0.957327i
\(185\) 19.5011 9.79380i 1.43375 0.720054i
\(186\) 0 0
\(187\) 8.32192 1.97233i 0.608559 0.144231i
\(188\) 15.4463 + 26.7537i 1.12653 + 1.95122i
\(189\) 0 0
\(190\) 5.73455 9.93253i 0.416028 0.720581i
\(191\) −5.24469 + 17.5185i −0.379493 + 1.26759i 0.528616 + 0.848861i \(0.322711\pi\)
−0.908109 + 0.418733i \(0.862474\pi\)
\(192\) 0 0
\(193\) −7.34429 4.83042i −0.528654 0.347701i 0.256956 0.966423i \(-0.417280\pi\)
−0.785610 + 0.618722i \(0.787651\pi\)
\(194\) −6.60883 8.87719i −0.474486 0.637345i
\(195\) 0 0
\(196\) 15.7870 10.3833i 1.12764 0.741662i
\(197\) −1.74796 0.636207i −0.124537 0.0453279i 0.279000 0.960291i \(-0.409997\pi\)
−0.403537 + 0.914963i \(0.632219\pi\)
\(198\) 0 0
\(199\) −12.5821 + 4.57950i −0.891919 + 0.324632i −0.747010 0.664813i \(-0.768511\pi\)
−0.144909 + 0.989445i \(0.546289\pi\)
\(200\) 19.1963 25.7851i 1.35738 1.82328i
\(201\) 0 0
\(202\) 19.5313 20.7019i 1.37422 1.45658i
\(203\) −10.7597 + 11.4046i −0.755185 + 0.800449i
\(204\) 0 0
\(205\) 6.78962 9.12005i 0.474208 0.636972i
\(206\) 9.61648 3.50011i 0.670012 0.243865i
\(207\) 0 0
\(208\) 25.2743 + 9.19908i 1.75246 + 0.637842i
\(209\) −2.32191 + 1.52714i −0.160610 + 0.105635i
\(210\) 0 0
\(211\) 14.5524 + 19.5473i 1.00183 + 1.34569i 0.937585 + 0.347757i \(0.113057\pi\)
0.0642457 + 0.997934i \(0.479536\pi\)
\(212\) 10.0713 + 6.62403i 0.691703 + 0.454940i
\(213\) 0 0
\(214\) −11.8039 + 39.4277i −0.806897 + 2.69523i
\(215\) 11.8802 20.5771i 0.810223 1.40335i
\(216\) 0 0
\(217\) −3.46956 6.00945i −0.235529 0.407948i
\(218\) 31.8668 7.55256i 2.15829 0.511524i
\(219\) 0 0
\(220\) −24.8851 + 12.4978i −1.67775 + 0.842599i
\(221\) −6.70039 + 15.5332i −0.450717 + 1.04488i
\(222\) 0 0
\(223\) 1.68329 + 28.9009i 0.112721 + 1.93535i 0.301766 + 0.953382i \(0.402424\pi\)
−0.189044 + 0.981969i \(0.560539\pi\)
\(224\) −1.48200 8.40485i −0.0990204 0.561573i
\(225\) 0 0
\(226\) −7.11690 + 40.3619i −0.473409 + 2.68484i
\(227\) −5.72571 0.669240i −0.380029 0.0444190i −0.0760658 0.997103i \(-0.524236\pi\)
−0.303963 + 0.952684i \(0.598310\pi\)
\(228\) 0 0
\(229\) 6.56007 + 21.9122i 0.433502 + 1.44800i 0.844103 + 0.536182i \(0.180134\pi\)
−0.410601 + 0.911815i \(0.634681\pi\)
\(230\) −17.8695 4.23515i −1.17828 0.279258i
\(231\) 0 0
\(232\) −23.3158 54.0521i −1.53076 3.54870i
\(233\) 15.6563 + 13.1372i 1.02568 + 0.860647i 0.990330 0.138728i \(-0.0443015\pi\)
0.0353483 + 0.999375i \(0.488746\pi\)
\(234\) 0 0
\(235\) 16.9317 14.2074i 1.10450 0.926787i
\(236\) −14.0720 7.06723i −0.916010 0.460037i
\(237\) 0 0
\(238\) 18.2679 2.13521i 1.18413 0.138405i
\(239\) 0.675153 11.5919i 0.0436720 0.749820i −0.903400 0.428799i \(-0.858937\pi\)
0.947072 0.321021i \(-0.104026\pi\)
\(240\) 0 0
\(241\) −9.10551 9.65127i −0.586537 0.621693i 0.364338 0.931267i \(-0.381295\pi\)
−0.950876 + 0.309573i \(0.899814\pi\)
\(242\) −18.1680 −1.16788
\(243\) 0 0
\(244\) −12.4269 −0.795552
\(245\) −9.27747 9.83354i −0.592716 0.628242i
\(246\) 0 0
\(247\) 0.319626 5.48777i 0.0203373 0.349179i
\(248\) 25.8762 3.02450i 1.64314 0.192056i
\(249\) 0 0
\(250\) −1.12793 0.566466i −0.0713364 0.0358265i
\(251\) −5.58921 + 4.68990i −0.352788 + 0.296024i −0.801908 0.597447i \(-0.796182\pi\)
0.449121 + 0.893471i \(0.351737\pi\)
\(252\) 0 0
\(253\) 3.40886 + 2.86038i 0.214313 + 0.179830i
\(254\) −4.01696 9.31235i −0.252046 0.584309i
\(255\) 0 0
\(256\) −28.9030 6.85013i −1.80644 0.428133i
\(257\) 3.92569 + 13.1127i 0.244878 + 0.817948i 0.988744 + 0.149619i \(0.0478049\pi\)
−0.743866 + 0.668329i \(0.767010\pi\)
\(258\) 0 0
\(259\) −11.2947 1.32016i −0.701816 0.0820305i
\(260\) 9.56483 54.2448i 0.593185 3.36412i
\(261\) 0 0
\(262\) −4.30756 24.4294i −0.266122 1.50925i
\(263\) 0.0102305 + 0.175651i 0.000630840 + 0.0108311i 0.998609 0.0527284i \(-0.0167918\pi\)
−0.997978 + 0.0635595i \(0.979755\pi\)
\(264\) 0 0
\(265\) 3.41604 7.91927i 0.209846 0.486477i
\(266\) −5.34083 + 2.68227i −0.327467 + 0.164460i
\(267\) 0 0
\(268\) −7.99275 + 1.89432i −0.488235 + 0.115714i
\(269\) 4.02592 + 6.97309i 0.245464 + 0.425157i 0.962262 0.272124i \(-0.0877262\pi\)
−0.716798 + 0.697281i \(0.754393\pi\)
\(270\) 0 0
\(271\) −9.57442 + 16.5834i −0.581605 + 1.00737i 0.413685 + 0.910420i \(0.364242\pi\)
−0.995289 + 0.0969488i \(0.969092\pi\)
\(272\) −8.66625 + 28.9473i −0.525469 + 1.75519i
\(273\) 0 0
\(274\) 15.7696 + 10.3718i 0.952675 + 0.626584i
\(275\) 6.04017 + 8.11335i 0.364236 + 0.489254i
\(276\) 0 0
\(277\) −17.7854 + 11.6976i −1.06862 + 0.702841i −0.956759 0.290883i \(-0.906051\pi\)
−0.111860 + 0.993724i \(0.535681\pi\)
\(278\) −42.3832 15.4262i −2.54198 0.925204i
\(279\) 0 0
\(280\) −31.0062 + 11.2853i −1.85297 + 0.674427i
\(281\) 5.97587 8.02698i 0.356490 0.478849i −0.587312 0.809361i \(-0.699814\pi\)
0.943802 + 0.330511i \(0.107221\pi\)
\(282\) 0 0
\(283\) −18.9383 + 20.0734i −1.12577 + 1.19324i −0.146812 + 0.989164i \(0.546901\pi\)
−0.978955 + 0.204078i \(0.934580\pi\)
\(284\) −7.01998 + 7.44074i −0.416559 + 0.441527i
\(285\) 0 0
\(286\) −11.5490 + 15.5131i −0.682909 + 0.917307i
\(287\) −5.56753 + 2.02641i −0.328641 + 0.119615i
\(288\) 0 0
\(289\) −1.88425 0.685809i −0.110838 0.0403417i
\(290\) −63.8651 + 42.0047i −3.75029 + 2.46660i
\(291\) 0 0
\(292\) −30.4292 40.8736i −1.78074 2.39194i
\(293\) 6.12519 + 4.02860i 0.357837 + 0.235353i 0.715680 0.698429i \(-0.246117\pi\)
−0.357842 + 0.933782i \(0.616487\pi\)
\(294\) 0 0
\(295\) −3.23128 + 10.7932i −0.188132 + 0.628405i
\(296\) 21.3468 36.9738i 1.24076 2.14906i
\(297\) 0 0
\(298\) 17.8406 + 30.9008i 1.03348 + 1.79004i
\(299\) −8.56476 + 2.02988i −0.495313 + 0.117391i
\(300\) 0 0
\(301\) −11.0645 + 5.55682i −0.637750 + 0.320290i
\(302\) 2.78305 6.45183i 0.160146 0.371261i
\(303\) 0 0
\(304\) −0.570916 9.80226i −0.0327443 0.562198i
\(305\) 1.54393 + 8.75604i 0.0884050 + 0.501369i
\(306\) 0 0
\(307\) 1.01208 5.73982i 0.0577627 0.327589i −0.942210 0.335024i \(-0.891256\pi\)
0.999972 + 0.00743517i \(0.00236671\pi\)
\(308\) 14.4130 + 1.68464i 0.821257 + 0.0959912i
\(309\) 0 0
\(310\) −9.70258 32.4089i −0.551070 1.84070i
\(311\) 8.87535 + 2.10350i 0.503275 + 0.119278i 0.474408 0.880305i \(-0.342662\pi\)
0.0288667 + 0.999583i \(0.490810\pi\)
\(312\) 0 0
\(313\) 2.53218 + 5.87025i 0.143127 + 0.331806i 0.974668 0.223658i \(-0.0717999\pi\)
−0.831541 + 0.555464i \(0.812541\pi\)
\(314\) 9.72554 + 8.16070i 0.548844 + 0.460535i
\(315\) 0 0
\(316\) 23.7818 19.9553i 1.33783 1.12257i
\(317\) 22.0800 + 11.0890i 1.24014 + 0.622820i 0.943247 0.332092i \(-0.107755\pi\)
0.296889 + 0.954912i \(0.404051\pi\)
\(318\) 0 0
\(319\) 18.3972 2.15033i 1.03005 0.120395i
\(320\) −0.149394 + 2.56499i −0.00835136 + 0.143387i
\(321\) 0 0
\(322\) 6.56716 + 6.96078i 0.365973 + 0.387909i
\(323\) 6.17570 0.343625
\(324\) 0 0
\(325\) −20.0072 −1.10980
\(326\) −22.1668 23.4955i −1.22771 1.30129i
\(327\) 0 0
\(328\) 1.29340 22.2068i 0.0714159 1.22616i
\(329\) −11.4399 + 1.33713i −0.630700 + 0.0737182i
\(330\) 0 0
\(331\) −6.31682 3.17243i −0.347204 0.174372i 0.266647 0.963794i \(-0.414084\pi\)
−0.613851 + 0.789422i \(0.710380\pi\)
\(332\) −0.366110 + 0.307202i −0.0200929 + 0.0168599i
\(333\) 0 0
\(334\) −39.4014 33.0617i −2.15595 1.80906i
\(335\) 2.32776 + 5.39636i 0.127179 + 0.294835i
\(336\) 0 0
\(337\) 0.476716 + 0.112984i 0.0259684 + 0.00615461i 0.243580 0.969881i \(-0.421678\pi\)
−0.217611 + 0.976036i \(0.569826\pi\)
\(338\) −1.49940 5.00834i −0.0815565 0.272418i
\(339\) 0 0
\(340\) 61.4631 + 7.18401i 3.33331 + 0.389608i
\(341\) −1.42347 + 8.07292i −0.0770854 + 0.437173i
\(342\) 0 0
\(343\) 3.24192 + 18.3858i 0.175047 + 0.992742i
\(344\) −2.70290 46.4070i −0.145730 2.50210i
\(345\) 0 0
\(346\) −6.83700 + 15.8499i −0.367559 + 0.852098i
\(347\) −16.8482 + 8.46148i −0.904458 + 0.454236i −0.839318 0.543640i \(-0.817046\pi\)
−0.0651396 + 0.997876i \(0.520749\pi\)
\(348\) 0 0
\(349\) 34.5051 8.17787i 1.84702 0.437751i 0.850865 0.525384i \(-0.176078\pi\)
0.996153 + 0.0876323i \(0.0279301\pi\)
\(350\) 10.8761 + 18.8380i 0.581353 + 1.00693i
\(351\) 0 0
\(352\) −5.04108 + 8.73141i −0.268691 + 0.465386i
\(353\) −0.566782 + 1.89318i −0.0301668 + 0.100764i −0.971747 0.236024i \(-0.924155\pi\)
0.941580 + 0.336788i \(0.109341\pi\)
\(354\) 0 0
\(355\) 6.11494 + 4.02186i 0.324547 + 0.213458i
\(356\) 14.0595 + 18.8852i 0.745151 + 1.00091i
\(357\) 0 0
\(358\) 47.5525 31.2757i 2.51323 1.65297i
\(359\) −7.57144 2.75578i −0.399605 0.145444i 0.134397 0.990928i \(-0.457090\pi\)
−0.534002 + 0.845483i \(0.679313\pi\)
\(360\) 0 0
\(361\) 15.9684 5.81202i 0.840442 0.305896i
\(362\) −34.4535 + 46.2791i −1.81084 + 2.43238i
\(363\) 0 0
\(364\) −19.6972 + 20.8778i −1.03241 + 1.09429i
\(365\) −25.0191 + 26.5187i −1.30956 + 1.38805i
\(366\) 0 0
\(367\) 10.6360 14.2867i 0.555196 0.745758i −0.432587 0.901592i \(-0.642399\pi\)
0.987783 + 0.155834i \(0.0498065\pi\)
\(368\) −14.7740 + 5.37729i −0.770148 + 0.280311i
\(369\) 0 0
\(370\) −52.0961 18.9614i −2.70835 0.985757i
\(371\) −3.75492 + 2.46965i −0.194946 + 0.128218i
\(372\) 0 0
\(373\) 1.40417 + 1.88613i 0.0727052 + 0.0976601i 0.836988 0.547221i \(-0.184314\pi\)
−0.764283 + 0.644881i \(0.776907\pi\)
\(374\) −18.1531 11.9395i −0.938675 0.617376i
\(375\) 0 0
\(376\) 12.4021 41.4259i 0.639589 2.13638i
\(377\) −18.3187 + 31.7290i −0.943463 + 1.63413i
\(378\) 0 0
\(379\) −5.81489 10.0717i −0.298691 0.517348i 0.677146 0.735849i \(-0.263217\pi\)
−0.975837 + 0.218501i \(0.929883\pi\)
\(380\) −19.5663 + 4.63729i −1.00373 + 0.237888i
\(381\) 0 0
\(382\) 41.5160 20.8501i 2.12414 1.06678i
\(383\) 11.8590 27.4924i 0.605969 1.40479i −0.288420 0.957504i \(-0.593130\pi\)
0.894389 0.447290i \(-0.147611\pi\)
\(384\) 0 0
\(385\) −0.603678 10.3647i −0.0307663 0.528236i
\(386\) 3.87793 + 21.9928i 0.197381 + 1.11941i
\(387\) 0 0
\(388\) −3.36939 + 19.1088i −0.171055 + 0.970100i
\(389\) 3.38863 + 0.396074i 0.171810 + 0.0200817i 0.201563 0.979476i \(-0.435398\pi\)
−0.0297527 + 0.999557i \(0.509472\pi\)
\(390\) 0 0
\(391\) −2.83609 9.47321i −0.143427 0.479081i
\(392\) −25.7365 6.09967i −1.29989 0.308080i
\(393\) 0 0
\(394\) 1.87176 + 4.33922i 0.0942978 + 0.218607i
\(395\) −17.0152 14.2775i −0.856130 0.718378i
\(396\) 0 0
\(397\) −2.18658 + 1.83476i −0.109741 + 0.0920838i −0.696007 0.718035i \(-0.745042\pi\)
0.586266 + 0.810119i \(0.300597\pi\)
\(398\) 30.3980 + 15.2665i 1.52371 + 0.765238i
\(399\) 0 0
\(400\) −35.4952 + 4.14879i −1.77476 + 0.207440i
\(401\) 1.44343 24.7827i 0.0720813 1.23759i −0.747358 0.664422i \(-0.768678\pi\)
0.819439 0.573166i \(-0.194285\pi\)
\(402\) 0 0
\(403\) −11.1271 11.7941i −0.554281 0.587504i
\(404\) −49.8999 −2.48261
\(405\) 0 0
\(406\) 39.8331 1.97688
\(407\) 9.21875 + 9.77130i 0.456956 + 0.484345i
\(408\) 0 0
\(409\) 0.835488 14.3448i 0.0413122 0.709303i −0.912533 0.409004i \(-0.865876\pi\)
0.953845 0.300300i \(-0.0970867\pi\)
\(410\) −28.6899 + 3.35337i −1.41689 + 0.165611i
\(411\) 0 0
\(412\) −16.0338 8.05246i −0.789927 0.396716i
\(413\) 4.49743 3.77379i 0.221304 0.185696i
\(414\) 0 0
\(415\) 0.261941 + 0.219795i 0.0128582 + 0.0107893i
\(416\) −7.89883 18.3116i −0.387272 0.897798i
\(417\) 0 0
\(418\) 6.87002 + 1.62822i 0.336024 + 0.0796390i
\(419\) −5.29195 17.6763i −0.258529 0.863546i −0.984435 0.175752i \(-0.943764\pi\)
0.725906 0.687794i \(-0.241421\pi\)
\(420\) 0 0
\(421\) −17.6729 2.06567i −0.861325 0.100674i −0.326050 0.945353i \(-0.605718\pi\)
−0.535275 + 0.844678i \(0.679792\pi\)
\(422\) 10.7507 60.9701i 0.523335 2.96798i
\(423\) 0 0
\(424\) −2.93005 16.6171i −0.142296 0.807000i
\(425\) −1.30693 22.4391i −0.0633953 1.08845i
\(426\) 0 0
\(427\) 1.83510 4.25424i 0.0888067 0.205877i
\(428\) 64.4832 32.3847i 3.11691 1.56537i
\(429\) 0 0
\(430\) −58.7363 + 13.9208i −2.83252 + 0.671319i
\(431\) −5.41651 9.38166i −0.260904 0.451899i 0.705578 0.708632i \(-0.250687\pi\)
−0.966482 + 0.256733i \(0.917354\pi\)
\(432\) 0 0
\(433\) 15.0647 26.0928i 0.723962 1.25394i −0.235438 0.971889i \(-0.575653\pi\)
0.959400 0.282049i \(-0.0910141\pi\)
\(434\) −5.05601 + 16.8882i −0.242696 + 0.810662i
\(435\) 0 0
\(436\) −47.9724 31.5519i −2.29746 1.51106i
\(437\) 1.91885 + 2.57746i 0.0917909 + 0.123297i
\(438\) 0 0
\(439\) −23.4552 + 15.4267i −1.11945 + 0.736276i −0.967691 0.252140i \(-0.918866\pi\)
−0.151763 + 0.988417i \(0.548495\pi\)
\(440\) 36.6289 + 13.3318i 1.74621 + 0.635570i
\(441\) 0 0
\(442\) 40.3853 14.6990i 1.92093 0.699162i
\(443\) −8.66672 + 11.6414i −0.411768 + 0.553101i −0.958826 0.283994i \(-0.908340\pi\)
0.547058 + 0.837095i \(0.315748\pi\)
\(444\) 0 0
\(445\) 11.5598 12.2527i 0.547986 0.580831i
\(446\) 50.4713 53.4965i 2.38989 2.53313i
\(447\) 0 0
\(448\) 0.799524 1.07395i 0.0377740 0.0507392i
\(449\) 7.39003 2.68975i 0.348757 0.126937i −0.161701 0.986840i \(-0.551698\pi\)
0.510458 + 0.859903i \(0.329476\pi\)
\(450\) 0 0
\(451\) 6.57715 + 2.39389i 0.309706 + 0.112724i
\(452\) 60.0353 39.4859i 2.82382 1.85726i
\(453\) 0 0
\(454\) 8.74553 + 11.7473i 0.410448 + 0.551327i
\(455\) 17.1578 + 11.2848i 0.804368 + 0.529041i
\(456\) 0 0
\(457\) −7.29734 + 24.3748i −0.341355 + 1.14021i 0.599210 + 0.800592i \(0.295481\pi\)
−0.940565 + 0.339613i \(0.889704\pi\)
\(458\) 29.0546 50.3240i 1.35763 2.35149i
\(459\) 0 0
\(460\) 16.0989 + 27.8841i 0.750615 + 1.30010i
\(461\) 19.8804 4.71173i 0.925920 0.219447i 0.260119 0.965576i \(-0.416238\pi\)
0.665801 + 0.746129i \(0.268090\pi\)
\(462\) 0 0
\(463\) 24.6987 12.4042i 1.14785 0.576470i 0.229916 0.973211i \(-0.426155\pi\)
0.917931 + 0.396741i \(0.129859\pi\)
\(464\) −25.9202 + 60.0898i −1.20332 + 2.78960i
\(465\) 0 0
\(466\) −3.01902 51.8346i −0.139854 2.40119i
\(467\) −1.59148 9.02572i −0.0736448 0.417661i −0.999234 0.0391312i \(-0.987541\pi\)
0.925589 0.378529i \(-0.123570\pi\)
\(468\) 0 0
\(469\) 0.531798 3.01598i 0.0245562 0.139265i
\(470\) −55.7725 6.51887i −2.57259 0.300693i
\(471\) 0 0
\(472\) 6.32177 + 21.1162i 0.290983 + 0.971951i
\(473\) 14.2326 + 3.37318i 0.654413 + 0.155099i
\(474\) 0 0
\(475\) 2.89292 + 6.70655i 0.132736 + 0.307718i
\(476\) −24.7022 20.7276i −1.13222 0.950049i
\(477\) 0 0
\(478\) −22.5977 + 18.9618i −1.03360 + 0.867291i
\(479\) −6.03701 3.03190i −0.275838 0.138531i 0.305503 0.952191i \(-0.401175\pi\)
−0.581341 + 0.813660i \(0.697472\pi\)
\(480\) 0 0
\(481\) −26.3922 + 3.08480i −1.20338 + 0.140655i
\(482\) −1.96001 + 33.6521i −0.0892760 + 1.53281i
\(483\) 0 0
\(484\) 21.8590 + 23.1692i 0.993591 + 1.05315i
\(485\) 13.8827 0.630381
\(486\) 0 0
\(487\) −19.6769 −0.891646 −0.445823 0.895121i \(-0.647089\pi\)
−0.445823 + 0.895121i \(0.647089\pi\)
\(488\) 11.9371 + 12.6526i 0.540366 + 0.572754i
\(489\) 0 0
\(490\) −1.99703 + 34.2876i −0.0902164 + 1.54896i
\(491\) −32.9888 + 3.85583i −1.48876 + 0.174011i −0.821242 0.570580i \(-0.806718\pi\)
−0.667521 + 0.744591i \(0.732644\pi\)
\(492\) 0 0
\(493\) −36.7823 18.4728i −1.65659 0.831972i
\(494\) −10.6981 + 8.97675i −0.481329 + 0.403883i
\(495\) 0 0
\(496\) −22.1865 18.6167i −0.996205 0.835915i
\(497\) −1.51062 3.50201i −0.0677605 0.157087i
\(498\) 0 0
\(499\) 31.2916 + 7.41625i 1.40081 + 0.331997i 0.860491 0.509466i \(-0.170157\pi\)
0.540315 + 0.841463i \(0.318305\pi\)
\(500\) 0.634676 + 2.11997i 0.0283836 + 0.0948078i
\(501\) 0 0
\(502\) 18.4107 + 2.15190i 0.821709 + 0.0960440i
\(503\) −2.99418 + 16.9809i −0.133504 + 0.757139i 0.842386 + 0.538875i \(0.181150\pi\)
−0.975890 + 0.218264i \(0.929961\pi\)
\(504\) 0 0
\(505\) 6.19959 + 35.1596i 0.275878 + 1.56458i
\(506\) −0.657335 11.2860i −0.0292221 0.501724i
\(507\) 0 0
\(508\) −7.04277 + 16.3270i −0.312472 + 0.724392i
\(509\) −28.7481 + 14.4379i −1.27424 + 0.639947i −0.951822 0.306651i \(-0.900791\pi\)
−0.322416 + 0.946598i \(0.604495\pi\)
\(510\) 0 0
\(511\) 18.4862 4.38131i 0.817782 0.193818i
\(512\) 25.4044 + 44.0017i 1.12273 + 1.94462i
\(513\) 0 0
\(514\) 17.3869 30.1150i 0.766902 1.32831i
\(515\) −3.68175 + 12.2979i −0.162237 + 0.541910i
\(516\) 0 0
\(517\) 11.3680 + 7.47682i 0.499962 + 0.328830i
\(518\) 17.2516 + 23.1729i 0.757992 + 1.01816i
\(519\) 0 0
\(520\) −64.4176 + 42.3681i −2.82490 + 1.85796i
\(521\) 23.1431 + 8.42341i 1.01392 + 0.369036i 0.794936 0.606693i \(-0.207504\pi\)
0.218982 + 0.975729i \(0.429726\pi\)
\(522\) 0 0
\(523\) −5.49055 + 1.99840i −0.240085 + 0.0873838i −0.459260 0.888302i \(-0.651886\pi\)
0.219175 + 0.975685i \(0.429663\pi\)
\(524\) −25.9715 + 34.8858i −1.13457 + 1.52399i
\(525\) 0 0
\(526\) 0.306749 0.325135i 0.0133749 0.0141765i
\(527\) 12.5008 13.2501i 0.544542 0.577181i
\(528\) 0 0
\(529\) −10.6622 + 14.3218i −0.463572 + 0.622685i
\(530\) −20.5895 + 7.49397i −0.894352 + 0.325517i
\(531\) 0 0
\(532\) 9.84650 + 3.58383i 0.426900 + 0.155379i
\(533\) −11.5669 + 7.60770i −0.501020 + 0.329526i
\(534\) 0 0
\(535\) −30.8298 41.4115i −1.33289 1.79038i
\(536\) 9.60640 + 6.31823i 0.414933 + 0.272906i
\(537\) 0 0
\(538\) 5.86677 19.5964i 0.252934 0.844859i
\(539\) 4.16120 7.20740i 0.179235 0.310445i
\(540\) 0 0
\(541\) 4.25140 + 7.36363i 0.182782 + 0.316587i 0.942827 0.333283i \(-0.108156\pi\)
−0.760045 + 0.649870i \(0.774823\pi\)
\(542\) 47.3364 11.2189i 2.03327 0.481895i
\(543\) 0 0
\(544\) 20.0214 10.0551i 0.858409 0.431109i
\(545\) −16.2715 + 37.7215i −0.696993 + 1.61581i
\(546\) 0 0
\(547\) 2.61420 + 44.8841i 0.111775 + 1.91911i 0.331346 + 0.943509i \(0.392497\pi\)
−0.219571 + 0.975597i \(0.570466\pi\)
\(548\) −5.74641 32.5895i −0.245474 1.39215i
\(549\) 0 0
\(550\) 4.46221 25.3064i 0.190269 1.07907i
\(551\) 13.2846 + 1.55274i 0.565942 + 0.0661491i
\(552\) 0 0
\(553\) 3.31962 + 11.0883i 0.141165 + 0.471523i
\(554\) 52.6230 + 12.4719i 2.23574 + 0.529879i
\(555\) 0 0
\(556\) 31.3211 + 72.6105i 1.32831 + 3.07937i
\(557\) 18.7402 + 15.7249i 0.794047 + 0.666285i 0.946744 0.321988i \(-0.104351\pi\)
−0.152696 + 0.988273i \(0.548796\pi\)
\(558\) 0 0
\(559\) −22.1631 + 18.5970i −0.937399 + 0.786571i
\(560\) 32.7800 + 16.4628i 1.38521 + 0.695678i
\(561\) 0 0
\(562\) −25.2513 + 2.95146i −1.06516 + 0.124500i
\(563\) 0.352934 6.05965i 0.0148744 0.255384i −0.982671 0.185359i \(-0.940655\pi\)
0.997545 0.0700247i \(-0.0223078\pi\)
\(564\) 0 0
\(565\) −35.2807 37.3953i −1.48427 1.57323i
\(566\) 70.1107 2.94697
\(567\) 0 0
\(568\) 14.3191 0.600817
\(569\) 7.29454 + 7.73176i 0.305803 + 0.324132i 0.861990 0.506925i \(-0.169218\pi\)
−0.556187 + 0.831057i \(0.687736\pi\)
\(570\) 0 0
\(571\) −1.59819 + 27.4399i −0.0668822 + 1.14832i 0.783234 + 0.621727i \(0.213569\pi\)
−0.850116 + 0.526595i \(0.823468\pi\)
\(572\) 33.6788 3.93648i 1.40818 0.164593i
\(573\) 0 0
\(574\) 13.4510 + 6.75536i 0.561435 + 0.281963i
\(575\) 8.95899 7.51748i 0.373616 0.313501i
\(576\) 0 0
\(577\) −4.54811 3.81632i −0.189340 0.158875i 0.543190 0.839610i \(-0.317216\pi\)
−0.732530 + 0.680734i \(0.761661\pi\)
\(578\) 2.01769 + 4.67753i 0.0839248 + 0.194560i
\(579\) 0 0
\(580\) 130.408 + 30.9071i 5.41488 + 1.28335i
\(581\) −0.0511040 0.170699i −0.00212015 0.00708180i
\(582\) 0 0
\(583\) 5.27339 + 0.616371i 0.218401 + 0.0255275i
\(584\) −12.3859 + 70.2442i −0.512534 + 2.90672i
\(585\) 0 0
\(586\) −3.23422 18.3422i −0.133604 0.757708i
\(587\) −0.645821 11.0883i −0.0266559 0.457664i −0.985056 0.172235i \(-0.944901\pi\)
0.958400 0.285429i \(-0.0921360\pi\)
\(588\) 0 0
\(589\) −2.34453 + 5.43524i −0.0966049 + 0.223955i
\(590\) 25.5781 12.8458i 1.05304 0.528854i
\(591\) 0 0
\(592\) −46.1832 + 10.9456i −1.89812 + 0.449862i
\(593\) 1.02536 + 1.77597i 0.0421064 + 0.0729304i 0.886311 0.463091i \(-0.153260\pi\)
−0.844204 + 0.536022i \(0.819926\pi\)
\(594\) 0 0
\(595\) −11.5357 + 19.9805i −0.472919 + 0.819119i
\(596\) 17.9420 59.9303i 0.734931 2.45484i
\(597\) 0 0
\(598\) 18.6828 + 12.2879i 0.763997 + 0.502489i
\(599\) −1.67467 2.24947i −0.0684250 0.0919107i 0.766593 0.642133i \(-0.221950\pi\)
−0.835018 + 0.550222i \(0.814543\pi\)
\(600\) 0 0
\(601\) 30.1111 19.8044i 1.22826 0.807839i 0.241558 0.970386i \(-0.422341\pi\)
0.986701 + 0.162548i \(0.0519711\pi\)
\(602\) 29.5584 + 10.7584i 1.20471 + 0.438478i
\(603\) 0 0
\(604\) −11.5763 + 4.21343i −0.471033 + 0.171442i
\(605\) 13.6093 18.2805i 0.553297 0.743207i
\(606\) 0 0
\(607\) −26.4300 + 28.0142i −1.07276 + 1.13706i −0.0826783 + 0.996576i \(0.526347\pi\)
−0.990083 + 0.140484i \(0.955134\pi\)
\(608\) −4.99604 + 5.29549i −0.202616 + 0.214761i
\(609\) 0 0
\(610\) 13.4886 18.1183i 0.546136 0.733588i
\(611\) −25.2903 + 9.20493i −1.02314 + 0.372392i
\(612\) 0 0
\(613\) −1.37170 0.499257i −0.0554024 0.0201648i 0.314170 0.949367i \(-0.398274\pi\)
−0.369573 + 0.929202i \(0.620496\pi\)
\(614\) −12.3711 + 8.13657i −0.499255 + 0.328365i
\(615\) 0 0
\(616\) −12.1296 16.2929i −0.488717 0.656461i
\(617\) −10.0466 6.60776i −0.404461 0.266018i 0.330938 0.943653i \(-0.392635\pi\)
−0.735399 + 0.677634i \(0.763005\pi\)
\(618\) 0 0
\(619\) −8.99692 + 30.0518i −0.361617 + 1.20788i 0.562830 + 0.826573i \(0.309713\pi\)
−0.924447 + 0.381312i \(0.875472\pi\)
\(620\) −29.6565 + 51.3665i −1.19103 + 2.06293i
\(621\) 0 0
\(622\) −11.5862 20.0680i −0.464566 0.804652i
\(623\) −8.54134 + 2.02433i −0.342202 + 0.0811033i
\(624\) 0 0
\(625\) −21.6225 + 10.8592i −0.864901 + 0.434369i
\(626\) 6.43301 14.9134i 0.257115 0.596059i
\(627\) 0 0
\(628\) −1.29425 22.2214i −0.0516461 0.886729i
\(629\) −5.18377 29.3986i −0.206691 1.17220i
\(630\) 0 0
\(631\) −3.02986 + 17.1832i −0.120617 + 0.684053i 0.863198 + 0.504865i \(0.168458\pi\)
−0.983815 + 0.179187i \(0.942653\pi\)
\(632\) −43.1620 5.04492i −1.71689 0.200676i
\(633\) 0 0
\(634\) −18.0030 60.1341i −0.714989 2.38823i
\(635\) 12.3790 + 2.93388i 0.491247 + 0.116428i
\(636\) 0 0
\(637\) 6.52015 + 15.1154i 0.258338 + 0.598894i
\(638\) −36.0473 30.2473i −1.42713 1.19750i
\(639\) 0 0
\(640\) 30.0927 25.2508i 1.18952 0.998124i
\(641\) −8.24662 4.14161i −0.325722 0.163584i 0.278422 0.960459i \(-0.410189\pi\)
−0.604144 + 0.796875i \(0.706485\pi\)
\(642\) 0 0
\(643\) −7.25189 + 0.847625i −0.285987 + 0.0334271i −0.257877 0.966178i \(-0.583023\pi\)
−0.0281099 + 0.999605i \(0.508949\pi\)
\(644\) 0.975568 16.7499i 0.0384428 0.660037i
\(645\) 0 0
\(646\) −10.7667 11.4120i −0.423610 0.449001i
\(647\) −34.3969 −1.35228 −0.676142 0.736772i \(-0.736349\pi\)
−0.676142 + 0.736772i \(0.736349\pi\)
\(648\) 0 0
\(649\) −6.93563 −0.272247
\(650\) 34.8805 + 36.9712i 1.36813 + 1.45013i
\(651\) 0 0
\(652\) −3.29294 + 56.5376i −0.128962 + 2.21418i
\(653\) 14.1528 1.65422i 0.553842 0.0647348i 0.165431 0.986221i \(-0.447098\pi\)
0.388410 + 0.921486i \(0.373024\pi\)
\(654\) 0 0
\(655\) 27.8073 + 13.9654i 1.08652 + 0.545672i
\(656\) −18.9436 + 15.8956i −0.739623 + 0.620617i
\(657\) 0 0
\(658\) 22.4151 + 18.8085i 0.873832 + 0.733232i
\(659\) −17.4643 40.4868i −0.680312 1.57714i −0.810558 0.585659i \(-0.800836\pi\)
0.130246 0.991482i \(-0.458423\pi\)
\(660\) 0 0
\(661\) −2.56181 0.607159i −0.0996427 0.0236158i 0.180492 0.983576i \(-0.442231\pi\)
−0.280135 + 0.959961i \(0.590379\pi\)
\(662\) 5.15043 + 17.2036i 0.200177 + 0.668638i
\(663\) 0 0
\(664\) 0.664459 + 0.0776641i 0.0257860 + 0.00301395i
\(665\) 1.30184 7.38313i 0.0504834 0.286305i
\(666\) 0 0
\(667\) −3.71891 21.0910i −0.143997 0.816645i
\(668\) 5.24342 + 90.0261i 0.202874 + 3.48321i
\(669\) 0 0
\(670\) 5.91369 13.7095i 0.228466 0.529644i
\(671\) −4.89115 + 2.45643i −0.188821 + 0.0948294i
\(672\) 0 0
\(673\) −3.32499 + 0.788037i −0.128169 + 0.0303766i −0.294200 0.955744i \(-0.595053\pi\)
0.166031 + 0.986121i \(0.446905\pi\)
\(674\) −0.622324 1.07790i −0.0239710 0.0415190i
\(675\) 0 0
\(676\) −4.58299 + 7.93797i −0.176269 + 0.305307i
\(677\) 11.1529 37.2531i 0.428639 1.43175i −0.422283 0.906464i \(-0.638771\pi\)
0.850923 0.525291i \(-0.176044\pi\)
\(678\) 0 0
\(679\) −6.04414 3.97529i −0.231953 0.152558i
\(680\) −51.7259 69.4800i −1.98360 2.66444i
\(681\) 0 0
\(682\) 17.3996 11.4439i 0.666265 0.438209i
\(683\) 21.7804 + 7.92743i 0.833405 + 0.303335i 0.723256 0.690581i \(-0.242645\pi\)
0.110149 + 0.993915i \(0.464867\pi\)
\(684\) 0 0
\(685\) −22.2487 + 8.09787i −0.850080 + 0.309404i
\(686\) 28.3231 38.0446i 1.08138 1.45255i
\(687\) 0 0
\(688\) −35.4636 + 37.5893i −1.35204 + 1.43308i
\(689\) −7.20675 + 7.63871i −0.274555 + 0.291012i
\(690\) 0 0
\(691\) 10.3864 13.9514i 0.395119 0.530737i −0.559396 0.828901i \(-0.688967\pi\)
0.954515 + 0.298164i \(0.0963741\pi\)
\(692\) 28.4390 10.3510i 1.08109 0.393484i
\(693\) 0 0
\(694\) 45.0091 + 16.3820i 1.70852 + 0.621851i
\(695\) 47.2702 31.0901i 1.79306 1.17932i
\(696\) 0 0
\(697\) −9.28801 12.4760i −0.351808 0.472561i
\(698\) −75.2681 49.5046i −2.84894 1.87378i
\(699\) 0 0
\(700\) 10.9379 36.5352i 0.413414 1.38090i
\(701\) −9.46247 + 16.3895i −0.357393 + 0.619022i −0.987524 0.157466i \(-0.949668\pi\)
0.630132 + 0.776488i \(0.283001\pi\)
\(702\) 0 0
\(703\) 4.85020 + 8.40080i 0.182929 + 0.316842i
\(704\) −1.53904 + 0.364759i −0.0580048 + 0.0137474i
\(705\) 0 0
\(706\) 4.48654 2.25322i 0.168853 0.0848012i
\(707\) 7.36879 17.0828i 0.277132 0.642464i
\(708\) 0 0
\(709\) −2.48630 42.6881i −0.0933749 1.60319i −0.641724 0.766936i \(-0.721780\pi\)
0.548349 0.836250i \(-0.315257\pi\)
\(710\) −3.22881 18.3115i −0.121175 0.687217i
\(711\) 0 0
\(712\) 5.72278 32.4555i 0.214470 1.21632i
\(713\) 9.41409 + 1.10035i 0.352560 + 0.0412084i
\(714\) 0 0
\(715\) −6.95792 23.2411i −0.260212 0.869167i
\(716\) −97.0984 23.0127i −3.62874 0.860026i
\(717\) 0 0
\(718\) 8.10766 + 18.7957i 0.302575 + 0.701448i
\(719\) −9.96902 8.36500i −0.371782 0.311962i 0.437684 0.899129i \(-0.355799\pi\)
−0.809466 + 0.587167i \(0.800243\pi\)
\(720\) 0 0
\(721\) 5.12441 4.29989i 0.190843 0.160136i
\(722\) −38.5793 19.3753i −1.43577 0.721073i
\(723\) 0 0
\(724\) 100.472 11.7435i 3.73400 0.436442i
\(725\) 2.83048 48.5974i 0.105121 1.80486i
\(726\) 0 0
\(727\) 34.6254 + 36.7007i 1.28418 + 1.36116i 0.898776 + 0.438409i \(0.144458\pi\)
0.385408 + 0.922746i \(0.374061\pi\)
\(728\) 40.1777 1.48908
\(729\) 0 0
\(730\) 92.6220 3.42810
\(731\) −22.3053 23.6422i −0.824991 0.874439i
\(732\) 0 0
\(733\) 0.929614 15.9609i 0.0343361 0.589528i −0.936631 0.350316i \(-0.886074\pi\)
0.970968 0.239211i \(-0.0768889\pi\)
\(734\) −44.9431 + 5.25310i −1.65888 + 0.193895i
\(735\) 0 0
\(736\) 10.4174 + 5.23181i 0.383990 + 0.192847i
\(737\) −2.77144 + 2.32552i −0.102087 + 0.0856615i
\(738\) 0 0
\(739\) −5.46648 4.58692i −0.201088 0.168733i 0.536683 0.843784i \(-0.319677\pi\)
−0.737771 + 0.675051i \(0.764122\pi\)
\(740\) 38.4989 + 89.2504i 1.41525 + 3.28091i
\(741\) 0 0
\(742\) 11.1100 + 2.63312i 0.407861 + 0.0966648i
\(743\) −9.72576 32.4863i −0.356804 1.19181i −0.928497 0.371340i \(-0.878898\pi\)
0.571693 0.820467i \(-0.306287\pi\)
\(744\) 0 0
\(745\) −44.4562 5.19619i −1.62875 0.190374i
\(746\) 1.03734 5.88304i 0.0379797 0.215393i
\(747\) 0 0
\(748\) 6.61496 + 37.5153i 0.241867 + 1.37170i
\(749\) 1.56427 + 26.8575i 0.0571572 + 0.981352i
\(750\) 0 0
\(751\) −16.6089 + 38.5039i −0.606069 + 1.40503i 0.288232 + 0.957561i \(0.406933\pi\)
−0.894301 + 0.447466i \(0.852327\pi\)
\(752\) −42.9594 + 21.5750i −1.56657 + 0.786759i
\(753\) 0 0
\(754\) 90.5688 21.4652i 3.29832 0.781717i
\(755\) 4.40704 + 7.63321i 0.160389 + 0.277801i
\(756\) 0 0
\(757\) −13.0903 + 22.6730i −0.475774 + 0.824065i −0.999615 0.0277513i \(-0.991165\pi\)
0.523841 + 0.851816i \(0.324499\pi\)
\(758\) −8.47375 + 28.3043i −0.307780 + 1.02806i
\(759\) 0 0
\(760\) 23.5165 + 15.4671i 0.853033 + 0.561049i
\(761\) 27.9919 + 37.5996i 1.01470 + 1.36298i 0.930401 + 0.366544i \(0.119459\pi\)
0.0843029 + 0.996440i \(0.473134\pi\)
\(762\) 0 0
\(763\) 17.8857 11.7636i 0.647504 0.425870i
\(764\) −76.5400 27.8583i −2.76912 1.00788i
\(765\) 0 0
\(766\) −71.4781 + 26.0159i −2.58261 + 0.939992i
\(767\) 8.19223 11.0041i 0.295804 0.397334i
\(768\) 0 0
\(769\) 9.40859 9.97253i 0.339283 0.359619i −0.535157 0.844752i \(-0.679748\pi\)
0.874440 + 0.485134i \(0.161229\pi\)
\(770\) −18.1005 + 19.1854i −0.652297 + 0.691395i
\(771\) 0 0
\(772\) 23.3811 31.4063i 0.841505 1.13034i
\(773\) 14.3319 5.21640i 0.515484 0.187621i −0.0711615 0.997465i \(-0.522671\pi\)
0.586645 + 0.809844i \(0.300448\pi\)
\(774\) 0 0
\(775\) 20.2448 + 7.36852i 0.727216 + 0.264685i
\(776\) 22.6923 14.9250i 0.814606 0.535775i
\(777\) 0 0
\(778\) −5.17583 6.95235i −0.185563 0.249254i
\(779\) 4.22267 + 2.77729i 0.151293 + 0.0995068i
\(780\) 0 0
\(781\) −1.29221 + 4.31627i −0.0462388 + 0.154448i
\(782\) −12.5611 + 21.7564i −0.449183 +