Properties

Label 729.2.g.b.703.8
Level $729$
Weight $2$
Character 729.703
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 703.8
Character \(\chi\) \(=\) 729.703
Dual form 729.2.g.b.28.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.81786 + 1.19562i) q^{2} +(1.08293 + 2.51052i) q^{4} +(0.443651 + 0.470242i) q^{5} +(1.81697 - 0.212373i) q^{7} +(-0.277373 + 1.57306i) q^{8} +O(q^{10})\) \(q+(1.81786 + 1.19562i) q^{2} +(1.08293 + 2.51052i) q^{4} +(0.443651 + 0.470242i) q^{5} +(1.81697 - 0.212373i) q^{7} +(-0.277373 + 1.57306i) q^{8} +(0.244261 + 1.38527i) q^{10} +(-0.346986 - 1.15901i) q^{11} +(0.310113 + 5.32444i) q^{13} +(3.55691 + 1.78635i) q^{14} +(1.36753 - 1.44950i) q^{16} +(6.43434 + 2.34191i) q^{17} +(-5.97823 + 2.17590i) q^{19} +(-0.700110 + 1.62304i) q^{20} +(0.754974 - 2.52179i) q^{22} +(-3.09558 - 0.361822i) q^{23} +(0.266422 - 4.57429i) q^{25} +(-5.80229 + 10.0499i) q^{26} +(2.50083 + 4.33156i) q^{28} +(5.26023 - 2.64179i) q^{29} +(-1.65611 + 2.22454i) q^{31} +(7.32759 - 1.73667i) q^{32} +(8.89668 + 11.9503i) q^{34} +(0.905967 + 0.760197i) q^{35} +(-1.09453 + 0.918418i) q^{37} +(-13.4691 - 3.19224i) q^{38} +(-0.862777 + 0.567457i) q^{40} +(0.931903 - 0.612922i) q^{41} +(-9.37473 - 2.22185i) q^{43} +(2.53397 - 2.12625i) q^{44} +(-5.19473 - 4.35890i) q^{46} +(-3.64407 - 4.89483i) q^{47} +(-3.55504 + 0.842559i) q^{49} +(5.95346 - 7.99688i) q^{50} +(-13.0313 + 6.54456i) q^{52} +(-4.26135 - 7.38088i) q^{53} +(0.391077 - 0.677365i) q^{55} +(-0.169902 + 2.91711i) q^{56} +(12.7209 + 1.48687i) q^{58} +(0.598878 - 2.00039i) q^{59} +(-1.42194 + 3.29643i) q^{61} +(-5.67029 + 2.06382i) q^{62} +(11.6517 + 4.24088i) q^{64} +(-2.36619 + 2.50802i) q^{65} +(1.09003 + 0.547434i) q^{67} +(1.08855 + 18.6897i) q^{68} +(0.738011 + 2.46513i) q^{70} +(-1.41528 - 8.02646i) q^{71} +(1.11524 - 6.32482i) q^{73} +(-3.08778 + 0.360910i) q^{74} +(-11.9367 - 12.6521i) q^{76} +(-0.876607 - 2.03220i) q^{77} +(11.9127 + 7.83511i) q^{79} +1.28832 q^{80} +2.42689 q^{82} +(5.61402 + 3.69240i) q^{83} +(1.75334 + 4.06469i) q^{85} +(-14.3854 - 15.2477i) q^{86} +(1.91944 - 0.224351i) q^{88} +(2.70557 - 15.3441i) q^{89} +(1.69423 + 9.60848i) q^{91} +(-2.44395 - 8.16337i) q^{92} +(-0.772019 - 13.2550i) q^{94} +(-3.67544 - 1.84588i) q^{95} +(2.55920 - 2.71259i) q^{97} +(-7.46994 - 2.71884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} + 45 q^{29} + 9 q^{31} - 63 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} + 9 q^{38} + 9 q^{40} + 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} - 63 q^{47} + 9 q^{49} + 225 q^{50} + 27 q^{52} - 45 q^{53} - 9 q^{55} - 99 q^{56} + 9 q^{58} + 117 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} - 81 q^{65} + 36 q^{67} + 18 q^{68} + 63 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} + 90 q^{76} - 81 q^{77} + 63 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} + 63 q^{85} - 81 q^{86} + 90 q^{88} + 81 q^{89} - 18 q^{91} + 63 q^{92} + 63 q^{94} - 153 q^{95} + 36 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81786 + 1.19562i 1.28542 + 0.845434i 0.993809 0.111102i \(-0.0354381\pi\)
0.291612 + 0.956537i \(0.405808\pi\)
\(3\) 0 0
\(4\) 1.08293 + 2.51052i 0.541467 + 1.25526i
\(5\) 0.443651 + 0.470242i 0.198407 + 0.210299i 0.818937 0.573884i \(-0.194564\pi\)
−0.620530 + 0.784183i \(0.713082\pi\)
\(6\) 0 0
\(7\) 1.81697 0.212373i 0.686750 0.0802696i 0.234440 0.972131i \(-0.424674\pi\)
0.452310 + 0.891861i \(0.350600\pi\)
\(8\) −0.277373 + 1.57306i −0.0980662 + 0.556161i
\(9\) 0 0
\(10\) 0.244261 + 1.38527i 0.0772422 + 0.438062i
\(11\) −0.346986 1.15901i −0.104620 0.349456i 0.889610 0.456720i \(-0.150976\pi\)
−0.994231 + 0.107264i \(0.965791\pi\)
\(12\) 0 0
\(13\) 0.310113 + 5.32444i 0.0860099 + 1.47673i 0.714893 + 0.699233i \(0.246475\pi\)
−0.628883 + 0.777500i \(0.716488\pi\)
\(14\) 3.55691 + 1.78635i 0.950625 + 0.477422i
\(15\) 0 0
\(16\) 1.36753 1.44950i 0.341884 0.362375i
\(17\) 6.43434 + 2.34191i 1.56056 + 0.567996i 0.970864 0.239631i \(-0.0770266\pi\)
0.589693 + 0.807628i \(0.299249\pi\)
\(18\) 0 0
\(19\) −5.97823 + 2.17590i −1.37150 + 0.499185i −0.919590 0.392879i \(-0.871479\pi\)
−0.451909 + 0.892064i \(0.649257\pi\)
\(20\) −0.700110 + 1.62304i −0.156549 + 0.362922i
\(21\) 0 0
\(22\) 0.754974 2.52179i 0.160961 0.537648i
\(23\) −3.09558 0.361822i −0.645474 0.0754451i −0.212944 0.977064i \(-0.568305\pi\)
−0.432530 + 0.901619i \(0.642379\pi\)
\(24\) 0 0
\(25\) 0.266422 4.57429i 0.0532845 0.914859i
\(26\) −5.80229 + 10.0499i −1.13792 + 1.97094i
\(27\) 0 0
\(28\) 2.50083 + 4.33156i 0.472612 + 0.818588i
\(29\) 5.26023 2.64179i 0.976800 0.490568i 0.112559 0.993645i \(-0.464095\pi\)
0.864241 + 0.503077i \(0.167799\pi\)
\(30\) 0 0
\(31\) −1.65611 + 2.22454i −0.297446 + 0.399540i −0.925572 0.378572i \(-0.876415\pi\)
0.628125 + 0.778112i \(0.283822\pi\)
\(32\) 7.32759 1.73667i 1.29535 0.307003i
\(33\) 0 0
\(34\) 8.89668 + 11.9503i 1.52577 + 2.04946i
\(35\) 0.905967 + 0.760197i 0.153136 + 0.128497i
\(36\) 0 0
\(37\) −1.09453 + 0.918418i −0.179939 + 0.150987i −0.728309 0.685249i \(-0.759693\pi\)
0.548369 + 0.836236i \(0.315249\pi\)
\(38\) −13.4691 3.19224i −2.18498 0.517850i
\(39\) 0 0
\(40\) −0.862777 + 0.567457i −0.136417 + 0.0897229i
\(41\) 0.931903 0.612922i 0.145539 0.0957224i −0.474651 0.880174i \(-0.657426\pi\)
0.620190 + 0.784452i \(0.287055\pi\)
\(42\) 0 0
\(43\) −9.37473 2.22185i −1.42963 0.338829i −0.558348 0.829607i \(-0.688565\pi\)
−0.871285 + 0.490777i \(0.836713\pi\)
\(44\) 2.53397 2.12625i 0.382010 0.320545i
\(45\) 0 0
\(46\) −5.19473 4.35890i −0.765922 0.642685i
\(47\) −3.64407 4.89483i −0.531542 0.713984i 0.452532 0.891748i \(-0.350521\pi\)
−0.984073 + 0.177764i \(0.943114\pi\)
\(48\) 0 0
\(49\) −3.55504 + 0.842559i −0.507862 + 0.120366i
\(50\) 5.95346 7.99688i 0.841946 1.13093i
\(51\) 0 0
\(52\) −13.0313 + 6.54456i −1.80711 + 0.907567i
\(53\) −4.26135 7.38088i −0.585342 1.01384i −0.994833 0.101528i \(-0.967627\pi\)
0.409491 0.912314i \(-0.365706\pi\)
\(54\) 0 0
\(55\) 0.391077 0.677365i 0.0527328 0.0913359i
\(56\) −0.169902 + 2.91711i −0.0227042 + 0.389815i
\(57\) 0 0
\(58\) 12.7209 + 1.48687i 1.67034 + 0.195235i
\(59\) 0.598878 2.00039i 0.0779672 0.260429i −0.910115 0.414356i \(-0.864007\pi\)
0.988082 + 0.153927i \(0.0491921\pi\)
\(60\) 0 0
\(61\) −1.42194 + 3.29643i −0.182061 + 0.422065i −0.984667 0.174445i \(-0.944187\pi\)
0.802606 + 0.596510i \(0.203446\pi\)
\(62\) −5.67029 + 2.06382i −0.720128 + 0.262105i
\(63\) 0 0
\(64\) 11.6517 + 4.24088i 1.45646 + 0.530110i
\(65\) −2.36619 + 2.50802i −0.293490 + 0.311082i
\(66\) 0 0
\(67\) 1.09003 + 0.547434i 0.133168 + 0.0668796i 0.514136 0.857709i \(-0.328113\pi\)
−0.380967 + 0.924588i \(0.624409\pi\)
\(68\) 1.08855 + 18.6897i 0.132006 + 2.26646i
\(69\) 0 0
\(70\) 0.738011 + 2.46513i 0.0882092 + 0.294639i
\(71\) −1.41528 8.02646i −0.167963 0.952565i −0.945957 0.324293i \(-0.894874\pi\)
0.777994 0.628272i \(-0.216237\pi\)
\(72\) 0 0
\(73\) 1.11524 6.32482i 0.130529 0.740264i −0.847341 0.531049i \(-0.821798\pi\)
0.977870 0.209215i \(-0.0670909\pi\)
\(74\) −3.08778 + 0.360910i −0.358947 + 0.0419549i
\(75\) 0 0
\(76\) −11.9367 12.6521i −1.36923 1.45130i
\(77\) −0.876607 2.03220i −0.0998986 0.231591i
\(78\) 0 0
\(79\) 11.9127 + 7.83511i 1.34028 + 0.881518i 0.998306 0.0581898i \(-0.0185329\pi\)
0.341978 + 0.939708i \(0.388903\pi\)
\(80\) 1.28832 0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) 5.61402 + 3.69240i 0.616219 + 0.405294i 0.818888 0.573954i \(-0.194591\pi\)
−0.202669 + 0.979247i \(0.564961\pi\)
\(84\) 0 0
\(85\) 1.75334 + 4.06469i 0.190176 + 0.440878i
\(86\) −14.3854 15.2477i −1.55122 1.64420i
\(87\) 0 0
\(88\) 1.91944 0.224351i 0.204613 0.0239159i
\(89\) 2.70557 15.3441i 0.286790 1.62647i −0.412030 0.911170i \(-0.635180\pi\)
0.698820 0.715297i \(-0.253709\pi\)
\(90\) 0 0
\(91\) 1.69423 + 9.60848i 0.177604 + 1.00724i
\(92\) −2.44395 8.16337i −0.254800 0.851090i
\(93\) 0 0
\(94\) −0.772019 13.2550i −0.0796276 1.36715i
\(95\) −3.67544 1.84588i −0.377093 0.189383i
\(96\) 0 0
\(97\) 2.55920 2.71259i 0.259847 0.275422i −0.584295 0.811541i \(-0.698629\pi\)
0.844142 + 0.536120i \(0.180110\pi\)
\(98\) −7.46994 2.71884i −0.754578 0.274644i
\(99\) 0 0
\(100\) 11.7724 4.28480i 1.17724 0.428480i
\(101\) 1.84200 4.27024i 0.183286 0.424904i −0.801657 0.597784i \(-0.796048\pi\)
0.984943 + 0.172880i \(0.0553072\pi\)
\(102\) 0 0
\(103\) −1.48234 + 4.95138i −0.146060 + 0.487874i −0.999442 0.0334127i \(-0.989362\pi\)
0.853382 + 0.521286i \(0.174548\pi\)
\(104\) −8.46168 0.989028i −0.829736 0.0969822i
\(105\) 0 0
\(106\) 1.07822 18.5124i 0.104726 1.79808i
\(107\) −6.49528 + 11.2502i −0.627922 + 1.08759i 0.360046 + 0.932935i \(0.382761\pi\)
−0.987968 + 0.154659i \(0.950572\pi\)
\(108\) 0 0
\(109\) −0.888686 1.53925i −0.0851207 0.147433i 0.820322 0.571902i \(-0.193794\pi\)
−0.905443 + 0.424469i \(0.860461\pi\)
\(110\) 1.52080 0.763773i 0.145002 0.0728229i
\(111\) 0 0
\(112\) 2.17693 2.92413i 0.205701 0.276304i
\(113\) −13.5138 + 3.20282i −1.27127 + 0.301296i −0.810244 0.586092i \(-0.800666\pi\)
−0.461023 + 0.887388i \(0.652517\pi\)
\(114\) 0 0
\(115\) −1.20321 1.61620i −0.112200 0.150711i
\(116\) 12.3288 + 10.3451i 1.14470 + 0.960514i
\(117\) 0 0
\(118\) 3.48039 2.92040i 0.320396 0.268844i
\(119\) 12.1884 + 2.88869i 1.11731 + 0.264806i
\(120\) 0 0
\(121\) 7.96745 5.24027i 0.724314 0.476389i
\(122\) −6.52619 + 4.29234i −0.590853 + 0.388610i
\(123\) 0 0
\(124\) −7.37823 1.74867i −0.662584 0.157035i
\(125\) 4.74544 3.98190i 0.424445 0.356152i
\(126\) 0 0
\(127\) −8.72949 7.32491i −0.774617 0.649981i 0.167270 0.985911i \(-0.446505\pi\)
−0.941887 + 0.335930i \(0.890949\pi\)
\(128\) 7.11678 + 9.55950i 0.629041 + 0.844948i
\(129\) 0 0
\(130\) −7.30006 + 1.73015i −0.640258 + 0.151744i
\(131\) 8.70702 11.6956i 0.760736 1.02185i −0.237985 0.971269i \(-0.576487\pi\)
0.998720 0.0505763i \(-0.0161058\pi\)
\(132\) 0 0
\(133\) −10.4002 + 5.22315i −0.901808 + 0.452905i
\(134\) 1.32700 + 2.29842i 0.114635 + 0.198554i
\(135\) 0 0
\(136\) −5.46868 + 9.47202i −0.468935 + 0.812219i
\(137\) −0.0215606 + 0.370181i −0.00184204 + 0.0316267i −0.999104 0.0423242i \(-0.986524\pi\)
0.997262 + 0.0739509i \(0.0235608\pi\)
\(138\) 0 0
\(139\) −14.8762 1.73878i −1.26179 0.147482i −0.541228 0.840876i \(-0.682040\pi\)
−0.720559 + 0.693394i \(0.756115\pi\)
\(140\) −0.927389 + 3.09770i −0.0783787 + 0.261803i
\(141\) 0 0
\(142\) 7.02385 16.2831i 0.589428 1.36645i
\(143\) 6.06349 2.20693i 0.507055 0.184553i
\(144\) 0 0
\(145\) 3.57599 + 1.30155i 0.296970 + 0.108088i
\(146\) 9.58945 10.1642i 0.793629 0.841197i
\(147\) 0 0
\(148\) −3.49101 1.75325i −0.286960 0.144116i
\(149\) −0.0581597 0.998563i −0.00476463 0.0818055i 0.995088 0.0989987i \(-0.0315640\pi\)
−0.999852 + 0.0171933i \(0.994527\pi\)
\(150\) 0 0
\(151\) −0.00563064 0.0188076i −0.000458215 0.00153054i 0.957760 0.287568i \(-0.0928469\pi\)
−0.958218 + 0.286038i \(0.907662\pi\)
\(152\) −1.76462 10.0076i −0.143129 0.811727i
\(153\) 0 0
\(154\) 0.836205 4.74235i 0.0673833 0.382150i
\(155\) −1.78081 + 0.208147i −0.143038 + 0.0167188i
\(156\) 0 0
\(157\) 5.35582 + 5.67684i 0.427441 + 0.453061i 0.904920 0.425582i \(-0.139931\pi\)
−0.477479 + 0.878643i \(0.658449\pi\)
\(158\) 12.2878 + 28.4862i 0.977562 + 2.26624i
\(159\) 0 0
\(160\) 4.06755 + 2.67527i 0.321568 + 0.211498i
\(161\) −5.70142 −0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) 2.54795 + 1.67581i 0.198961 + 0.130859i
\(165\) 0 0
\(166\) 5.79078 + 13.4245i 0.449452 + 1.04195i
\(167\) 2.50809 + 2.65842i 0.194082 + 0.205714i 0.817105 0.576489i \(-0.195577\pi\)
−0.623024 + 0.782203i \(0.714096\pi\)
\(168\) 0 0
\(169\) −15.3414 + 1.79315i −1.18010 + 0.137934i
\(170\) −1.67253 + 9.48537i −0.128277 + 0.727494i
\(171\) 0 0
\(172\) −4.57421 25.9416i −0.348780 1.97803i
\(173\) 3.80949 + 12.7246i 0.289630 + 0.967432i 0.971715 + 0.236158i \(0.0758884\pi\)
−0.682085 + 0.731273i \(0.738926\pi\)
\(174\) 0 0
\(175\) −0.487377 8.36794i −0.0368422 0.632556i
\(176\) −2.15451 1.08203i −0.162402 0.0815614i
\(177\) 0 0
\(178\) 23.2641 24.6585i 1.74372 1.84823i
\(179\) 0.392738 + 0.142945i 0.0293546 + 0.0106842i 0.356656 0.934236i \(-0.383917\pi\)
−0.327301 + 0.944920i \(0.606139\pi\)
\(180\) 0 0
\(181\) −19.5881 + 7.12947i −1.45597 + 0.529929i −0.944252 0.329225i \(-0.893213\pi\)
−0.511717 + 0.859154i \(0.670990\pi\)
\(182\) −8.40826 + 19.4925i −0.623262 + 1.44488i
\(183\) 0 0
\(184\) 1.42780 4.76918i 0.105259 0.351589i
\(185\) −0.917468 0.107237i −0.0674536 0.00788419i
\(186\) 0 0
\(187\) 0.481679 8.27010i 0.0352238 0.604770i
\(188\) 8.34230 14.4493i 0.608425 1.05382i
\(189\) 0 0
\(190\) −4.47446 7.75000i −0.324612 0.562244i
\(191\) −6.15645 + 3.09189i −0.445465 + 0.223721i −0.657368 0.753570i \(-0.728330\pi\)
0.211903 + 0.977291i \(0.432034\pi\)
\(192\) 0 0
\(193\) −5.22298 + 7.01568i −0.375958 + 0.505000i −0.949324 0.314300i \(-0.898230\pi\)
0.573365 + 0.819300i \(0.305638\pi\)
\(194\) 7.89550 1.87127i 0.566864 0.134349i
\(195\) 0 0
\(196\) −5.96514 8.01257i −0.426081 0.572326i
\(197\) 6.47094 + 5.42976i 0.461035 + 0.386855i 0.843512 0.537111i \(-0.180484\pi\)
−0.382476 + 0.923965i \(0.624929\pi\)
\(198\) 0 0
\(199\) 9.66790 8.11233i 0.685339 0.575068i −0.232222 0.972663i \(-0.574599\pi\)
0.917561 + 0.397595i \(0.130155\pi\)
\(200\) 7.12174 + 1.68788i 0.503583 + 0.119351i
\(201\) 0 0
\(202\) 8.45410 5.56035i 0.594828 0.391225i
\(203\) 8.99664 5.91718i 0.631440 0.415305i
\(204\) 0 0
\(205\) 0.701662 + 0.166297i 0.0490062 + 0.0116147i
\(206\) −8.61468 + 7.22858i −0.600213 + 0.503639i
\(207\) 0 0
\(208\) 8.14187 + 6.83184i 0.564537 + 0.473703i
\(209\) 4.59626 + 6.17384i 0.317930 + 0.427054i
\(210\) 0 0
\(211\) −5.52292 + 1.30896i −0.380213 + 0.0901122i −0.416278 0.909237i \(-0.636666\pi\)
0.0360651 + 0.999349i \(0.488518\pi\)
\(212\) 13.9151 18.6912i 0.955694 1.28372i
\(213\) 0 0
\(214\) −25.2585 + 12.6853i −1.72663 + 0.867148i
\(215\) −3.11430 5.39413i −0.212393 0.367876i
\(216\) 0 0
\(217\) −2.53667 + 4.39364i −0.172200 + 0.298260i
\(218\) 0.224859 3.86067i 0.0152294 0.261478i
\(219\) 0 0
\(220\) 2.12405 + 0.248266i 0.143204 + 0.0167381i
\(221\) −10.4740 + 34.9855i −0.704555 + 2.35338i
\(222\) 0 0
\(223\) 2.98361 6.91679i 0.199797 0.463183i −0.788632 0.614866i \(-0.789210\pi\)
0.988429 + 0.151683i \(0.0484694\pi\)
\(224\) 12.9452 4.71166i 0.864936 0.314811i
\(225\) 0 0
\(226\) −28.3955 10.3351i −1.88884 0.687481i
\(227\) −9.36249 + 9.92366i −0.621410 + 0.658656i −0.959254 0.282546i \(-0.908821\pi\)
0.337843 + 0.941202i \(0.390303\pi\)
\(228\) 0 0
\(229\) 14.2932 + 7.17833i 0.944523 + 0.474357i 0.853269 0.521471i \(-0.174616\pi\)
0.0912534 + 0.995828i \(0.470913\pi\)
\(230\) −0.254909 4.37661i −0.0168082 0.288585i
\(231\) 0 0
\(232\) 2.69665 + 9.00742i 0.177043 + 0.591366i
\(233\) 0.930605 + 5.27772i 0.0609660 + 0.345755i 0.999998 + 0.00192589i \(0.000613031\pi\)
−0.939032 + 0.343829i \(0.888276\pi\)
\(234\) 0 0
\(235\) 0.685064 3.88519i 0.0446886 0.253442i
\(236\) 5.67057 0.662795i 0.369123 0.0431443i
\(237\) 0 0
\(238\) 18.7029 + 19.8239i 1.21233 + 1.28500i
\(239\) 6.39415 + 14.8233i 0.413603 + 0.958840i 0.989922 + 0.141615i \(0.0452294\pi\)
−0.576319 + 0.817225i \(0.695511\pi\)
\(240\) 0 0
\(241\) 19.5404 + 12.8519i 1.25871 + 0.827864i 0.990767 0.135572i \(-0.0432873\pi\)
0.267938 + 0.963436i \(0.413658\pi\)
\(242\) 20.7491 1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) −1.97340 1.29793i −0.126076 0.0829215i
\(246\) 0 0
\(247\) −13.4394 31.1559i −0.855125 1.98240i
\(248\) −3.03998 3.22219i −0.193039 0.204609i
\(249\) 0 0
\(250\) 13.3874 1.56476i 0.846693 0.0989643i
\(251\) −4.21745 + 23.9183i −0.266203 + 1.50971i 0.499385 + 0.866380i \(0.333559\pi\)
−0.765588 + 0.643331i \(0.777552\pi\)
\(252\) 0 0
\(253\) 0.654768 + 3.71337i 0.0411649 + 0.233458i
\(254\) −7.11114 23.7529i −0.446193 1.49039i
\(255\) 0 0
\(256\) 0.0658029 + 1.12979i 0.00411268 + 0.0706120i
\(257\) −8.60919 4.32370i −0.537027 0.269705i 0.159547 0.987190i \(-0.448997\pi\)
−0.696573 + 0.717485i \(0.745293\pi\)
\(258\) 0 0
\(259\) −1.79368 + 1.90119i −0.111454 + 0.118134i
\(260\) −8.85887 3.22437i −0.549404 0.199967i
\(261\) 0 0
\(262\) 29.8116 10.8505i 1.84177 0.670349i
\(263\) −2.63068 + 6.09861i −0.162215 + 0.376056i −0.979866 0.199658i \(-0.936017\pi\)
0.817651 + 0.575715i \(0.195276\pi\)
\(264\) 0 0
\(265\) 1.58025 5.27841i 0.0970740 0.324250i
\(266\) −25.1510 2.93972i −1.54210 0.180246i
\(267\) 0 0
\(268\) −0.193914 + 3.32938i −0.0118452 + 0.203374i
\(269\) 14.6832 25.4321i 0.895251 1.55062i 0.0617568 0.998091i \(-0.480330\pi\)
0.833494 0.552529i \(-0.186337\pi\)
\(270\) 0 0
\(271\) 9.43957 + 16.3498i 0.573413 + 0.993180i 0.996212 + 0.0869568i \(0.0277142\pi\)
−0.422799 + 0.906223i \(0.638952\pi\)
\(272\) 12.1938 6.12395i 0.739356 0.371319i
\(273\) 0 0
\(274\) −0.481791 + 0.647158i −0.0291061 + 0.0390963i
\(275\) −5.39412 + 1.27843i −0.325277 + 0.0770922i
\(276\) 0 0
\(277\) 8.38334 + 11.2608i 0.503706 + 0.676594i 0.979147 0.203153i \(-0.0651189\pi\)
−0.475441 + 0.879748i \(0.657712\pi\)
\(278\) −24.9640 20.9473i −1.49724 1.25633i
\(279\) 0 0
\(280\) −1.44713 + 1.21428i −0.0864824 + 0.0725673i
\(281\) 21.4853 + 5.09210i 1.28170 + 0.303769i 0.814388 0.580321i \(-0.197073\pi\)
0.467316 + 0.884091i \(0.345221\pi\)
\(282\) 0 0
\(283\) −3.30559 + 2.17412i −0.196497 + 0.129238i −0.643945 0.765072i \(-0.722703\pi\)
0.447448 + 0.894310i \(0.352333\pi\)
\(284\) 18.6180 12.2452i 1.10477 0.726620i
\(285\) 0 0
\(286\) 13.6612 + 3.23777i 0.807806 + 0.191454i
\(287\) 1.56307 1.31157i 0.0922652 0.0774197i
\(288\) 0 0
\(289\) 22.8934 + 19.2099i 1.34667 + 1.12999i
\(290\) 4.94447 + 6.64158i 0.290349 + 0.390007i
\(291\) 0 0
\(292\) 17.0863 4.04954i 0.999902 0.236981i
\(293\) −4.76369 + 6.39875i −0.278298 + 0.373819i −0.919192 0.393811i \(-0.871157\pi\)
0.640894 + 0.767630i \(0.278564\pi\)
\(294\) 0 0
\(295\) 1.20636 0.605857i 0.0702371 0.0352744i
\(296\) −1.14114 1.97650i −0.0663271 0.114882i
\(297\) 0 0
\(298\) 1.08818 1.88478i 0.0630366 0.109183i
\(299\) 0.966516 16.5944i 0.0558951 0.959682i
\(300\) 0 0
\(301\) −17.5055 2.04610i −1.00900 0.117935i
\(302\) 0.0122512 0.0409218i 0.000704976 0.00235478i
\(303\) 0 0
\(304\) −5.02146 + 11.6411i −0.288001 + 0.667661i
\(305\) −2.18097 + 0.793808i −0.124882 + 0.0454533i
\(306\) 0 0
\(307\) 1.95823 + 0.712736i 0.111762 + 0.0406780i 0.397296 0.917691i \(-0.369949\pi\)
−0.285534 + 0.958369i \(0.592171\pi\)
\(308\) 4.15259 4.40149i 0.236616 0.250798i
\(309\) 0 0
\(310\) −3.48613 1.75080i −0.197999 0.0994387i
\(311\) −0.873011 14.9890i −0.0495039 0.849949i −0.928088 0.372361i \(-0.878548\pi\)
0.878584 0.477588i \(-0.158489\pi\)
\(312\) 0 0
\(313\) −1.46009 4.87703i −0.0825290 0.275666i 0.906758 0.421652i \(-0.138550\pi\)
−0.989287 + 0.145986i \(0.953364\pi\)
\(314\) 2.94876 + 16.7232i 0.166408 + 0.943747i
\(315\) 0 0
\(316\) −6.76955 + 38.3920i −0.380817 + 2.15972i
\(317\) −27.5207 + 3.21671i −1.54572 + 0.180669i −0.845779 0.533533i \(-0.820864\pi\)
−0.699940 + 0.714202i \(0.746790\pi\)
\(318\) 0 0
\(319\) −4.88710 5.18002i −0.273625 0.290025i
\(320\) 3.17505 + 7.36060i 0.177491 + 0.411470i
\(321\) 0 0
\(322\) −10.3644 6.81676i −0.577585 0.379883i
\(323\) −43.5617 −2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) −27.9855 18.4063i −1.54997 1.01943i
\(327\) 0 0
\(328\) 0.705679 + 1.63595i 0.0389646 + 0.0903301i
\(329\) −7.66069 8.11986i −0.422347 0.447662i
\(330\) 0 0
\(331\) −27.0847 + 3.16575i −1.48871 + 0.174005i −0.821220 0.570612i \(-0.806706\pi\)
−0.667492 + 0.744617i \(0.732632\pi\)
\(332\) −3.19024 + 18.0928i −0.175087 + 0.992969i
\(333\) 0 0
\(334\) 1.38088 + 7.83136i 0.0755584 + 0.428513i
\(335\) 0.226166 + 0.755448i 0.0123568 + 0.0412745i
\(336\) 0 0
\(337\) 0.739519 + 12.6970i 0.0402842 + 0.691652i 0.956637 + 0.291281i \(0.0940816\pi\)
−0.916353 + 0.400371i \(0.868881\pi\)
\(338\) −30.0324 15.0828i −1.63355 0.820397i
\(339\) 0 0
\(340\) −8.30575 + 8.80358i −0.450443 + 0.477441i
\(341\) 3.15292 + 1.14757i 0.170740 + 0.0621444i
\(342\) 0 0
\(343\) −18.3136 + 6.66560i −0.988840 + 0.359908i
\(344\) 6.09541 14.1307i 0.328642 0.761879i
\(345\) 0 0
\(346\) −8.28871 + 27.6862i −0.445604 + 1.48842i
\(347\) 8.35624 + 0.976704i 0.448586 + 0.0524322i 0.337387 0.941366i \(-0.390457\pi\)
0.111199 + 0.993798i \(0.464531\pi\)
\(348\) 0 0
\(349\) −1.75267 + 30.0922i −0.0938184 + 1.61080i 0.542964 + 0.839756i \(0.317302\pi\)
−0.636783 + 0.771043i \(0.719735\pi\)
\(350\) 9.11893 15.7944i 0.487427 0.844249i
\(351\) 0 0
\(352\) −4.55540 7.89018i −0.242803 0.420548i
\(353\) −20.7603 + 10.4262i −1.10496 + 0.554932i −0.905231 0.424919i \(-0.860302\pi\)
−0.199729 + 0.979851i \(0.564006\pi\)
\(354\) 0 0
\(355\) 3.14649 4.22647i 0.166998 0.224318i
\(356\) 41.4516 9.82421i 2.19693 0.520682i
\(357\) 0 0
\(358\) 0.543034 + 0.729421i 0.0287002 + 0.0385511i
\(359\) −3.19290 2.67916i −0.168515 0.141401i 0.554630 0.832097i \(-0.312860\pi\)
−0.723145 + 0.690696i \(0.757304\pi\)
\(360\) 0 0
\(361\) 16.4498 13.8030i 0.865780 0.726476i
\(362\) −44.1325 10.4596i −2.31955 0.549744i
\(363\) 0 0
\(364\) −22.2876 + 14.6588i −1.16819 + 0.768328i
\(365\) 3.46897 2.28158i 0.181574 0.119423i
\(366\) 0 0
\(367\) −11.4051 2.70306i −0.595341 0.141098i −0.0781107 0.996945i \(-0.524889\pi\)
−0.517230 + 0.855846i \(0.673037\pi\)
\(368\) −4.75778 + 3.99225i −0.248016 + 0.208110i
\(369\) 0 0
\(370\) −1.53961 1.29189i −0.0800407 0.0671621i
\(371\) −9.31026 12.5058i −0.483364 0.649271i
\(372\) 0 0
\(373\) 35.3913 8.38790i 1.83249 0.434309i 0.838610 0.544733i \(-0.183369\pi\)
0.993885 + 0.110423i \(0.0352207\pi\)
\(374\) 10.7636 14.4580i 0.556571 0.747604i
\(375\) 0 0
\(376\) 8.71063 4.37464i 0.449216 0.225605i
\(377\) 15.6973 + 27.1885i 0.808452 + 1.40028i
\(378\) 0 0
\(379\) 5.02516 8.70383i 0.258125 0.447086i −0.707615 0.706599i \(-0.750229\pi\)
0.965740 + 0.259513i \(0.0835620\pi\)
\(380\) 0.653855 11.2263i 0.0335420 0.575895i
\(381\) 0 0
\(382\) −14.8883 1.74019i −0.761751 0.0890360i
\(383\) −0.0867894 + 0.289897i −0.00443473 + 0.0148130i −0.960178 0.279388i \(-0.909868\pi\)
0.955744 + 0.294201i \(0.0950536\pi\)
\(384\) 0 0
\(385\) 0.566721 1.31381i 0.0288828 0.0669578i
\(386\) −17.8828 + 6.50880i −0.910209 + 0.331289i
\(387\) 0 0
\(388\) 9.58146 + 3.48737i 0.486425 + 0.177044i
\(389\) 5.16022 5.46952i 0.261634 0.277315i −0.583218 0.812315i \(-0.698207\pi\)
0.844852 + 0.535000i \(0.179688\pi\)
\(390\) 0 0
\(391\) −19.0707 9.57766i −0.964446 0.484363i
\(392\) −0.339325 5.82599i −0.0171385 0.294257i
\(393\) 0 0
\(394\) 5.27130 + 17.6074i 0.265564 + 0.887046i
\(395\) 1.60068 + 9.07791i 0.0805390 + 0.456759i
\(396\) 0 0
\(397\) 2.95983 16.7860i 0.148549 0.842466i −0.815899 0.578195i \(-0.803757\pi\)
0.964448 0.264271i \(-0.0851314\pi\)
\(398\) 27.2742 3.18790i 1.36713 0.159795i
\(399\) 0 0
\(400\) −6.26610 6.64168i −0.313305 0.332084i
\(401\) −5.37775 12.4670i −0.268552 0.622574i 0.729565 0.683911i \(-0.239723\pi\)
−0.998117 + 0.0613379i \(0.980463\pi\)
\(402\) 0 0
\(403\) −12.3580 8.12800i −0.615597 0.404884i
\(404\) 12.7153 0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) 1.44425 + 0.949896i 0.0715886 + 0.0470846i
\(408\) 0 0
\(409\) −0.266304 0.617363i −0.0131679 0.0305266i 0.911505 0.411288i \(-0.134921\pi\)
−0.924673 + 0.380762i \(0.875662\pi\)
\(410\) 1.07669 + 1.14123i 0.0531741 + 0.0563613i
\(411\) 0 0
\(412\) −14.0358 + 1.64055i −0.691496 + 0.0808242i
\(413\) 0.663313 3.76184i 0.0326395 0.185108i
\(414\) 0 0
\(415\) 0.754343 + 4.27809i 0.0370292 + 0.210003i
\(416\) 11.5192 + 38.4767i 0.564774 + 1.88648i
\(417\) 0 0
\(418\) 0.973746 + 16.7186i 0.0476275 + 0.817733i
\(419\) 17.7708 + 8.92485i 0.868163 + 0.436008i 0.826376 0.563119i \(-0.190399\pi\)
0.0417867 + 0.999127i \(0.486695\pi\)
\(420\) 0 0
\(421\) −8.61615 + 9.13258i −0.419925 + 0.445095i −0.902455 0.430785i \(-0.858237\pi\)
0.482529 + 0.875880i \(0.339718\pi\)
\(422\) −11.6049 4.22384i −0.564918 0.205613i
\(423\) 0 0
\(424\) 12.7926 4.65611i 0.621262 0.226121i
\(425\) 12.4268 28.8086i 0.602790 1.39742i
\(426\) 0 0
\(427\) −1.88355 + 6.29150i −0.0911515 + 0.304467i
\(428\) −35.2777 4.12338i −1.70521 0.199311i
\(429\) 0 0
\(430\) 0.787992 13.5293i 0.0380003 0.652441i
\(431\) −10.8013 + 18.7084i −0.520281 + 0.901153i 0.479441 + 0.877574i \(0.340839\pi\)
−0.999722 + 0.0235787i \(0.992494\pi\)
\(432\) 0 0
\(433\) −1.99970 3.46358i −0.0960993 0.166449i 0.813968 0.580910i \(-0.197303\pi\)
−0.910067 + 0.414461i \(0.863970\pi\)
\(434\) −9.86445 + 4.95412i −0.473509 + 0.237805i
\(435\) 0 0
\(436\) 2.90193 3.89797i 0.138977 0.186679i
\(437\) 19.2934 4.57262i 0.922928 0.218738i
\(438\) 0 0
\(439\) −18.6380 25.0352i −0.889544 1.19486i −0.980007 0.198965i \(-0.936242\pi\)
0.0904630 0.995900i \(-0.471165\pi\)
\(440\) 0.957063 + 0.803071i 0.0456262 + 0.0382849i
\(441\) 0 0
\(442\) −60.8697 + 51.0758i −2.89528 + 2.42943i
\(443\) −1.55899 0.369487i −0.0740699 0.0175549i 0.193414 0.981117i \(-0.438044\pi\)
−0.267484 + 0.963562i \(0.586192\pi\)
\(444\) 0 0
\(445\) 8.41576 5.53513i 0.398945 0.262390i
\(446\) 13.6937 9.00647i 0.648414 0.426469i
\(447\) 0 0
\(448\) 22.0715 + 5.23103i 1.04278 + 0.247143i
\(449\) −8.04720 + 6.75241i −0.379771 + 0.318666i −0.812613 0.582804i \(-0.801955\pi\)
0.432841 + 0.901470i \(0.357511\pi\)
\(450\) 0 0
\(451\) −1.03374 0.867414i −0.0486771 0.0408449i
\(452\) −22.6753 30.4582i −1.06655 1.43263i
\(453\) 0 0
\(454\) −28.8847 + 6.84579i −1.35562 + 0.321289i
\(455\) −3.76667 + 5.05951i −0.176584 + 0.237194i
\(456\) 0 0
\(457\) 36.7648 18.4640i 1.71979 0.863709i 0.737736 0.675089i \(-0.235895\pi\)
0.982050 0.188620i \(-0.0604014\pi\)
\(458\) 17.4005 + 30.1385i 0.813071 + 1.40828i
\(459\) 0 0
\(460\) 2.75450 4.77093i 0.128429 0.222446i
\(461\) −1.99431 + 34.2409i −0.0928841 + 1.59476i 0.554229 + 0.832364i \(0.313013\pi\)
−0.647113 + 0.762394i \(0.724024\pi\)
\(462\) 0 0
\(463\) 33.1075 + 3.86972i 1.53864 + 0.179841i 0.842748 0.538308i \(-0.180936\pi\)
0.695890 + 0.718149i \(0.255010\pi\)
\(464\) 3.36427 11.2374i 0.156182 0.521685i
\(465\) 0 0
\(466\) −4.61847 + 10.7068i −0.213946 + 0.495984i
\(467\) 9.76380 3.55373i 0.451815 0.164447i −0.106082 0.994357i \(-0.533831\pi\)
0.557897 + 0.829910i \(0.311608\pi\)
\(468\) 0 0
\(469\) 2.09681 + 0.763177i 0.0968218 + 0.0352402i
\(470\) 5.89058 6.24365i 0.271712 0.287998i
\(471\) 0 0
\(472\) 2.98062 + 1.49693i 0.137194 + 0.0689016i
\(473\) 0.677743 + 11.6364i 0.0311627 + 0.535042i
\(474\) 0 0
\(475\) 8.36046 + 27.9259i 0.383604 + 1.28133i
\(476\) 5.94706 + 33.7274i 0.272583 + 1.54589i
\(477\) 0 0
\(478\) −6.09945 + 34.5917i −0.278982 + 1.58219i
\(479\) 20.1592 2.35628i 0.921100 0.107661i 0.357691 0.933840i \(-0.383564\pi\)
0.563408 + 0.826179i \(0.309490\pi\)
\(480\) 0 0
\(481\) −5.22949 5.54293i −0.238444 0.252736i
\(482\) 20.1556 + 46.7259i 0.918062 + 2.12831i
\(483\) 0 0
\(484\) 21.7841 + 14.3276i 0.990184 + 0.651255i
\(485\) 2.41096 0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) −4.79108 3.15114i −0.216882 0.142646i
\(489\) 0 0
\(490\) −2.03553 4.71890i −0.0919561 0.213178i
\(491\) 7.01152 + 7.43178i 0.316426 + 0.335391i 0.865991 0.500059i \(-0.166688\pi\)
−0.549566 + 0.835450i \(0.685207\pi\)
\(492\) 0 0
\(493\) 40.0329 4.67918i 1.80299 0.210740i
\(494\) 12.8199 72.7055i 0.576796 3.27117i
\(495\) 0 0
\(496\) 0.959690 + 5.44267i 0.0430914 + 0.244383i
\(497\) −4.27613 14.2833i −0.191811 0.640692i
\(498\) 0 0
\(499\) 0.508397 + 8.72884i 0.0227590 + 0.390756i 0.990382 + 0.138358i \(0.0441824\pi\)
−0.967623 + 0.252399i \(0.918781\pi\)
\(500\) 15.1356 + 7.60141i 0.676887 + 0.339945i
\(501\) 0 0
\(502\) −36.2641 + 38.4377i −1.61854 + 1.71556i
\(503\) 12.2947 + 4.47489i 0.548192 + 0.199526i 0.601243 0.799066i \(-0.294672\pi\)
−0.0530509 + 0.998592i \(0.516895\pi\)
\(504\) 0 0
\(505\) 2.82525 1.02831i 0.125722 0.0457591i
\(506\) −3.24953 + 7.53325i −0.144459 + 0.334894i
\(507\) 0 0
\(508\) 8.93590 29.8480i 0.396467 1.32429i
\(509\) −30.2154 3.53167i −1.33927 0.156538i −0.583895 0.811829i \(-0.698472\pi\)
−0.755377 + 0.655291i \(0.772546\pi\)
\(510\) 0 0
\(511\) 0.683128 11.7289i 0.0302198 0.518854i
\(512\) 10.6866 18.5097i 0.472284 0.818019i
\(513\) 0 0
\(514\) −10.4808 18.1532i −0.462287 0.800705i
\(515\) −2.98599 + 1.49962i −0.131578 + 0.0660812i
\(516\) 0 0
\(517\) −4.40874 + 5.92196i −0.193896 + 0.260448i
\(518\) −5.53376 + 1.31153i −0.243139 + 0.0576251i
\(519\) 0 0
\(520\) −3.28895 4.41782i −0.144230 0.193734i
\(521\) −8.25925 6.93034i −0.361845 0.303624i 0.443681 0.896185i \(-0.353672\pi\)
−0.805525 + 0.592561i \(0.798117\pi\)
\(522\) 0 0
\(523\) 9.44644 7.92650i 0.413064 0.346602i −0.412453 0.910979i \(-0.635328\pi\)
0.825517 + 0.564377i \(0.190884\pi\)
\(524\) 38.7911 + 9.19366i 1.69460 + 0.401627i
\(525\) 0 0
\(526\) −12.0739 + 7.94111i −0.526446 + 0.346249i
\(527\) −15.8657 + 10.4350i −0.691119 + 0.454556i
\(528\) 0 0
\(529\) −12.9283 3.06406i −0.562100 0.133220i
\(530\) 9.18367 7.70601i 0.398913 0.334728i
\(531\) 0 0
\(532\) −24.3755 20.4535i −1.05681 0.886772i
\(533\) 3.55246 + 4.77178i 0.153874 + 0.206689i
\(534\) 0 0
\(535\) −8.17194 + 1.93678i −0.353304 + 0.0837345i
\(536\) −1.16349 + 1.56284i −0.0502552 + 0.0675044i
\(537\) 0 0
\(538\) 57.0992 28.6763i 2.46172 1.23632i
\(539\) 2.21009 + 3.82798i 0.0951952 + 0.164883i
\(540\) 0 0
\(541\) 7.99279 13.8439i 0.343637 0.595196i −0.641468 0.767149i \(-0.721674\pi\)
0.985105 + 0.171953i \(0.0550078\pi\)
\(542\) −2.38843 + 41.0078i −0.102592 + 1.76144i
\(543\) 0 0
\(544\) 51.2153 + 5.98621i 2.19584 + 0.256657i
\(545\) 0.329554 1.10079i 0.0141165 0.0471525i
\(546\) 0 0
\(547\) 0.489796 1.13547i 0.0209422 0.0485494i −0.907424 0.420216i \(-0.861954\pi\)
0.928366 + 0.371667i \(0.121214\pi\)
\(548\) −0.952696 + 0.346753i −0.0406972 + 0.0148126i
\(549\) 0 0
\(550\) −11.3343 4.12534i −0.483295 0.175905i
\(551\) −25.6986 + 27.2389i −1.09480 + 1.16042i
\(552\) 0 0
\(553\) 23.3090 + 11.7062i 0.991199 + 0.497799i
\(554\) 1.77606 + 30.4938i 0.0754577 + 1.29556i
\(555\) 0 0
\(556\) −11.7447 39.2302i −0.498088 1.66373i
\(557\) −2.28246 12.9445i −0.0967109 0.548475i −0.994210 0.107458i \(-0.965729\pi\)
0.897499 0.441017i \(-0.145382\pi\)
\(558\) 0 0
\(559\) 8.92289 50.6042i 0.377398 2.14033i
\(560\) 2.34085 0.273606i 0.0989189 0.0115620i
\(561\) 0 0
\(562\) 32.9689 + 34.9450i 1.39071 + 1.47407i
\(563\) −2.41169 5.59094i −0.101641 0.235630i 0.859806 0.510621i \(-0.170584\pi\)
−0.961447 + 0.274991i \(0.911325\pi\)
\(564\) 0 0
\(565\) −7.50149 4.93381i −0.315590 0.207567i
\(566\) −8.60852 −0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) 13.8505 + 9.10960i 0.580642 + 0.381894i 0.805587 0.592477i \(-0.201850\pi\)
−0.224945 + 0.974371i \(0.572220\pi\)
\(570\) 0 0
\(571\) 13.8023 + 31.9973i 0.577608 + 1.33905i 0.917182 + 0.398468i \(0.130458\pi\)
−0.339574 + 0.940579i \(0.610283\pi\)
\(572\) 12.1069 + 12.8326i 0.506216 + 0.536557i
\(573\) 0 0
\(574\) 4.40959 0.515408i 0.184053 0.0215127i
\(575\) −2.47981 + 14.0637i −0.103415 + 0.586497i
\(576\) 0 0
\(577\) 5.38675 + 30.5498i 0.224254 + 1.27180i 0.864107 + 0.503308i \(0.167884\pi\)
−0.639854 + 0.768497i \(0.721005\pi\)
\(578\) 18.6492 + 62.2928i 0.775706 + 2.59104i
\(579\) 0 0
\(580\) 0.604979 + 10.3871i 0.0251204 + 0.431301i
\(581\) 10.9847 + 5.51671i 0.455721 + 0.228872i
\(582\) 0 0
\(583\) −7.07592 + 7.50004i −0.293055 + 0.310620i
\(584\) 9.63999 + 3.50867i 0.398906 + 0.145190i
\(585\) 0 0
\(586\) −16.3102 + 5.93644i −0.673769 + 0.245232i
\(587\) 17.6431 40.9013i 0.728209 1.68818i 0.00267106 0.999996i \(-0.499150\pi\)
0.725538 0.688182i \(-0.241591\pi\)
\(588\) 0 0
\(589\) 5.06023 16.9023i 0.208503 0.696449i
\(590\) 2.91737 + 0.340992i 0.120106 + 0.0140384i
\(591\) 0 0
\(592\) −0.165556 + 2.84249i −0.00680432 + 0.116826i
\(593\) −9.90549 + 17.1568i −0.406770 + 0.704546i −0.994526 0.104493i \(-0.966678\pi\)
0.587756 + 0.809038i \(0.300011\pi\)
\(594\) 0 0
\(595\) 4.04899 + 7.01306i 0.165992 + 0.287507i
\(596\) 2.44393 1.22739i 0.100107 0.0502758i
\(597\) 0 0
\(598\) 21.5977 29.0108i 0.883197 1.18634i
\(599\) 27.1755 6.44071i 1.11036 0.263160i 0.365785 0.930699i \(-0.380800\pi\)
0.744575 + 0.667539i \(0.232652\pi\)
\(600\) 0 0
\(601\) −6.05803 8.13735i −0.247112 0.331929i 0.661210 0.750201i \(-0.270043\pi\)
−0.908322 + 0.418272i \(0.862636\pi\)
\(602\) −29.3761 24.6495i −1.19728 1.00464i
\(603\) 0 0
\(604\) 0.0411194 0.0345033i 0.00167313 0.00140392i
\(605\) 5.99897 + 1.42178i 0.243893 + 0.0578036i
\(606\) 0 0
\(607\) −9.03698 + 5.94371i −0.366800 + 0.241248i −0.719506 0.694486i \(-0.755632\pi\)
0.352706 + 0.935734i \(0.385261\pi\)
\(608\) −40.0272 + 26.3263i −1.62332 + 1.06767i
\(609\) 0 0
\(610\) −4.91379 1.16459i −0.198954 0.0471529i
\(611\) 24.9321 20.9205i 1.00865 0.846355i
\(612\) 0 0
\(613\) 4.13859 + 3.47269i 0.167156 + 0.140261i 0.722528 0.691341i \(-0.242980\pi\)
−0.555372 + 0.831602i \(0.687424\pi\)
\(614\) 2.70762 + 3.63696i 0.109270 + 0.146776i
\(615\) 0 0
\(616\) 3.43993 0.815278i 0.138599 0.0328485i
\(617\) 14.9530 20.0854i 0.601986 0.808608i −0.391784 0.920057i \(-0.628142\pi\)
0.993770 + 0.111450i \(0.0355494\pi\)
\(618\) 0 0
\(619\) 22.7743 11.4377i 0.915376 0.459719i 0.0722206 0.997389i \(-0.476991\pi\)
0.843156 + 0.537669i \(0.180695\pi\)
\(620\) −2.45106 4.24535i −0.0984368 0.170498i
\(621\) 0 0
\(622\) 16.3342 28.2917i 0.654943 1.13439i
\(623\) 1.65727 28.4543i 0.0663973 1.14000i
\(624\) 0 0
\(625\) −18.7775 2.19478i −0.751102 0.0877912i
\(626\) 3.17687 10.6115i 0.126973 0.424120i
\(627\) 0 0
\(628\) −8.45183 + 19.5936i −0.337265 + 0.781868i
\(629\) −9.19342 + 3.34613i −0.366566 + 0.133419i
\(630\) 0 0
\(631\) −18.7709 6.83203i −0.747256 0.271979i −0.0598054 0.998210i \(-0.519048\pi\)
−0.687451 + 0.726231i \(0.741270\pi\)
\(632\) −15.6294 + 16.5662i −0.621702 + 0.658966i
\(633\) 0 0
\(634\) −53.8748 27.0570i −2.13964 1.07457i
\(635\) −0.428361 7.35468i −0.0169990 0.291862i
\(636\) 0 0
\(637\) −5.58862 18.6673i −0.221429 0.739625i
\(638\) −2.69069 15.2597i −0.106526 0.604137i
\(639\) 0 0
\(640\) −1.33792 + 7.58769i −0.0528857 + 0.299930i
\(641\) −8.86918 + 1.03666i −0.350312 + 0.0409456i −0.289429 0.957199i \(-0.593466\pi\)
−0.0608823 + 0.998145i \(0.519391\pi\)
\(642\) 0 0
\(643\) −9.19558 9.74674i −0.362638 0.384374i 0.520205 0.854041i \(-0.325855\pi\)
−0.882844 + 0.469667i \(0.844374\pi\)
\(644\) −6.17427 14.3136i −0.243300 0.564033i
\(645\) 0 0
\(646\) −79.1890 52.0834i −3.11565 2.04920i
\(647\) 48.7223 1.91547 0.957736 0.287649i \(-0.0928736\pi\)
0.957736 + 0.287649i \(0.0928736\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) 44.4251 + 29.2189i 1.74250 + 1.14606i
\(651\) 0 0
\(652\) −16.6715 38.6489i −0.652906 1.51361i
\(653\) 3.29734 + 3.49498i 0.129035 + 0.136769i 0.788669 0.614818i \(-0.210770\pi\)
−0.659634 + 0.751587i \(0.729289\pi\)
\(654\) 0 0
\(655\) 9.36262 1.09433i 0.365828 0.0427592i
\(656\) 0.385978 2.18899i 0.0150699 0.0854656i
\(657\) 0 0
\(658\) −4.21775 23.9201i −0.164425 0.932501i
\(659\) −7.25407 24.2303i −0.282579 0.943878i −0.974966 0.222352i \(-0.928626\pi\)
0.692388 0.721526i \(-0.256559\pi\)
\(660\) 0 0
\(661\) 0.821956 + 14.1124i 0.0319704 + 0.548910i 0.975826 + 0.218551i \(0.0701329\pi\)
−0.943855 + 0.330359i \(0.892830\pi\)
\(662\) −53.0213 26.6283i −2.06073 1.03494i
\(663\) 0 0
\(664\) −7.36555 + 7.80703i −0.285839 + 0.302971i
\(665\) −7.07019 2.57334i −0.274170 0.0997898i
\(666\) 0 0
\(667\) −17.2393 + 6.27461i −0.667510 + 0.242954i
\(668\) −3.95792 + 9.17550i −0.153137 + 0.355011i
\(669\) 0 0
\(670\) −0.492094 + 1.64371i −0.0190112 + 0.0635020i
\(671\) 4.31401 + 0.504235i 0.166540 + 0.0194658i
\(672\) 0 0
\(673\) −0.155093 + 2.66284i −0.00597839 + 0.102645i −0.999977 0.00674548i \(-0.997853\pi\)
0.993999 + 0.109390i \(0.0348899\pi\)
\(674\) −13.8366 + 23.9656i −0.532965 + 0.923122i
\(675\) 0 0
\(676\) −21.1154 36.5730i −0.812131 1.40665i
\(677\) 13.1923 6.62542i 0.507021 0.254636i −0.176851 0.984238i \(-0.556591\pi\)
0.683872 + 0.729602i \(0.260295\pi\)
\(678\) 0 0
\(679\) 4.07390 5.47220i 0.156342 0.210004i
\(680\) −6.88033 + 1.63067i −0.263849 + 0.0625333i
\(681\) 0 0
\(682\) 4.35951 + 5.85584i 0.166934 + 0.224232i
\(683\) 16.0712 + 13.4854i 0.614948 + 0.516003i 0.896211 0.443628i \(-0.146309\pi\)
−0.281263 + 0.959631i \(0.590753\pi\)
\(684\) 0 0
\(685\) −0.183640 + 0.154092i −0.00701653 + 0.00588756i
\(686\) −41.2611 9.77905i −1.57535 0.373366i
\(687\) 0 0
\(688\) −16.0408 + 10.5502i −0.611552 + 0.402224i
\(689\) 37.9775 24.9782i 1.44683 0.951594i
\(690\) 0 0
\(691\) 33.8949 + 8.03323i 1.28942 + 0.305598i 0.817442 0.576011i \(-0.195392\pi\)
0.471979 + 0.881610i \(0.343540\pi\)
\(692\) −27.8199 + 23.3437i −1.05755 + 0.887394i
\(693\) 0 0
\(694\) 14.0227 + 11.7664i 0.532294 + 0.446648i
\(695\) −5.78221 7.76686i −0.219332 0.294614i
\(696\) 0 0
\(697\) 7.43159 1.76132i 0.281492 0.0667147i
\(698\) −39.1651 + 52.6079i −1.48242 + 1.99124i
\(699\) 0 0
\(700\) 20.4801 10.2855i 0.774075 0.388755i
\(701\) −21.8053 37.7679i −0.823576 1.42647i −0.903003 0.429634i \(-0.858643\pi\)
0.0794276 0.996841i \(-0.474691\pi\)
\(702\) 0 0
\(703\) 4.54496 7.87209i 0.171416 0.296902i
\(704\) 0.872254 14.9760i 0.0328743 0.564430i
\(705\) 0 0
\(706\) −50.2052 5.86815i −1.88950 0.220851i
\(707\) 2.43997 8.15008i 0.0917647 0.306515i
\(708\) 0 0
\(709\) 7.23533 16.7734i 0.271728 0.629937i −0.726641 0.687017i \(-0.758920\pi\)
0.998370 + 0.0570799i \(0.0181790\pi\)
\(710\) 10.7731 3.92111i 0.404309 0.147156i
\(711\) 0 0
\(712\) 23.3867 + 8.51206i 0.876453 + 0.319003i
\(713\) 5.93152 6.28704i 0.222137 0.235452i
\(714\) 0 0
\(715\) 3.72787 + 1.87221i 0.139414 + 0.0700165i
\(716\) 0.0664428 + 1.14078i 0.00248308 + 0.0426329i
\(717\) 0 0
\(718\) −2.60097 8.68786i −0.0970675 0.324228i
\(719\) 3.15002 + 17.8647i 0.117476 + 0.666240i 0.985494 + 0.169708i \(0.0542824\pi\)
−0.868018 + 0.496532i \(0.834607\pi\)
\(720\) 0 0
\(721\) −1.64184 + 9.31131i −0.0611451 + 0.346771i
\(722\) 46.4067 5.42417i 1.72708 0.201867i
\(723\) 0 0
\(724\) −39.1113 41.4555i −1.45356 1.54068i
\(725\) −10.6829 24.7657i −0.396752 0.919774i
\(726\) 0 0
\(727\) −16.9219 11.1297i −0.627599 0.412778i 0.195478 0.980708i \(-0.437374\pi\)
−0.823077 + 0.567930i \(0.807744\pi\)
\(728\) −15.5847 −0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) −55.1169 36.2509i −2.03857 1.34079i
\(732\) 0 0
\(733\) −0.700264 1.62339i −0.0258648 0.0599615i 0.904794 0.425849i \(-0.140025\pi\)
−0.930659 + 0.365888i \(0.880765\pi\)
\(734\) −17.5010 18.5500i −0.645974 0.684693i
\(735\) 0 0
\(736\) −23.3115 + 2.72473i −0.859274 + 0.100435i
\(737\) 0.256258 1.45331i 0.00943939 0.0535334i
\(738\) 0 0
\(739\) −1.58340 8.97988i −0.0582461 0.330330i 0.941736 0.336354i \(-0.109194\pi\)
−0.999982 + 0.00602346i \(0.998083\pi\)
\(740\) −0.724337 2.41946i −0.0266272 0.0889409i
\(741\) 0 0
\(742\) −1.97244 33.8654i −0.0724104 1.24324i
\(743\) 17.8025 + 8.94076i 0.653111 + 0.328005i 0.744316 0.667827i \(-0.232776\pi\)
−0.0912051 + 0.995832i \(0.529072\pi\)
\(744\) 0 0
\(745\) 0.443764 0.470363i 0.0162583 0.0172327i
\(746\) 74.3653 + 27.0667i 2.72271 + 0.990984i
\(747\) 0 0
\(748\) 21.2839 7.74671i 0.778217 0.283248i
\(749\) −9.41249 + 21.8206i −0.343925 + 0.797308i
\(750\) 0 0
\(751\) 11.0579 36.9360i 0.403509 1.34781i −0.479122 0.877748i \(-0.659045\pi\)
0.882631 0.470066i \(-0.155770\pi\)
\(752\) −12.0784 1.41177i −0.440456 0.0514819i
\(753\) 0 0
\(754\) −3.97179 + 68.1930i −0.144644 + 2.48344i
\(755\) 0.00634611 0.0109918i 0.000230959 0.000400032i
\(756\) 0 0
\(757\) 25.4729 + 44.1204i 0.925829 + 1.60358i 0.790223 + 0.612820i \(0.209965\pi\)
0.135606 + 0.990763i \(0.456702\pi\)
\(758\) 19.5415 9.81413i 0.709781 0.356465i
\(759\) 0 0
\(760\) 3.92315 5.26970i 0.142307 0.191152i
\(761\) −37.8907 + 8.98027i −1.37354 + 0.325534i −0.850141 0.526555i \(-0.823484\pi\)
−0.523397 + 0.852089i \(0.675335\pi\)
\(762\) 0 0
\(763\) −1.94161 2.60804i −0.0702911 0.0944173i
\(764\) −14.4293 12.1076i −0.522033 0.438038i
\(765\) 0 0
\(766\) −0.504379 + 0.423224i −0.0182239 + 0.0152917i
\(767\) 10.8367 + 2.56834i 0.391290 + 0.0927373i
\(768\) 0 0
\(769\) −28.5331 + 18.7665i −1.02893 + 0.676739i −0.947439 0.319935i \(-0.896339\pi\)
−0.0814918 + 0.996674i \(0.525968\pi\)
\(770\) 2.60104 1.71073i 0.0937349 0.0616504i
\(771\) 0 0
\(772\) −23.2692 5.51490i −0.837476 0.198485i
\(773\) 2.31945 1.94625i 0.0834247 0.0700016i −0.600122 0.799909i \(-0.704881\pi\)
0.683546 + 0.729907i \(0.260437\pi\)
\(774\) 0 0
\(775\) 9.73449 + 8.16820i 0.349673 + 0.293411i
\(776\) 3.55722 + 4.77817i 0.127697 + 0.171526i
\(777\) 0 0
\(778\) 15.9200 3.77312i 0.570761 0.135273i
\(779\) −4.23747 + 5.69191i −0.151823 + 0.203934i
\(780\) 0 0
\(781\) −8.81169 + 4.42540i −0.315307 + 0.158353i
\(782\) −23.2165 40.2122i −0.830222 1.43799i
\(783\) 0