Properties

Label 729.2.g.b.703.5
Level $729$
Weight $2$
Character 729.703
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 703.5
Character \(\chi\) \(=\) 729.703
Dual form 729.2.g.b.28.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.474230 - 0.311906i) q^{2} +(-0.664551 - 1.54060i) q^{4} +(1.99266 + 2.11209i) q^{5} +(-3.10865 + 0.363349i) q^{7} +(-0.362501 + 2.05585i) q^{8} +(-0.286203 - 1.62314i) q^{10} +(-0.984350 - 3.28796i) q^{11} +(0.231870 + 3.98106i) q^{13} +(1.58755 + 0.797296i) q^{14} +(-1.48964 + 1.57893i) q^{16} +(-0.878443 - 0.319727i) q^{17} +(-4.55845 + 1.65914i) q^{19} +(1.92967 - 4.47349i) q^{20} +(-0.558725 + 1.86627i) q^{22} +(-6.11065 - 0.714233i) q^{23} +(-0.199532 + 3.42583i) q^{25} +(1.13175 - 1.96026i) q^{26} +(2.62564 + 4.54773i) q^{28} +(-1.60828 + 0.807706i) q^{29} +(0.403603 - 0.542133i) q^{31} +(5.26149 - 1.24700i) q^{32} +(0.316859 + 0.425615i) q^{34} +(-6.96191 - 5.84174i) q^{35} +(-8.73079 + 7.32600i) q^{37} +(2.67925 + 0.634993i) q^{38} +(-5.06448 + 3.33096i) q^{40} +(5.55820 - 3.65568i) q^{41} +(-2.17613 - 0.515752i) q^{43} +(-4.41129 + 3.70151i) q^{44} +(2.67508 + 2.24466i) q^{46} +(1.89278 + 2.54245i) q^{47} +(2.72039 - 0.644744i) q^{49} +(1.16316 - 1.56239i) q^{50} +(5.97913 - 3.00283i) q^{52} +(4.18963 + 7.25666i) q^{53} +(4.98301 - 8.63082i) q^{55} +(0.379900 - 6.52263i) q^{56} +(1.01462 + 0.118592i) q^{58} +(-1.44287 + 4.81952i) q^{59} +(-0.226018 + 0.523969i) q^{61} +(-0.360495 + 0.131209i) q^{62} +(1.19553 + 0.435136i) q^{64} +(-7.94633 + 8.42262i) q^{65} +(-12.2150 - 6.13461i) q^{67} +(0.0911978 + 1.56581i) q^{68} +(1.47947 + 4.94179i) q^{70} +(2.31784 + 13.1452i) q^{71} +(-1.17142 + 6.64347i) q^{73} +(6.42542 - 0.751024i) q^{74} +(5.58539 + 5.92017i) q^{76} +(4.25468 + 9.86346i) q^{77} +(-0.622719 - 0.409569i) q^{79} -6.30319 q^{80} -3.77609 q^{82} +(-3.04071 - 1.99991i) q^{83} +(-1.07514 - 2.49246i) q^{85} +(0.871119 + 0.923332i) q^{86} +(7.11637 - 0.831784i) q^{88} +(2.27781 - 12.9181i) q^{89} +(-2.16732 - 12.2915i) q^{91} +(2.96049 + 9.88873i) q^{92} +(-0.104609 - 1.79607i) q^{94} +(-12.5877 - 6.32177i) q^{95} +(-8.58165 + 9.09602i) q^{97} +(-1.49119 - 0.542748i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.474230 0.311906i −0.335331 0.220551i 0.370665 0.928767i \(-0.379130\pi\)
−0.705996 + 0.708216i \(0.749500\pi\)
\(3\) 0 0
\(4\) −0.664551 1.54060i −0.332275 0.770301i
\(5\) 1.99266 + 2.11209i 0.891144 + 0.944557i 0.998767 0.0496342i \(-0.0158056\pi\)
−0.107623 + 0.994192i \(0.534324\pi\)
\(6\) 0 0
\(7\) −3.10865 + 0.363349i −1.17496 + 0.137333i −0.681088 0.732201i \(-0.738493\pi\)
−0.493872 + 0.869535i \(0.664419\pi\)
\(8\) −0.362501 + 2.05585i −0.128164 + 0.726852i
\(9\) 0 0
\(10\) −0.286203 1.62314i −0.0905055 0.513282i
\(11\) −0.984350 3.28796i −0.296793 0.991357i −0.968181 0.250251i \(-0.919487\pi\)
0.671388 0.741106i \(-0.265698\pi\)
\(12\) 0 0
\(13\) 0.231870 + 3.98106i 0.0643092 + 1.10415i 0.863920 + 0.503628i \(0.168002\pi\)
−0.799611 + 0.600518i \(0.794961\pi\)
\(14\) 1.58755 + 0.797296i 0.424290 + 0.213086i
\(15\) 0 0
\(16\) −1.48964 + 1.57893i −0.372410 + 0.394732i
\(17\) −0.878443 0.319727i −0.213054 0.0775452i 0.233289 0.972408i \(-0.425051\pi\)
−0.446342 + 0.894862i \(0.647274\pi\)
\(18\) 0 0
\(19\) −4.55845 + 1.65914i −1.04578 + 0.380633i −0.807068 0.590458i \(-0.798947\pi\)
−0.238711 + 0.971091i \(0.576725\pi\)
\(20\) 1.92967 4.47349i 0.431488 1.00030i
\(21\) 0 0
\(22\) −0.558725 + 1.86627i −0.119121 + 0.397891i
\(23\) −6.11065 0.714233i −1.27416 0.148928i −0.548014 0.836469i \(-0.684616\pi\)
−0.726145 + 0.687542i \(0.758690\pi\)
\(24\) 0 0
\(25\) −0.199532 + 3.42583i −0.0399063 + 0.685165i
\(26\) 1.13175 1.96026i 0.221955 0.384438i
\(27\) 0 0
\(28\) 2.62564 + 4.54773i 0.496198 + 0.859441i
\(29\) −1.60828 + 0.807706i −0.298649 + 0.149987i −0.591814 0.806075i \(-0.701588\pi\)
0.293165 + 0.956062i \(0.405292\pi\)
\(30\) 0 0
\(31\) 0.403603 0.542133i 0.0724892 0.0973699i −0.764400 0.644743i \(-0.776965\pi\)
0.836889 + 0.547373i \(0.184372\pi\)
\(32\) 5.26149 1.24700i 0.930109 0.220440i
\(33\) 0 0
\(34\) 0.316859 + 0.425615i 0.0543409 + 0.0729924i
\(35\) −6.96191 5.84174i −1.17678 0.987434i
\(36\) 0 0
\(37\) −8.73079 + 7.32600i −1.43533 + 1.20439i −0.492858 + 0.870110i \(0.664048\pi\)
−0.942475 + 0.334277i \(0.891508\pi\)
\(38\) 2.67925 + 0.634993i 0.434631 + 0.103009i
\(39\) 0 0
\(40\) −5.06448 + 3.33096i −0.800765 + 0.526672i
\(41\) 5.55820 3.65568i 0.868045 0.570922i −0.0355222 0.999369i \(-0.511309\pi\)
0.903567 + 0.428447i \(0.140939\pi\)
\(42\) 0 0
\(43\) −2.17613 0.515752i −0.331857 0.0786515i 0.0613098 0.998119i \(-0.480472\pi\)
−0.393166 + 0.919467i \(0.628620\pi\)
\(44\) −4.41129 + 3.70151i −0.665026 + 0.558023i
\(45\) 0 0
\(46\) 2.67508 + 2.24466i 0.394419 + 0.330957i
\(47\) 1.89278 + 2.54245i 0.276091 + 0.370854i 0.918442 0.395556i \(-0.129448\pi\)
−0.642351 + 0.766411i \(0.722041\pi\)
\(48\) 0 0
\(49\) 2.72039 0.644744i 0.388627 0.0921062i
\(50\) 1.16316 1.56239i 0.164496 0.220956i
\(51\) 0 0
\(52\) 5.97913 3.00283i 0.829157 0.416418i
\(53\) 4.18963 + 7.25666i 0.575490 + 0.996779i 0.995988 + 0.0894851i \(0.0285221\pi\)
−0.420498 + 0.907294i \(0.638145\pi\)
\(54\) 0 0
\(55\) 4.98301 8.63082i 0.671909 1.16378i
\(56\) 0.379900 6.52263i 0.0507663 0.871623i
\(57\) 0 0
\(58\) 1.01462 + 0.118592i 0.133226 + 0.0155719i
\(59\) −1.44287 + 4.81952i −0.187846 + 0.627448i 0.811241 + 0.584712i \(0.198793\pi\)
−0.999086 + 0.0427359i \(0.986393\pi\)
\(60\) 0 0
\(61\) −0.226018 + 0.523969i −0.0289387 + 0.0670874i −0.932073 0.362272i \(-0.882001\pi\)
0.903134 + 0.429359i \(0.141261\pi\)
\(62\) −0.360495 + 0.131209i −0.0457829 + 0.0166636i
\(63\) 0 0
\(64\) 1.19553 + 0.435136i 0.149441 + 0.0543920i
\(65\) −7.94633 + 8.42262i −0.985621 + 1.04470i
\(66\) 0 0
\(67\) −12.2150 6.13461i −1.49230 0.749461i −0.499173 0.866502i \(-0.666363\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(68\) 0.0911978 + 1.56581i 0.0110594 + 0.189882i
\(69\) 0 0
\(70\) 1.47947 + 4.94179i 0.176831 + 0.590657i
\(71\) 2.31784 + 13.1452i 0.275078 + 1.56004i 0.738715 + 0.674017i \(0.235433\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(72\) 0 0
\(73\) −1.17142 + 6.64347i −0.137105 + 0.777560i 0.836266 + 0.548324i \(0.184734\pi\)
−0.973371 + 0.229236i \(0.926377\pi\)
\(74\) 6.42542 0.751024i 0.746940 0.0873048i
\(75\) 0 0
\(76\) 5.58539 + 5.92017i 0.640688 + 0.679090i
\(77\) 4.25468 + 9.86346i 0.484866 + 1.12405i
\(78\) 0 0
\(79\) −0.622719 0.409569i −0.0700614 0.0460801i 0.513995 0.857793i \(-0.328165\pi\)
−0.584056 + 0.811713i \(0.698535\pi\)
\(80\) −6.30319 −0.704718
\(81\) 0 0
\(82\) −3.77609 −0.417000
\(83\) −3.04071 1.99991i −0.333761 0.219518i 0.371555 0.928411i \(-0.378825\pi\)
−0.705316 + 0.708893i \(0.749195\pi\)
\(84\) 0 0
\(85\) −1.07514 2.49246i −0.116616 0.270345i
\(86\) 0.871119 + 0.923332i 0.0939352 + 0.0995655i
\(87\) 0 0
\(88\) 7.11637 0.831784i 0.758607 0.0886685i
\(89\) 2.27781 12.9181i 0.241447 1.36931i −0.587154 0.809475i \(-0.699752\pi\)
0.828601 0.559839i \(-0.189137\pi\)
\(90\) 0 0
\(91\) −2.16732 12.2915i −0.227197 1.28850i
\(92\) 2.96049 + 9.88873i 0.308652 + 1.03097i
\(93\) 0 0
\(94\) −0.104609 1.79607i −0.0107896 0.185251i
\(95\) −12.5877 6.32177i −1.29147 0.648600i
\(96\) 0 0
\(97\) −8.58165 + 9.09602i −0.871335 + 0.923561i −0.997656 0.0684283i \(-0.978202\pi\)
0.126321 + 0.991989i \(0.459683\pi\)
\(98\) −1.49119 0.542748i −0.150633 0.0548258i
\(99\) 0 0
\(100\) 5.41044 1.96924i 0.541044 0.196924i
\(101\) 2.37006 5.49442i 0.235830 0.546715i −0.758667 0.651478i \(-0.774149\pi\)
0.994497 + 0.104763i \(0.0334084\pi\)
\(102\) 0 0
\(103\) −0.507240 + 1.69430i −0.0499798 + 0.166944i −0.979336 0.202240i \(-0.935178\pi\)
0.929356 + 0.369185i \(0.120363\pi\)
\(104\) −8.26849 0.966448i −0.810792 0.0947680i
\(105\) 0 0
\(106\) 0.276545 4.74809i 0.0268604 0.461176i
\(107\) 3.57628 6.19429i 0.345732 0.598825i −0.639755 0.768579i \(-0.720964\pi\)
0.985486 + 0.169754i \(0.0542974\pi\)
\(108\) 0 0
\(109\) −5.68613 9.84867i −0.544633 0.943332i −0.998630 0.0523287i \(-0.983336\pi\)
0.453997 0.891003i \(-0.349998\pi\)
\(110\) −5.05509 + 2.53876i −0.481984 + 0.242062i
\(111\) 0 0
\(112\) 4.05708 5.44960i 0.383358 0.514939i
\(113\) 5.66711 1.34313i 0.533116 0.126351i 0.0447643 0.998998i \(-0.485746\pi\)
0.488352 + 0.872647i \(0.337598\pi\)
\(114\) 0 0
\(115\) −10.6679 14.3295i −0.994788 1.33623i
\(116\) 2.31313 + 1.94095i 0.214769 + 0.180213i
\(117\) 0 0
\(118\) 2.18749 1.83552i 0.201375 0.168973i
\(119\) 2.84695 + 0.674739i 0.260979 + 0.0618532i
\(120\) 0 0
\(121\) −0.651365 + 0.428410i −0.0592150 + 0.0389463i
\(122\) 0.270614 0.177985i 0.0245002 0.0161140i
\(123\) 0 0
\(124\) −1.10343 0.261517i −0.0990906 0.0234849i
\(125\) 3.48865 2.92733i 0.312034 0.261828i
\(126\) 0 0
\(127\) 8.22802 + 6.90413i 0.730119 + 0.612643i 0.930164 0.367144i \(-0.119664\pi\)
−0.200045 + 0.979787i \(0.564109\pi\)
\(128\) −6.88920 9.25380i −0.608925 0.817928i
\(129\) 0 0
\(130\) 6.39545 1.51575i 0.560918 0.132940i
\(131\) 4.27722 5.74530i 0.373702 0.501969i −0.574994 0.818158i \(-0.694996\pi\)
0.948697 + 0.316188i \(0.102403\pi\)
\(132\) 0 0
\(133\) 13.5678 6.81400i 1.17648 0.590848i
\(134\) 3.87930 + 6.71914i 0.335120 + 0.580446i
\(135\) 0 0
\(136\) 0.975746 1.69004i 0.0836695 0.144920i
\(137\) −0.501738 + 8.61452i −0.0428664 + 0.735988i 0.906575 + 0.422044i \(0.138687\pi\)
−0.949442 + 0.313944i \(0.898350\pi\)
\(138\) 0 0
\(139\) 5.85926 + 0.684849i 0.496976 + 0.0580882i 0.360889 0.932609i \(-0.382473\pi\)
0.136087 + 0.990697i \(0.456547\pi\)
\(140\) −4.37325 + 14.6077i −0.369607 + 1.23457i
\(141\) 0 0
\(142\) 3.00086 6.95677i 0.251826 0.583799i
\(143\) 12.8613 4.68113i 1.07552 0.391456i
\(144\) 0 0
\(145\) −4.91069 1.78735i −0.407811 0.148431i
\(146\) 2.62766 2.78516i 0.217467 0.230501i
\(147\) 0 0
\(148\) 17.0885 + 8.58217i 1.40467 + 0.705450i
\(149\) −0.802085 13.7713i −0.0657094 1.12819i −0.856516 0.516121i \(-0.827376\pi\)
0.790807 0.612066i \(-0.209661\pi\)
\(150\) 0 0
\(151\) −1.80026 6.01330i −0.146503 0.489356i 0.852965 0.521969i \(-0.174802\pi\)
−0.999468 + 0.0326132i \(0.989617\pi\)
\(152\) −1.75849 9.97291i −0.142633 0.808910i
\(153\) 0 0
\(154\) 1.05877 6.00461i 0.0853185 0.483865i
\(155\) 1.94928 0.227838i 0.156570 0.0183004i
\(156\) 0 0
\(157\) 0.113981 + 0.120812i 0.00909664 + 0.00964187i 0.731906 0.681406i \(-0.238631\pi\)
−0.722809 + 0.691048i \(0.757150\pi\)
\(158\) 0.167565 + 0.388460i 0.0133308 + 0.0309042i
\(159\) 0 0
\(160\) 13.1181 + 8.62793i 1.03708 + 0.682098i
\(161\) 19.2554 1.51754
\(162\) 0 0
\(163\) 16.2014 1.26899 0.634495 0.772927i \(-0.281208\pi\)
0.634495 + 0.772927i \(0.281208\pi\)
\(164\) −9.32566 6.13358i −0.728212 0.478952i
\(165\) 0 0
\(166\) 0.818213 + 1.89683i 0.0635056 + 0.147223i
\(167\) −12.5418 13.2935i −0.970513 1.02868i −0.999576 0.0291056i \(-0.990734\pi\)
0.0290638 0.999578i \(-0.490747\pi\)
\(168\) 0 0
\(169\) −2.88294 + 0.336968i −0.221765 + 0.0259206i
\(170\) −0.267548 + 1.51734i −0.0205200 + 0.116375i
\(171\) 0 0
\(172\) 0.651580 + 3.69529i 0.0496825 + 0.281763i
\(173\) 5.40734 + 18.0618i 0.411112 + 1.37321i 0.873626 + 0.486598i \(0.161762\pi\)
−0.462514 + 0.886612i \(0.653052\pi\)
\(174\) 0 0
\(175\) −0.624497 10.7222i −0.0472076 0.810523i
\(176\) 6.65778 + 3.34366i 0.501849 + 0.252038i
\(177\) 0 0
\(178\) −5.10943 + 5.41568i −0.382968 + 0.405922i
\(179\) −9.67521 3.52149i −0.723159 0.263209i −0.0458930 0.998946i \(-0.514613\pi\)
−0.677266 + 0.735738i \(0.736836\pi\)
\(180\) 0 0
\(181\) 0.770198 0.280329i 0.0572484 0.0208367i −0.313237 0.949675i \(-0.601414\pi\)
0.370486 + 0.928838i \(0.379191\pi\)
\(182\) −2.80597 + 6.50498i −0.207993 + 0.482181i
\(183\) 0 0
\(184\) 3.68347 12.3037i 0.271549 0.907037i
\(185\) −32.8707 3.84203i −2.41670 0.282472i
\(186\) 0 0
\(187\) −0.186554 + 3.20301i −0.0136422 + 0.234227i
\(188\) 2.65905 4.60561i 0.193931 0.335899i
\(189\) 0 0
\(190\) 3.99766 + 6.92415i 0.290021 + 0.502330i
\(191\) 0.683675 0.343354i 0.0494690 0.0248442i −0.423893 0.905712i \(-0.639337\pi\)
0.473362 + 0.880868i \(0.343040\pi\)
\(192\) 0 0
\(193\) 5.58623 7.50362i 0.402106 0.540122i −0.554241 0.832356i \(-0.686991\pi\)
0.956347 + 0.292234i \(0.0943987\pi\)
\(194\) 6.90678 1.63694i 0.495878 0.117525i
\(195\) 0 0
\(196\) −2.80113 3.76257i −0.200081 0.268755i
\(197\) −0.857832 0.719807i −0.0611180 0.0512841i 0.611717 0.791077i \(-0.290479\pi\)
−0.672835 + 0.739793i \(0.734924\pi\)
\(198\) 0 0
\(199\) 5.88368 4.93699i 0.417083 0.349974i −0.409969 0.912099i \(-0.634461\pi\)
0.827052 + 0.562125i \(0.190016\pi\)
\(200\) −6.97064 1.65207i −0.492899 0.116819i
\(201\) 0 0
\(202\) −2.83769 + 1.86638i −0.199660 + 0.131318i
\(203\) 4.70609 3.09524i 0.330303 0.217244i
\(204\) 0 0
\(205\) 18.7967 + 4.45491i 1.31282 + 0.311144i
\(206\) 0.769010 0.645276i 0.0535794 0.0449585i
\(207\) 0 0
\(208\) −6.63120 5.56424i −0.459791 0.385811i
\(209\) 9.94229 + 13.3548i 0.687723 + 0.923772i
\(210\) 0 0
\(211\) −9.96134 + 2.36088i −0.685767 + 0.162530i −0.558707 0.829365i \(-0.688702\pi\)
−0.127060 + 0.991895i \(0.540554\pi\)
\(212\) 8.39540 11.2770i 0.576598 0.774506i
\(213\) 0 0
\(214\) −3.62801 + 1.82206i −0.248006 + 0.124553i
\(215\) −3.24697 5.62391i −0.221441 0.383547i
\(216\) 0 0
\(217\) −1.05768 + 1.83195i −0.0717999 + 0.124361i
\(218\) −0.375325 + 6.44407i −0.0254202 + 0.436448i
\(219\) 0 0
\(220\) −16.6081 1.94121i −1.11972 0.130876i
\(221\) 1.06917 3.57126i 0.0719199 0.240229i
\(222\) 0 0
\(223\) −1.84243 + 4.27124i −0.123379 + 0.286024i −0.968700 0.248234i \(-0.920150\pi\)
0.845321 + 0.534258i \(0.179409\pi\)
\(224\) −15.9031 + 5.78824i −1.06257 + 0.386743i
\(225\) 0 0
\(226\) −3.10644 1.13065i −0.206637 0.0752098i
\(227\) 9.68944 10.2702i 0.643111 0.681658i −0.321024 0.947071i \(-0.604027\pi\)
0.964135 + 0.265414i \(0.0855085\pi\)
\(228\) 0 0
\(229\) −4.63378 2.32717i −0.306208 0.153784i 0.289059 0.957311i \(-0.406658\pi\)
−0.595268 + 0.803528i \(0.702954\pi\)
\(230\) 0.589589 + 10.1229i 0.0388764 + 0.667481i
\(231\) 0 0
\(232\) −1.07752 3.59916i −0.0707425 0.236297i
\(233\) −0.773336 4.38581i −0.0506629 0.287324i 0.948941 0.315452i \(-0.102156\pi\)
−0.999604 + 0.0281287i \(0.991045\pi\)
\(234\) 0 0
\(235\) −1.59822 + 9.06397i −0.104257 + 0.591268i
\(236\) 8.38382 0.979929i 0.545740 0.0637879i
\(237\) 0 0
\(238\) −1.13965 1.20796i −0.0738726 0.0783004i
\(239\) 11.5106 + 26.6846i 0.744561 + 1.72609i 0.685773 + 0.727815i \(0.259464\pi\)
0.0587876 + 0.998271i \(0.481277\pi\)
\(240\) 0 0
\(241\) −20.8739 13.7290i −1.34460 0.884360i −0.346055 0.938214i \(-0.612479\pi\)
−0.998549 + 0.0538543i \(0.982849\pi\)
\(242\) 0.442520 0.0284463
\(243\) 0 0
\(244\) 0.957429 0.0612931
\(245\) 6.78256 + 4.46096i 0.433322 + 0.285000i
\(246\) 0 0
\(247\) −7.66209 17.7627i −0.487527 1.13022i
\(248\) 0.968235 + 1.02627i 0.0614830 + 0.0651682i
\(249\) 0 0
\(250\) −2.56747 + 0.300094i −0.162381 + 0.0189796i
\(251\) −2.46091 + 13.9565i −0.155331 + 0.880926i 0.803152 + 0.595775i \(0.203155\pi\)
−0.958483 + 0.285151i \(0.907956\pi\)
\(252\) 0 0
\(253\) 3.66665 + 20.7946i 0.230521 + 1.30735i
\(254\) −1.74853 5.84051i −0.109713 0.366466i
\(255\) 0 0
\(256\) 0.232799 + 3.99701i 0.0145499 + 0.249813i
\(257\) −13.1355 6.59688i −0.819367 0.411502i −0.0108263 0.999941i \(-0.503446\pi\)
−0.808541 + 0.588440i \(0.799742\pi\)
\(258\) 0 0
\(259\) 24.4791 25.9463i 1.52106 1.61223i
\(260\) 18.2566 + 6.64487i 1.13223 + 0.412098i
\(261\) 0 0
\(262\) −3.82038 + 1.39050i −0.236024 + 0.0859056i
\(263\) −6.49135 + 15.0486i −0.400274 + 0.927939i 0.592235 + 0.805765i \(0.298246\pi\)
−0.992509 + 0.122174i \(0.961014\pi\)
\(264\) 0 0
\(265\) −6.97824 + 23.3089i −0.428670 + 1.43186i
\(266\) −8.55957 1.00047i −0.524821 0.0613428i
\(267\) 0 0
\(268\) −1.33349 + 22.8952i −0.0814561 + 1.39855i
\(269\) −5.68131 + 9.84032i −0.346396 + 0.599975i −0.985606 0.169057i \(-0.945928\pi\)
0.639211 + 0.769032i \(0.279261\pi\)
\(270\) 0 0
\(271\) −1.38266 2.39483i −0.0839903 0.145476i 0.820970 0.570971i \(-0.193433\pi\)
−0.904961 + 0.425496i \(0.860100\pi\)
\(272\) 1.81339 0.910719i 0.109953 0.0552204i
\(273\) 0 0
\(274\) 2.92486 3.92877i 0.176697 0.237345i
\(275\) 11.4604 2.71616i 0.691087 0.163791i
\(276\) 0 0
\(277\) 10.9854 + 14.7559i 0.660048 + 0.886598i 0.998520 0.0543783i \(-0.0173177\pi\)
−0.338473 + 0.940976i \(0.609910\pi\)
\(278\) −2.56503 2.15231i −0.153840 0.129087i
\(279\) 0 0
\(280\) 14.5334 12.1950i 0.868538 0.728790i
\(281\) −10.4439 2.47524i −0.623028 0.147660i −0.0930358 0.995663i \(-0.529657\pi\)
−0.529992 + 0.848002i \(0.677805\pi\)
\(282\) 0 0
\(283\) 11.9407 7.85355i 0.709804 0.466845i −0.142566 0.989785i \(-0.545535\pi\)
0.852369 + 0.522940i \(0.175165\pi\)
\(284\) 18.7111 12.3065i 1.11030 0.730256i
\(285\) 0 0
\(286\) −7.55929 1.79158i −0.446990 0.105939i
\(287\) −15.9502 + 13.3838i −0.941512 + 0.790022i
\(288\) 0 0
\(289\) −12.3533 10.3657i −0.726666 0.609745i
\(290\) 1.77131 + 2.37929i 0.104015 + 0.139717i
\(291\) 0 0
\(292\) 11.0134 2.61023i 0.644512 0.152752i
\(293\) 13.0455 17.5231i 0.762125 1.02371i −0.236518 0.971627i \(-0.576006\pi\)
0.998643 0.0520843i \(-0.0165864\pi\)
\(294\) 0 0
\(295\) −13.0544 + 6.55618i −0.760058 + 0.381716i
\(296\) −11.8962 20.6048i −0.691453 1.19763i
\(297\) 0 0
\(298\) −3.91497 + 6.78092i −0.226788 + 0.392808i
\(299\) 1.42652 24.4925i 0.0824979 1.41643i
\(300\) 0 0
\(301\) 6.95223 + 0.812599i 0.400720 + 0.0468374i
\(302\) −1.02184 + 3.41320i −0.0588006 + 0.196408i
\(303\) 0 0
\(304\) 4.17079 9.66898i 0.239211 0.554554i
\(305\) −1.55705 + 0.566720i −0.0891564 + 0.0324503i
\(306\) 0 0
\(307\) −28.6368 10.4229i −1.63439 0.594869i −0.648344 0.761347i \(-0.724538\pi\)
−0.986045 + 0.166478i \(0.946760\pi\)
\(308\) 12.3682 13.1095i 0.704745 0.746986i
\(309\) 0 0
\(310\) −0.995470 0.499944i −0.0565389 0.0283949i
\(311\) 1.57644 + 27.0664i 0.0893915 + 1.53479i 0.683227 + 0.730206i \(0.260576\pi\)
−0.593835 + 0.804587i \(0.702387\pi\)
\(312\) 0 0
\(313\) 2.32494 + 7.76583i 0.131413 + 0.438950i 0.998216 0.0596999i \(-0.0190144\pi\)
−0.866803 + 0.498650i \(0.833829\pi\)
\(314\) −0.0163709 0.0928440i −0.000923863 0.00523949i
\(315\) 0 0
\(316\) −0.217154 + 1.23154i −0.0122159 + 0.0692797i
\(317\) −19.2878 + 2.25442i −1.08331 + 0.126621i −0.638966 0.769235i \(-0.720637\pi\)
−0.444345 + 0.895856i \(0.646563\pi\)
\(318\) 0 0
\(319\) 4.23881 + 4.49288i 0.237328 + 0.251553i
\(320\) 1.46323 + 3.39214i 0.0817969 + 0.189627i
\(321\) 0 0
\(322\) −9.13149 6.00587i −0.508878 0.334694i
\(323\) 4.53480 0.252323
\(324\) 0 0
\(325\) −13.6847 −0.759089
\(326\) −7.68317 5.05330i −0.425531 0.279876i
\(327\) 0 0
\(328\) 5.50067 + 12.7520i 0.303724 + 0.704111i
\(329\) −6.80780 7.21585i −0.375326 0.397823i
\(330\) 0 0
\(331\) −1.97328 + 0.230643i −0.108461 + 0.0126773i −0.170150 0.985418i \(-0.554425\pi\)
0.0616891 + 0.998095i \(0.480351\pi\)
\(332\) −1.06035 + 6.01357i −0.0581945 + 0.330037i
\(333\) 0 0
\(334\) 1.80136 + 10.2160i 0.0985662 + 0.558997i
\(335\) −11.3835 38.0234i −0.621945 2.07744i
\(336\) 0 0
\(337\) 1.06728 + 18.3245i 0.0581385 + 0.998199i 0.893661 + 0.448743i \(0.148128\pi\)
−0.835522 + 0.549456i \(0.814835\pi\)
\(338\) 1.47228 + 0.739406i 0.0800814 + 0.0402184i
\(339\) 0 0
\(340\) −3.12540 + 3.31273i −0.169499 + 0.179658i
\(341\) −2.17980 0.793381i −0.118043 0.0429640i
\(342\) 0 0
\(343\) 12.3650 4.50048i 0.667646 0.243003i
\(344\) 1.84916 4.28683i 0.0996999 0.231130i
\(345\) 0 0
\(346\) 3.06925 10.2520i 0.165004 0.551151i
\(347\) 26.6029 + 3.10943i 1.42812 + 0.166923i 0.794754 0.606931i \(-0.207600\pi\)
0.633364 + 0.773854i \(0.281674\pi\)
\(348\) 0 0
\(349\) 0.762246 13.0873i 0.0408021 0.700545i −0.914440 0.404721i \(-0.867369\pi\)
0.955242 0.295824i \(-0.0955943\pi\)
\(350\) −3.04816 + 5.27957i −0.162931 + 0.282205i
\(351\) 0 0
\(352\) −9.27922 16.0721i −0.494584 0.856645i
\(353\) 17.3676 8.72232i 0.924383 0.464242i 0.0780814 0.996947i \(-0.475121\pi\)
0.846301 + 0.532705i \(0.178824\pi\)
\(354\) 0 0
\(355\) −23.1451 + 31.0893i −1.22842 + 1.65005i
\(356\) −21.4153 + 5.07553i −1.13501 + 0.269003i
\(357\) 0 0
\(358\) 3.48990 + 4.68775i 0.184447 + 0.247755i
\(359\) 11.2428 + 9.43384i 0.593373 + 0.497899i 0.889308 0.457309i \(-0.151187\pi\)
−0.295935 + 0.955208i \(0.595631\pi\)
\(360\) 0 0
\(361\) 3.47185 2.91323i 0.182729 0.153328i
\(362\) −0.452687 0.107289i −0.0237927 0.00563898i
\(363\) 0 0
\(364\) −17.4960 + 11.5073i −0.917038 + 0.603146i
\(365\) −16.3659 + 10.7640i −0.856630 + 0.563414i
\(366\) 0 0
\(367\) −10.6977 2.53540i −0.558415 0.132347i −0.0582894 0.998300i \(-0.518565\pi\)
−0.500125 + 0.865953i \(0.666713\pi\)
\(368\) 10.2304 8.58433i 0.533297 0.447489i
\(369\) 0 0
\(370\) 14.3899 + 12.0746i 0.748096 + 0.627727i
\(371\) −15.6608 21.0361i −0.813069 1.09214i
\(372\) 0 0
\(373\) −19.8678 + 4.70876i −1.02872 + 0.243810i −0.710121 0.704080i \(-0.751360\pi\)
−0.318596 + 0.947890i \(0.603211\pi\)
\(374\) 1.08751 1.46077i 0.0562336 0.0755348i
\(375\) 0 0
\(376\) −5.91302 + 2.96963i −0.304941 + 0.153147i
\(377\) −3.58843 6.21535i −0.184814 0.320107i
\(378\) 0 0
\(379\) −13.0154 + 22.5433i −0.668556 + 1.15797i 0.309753 + 0.950817i \(0.399754\pi\)
−0.978308 + 0.207155i \(0.933580\pi\)
\(380\) −1.37418 + 23.5938i −0.0704939 + 1.21033i
\(381\) 0 0
\(382\) −0.431313 0.0504133i −0.0220679 0.00257937i
\(383\) −6.74866 + 22.5421i −0.344840 + 1.15185i 0.593123 + 0.805112i \(0.297895\pi\)
−0.937963 + 0.346735i \(0.887290\pi\)
\(384\) 0 0
\(385\) −12.3544 + 28.6408i −0.629640 + 1.45967i
\(386\) −4.98958 + 1.81606i −0.253963 + 0.0924349i
\(387\) 0 0
\(388\) 19.7163 + 7.17615i 1.00094 + 0.364314i
\(389\) −22.6942 + 24.0545i −1.15064 + 1.21961i −0.178825 + 0.983881i \(0.557230\pi\)
−0.971819 + 0.235730i \(0.924252\pi\)
\(390\) 0 0
\(391\) 5.13950 + 2.58115i 0.259916 + 0.130534i
\(392\) 0.339350 + 5.82642i 0.0171398 + 0.294279i
\(393\) 0 0
\(394\) 0.182298 + 0.608917i 0.00918403 + 0.0306768i
\(395\) −0.375819 2.13137i −0.0189095 0.107241i
\(396\) 0 0
\(397\) −0.00960087 + 0.0544493i −0.000481854 + 0.00273273i −0.985048 0.172282i \(-0.944886\pi\)
0.984566 + 0.175014i \(0.0559972\pi\)
\(398\) −4.33009 + 0.506115i −0.217048 + 0.0253693i
\(399\) 0 0
\(400\) −5.11190 5.41830i −0.255595 0.270915i
\(401\) 11.3452 + 26.3011i 0.566551 + 1.31341i 0.925037 + 0.379878i \(0.124034\pi\)
−0.358486 + 0.933535i \(0.616707\pi\)
\(402\) 0 0
\(403\) 2.25184 + 1.48106i 0.112172 + 0.0737769i
\(404\) −10.0397 −0.499496
\(405\) 0 0
\(406\) −3.19719 −0.158674
\(407\) 32.6817 + 21.4951i 1.61997 + 1.06547i
\(408\) 0 0
\(409\) 12.4515 + 28.8659i 0.615688 + 1.42732i 0.885604 + 0.464441i \(0.153745\pi\)
−0.269916 + 0.962884i \(0.586996\pi\)
\(410\) −7.52446 7.97546i −0.371607 0.393880i
\(411\) 0 0
\(412\) 2.94733 0.344493i 0.145204 0.0169720i
\(413\) 2.73421 15.5065i 0.134542 0.763024i
\(414\) 0 0
\(415\) −1.83511 10.4074i −0.0900818 0.510879i
\(416\) 6.18434 + 20.6571i 0.303212 + 1.01280i
\(417\) 0 0
\(418\) −0.549486 9.43431i −0.0268762 0.461447i
\(419\) 3.01535 + 1.51436i 0.147309 + 0.0739816i 0.520927 0.853601i \(-0.325586\pi\)
−0.373617 + 0.927583i \(0.621883\pi\)
\(420\) 0 0
\(421\) −17.3369 + 18.3761i −0.844950 + 0.895594i −0.995668 0.0929825i \(-0.970360\pi\)
0.150718 + 0.988577i \(0.451841\pi\)
\(422\) 5.46033 + 1.98740i 0.265805 + 0.0967451i
\(423\) 0 0
\(424\) −16.4373 + 5.98270i −0.798267 + 0.290545i
\(425\) 1.27061 2.94560i 0.0616335 0.142882i
\(426\) 0 0
\(427\) 0.512228 1.71096i 0.0247885 0.0827992i
\(428\) −11.9196 1.39320i −0.576154 0.0673427i
\(429\) 0 0
\(430\) −0.214322 + 3.67977i −0.0103355 + 0.177454i
\(431\) −16.4068 + 28.4174i −0.790288 + 1.36882i 0.135501 + 0.990777i \(0.456736\pi\)
−0.925789 + 0.378041i \(0.876598\pi\)
\(432\) 0 0
\(433\) 6.46122 + 11.1912i 0.310507 + 0.537813i 0.978472 0.206379i \(-0.0661680\pi\)
−0.667966 + 0.744192i \(0.732835\pi\)
\(434\) 1.07298 0.538870i 0.0515046 0.0258666i
\(435\) 0 0
\(436\) −11.3942 + 15.3050i −0.545681 + 0.732977i
\(437\) 29.0401 6.88263i 1.38918 0.329241i
\(438\) 0 0
\(439\) 22.0216 + 29.5802i 1.05103 + 1.41178i 0.906460 + 0.422291i \(0.138774\pi\)
0.144574 + 0.989494i \(0.453819\pi\)
\(440\) 15.9373 + 13.3730i 0.759781 + 0.637532i
\(441\) 0 0
\(442\) −1.62093 + 1.36012i −0.0770997 + 0.0646943i
\(443\) 33.4372 + 7.92477i 1.58865 + 0.376517i 0.927526 0.373759i \(-0.121931\pi\)
0.661125 + 0.750276i \(0.270079\pi\)
\(444\) 0 0
\(445\) 31.8231 20.9304i 1.50856 0.992196i
\(446\) 2.20596 1.45088i 0.104455 0.0687014i
\(447\) 0 0
\(448\) −3.87459 0.918294i −0.183057 0.0433853i
\(449\) 13.4520 11.2876i 0.634838 0.532693i −0.267590 0.963533i \(-0.586227\pi\)
0.902428 + 0.430840i \(0.141783\pi\)
\(450\) 0 0
\(451\) −17.4910 14.6767i −0.823617 0.691097i
\(452\) −5.83531 7.83818i −0.274470 0.368677i
\(453\) 0 0
\(454\) −7.79836 + 1.84824i −0.365995 + 0.0867424i
\(455\) 21.6420 29.0703i 1.01459 1.36284i
\(456\) 0 0
\(457\) −7.46084 + 3.74697i −0.349003 + 0.175276i −0.614661 0.788791i \(-0.710707\pi\)
0.265658 + 0.964067i \(0.414411\pi\)
\(458\) 1.47162 + 2.54891i 0.0687641 + 0.119103i
\(459\) 0 0
\(460\) −14.9867 + 25.9577i −0.698758 + 1.21028i
\(461\) 1.18266 20.3054i 0.0550818 0.945718i −0.851677 0.524067i \(-0.824414\pi\)
0.906759 0.421650i \(-0.138549\pi\)
\(462\) 0 0
\(463\) 2.57184 + 0.300605i 0.119524 + 0.0139703i 0.175644 0.984454i \(-0.443799\pi\)
−0.0561208 + 0.998424i \(0.517873\pi\)
\(464\) 1.12044 3.74254i 0.0520153 0.173743i
\(465\) 0 0
\(466\) −1.00122 + 2.32109i −0.0463806 + 0.107522i
\(467\) −11.5019 + 4.18635i −0.532244 + 0.193721i −0.594140 0.804361i \(-0.702508\pi\)
0.0618958 + 0.998083i \(0.480285\pi\)
\(468\) 0 0
\(469\) 40.2012 + 14.6320i 1.85632 + 0.675645i
\(470\) 3.58503 3.79991i 0.165365 0.175277i
\(471\) 0 0
\(472\) −9.38515 4.71340i −0.431987 0.216952i
\(473\) 0.446302 + 7.66271i 0.0205210 + 0.352332i
\(474\) 0 0
\(475\) −4.77437 15.9475i −0.219063 0.731721i
\(476\) −0.852437 4.83441i −0.0390714 0.221585i
\(477\) 0 0
\(478\) 2.86441 16.2449i 0.131015 0.743024i
\(479\) −27.2416 + 3.18408i −1.24470 + 0.145485i −0.712827 0.701340i \(-0.752586\pi\)
−0.531873 + 0.846824i \(0.678512\pi\)
\(480\) 0 0
\(481\) −31.1896 33.0591i −1.42212 1.50736i
\(482\) 5.61687 + 13.0214i 0.255841 + 0.593107i
\(483\) 0 0
\(484\) 1.09287 + 0.718795i 0.0496761 + 0.0326725i
\(485\) −36.3120 −1.64884
\(486\) 0 0
\(487\) −6.02417 −0.272981 −0.136491 0.990641i \(-0.543582\pi\)
−0.136491 + 0.990641i \(0.543582\pi\)
\(488\) −0.995268 0.654598i −0.0450537 0.0296323i
\(489\) 0 0
\(490\) −1.82509 4.23104i −0.0824493 0.191139i
\(491\) −0.334399 0.354442i −0.0150912 0.0159958i 0.719784 0.694198i \(-0.244241\pi\)
−0.734875 + 0.678202i \(0.762759\pi\)
\(492\) 0 0
\(493\) 1.67102 0.195315i 0.0752591 0.00879652i
\(494\) −1.90671 + 10.8135i −0.0857867 + 0.486521i
\(495\) 0 0
\(496\) 0.254765 + 1.44484i 0.0114393 + 0.0648754i
\(497\) −11.9817 40.0215i −0.537451 1.79521i
\(498\) 0 0
\(499\) −0.318908 5.47545i −0.0142763 0.245115i −0.997895 0.0648523i \(-0.979342\pi\)
0.983619 0.180262i \(-0.0576947\pi\)
\(500\) −6.82823 3.42927i −0.305368 0.153361i
\(501\) 0 0
\(502\) 5.52014 5.85101i 0.246376 0.261143i
\(503\) −9.93090 3.61455i −0.442797 0.161165i 0.110993 0.993821i \(-0.464597\pi\)
−0.553790 + 0.832656i \(0.686819\pi\)
\(504\) 0 0
\(505\) 16.3275 5.94271i 0.726562 0.264447i
\(506\) 4.74713 11.0051i 0.211036 0.489236i
\(507\) 0 0
\(508\) 5.16858 17.2643i 0.229319 0.765977i
\(509\) −12.3227 1.44032i −0.546196 0.0638412i −0.161480 0.986876i \(-0.551627\pi\)
−0.384716 + 0.923035i \(0.625701\pi\)
\(510\) 0 0
\(511\) 1.22765 21.0779i 0.0543079 0.932431i
\(512\) −10.4003 + 18.0139i −0.459634 + 0.796110i
\(513\) 0 0
\(514\) 4.17162 + 7.22546i 0.184002 + 0.318701i
\(515\) −4.58927 + 2.30482i −0.202228 + 0.101562i
\(516\) 0 0
\(517\) 6.49630 8.72605i 0.285707 0.383771i
\(518\) −19.7015 + 4.66935i −0.865635 + 0.205159i
\(519\) 0 0
\(520\) −14.4351 19.3896i −0.633019 0.850292i
\(521\) 13.6270 + 11.4344i 0.597011 + 0.500952i 0.890483 0.455016i \(-0.150366\pi\)
−0.293472 + 0.955968i \(0.594811\pi\)
\(522\) 0 0
\(523\) −10.4002 + 8.72680i −0.454769 + 0.381596i −0.841202 0.540721i \(-0.818151\pi\)
0.386433 + 0.922317i \(0.373707\pi\)
\(524\) −11.6937 2.77145i −0.510840 0.121071i
\(525\) 0 0
\(526\) 7.77215 5.11182i 0.338882 0.222886i
\(527\) −0.527877 + 0.347190i −0.0229947 + 0.0151238i
\(528\) 0 0
\(529\) 14.4499 + 3.42469i 0.628256 + 0.148899i
\(530\) 10.5795 8.87724i 0.459543 0.385603i
\(531\) 0 0
\(532\) −19.5141 16.3743i −0.846045 0.709916i
\(533\) 15.8423 + 21.2799i 0.686205 + 0.921733i
\(534\) 0 0
\(535\) 20.2092 4.78968i 0.873722 0.207076i
\(536\) 17.0398 22.8884i 0.736006 0.988627i
\(537\) 0 0
\(538\) 5.76350 2.89454i 0.248482 0.124792i
\(539\) −4.79771 8.30987i −0.206652 0.357931i
\(540\) 0 0
\(541\) 13.6538 23.6492i 0.587025 1.01676i −0.407595 0.913163i \(-0.633632\pi\)
0.994620 0.103594i \(-0.0330342\pi\)
\(542\) −0.0912649 + 1.56696i −0.00392016 + 0.0673066i
\(543\) 0 0
\(544\) −5.02062 0.586826i −0.215257 0.0251600i
\(545\) 9.47081 31.6347i 0.405685 1.35508i
\(546\) 0 0
\(547\) 5.02926 11.6591i 0.215036 0.498509i −0.776220 0.630462i \(-0.782865\pi\)
0.991256 + 0.131953i \(0.0421247\pi\)
\(548\) 13.6050 4.95181i 0.581176 0.211531i
\(549\) 0 0
\(550\) −6.28204 2.28648i −0.267867 0.0974957i
\(551\) 5.99114 6.35024i 0.255231 0.270529i
\(552\) 0 0
\(553\) 2.08464 + 1.04694i 0.0886477 + 0.0445206i
\(554\) −0.607135 10.4241i −0.0257947 0.442878i
\(555\) 0 0
\(556\) −2.83870 9.48191i −0.120388 0.402122i
\(557\) −2.62356 14.8789i −0.111164 0.630441i −0.988578 0.150708i \(-0.951845\pi\)
0.877415 0.479733i \(-0.159266\pi\)
\(558\) 0 0
\(559\) 1.54866 8.78288i 0.0655013 0.371476i
\(560\) 19.5944 2.29026i 0.828016 0.0967812i
\(561\) 0 0
\(562\) 4.18075 + 4.43133i 0.176354 + 0.186924i
\(563\) −2.42888 5.63077i −0.102365 0.237309i 0.859335 0.511413i \(-0.170878\pi\)
−0.961700 + 0.274104i \(0.911619\pi\)
\(564\) 0 0
\(565\) 14.1294 + 9.29307i 0.594429 + 0.390962i
\(566\) −8.11223 −0.340982
\(567\) 0 0
\(568\) −27.8646 −1.16917
\(569\) 1.23600 + 0.812928i 0.0518157 + 0.0340797i 0.575153 0.818046i \(-0.304943\pi\)
−0.523337 + 0.852126i \(0.675313\pi\)
\(570\) 0 0
\(571\) 3.49187 + 8.09506i 0.146130 + 0.338768i 0.975523 0.219898i \(-0.0705726\pi\)
−0.829393 + 0.558666i \(0.811313\pi\)
\(572\) −15.7588 16.7033i −0.658907 0.698400i
\(573\) 0 0
\(574\) 11.7386 1.37204i 0.489958 0.0572679i
\(575\) 3.66611 20.7915i 0.152887 0.867066i
\(576\) 0 0
\(577\) 2.48608 + 14.0993i 0.103497 + 0.586960i 0.991810 + 0.127722i \(0.0407665\pi\)
−0.888313 + 0.459238i \(0.848122\pi\)
\(578\) 2.62520 + 8.76878i 0.109194 + 0.364733i
\(579\) 0 0
\(580\) 0.509816 + 8.75321i 0.0211690 + 0.363457i
\(581\) 10.1792 + 5.11218i 0.422304 + 0.212089i
\(582\) 0 0
\(583\) 19.7355 20.9184i 0.817362 0.866353i
\(584\) −13.2333 4.81654i −0.547599 0.199310i
\(585\) 0 0
\(586\) −11.6521 + 4.24102i −0.481344 + 0.175195i
\(587\) 3.38197 7.84028i 0.139589 0.323603i −0.834054 0.551683i \(-0.813986\pi\)
0.973642 + 0.228080i \(0.0732449\pi\)
\(588\) 0 0
\(589\) −0.940329 + 3.14092i −0.0387456 + 0.129419i
\(590\) 8.23571 + 0.962617i 0.339059 + 0.0396303i
\(591\) 0 0
\(592\) 1.43852 24.6984i 0.0591227 1.01510i
\(593\) 19.8740 34.4227i 0.816125 1.41357i −0.0923915 0.995723i \(-0.529451\pi\)
0.908517 0.417848i \(-0.137216\pi\)
\(594\) 0 0
\(595\) 4.24788 + 7.35754i 0.174146 + 0.301630i
\(596\) −20.6830 + 10.3874i −0.847210 + 0.425485i
\(597\) 0 0
\(598\) −8.31584 + 11.1701i −0.340060 + 0.456780i
\(599\) 19.8283 4.69940i 0.810164 0.192012i 0.195400 0.980724i \(-0.437399\pi\)
0.614764 + 0.788711i \(0.289251\pi\)
\(600\) 0 0
\(601\) −8.17441 10.9801i −0.333441 0.447889i 0.603507 0.797358i \(-0.293770\pi\)
−0.936948 + 0.349469i \(0.886362\pi\)
\(602\) −3.04350 2.55380i −0.124044 0.104085i
\(603\) 0 0
\(604\) −8.06774 + 6.76964i −0.328272 + 0.275453i
\(605\) −2.20279 0.522071i −0.0895562 0.0212252i
\(606\) 0 0
\(607\) 3.75977 2.47284i 0.152604 0.100369i −0.470910 0.882181i \(-0.656075\pi\)
0.623515 + 0.781812i \(0.285704\pi\)
\(608\) −21.9153 + 14.4139i −0.888782 + 0.584561i
\(609\) 0 0
\(610\) 0.915162 + 0.216897i 0.0370538 + 0.00878192i
\(611\) −9.68275 + 8.12479i −0.391722 + 0.328694i
\(612\) 0 0
\(613\) 27.4040 + 22.9947i 1.10684 + 0.928746i 0.997866 0.0652986i \(-0.0208000\pi\)
0.108971 + 0.994045i \(0.465244\pi\)
\(614\) 10.3295 + 13.8749i 0.416863 + 0.559944i
\(615\) 0 0
\(616\) −21.8201 + 5.17146i −0.879157 + 0.208364i
\(617\) −16.4713 + 22.1249i −0.663112 + 0.890713i −0.998683 0.0513013i \(-0.983663\pi\)
0.335572 + 0.942015i \(0.391071\pi\)
\(618\) 0 0
\(619\) −29.8724 + 15.0025i −1.20067 + 0.603001i −0.932780 0.360447i \(-0.882624\pi\)
−0.267894 + 0.963448i \(0.586328\pi\)
\(620\) −1.64640 2.85165i −0.0661211 0.114525i
\(621\) 0 0
\(622\) 7.69456 13.3274i 0.308524 0.534379i
\(623\) −2.38713 + 40.9855i −0.0956384 + 1.64205i
\(624\) 0 0
\(625\) 30.1766 + 3.52714i 1.20707 + 0.141086i
\(626\) 1.31965 4.40795i 0.0527439 0.176177i
\(627\) 0 0
\(628\) 0.110378 0.255885i 0.00440455 0.0102109i
\(629\) 10.0118 3.64400i 0.399197 0.145296i
\(630\) 0 0
\(631\) 10.2732 + 3.73914i 0.408970 + 0.148853i 0.538309 0.842748i \(-0.319063\pi\)
−0.129339 + 0.991600i \(0.541286\pi\)
\(632\) 1.06775 1.13175i 0.0424727 0.0450185i
\(633\) 0 0
\(634\) 9.85001 + 4.94686i 0.391194 + 0.196465i
\(635\) 1.81346 + 31.1359i 0.0719650 + 1.23559i
\(636\) 0 0
\(637\) 3.19754 + 10.6805i 0.126691 + 0.423177i
\(638\) −0.608816 3.45277i −0.0241032 0.136696i
\(639\) 0 0
\(640\) 5.81708 32.9903i 0.229940 1.30406i
\(641\) −9.25236 + 1.08145i −0.365446 + 0.0427145i −0.296835 0.954929i \(-0.595931\pi\)
−0.0686116 + 0.997643i \(0.521857\pi\)
\(642\) 0 0
\(643\) −0.883538 0.936495i −0.0348433 0.0369318i 0.709718 0.704486i \(-0.248823\pi\)
−0.744561 + 0.667555i \(0.767341\pi\)
\(644\) −12.7962 29.6649i −0.504241 1.16896i
\(645\) 0 0
\(646\) −2.15054 1.41443i −0.0846118 0.0556501i
\(647\) 25.7409 1.01198 0.505989 0.862540i \(-0.331128\pi\)
0.505989 + 0.862540i \(0.331128\pi\)
\(648\) 0 0
\(649\) 17.2667 0.677776
\(650\) 6.48968 + 4.26833i 0.254546 + 0.167418i
\(651\) 0 0
\(652\) −10.7666 24.9599i −0.421654 0.977504i
\(653\) −26.7355 28.3380i −1.04624 1.10895i −0.993896 0.110323i \(-0.964811\pi\)
−0.0523464 0.998629i \(-0.516670\pi\)
\(654\) 0 0
\(655\) 20.6577 2.41453i 0.807162 0.0943437i
\(656\) −2.50766 + 14.2217i −0.0979077 + 0.555262i
\(657\) 0 0
\(658\) 0.977797 + 5.54536i 0.0381185 + 0.216181i
\(659\) −9.63166 32.1720i −0.375196 1.25324i −0.912229 0.409681i \(-0.865640\pi\)
0.537033 0.843561i \(-0.319545\pi\)
\(660\) 0 0
\(661\) −2.06029 35.3739i −0.0801361 1.37588i −0.763501 0.645807i \(-0.776521\pi\)
0.683365 0.730077i \(-0.260516\pi\)
\(662\) 1.00773 + 0.506100i 0.0391664 + 0.0196701i
\(663\) 0 0
\(664\) 5.21376 5.52627i 0.202333 0.214461i
\(665\) 41.4278 + 15.0785i 1.60650 + 0.584718i
\(666\) 0 0
\(667\) 10.4045 3.78693i 0.402864 0.146630i
\(668\) −12.1454 + 28.1561i −0.469918 + 1.08939i
\(669\) 0 0
\(670\) −6.46135 + 21.5824i −0.249624 + 0.833801i
\(671\) 1.94527 + 0.227369i 0.0750963 + 0.00877750i
\(672\) 0 0
\(673\) −1.59738 + 27.4260i −0.0615746 + 1.05720i 0.816091 + 0.577923i \(0.196137\pi\)
−0.877666 + 0.479273i \(0.840900\pi\)
\(674\) 5.20938 9.02292i 0.200658 0.347550i
\(675\) 0 0
\(676\) 2.43499 + 4.21753i 0.0936536 + 0.162213i
\(677\) 8.53705 4.28747i 0.328106 0.164781i −0.277119 0.960836i \(-0.589380\pi\)
0.605225 + 0.796055i \(0.293083\pi\)
\(678\) 0 0
\(679\) 23.3724 31.3945i 0.896948 1.20481i
\(680\) 5.51386 1.30681i 0.211447 0.0501138i
\(681\) 0 0
\(682\) 0.786265 + 1.05614i 0.0301076 + 0.0404416i
\(683\) −25.4573 21.3612i −0.974095 0.817363i 0.00909301 0.999959i \(-0.497106\pi\)
−0.983188 + 0.182596i \(0.941550\pi\)
\(684\) 0 0
\(685\) −19.1945 + 16.1061i −0.733383 + 0.615381i
\(686\) −7.26757 1.72245i −0.277477 0.0657633i
\(687\) 0 0
\(688\) 4.05599 2.66767i 0.154633 0.101704i
\(689\) −27.9177 + 18.3618i −1.06358 + 0.699528i
\(690\) 0 0
\(691\) −5.28329 1.25216i −0.200986 0.0476345i 0.128890 0.991659i \(-0.458859\pi\)
−0.329876 + 0.944024i \(0.607007\pi\)
\(692\) 24.2325 20.3335i 0.921183 0.772964i
\(693\) 0 0
\(694\) −11.6460 9.77218i −0.442077 0.370947i
\(695\) 10.2290 + 13.7400i 0.388010 + 0.521187i
\(696\) 0 0
\(697\) −6.05138 + 1.43420i −0.229212 + 0.0543243i
\(698\) −4.44347 + 5.96862i −0.168188 + 0.225916i
\(699\) 0 0
\(700\) −16.1036 + 8.08755i −0.608661 + 0.305681i
\(701\) 16.8694 + 29.2187i 0.637150 + 1.10358i 0.986055 + 0.166418i \(0.0532200\pi\)
−0.348906 + 0.937158i \(0.613447\pi\)
\(702\) 0 0
\(703\) 27.6440 47.8808i 1.04261 1.80586i
\(704\) 0.253893 4.35917i 0.00956894 0.164292i
\(705\) 0 0
\(706\) −10.9568 1.28066i −0.412363 0.0481983i
\(707\) −5.37130 + 17.9414i −0.202009 + 0.674756i
\(708\) 0 0
\(709\) −7.67820 + 17.8001i −0.288361 + 0.668495i −0.999399 0.0346578i \(-0.988966\pi\)
0.711039 + 0.703153i \(0.248225\pi\)
\(710\) 20.6730 7.52437i 0.775846 0.282385i
\(711\) 0 0
\(712\) 25.7319 + 9.36564i 0.964343 + 0.350992i
\(713\) −2.85349 + 3.02452i −0.106864 + 0.113269i
\(714\) 0 0
\(715\) 35.5152 + 17.8364i 1.32819 + 0.667044i
\(716\) 1.00446 + 17.2459i 0.0375383 + 0.644508i
\(717\) 0 0
\(718\) −2.38921 7.98051i −0.0891644 0.297830i
\(719\) 0.831346 + 4.71480i 0.0310040 + 0.175832i 0.996378 0.0850387i \(-0.0271014\pi\)
−0.965374 + 0.260871i \(0.915990\pi\)
\(720\) 0 0
\(721\) 0.961210 5.45129i 0.0357973 0.203017i
\(722\) −2.55511 + 0.298649i −0.0950912 + 0.0111146i
\(723\) 0 0
\(724\) −0.943712 1.00028i −0.0350728 0.0371750i
\(725\) −2.44616 5.67083i −0.0908481 0.210610i
\(726\) 0 0
\(727\) 6.31649 + 4.15442i 0.234266 + 0.154079i 0.661215 0.750197i \(-0.270041\pi\)
−0.426949 + 0.904276i \(0.640412\pi\)
\(728\) 26.0550 0.965664
\(729\) 0 0
\(730\) 11.1186 0.411516
\(731\) 1.74670 + 1.14883i 0.0646042 + 0.0424909i
\(732\) 0 0
\(733\) 15.3050 + 35.4810i 0.565303 + 1.31052i 0.925890 + 0.377794i \(0.123317\pi\)
−0.360587 + 0.932726i \(0.617423\pi\)
\(734\) 4.28236 + 4.53903i 0.158065 + 0.167539i
\(735\) 0 0
\(736\) −33.0418 + 3.86203i −1.21794 + 0.142356i
\(737\) −8.14649 + 46.2010i −0.300080 + 1.70184i
\(738\) 0 0
\(739\) −8.79173 49.8604i −0.323409 1.83414i −0.520627 0.853784i \(-0.674302\pi\)
0.197218 0.980360i \(-0.436809\pi\)
\(740\) 15.9252 + 53.1939i 0.585422 + 1.95545i
\(741\) 0 0
\(742\) 0.865535 + 14.8607i 0.0317748 + 0.545552i
\(743\) −13.7207 6.89082i −0.503365 0.252800i 0.178949 0.983858i \(-0.442730\pi\)
−0.682315 + 0.731059i \(0.739027\pi\)
\(744\) 0 0
\(745\) 27.4880 29.1355i 1.00708 1.06744i
\(746\) 10.8906 + 3.96386i 0.398733 + 0.145127i
\(747\) 0 0
\(748\) 5.05853 1.84116i 0.184958 0.0673193i
\(749\) −8.86671 + 20.5554i −0.323983 + 0.751076i
\(750\) 0 0
\(751\) 13.3810 44.6956i 0.488279 1.63097i −0.258585 0.965989i \(-0.583256\pi\)
0.746864 0.664977i \(-0.231559\pi\)
\(752\) −6.83391 0.798770i −0.249207 0.0291281i
\(753\) 0 0
\(754\) −0.236862 + 4.06676i −0.00862599 + 0.148103i
\(755\) 9.11335 15.7848i 0.331669 0.574467i
\(756\) 0 0
\(757\) 5.85224 + 10.1364i 0.212703 + 0.368413i 0.952560 0.304352i \(-0.0984399\pi\)
−0.739856 + 0.672765i \(0.765107\pi\)
\(758\) 13.2037 6.63113i 0.479579 0.240854i
\(759\) 0 0
\(760\) 17.5596 23.5867i 0.636955 0.855580i
\(761\) −25.4732 + 6.03726i −0.923403 + 0.218851i −0.664704 0.747107i \(-0.731442\pi\)
−0.258700 + 0.965958i \(0.583294\pi\)
\(762\) 0 0
\(763\) 21.2547 + 28.5501i 0.769473 + 1.03358i
\(764\) −0.983309 0.825094i −0.0355749 0.0298509i
\(765\) 0 0
\(766\) 10.2314 8.58519i 0.369676 0.310195i
\(767\) −19.5213 4.62664i −0.704875 0.167058i
\(768\) 0 0
\(769\) −38.0508 + 25.0264i −1.37215 + 0.902476i −0.999673 0.0255660i \(-0.991861\pi\)
−0.372475 + 0.928042i \(0.621491\pi\)
\(770\) 14.7921 9.72890i 0.533069 0.350605i
\(771\) 0 0
\(772\) −15.2724 3.61963i −0.549667 0.130273i
\(773\) −10.7154 + 8.99131i −0.385407 + 0.323395i −0.814821 0.579713i \(-0.803165\pi\)
0.429414 + 0.903108i \(0.358720\pi\)
\(774\) 0 0
\(775\) 1.77672 + 1.49085i 0.0638217 + 0.0535528i
\(776\) −15.5892 20.9399i −0.559618 0.751698i
\(777\) 0 0
\(778\) 18.2650 4.32889i 0.654833 0.155198i
\(779\) −19.2715 + 25.8861i −0.690472 + 0.927465i
\(780\) 0 0
\(781\) 40.9391 20.5604i 1.46492 0.735709i
\(782\) −1.63223 2.82710i −0.0583683 0.101097i
\(783\) 0 0
\(784\) −3.03440 + 5.25573i −0.108371 + 0.187705i
\(785\) −0.0280427 + 0.481475i −0.00100089 + 0.0171846i
\(786\) 0 0
\(787\) −14.1067 1.64884i −0.502850 0.0587748i −0.139113 0.990276i \(-0.544425\pi\)
−0.363737 + 0.931502i \(0.618499\pi\)
\(788\) −0.538863 + 1.79993i −0.0191962 + 0.0641197i
\(789\) 0 0
\(790\) −0.486563 + 1.12798i −0.0173112 + 0.0401318i
\(791\) −17.1290 + 6.23446i −0.609039 + 0.221672i
\(792\) 0 0
\(793\) −2.13836 0.778298i −0.0759353 0.0276382i
\(794\) 0.0215361 0.0228269i 0.000764286 0.000810096i
\(795\) 0 0
\(796\) −11.5159 5.78353i −0.408172 0.204992i
\(797\) −2.40151 41.2323i −0.0850658 1.46052i −0.723222 0.690616i \(-0.757339\pi\)
0.638156 0.769907i \(-0.279698\pi\)
\(798\) 0 0
\(799\) −0.849812 2.83857i −0.0300642 0.100421i
\(800\) 3.22216 + 18.2738i 0.113921 + 0.646075i
\(801\) 0 0
\(802\) 2.82324 16.0114i 0.0996920 0.565381i
\(803\) 22.9966 2.68791i 0.811531 0.0948544i
\(804\) 0 0
\(805\) 38.3695 + 40.6693i 1.35235 + 1.43340i
\(806\) −0.605940 1.40473i −0.0213433 0.0494794i
\(807\) 0 0
\(808\) 10.4365 + 6.86422i 0.367156 + 0.241482i
\(809\) −23.8379 −0.838097 −0.419048 0.907964i \(-0.637636\pi\)
−0.419048 + 0.907964i \(0.637636\pi\)
\(810\) 0 0
\(811\) −3.33188 −0.116998 −0.0584991 0.998287i \(-0.518631\pi\)
−0.0584991 + 0.998287i \(0.518631\pi\)
\(812\) −7.89598 5.19326i −0.277094 0.182248i
\(813\) 0 0
\(814\) −8.79420 20.3873i −0.308237 0.714573i
\(815\) 32.2838 + 34.2188i 1.13085 + 1.19863i
\(816\) 0 0
\(817\) 10.7755 1.25947i 0.376986 0.0440634i
\(818\) 3.09855 17.5727i 0.108338 0.614417i
\(819\) 0 0
\(820\) −5.62815 31.9188i −0.196543 1.11465i
\(821\) 2.57453 + 8.59953i 0.0898518 + 0.300126i 0.991089 0.133200i \(-0.0425252\pi\)
−0.901237 + 0.433326i \(0.857340\pi\)
\(822\) 0 0
\(823\) 0.0754800 + 1.29594i 0.00263107 + 0.0451737i 0.999368 0.0355431i \(-0.0113161\pi\)
−0.996737 + 0.0807168i \(0.974279\pi\)
\(824\) −3.29934 1.65699i −0.114938 0.0577241i
\(825\) 0 0
\(826\) −6.13321 + 6.50082i −0.213402 + 0.226192i
\(827\) −29.6308 10.7847i −1.03036 0.375022i −0.229144 0.973392i \(-0.573593\pi\)
−0.801219 + 0.598371i \(0.795815\pi\)
\(828\) 0 0
\(829\) −25.1437 + 9.15156i −0.873277 + 0.317847i −0.739493 0.673164i \(-0.764935\pi\)
−0.133783 + 0.991011i \(0.542713\pi\)
\(830\) −2.37587 + 5.50788i −0.0824676 + 0.191181i
\(831\) 0 0
\(832\) −1.45509 + 4.86035i −0.0504463 + 0.168502i
\(833\) −2.59585 0.303411i −0.0899407 0.0105126i
\(834\) 0 0
\(835\) 3.08567 52.9789i 0.106784 1.83341i
\(836\) 13.9673 24.1921i 0.483069 0.836700i
\(837\) 0 0
\(838\) −0.957629 1.65866i −0.0330807 0.0572975i
\(839\) −3.46674 + 1.74106i −0.119685 + 0.0601082i −0.507634 0.861573i \(-0.669480\pi\)
0.387949 + 0.921681i \(0.373184\pi\)
\(840\) 0 0
\(841\) −15.3834 + 20.6635i −0.530463 + 0.712536i
\(842\) 13.9533 3.30699i 0.480862 0.113966i
\(843\) 0 0
\(844\) 10.2570 + 13.7775i 0.353060 + 0.474242i
\(845\) −6.45643 5.41758i −0.222108 0.186371i
\(846\) 0 0
\(847\) 1.86921 1.56845i 0.0642267 0.0538926i
\(848\) −17.6988 4.19469i −0.607779 0.144046i
\(849\) 0 0
\(850\) −1.52131 + 1.00058i −0.0521804 + 0.0343196i
\(851\) 58.5833 38.5308i 2.00821 1.32082i
\(852\) 0 0
\(853\) −3.34652 0.793140i −0.114583 0.0271566i 0.172924 0.984935i \(-0.444678\pi\)
−0.287507 + 0.957778i \(0.592827\pi\)
\(854\) −0.776573 + 0.651622i −0.0265738 + 0.0222980i
\(855\) 0 0
\(856\) 11.4381 + 9.59772i 0.390947 + 0.328043i
\(857\) −8.75386 11.7585i −0.299026 0.401662i 0.627062 0.778969i \(-0.284257\pi\)
−0.926088 + 0.377308i \(0.876850\pi\)
\(858\) 0 0
\(859\) 9.27804 2.19894i 0.316563 0.0750268i −0.0692629 0.997598i \(-0.522065\pi\)
0.385826 + 0.922572i \(0.373917\pi\)
\(860\) −6.50643 + 8.73966i −0.221868 + 0.298020i
\(861\) 0 0
\(862\) 16.6441 8.35900i 0.566902 0.284709i
\(863\) 8.00876 + 13.8716i 0.272621 + 0.472194i 0.969532 0.244964i \(-0.0787760\pi\)
−0.696911 + 0.717158i \(0.745443\pi\)
\(864\) 0 0
\(865\) −27.3732 + 47.4117i −0.930716 + 1.61205i
\(866\) 0.426486 7.32248i 0.0144926 0.248828i
\(867\) 0 0
\(868\) 3.52519 + 0.412036i 0.119653 + 0.0139854i
\(869\) −0.733672 + 2.45064i −0.0248881 + 0.0831321i
\(870\) 0 0
\(871\) 21.5899 50.0510i 0.731546 1.69591i
\(872\) 22.3086 8.11966i 0.755464 0.274967i
\(873\) 0 0
\(874\) −15.9184 5.79383i −0.538448 0.195979i
\(875\) −9.78136 + 10.3676i −0.330670 + 0.350490i
\(876\) 0 0
\(877\) −29.5974 14.8644i −0.999432 0.501934i −0.127646 0.991820i \(-0.540742\pi\)
−0.871786 + 0.489886i \(0.837038\pi\)
\(878\) −1.21708 20.8965i −0.0410745 0.705222i
\(879\) 0 0
\(880\) 6.20455 + 20.7246i 0.209155 + 0.698628i
\(881\) −2.00755 11.3854i −0.0676360 0.383583i −0.999770 0.0214681i \(-0.993166\pi\)
0.932134 0.362115i \(-0.117945\pi\)
\(882\) 0 0
\(883\) −7.24692 + 41.0993i −0.243878 + 1.38310i 0.579206 + 0.815182i \(0.303363\pi\)
−0.823084 + 0.567920i \(0.807748\pi\)
\(884\) −6.21241 + 0.726127i −0.208946 + 0.0244223i
\(885\) 0 0
\(886\) −13.3851 14.1874i −0.449683 0.476636i
\(887\) −9.54630 22.1308i −0.320533 0.743080i −0.999956 0.00933326i \(-0.997029\pi\)
0.679423 0.733747i \(-0.262230\pi\)
\(888\) 0 0
\(889\) −28.0867 18.4729i −0.941997 0.619561i
\(890\) −21.6198 −0.724697
\(891\) 0 0
\(892\) 7.80468 0.261320
\(893\) −12.8464 8.44922i −0.429889 0.282743i
\(894\) 0 0
\(895\) −11.8417 27.4521i −0.395824 0.917622i
\(896\) 24.7785 + 26.2637i 0.827791 + 0.877407i
\(897\) 0 0
\(898\) −9.89998 + 1.15714i −0.330367 + 0.0386143i
\(899\) −0.211221 + 1.19789i −0.00704460 + 0.0399519i
\(900\) 0 0
\(901\) −1.36020 7.71410i −0.0453149 0.256994i
\(902\) 3.71700 + 12.4156i 0.123762 + 0.413396i
\(903\) 0 0
\(904\) 0.706934 + 12.1376i 0.0235123 + 0.403690i
\(905\) 2.12682 + 1.06813i 0.0706980 + 0.0355059i
\(906\) 0 0
\(907\) −15.8463 + 16.7961i −0.526169 + 0.557707i −0.934883 0.354956i \(-0.884496\pi\)
0.408714 + 0.912663i \(0.365977\pi\)
\(908\) −22.2614 8.10250i −0.738771 0.268891i
\(909\) 0 0
\(910\) −19.3305 + 7.03572i −0.640799 + 0.233232i
\(911\) 9.06991 21.0264i 0.300500 0.696637i −0.699335 0.714794i \(-0.746521\pi\)
0.999835 + 0.0181571i \(0.00577989\pi\)
\(912\) 0 0
\(913\) −3.58249 + 11.9663i −0.118563 + 0.396028i
\(914\) 4.70685 + 0.550152i 0.155689 + 0.0181974i
\(915\) 0 0
\(916\) −0.505863 + 8.68533i −0.0167142 + 0.286971i
\(917\) −11.2088 + 19.4143i −0.370148 + 0.641116i
\(918\) 0 0
\(919\) −9.84136 17.0457i −0.324636 0.562287i 0.656802 0.754063i \(-0.271909\pi\)
−0.981439 + 0.191776i \(0.938575\pi\)
\(920\) 33.3264 16.7371i 1.09874 0.551807i
\(921\) 0 0
\(922\) −6.89423 + 9.26056i −0.227049 + 0.304980i
\(923\) −51.7941 + 12.2754i −1.70482 + 0.404051i
\(924\) 0 0
\(925\) −23.3555 31.3719i −0.767926 1.03150i
\(926\) −1.12588 0.944728i −0.0369988 0.0310457i
\(927\) 0 0
\(928\) −7.45472 + 6.25525i −0.244713 + 0.205339i
\(929\) 28.1380 + 6.66884i 0.923179 + 0.218797i 0.664606 0.747194i \(-0.268599\pi\)
0.258573 + 0.965992i \(0.416748\pi\)
\(930\) 0 0
\(931\) −11.3310 + 7.45253i −0.371359 + 0.244247i
\(932\) −6.24286 + 4.10599i −0.204492 + 0.134496i
\(933\) 0 0
\(934\) 6.76029 + 1.60222i 0.221203 + 0.0524262i
\(935\) −7.13679 + 5.98848i −0.233398 + 0.195844i
\(936\) 0 0
\(937\) 14.9990 + 12.5856i 0.489995 + 0.411155i 0.854025 0.520233i \(-0.174155\pi\)
−0.364029 + 0.931388i \(0.618599\pi\)
\(938\) −14.5008 19.4779i −0.473468 0.635977i
\(939\) 0 0
\(940\) 15.0261 3.56124i 0.490096 0.116155i
\(941\) 6.02898 8.09833i 0.196539 0.263998i −0.692918 0.721016i \(-0.743675\pi\)
0.889457 + 0.457018i \(0.151083\pi\)
\(942\) 0 0
\(943\) −36.5752 + 18.3688i −1.19105 + 0.598169i
\(944\) −5.46032 9.45755i −0.177718 0.307817i
\(945\) 0 0
\(946\) 2.17839 3.77309i 0.0708257 0.122674i
\(947\) 1.22145 20.9715i 0.0396918 0.681483i −0.918511 0.395394i \(-0.870608\pi\)
0.958203 0.286088i \(-0.0923550\pi\)
\(948\) 0 0
\(949\) −26.7197 3.12308i −0.867357 0.101379i
\(950\) −2.70997 + 9.05193i −0.0879231 + 0.293683i
\(951\) 0 0
\(952\) −2.41918 + 5.60829i −0.0784061 + 0.181766i
\(953\) −6.34571 + 2.30965i −0.205558 + 0.0748169i −0.442747 0.896647i \(-0.645996\pi\)
0.237189 + 0.971463i \(0.423774\pi\)
\(954\) 0 0
\(955\) 2.08753 + 0.759798i 0.0675508 + 0.0245865i
\(956\) 33.4610 35.4666i 1.08221 1.14707i
\(957\) 0 0
\(958\) 13.9119 + 6.98682i 0.449473 + 0.225734i
\(959\) −1.57035 26.9619i −0.0507092 0.870644i
\(960\) 0 0
\(961\) 8.75989 + 29.2601i 0.282577 + 0.943873i
\(962\) 4.47973 + 25.4058i 0.144432 + 0.819117i
\(963\) 0 0
\(964\) −7.27912 + 41.2819i −0.234445 + 1.32960i
\(965\) 26.9798 3.15349i 0.868511 0.101514i
\(966\) 0 0
\(967\) −8.09307 8.57815i −0.260256 0.275855i 0.584049 0.811718i \(-0.301468\pi\)
−0.844305 + 0.535864i \(0.819986\pi\)
\(968\) −0.644624 1.49441i −0.0207190 0.0480320i
\(969\) 0 0
\(970\) 17.2202 + 11.3259i 0.552908 + 0.363653i
\(971\) −24.4687 −0.785239 −0.392620 0.919701i \(-0.628431\pi\)
−0.392620 + 0.919701i \(0.628431\pi\)
\(972\) 0 0
\(973\) −18.4632 −0.591905
\(974\) 2.85684 + 1.87897i 0.0915391 + 0.0602062i
\(975\) 0 0
\(976\) −0.490623 1.13739i −0.0157045 0.0364071i
\(977\) 26.7064 + 28.3071i 0.854413 + 0.905625i 0.996446 0.0842367i \(-0.0268452\pi\)
−0.142032 + 0.989862i \(0.545364\pi\)
\(978\) 0 0
\(979\) −44.7163 + 5.22659i −1.42914 + 0.167042i
\(980\) 2.36521 13.4138i 0.0755538 0.428487i
\(981\) 0 0
\(982\) 0.0480294 + 0.272388i 0.00153268 + 0.00869226i
\(983\) 5.36807 + 17.9306i 0.171215 + 0.571897i 0.999925 + 0.0122197i \(0.00388976\pi\)
−0.828711 + 0.559677i \(0.810925\pi\)
\(984\) 0 0
\(985\) −0.189067 3.24615i −0.00602417 0.103431i
\(986\) −0.853368 0.428578i −0.0271768 0.0136487i
\(987\) 0 0
\(988\) −22.2734 + 23.6085i −0.708613 + 0.751085i
\(989\) 12.9292 + 4.70584i 0.411125 + 0.149637i
\(990\) 0 0
\(991\) −2.15353 + 0.783819i −0.0684090 + 0.0248988i −0.375998 0.926620i \(-0.622700\pi\)
0.307589 + 0.951519i \(0.400478\pi\)
\(992\) 1.44752 3.35572i 0.0459587 0.106544i
\(993\) 0 0
\(994\) −6.80089 + 22.7165i −0.215711 + 0.720525i
\(995\) 22.1516 + 2.58915i 0.702252 + 0.0820815i
\(996\) 0 0
\(997\) −1.81875 + 31.2268i −0.0576005 + 0.988963i 0.838441 + 0.544992i \(0.183467\pi\)
−0.896042 + 0.443970i \(0.853570\pi\)
\(998\) −1.55659 + 2.69609i −0.0492729 + 0.0853432i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.703.5 144
3.2 odd 2 729.2.g.c.703.4 144
9.2 odd 6 729.2.g.d.217.4 144
9.4 even 3 243.2.g.a.73.4 144
9.5 odd 6 81.2.g.a.25.5 yes 144
9.7 even 3 729.2.g.a.217.5 144
81.13 even 27 729.2.g.a.514.5 144
81.14 odd 54 729.2.g.c.28.4 144
81.38 odd 54 6561.2.a.c.1.32 72
81.40 even 27 243.2.g.a.10.4 144
81.41 odd 54 81.2.g.a.13.5 144
81.43 even 27 6561.2.a.d.1.41 72
81.67 even 27 inner 729.2.g.b.28.5 144
81.68 odd 54 729.2.g.d.514.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.5 144 81.41 odd 54
81.2.g.a.25.5 yes 144 9.5 odd 6
243.2.g.a.10.4 144 81.40 even 27
243.2.g.a.73.4 144 9.4 even 3
729.2.g.a.217.5 144 9.7 even 3
729.2.g.a.514.5 144 81.13 even 27
729.2.g.b.28.5 144 81.67 even 27 inner
729.2.g.b.703.5 144 1.1 even 1 trivial
729.2.g.c.28.4 144 81.14 odd 54
729.2.g.c.703.4 144 3.2 odd 2
729.2.g.d.217.4 144 9.2 odd 6
729.2.g.d.514.4 144 81.68 odd 54
6561.2.a.c.1.32 72 81.38 odd 54
6561.2.a.d.1.41 72 81.43 even 27