Properties

Label 729.2.g.b.703.4
Level $729$
Weight $2$
Character 729.703
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 703.4
Character \(\chi\) \(=\) 729.703
Dual form 729.2.g.b.28.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.652974 - 0.429468i) q^{2} +(-0.550227 - 1.27557i) q^{4} +(-1.01614 - 1.07704i) q^{5} +(3.77556 - 0.441300i) q^{7} +(-0.459961 + 2.60857i) q^{8} +O(q^{10})\) \(q+(-0.652974 - 0.429468i) q^{2} +(-0.550227 - 1.27557i) q^{4} +(-1.01614 - 1.07704i) q^{5} +(3.77556 - 0.441300i) q^{7} +(-0.459961 + 2.60857i) q^{8} +(0.200956 + 1.13968i) q^{10} +(1.44963 + 4.84210i) q^{11} +(0.261201 + 4.48466i) q^{13} +(-2.65487 - 1.33332i) q^{14} +(-0.485993 + 0.515122i) q^{16} +(4.30582 + 1.56719i) q^{17} +(4.19524 - 1.52694i) q^{19} +(-0.814736 + 1.88877i) q^{20} +(1.13295 - 3.78433i) q^{22} +(-3.43157 - 0.401093i) q^{23} +(0.163239 - 2.80270i) q^{25} +(1.75546 - 3.04054i) q^{26} +(-2.64032 - 4.57318i) q^{28} +(-0.583488 + 0.293038i) q^{29} +(0.393020 - 0.527918i) q^{31} +(5.69339 - 1.34936i) q^{32} +(-2.13853 - 2.87254i) q^{34} +(-4.31178 - 3.61801i) q^{35} +(0.766165 - 0.642889i) q^{37} +(-3.39516 - 0.804667i) q^{38} +(3.27692 - 2.15526i) q^{40} +(-0.570482 + 0.375212i) q^{41} +(8.16684 + 1.93558i) q^{43} +(5.37881 - 4.51336i) q^{44} +(2.06847 + 1.73565i) q^{46} +(-4.73832 - 6.36466i) q^{47} +(7.24880 - 1.71800i) q^{49} +(-1.31026 + 1.75998i) q^{50} +(5.57677 - 2.80076i) q^{52} +(2.07469 + 3.59347i) q^{53} +(3.74212 - 6.48154i) q^{55} +(-0.585450 + 10.0518i) q^{56} +(0.506853 + 0.0592426i) q^{58} +(1.51145 - 5.04858i) q^{59} +(-2.68977 + 6.23558i) q^{61} +(-0.483356 + 0.175927i) q^{62} +(-2.96617 - 1.07960i) q^{64} +(4.56474 - 4.83835i) q^{65} +(4.73732 + 2.37917i) q^{67} +(-0.370118 - 6.35468i) q^{68} +(1.26166 + 4.21424i) q^{70} +(1.06500 + 6.03991i) q^{71} +(-0.764322 + 4.33469i) q^{73} +(-0.776385 + 0.0907464i) q^{74} +(-4.25606 - 4.51116i) q^{76} +(7.60998 + 17.6419i) q^{77} +(-9.39300 - 6.17788i) q^{79} +1.04864 q^{80} +0.533651 q^{82} +(1.35486 + 0.891108i) q^{83} +(-2.68737 - 6.23002i) q^{85} +(-4.50147 - 4.77127i) q^{86} +(-13.2977 + 1.55428i) q^{88} +(0.181087 - 1.02699i) q^{89} +(2.96526 + 16.8168i) q^{91} +(1.37652 + 4.59790i) q^{92} +(0.360580 + 6.19091i) q^{94} +(-5.90752 - 2.96687i) q^{95} +(-3.42307 + 3.62824i) q^{97} +(-5.47110 - 1.99132i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} + 45 q^{29} + 9 q^{31} - 63 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} + 9 q^{38} + 9 q^{40} + 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} - 63 q^{47} + 9 q^{49} + 225 q^{50} + 27 q^{52} - 45 q^{53} - 9 q^{55} - 99 q^{56} + 9 q^{58} + 117 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} - 81 q^{65} + 36 q^{67} + 18 q^{68} + 63 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} + 90 q^{76} - 81 q^{77} + 63 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} + 63 q^{85} - 81 q^{86} + 90 q^{88} + 81 q^{89} - 18 q^{91} + 63 q^{92} + 63 q^{94} - 153 q^{95} + 36 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.652974 0.429468i −0.461722 0.303679i 0.297253 0.954799i \(-0.403929\pi\)
−0.758975 + 0.651119i \(0.774300\pi\)
\(3\) 0 0
\(4\) −0.550227 1.27557i −0.275114 0.637785i
\(5\) −1.01614 1.07704i −0.454430 0.481668i 0.459132 0.888368i \(-0.348161\pi\)
−0.913561 + 0.406701i \(0.866679\pi\)
\(6\) 0 0
\(7\) 3.77556 0.441300i 1.42703 0.166796i 0.632753 0.774354i \(-0.281925\pi\)
0.794275 + 0.607558i \(0.207851\pi\)
\(8\) −0.459961 + 2.60857i −0.162621 + 0.922268i
\(9\) 0 0
\(10\) 0.200956 + 1.13968i 0.0635478 + 0.360398i
\(11\) 1.44963 + 4.84210i 0.437079 + 1.45995i 0.838929 + 0.544241i \(0.183182\pi\)
−0.401849 + 0.915706i \(0.631632\pi\)
\(12\) 0 0
\(13\) 0.261201 + 4.48466i 0.0724443 + 1.24382i 0.817149 + 0.576426i \(0.195553\pi\)
−0.744705 + 0.667394i \(0.767410\pi\)
\(14\) −2.65487 1.33332i −0.709543 0.356346i
\(15\) 0 0
\(16\) −0.485993 + 0.515122i −0.121498 + 0.128781i
\(17\) 4.30582 + 1.56719i 1.04431 + 0.380099i 0.806514 0.591215i \(-0.201352\pi\)
0.237800 + 0.971314i \(0.423574\pi\)
\(18\) 0 0
\(19\) 4.19524 1.52694i 0.962455 0.350305i 0.187460 0.982272i \(-0.439975\pi\)
0.774995 + 0.631967i \(0.217752\pi\)
\(20\) −0.814736 + 1.88877i −0.182181 + 0.422342i
\(21\) 0 0
\(22\) 1.13295 3.78433i 0.241547 0.806822i
\(23\) −3.43157 0.401093i −0.715532 0.0836337i −0.249466 0.968384i \(-0.580255\pi\)
−0.466066 + 0.884750i \(0.654329\pi\)
\(24\) 0 0
\(25\) 0.163239 2.80270i 0.0326477 0.560540i
\(26\) 1.75546 3.04054i 0.344273 0.596299i
\(27\) 0 0
\(28\) −2.64032 4.57318i −0.498974 0.864249i
\(29\) −0.583488 + 0.293038i −0.108351 + 0.0544159i −0.502149 0.864781i \(-0.667457\pi\)
0.393798 + 0.919197i \(0.371161\pi\)
\(30\) 0 0
\(31\) 0.393020 0.527918i 0.0705886 0.0948169i −0.765427 0.643523i \(-0.777472\pi\)
0.836015 + 0.548706i \(0.184879\pi\)
\(32\) 5.69339 1.34936i 1.00646 0.238535i
\(33\) 0 0
\(34\) −2.13853 2.87254i −0.366755 0.492637i
\(35\) −4.31178 3.61801i −0.728824 0.611556i
\(36\) 0 0
\(37\) 0.766165 0.642889i 0.125957 0.105690i −0.577633 0.816296i \(-0.696024\pi\)
0.703590 + 0.710606i \(0.251579\pi\)
\(38\) −3.39516 0.804667i −0.550767 0.130534i
\(39\) 0 0
\(40\) 3.27692 2.15526i 0.518126 0.340777i
\(41\) −0.570482 + 0.375212i −0.0890943 + 0.0585983i −0.593274 0.805000i \(-0.702165\pi\)
0.504180 + 0.863598i \(0.331795\pi\)
\(42\) 0 0
\(43\) 8.16684 + 1.93558i 1.24543 + 0.295173i 0.799922 0.600104i \(-0.204874\pi\)
0.445510 + 0.895277i \(0.353022\pi\)
\(44\) 5.37881 4.51336i 0.810886 0.680414i
\(45\) 0 0
\(46\) 2.06847 + 1.73565i 0.304979 + 0.255908i
\(47\) −4.73832 6.36466i −0.691155 0.928382i 0.308585 0.951197i \(-0.400145\pi\)
−0.999740 + 0.0228150i \(0.992737\pi\)
\(48\) 0 0
\(49\) 7.24880 1.71800i 1.03554 0.245428i
\(50\) −1.31026 + 1.75998i −0.185299 + 0.248899i
\(51\) 0 0
\(52\) 5.57677 2.80076i 0.773359 0.388396i
\(53\) 2.07469 + 3.59347i 0.284981 + 0.493601i 0.972605 0.232466i \(-0.0746794\pi\)
−0.687624 + 0.726067i \(0.741346\pi\)
\(54\) 0 0
\(55\) 3.74212 6.48154i 0.504587 0.873971i
\(56\) −0.585450 + 10.0518i −0.0782340 + 1.34323i
\(57\) 0 0
\(58\) 0.506853 + 0.0592426i 0.0665530 + 0.00777893i
\(59\) 1.51145 5.04858i 0.196773 0.657269i −0.801471 0.598034i \(-0.795949\pi\)
0.998244 0.0592349i \(-0.0188661\pi\)
\(60\) 0 0
\(61\) −2.68977 + 6.23558i −0.344389 + 0.798384i 0.654707 + 0.755883i \(0.272792\pi\)
−0.999096 + 0.0425013i \(0.986467\pi\)
\(62\) −0.483356 + 0.175927i −0.0613862 + 0.0223428i
\(63\) 0 0
\(64\) −2.96617 1.07960i −0.370771 0.134950i
\(65\) 4.56474 4.83835i 0.566187 0.600123i
\(66\) 0 0
\(67\) 4.73732 + 2.37917i 0.578756 + 0.290662i 0.713995 0.700151i \(-0.246884\pi\)
−0.135239 + 0.990813i \(0.543180\pi\)
\(68\) −0.370118 6.35468i −0.0448834 0.770618i
\(69\) 0 0
\(70\) 1.26166 + 4.21424i 0.150797 + 0.503698i
\(71\) 1.06500 + 6.03991i 0.126392 + 0.716805i 0.980471 + 0.196662i \(0.0630103\pi\)
−0.854079 + 0.520143i \(0.825879\pi\)
\(72\) 0 0
\(73\) −0.764322 + 4.33469i −0.0894571 + 0.507337i 0.906848 + 0.421457i \(0.138481\pi\)
−0.996306 + 0.0858796i \(0.972630\pi\)
\(74\) −0.776385 + 0.0907464i −0.0902530 + 0.0105491i
\(75\) 0 0
\(76\) −4.25606 4.51116i −0.488204 0.517466i
\(77\) 7.60998 + 17.6419i 0.867237 + 2.01048i
\(78\) 0 0
\(79\) −9.39300 6.17788i −1.05680 0.695065i −0.102744 0.994708i \(-0.532762\pi\)
−0.954052 + 0.299643i \(0.903133\pi\)
\(80\) 1.04864 0.117242
\(81\) 0 0
\(82\) 0.533651 0.0589319
\(83\) 1.35486 + 0.891108i 0.148716 + 0.0978119i 0.621686 0.783266i \(-0.286448\pi\)
−0.472971 + 0.881078i \(0.656818\pi\)
\(84\) 0 0
\(85\) −2.68737 6.23002i −0.291486 0.675741i
\(86\) −4.50147 4.77127i −0.485406 0.514500i
\(87\) 0 0
\(88\) −13.2977 + 1.55428i −1.41754 + 0.165687i
\(89\) 0.181087 1.02699i 0.0191952 0.108861i −0.973705 0.227813i \(-0.926842\pi\)
0.992900 + 0.118952i \(0.0379535\pi\)
\(90\) 0 0
\(91\) 2.96526 + 16.8168i 0.310844 + 1.76288i
\(92\) 1.37652 + 4.59790i 0.143512 + 0.479364i
\(93\) 0 0
\(94\) 0.360580 + 6.19091i 0.0371909 + 0.638544i
\(95\) −5.90752 2.96687i −0.606099 0.304394i
\(96\) 0 0
\(97\) −3.42307 + 3.62824i −0.347560 + 0.368392i −0.877445 0.479677i \(-0.840754\pi\)
0.529885 + 0.848070i \(0.322235\pi\)
\(98\) −5.47110 1.99132i −0.552664 0.201153i
\(99\) 0 0
\(100\) −3.66486 + 1.33390i −0.366486 + 0.133390i
\(101\) 3.79067 8.78777i 0.377186 0.874416i −0.618854 0.785506i \(-0.712403\pi\)
0.996040 0.0889095i \(-0.0283382\pi\)
\(102\) 0 0
\(103\) −0.933584 + 3.11839i −0.0919888 + 0.307264i −0.991585 0.129459i \(-0.958676\pi\)
0.899596 + 0.436723i \(0.143861\pi\)
\(104\) −11.8187 1.38140i −1.15892 0.135458i
\(105\) 0 0
\(106\) 0.188560 3.23746i 0.0183146 0.314450i
\(107\) 8.40680 14.5610i 0.812716 1.40767i −0.0982402 0.995163i \(-0.531321\pi\)
0.910956 0.412503i \(-0.135345\pi\)
\(108\) 0 0
\(109\) −3.81772 6.61249i −0.365671 0.633361i 0.623212 0.782053i \(-0.285827\pi\)
−0.988884 + 0.148691i \(0.952494\pi\)
\(110\) −5.22712 + 2.62516i −0.498386 + 0.250299i
\(111\) 0 0
\(112\) −1.60757 + 2.15934i −0.151901 + 0.204039i
\(113\) 9.74930 2.31063i 0.917137 0.217365i 0.255168 0.966897i \(-0.417869\pi\)
0.661969 + 0.749531i \(0.269721\pi\)
\(114\) 0 0
\(115\) 3.05495 + 4.10351i 0.284875 + 0.382654i
\(116\) 0.694842 + 0.583042i 0.0645144 + 0.0541340i
\(117\) 0 0
\(118\) −3.15514 + 2.64747i −0.290454 + 0.243720i
\(119\) 16.9485 + 4.01686i 1.55366 + 0.368225i
\(120\) 0 0
\(121\) −12.1541 + 7.99389i −1.10492 + 0.726717i
\(122\) 4.43432 2.91650i 0.401465 0.264048i
\(123\) 0 0
\(124\) −0.889647 0.210850i −0.0798927 0.0189349i
\(125\) −8.85601 + 7.43107i −0.792105 + 0.664655i
\(126\) 0 0
\(127\) 2.97665 + 2.49770i 0.264135 + 0.221635i 0.765230 0.643757i \(-0.222625\pi\)
−0.501096 + 0.865392i \(0.667070\pi\)
\(128\) −5.51490 7.40779i −0.487453 0.654763i
\(129\) 0 0
\(130\) −5.05857 + 1.19890i −0.443666 + 0.105151i
\(131\) 9.94222 13.3547i 0.868656 1.16681i −0.116165 0.993230i \(-0.537060\pi\)
0.984820 0.173577i \(-0.0555325\pi\)
\(132\) 0 0
\(133\) 15.1656 7.61643i 1.31502 0.660428i
\(134\) −2.07157 3.58807i −0.178956 0.309962i
\(135\) 0 0
\(136\) −6.06863 + 10.5112i −0.520380 + 0.901325i
\(137\) 0.539345 9.26019i 0.0460793 0.791152i −0.893551 0.448961i \(-0.851794\pi\)
0.939631 0.342190i \(-0.111169\pi\)
\(138\) 0 0
\(139\) −15.8135 1.84833i −1.34128 0.156774i −0.585009 0.811027i \(-0.698909\pi\)
−0.756275 + 0.654253i \(0.772983\pi\)
\(140\) −2.24257 + 7.49071i −0.189532 + 0.633080i
\(141\) 0 0
\(142\) 1.89853 4.40128i 0.159321 0.369348i
\(143\) −21.3365 + 7.76585i −1.78425 + 0.649413i
\(144\) 0 0
\(145\) 0.908517 + 0.330673i 0.0754483 + 0.0274609i
\(146\) 2.36069 2.50218i 0.195372 0.207082i
\(147\) 0 0
\(148\) −1.24161 0.623562i −0.102060 0.0512565i
\(149\) 1.35720 + 23.3023i 0.111186 + 1.90900i 0.348085 + 0.937463i \(0.386832\pi\)
−0.236899 + 0.971534i \(0.576131\pi\)
\(150\) 0 0
\(151\) 0.668852 + 2.23412i 0.0544304 + 0.181810i 0.980882 0.194604i \(-0.0623422\pi\)
−0.926452 + 0.376414i \(0.877157\pi\)
\(152\) 2.05349 + 11.6459i 0.166560 + 0.944608i
\(153\) 0 0
\(154\) 2.60751 14.7879i 0.210119 1.19165i
\(155\) −0.967952 + 0.113137i −0.0777478 + 0.00908741i
\(156\) 0 0
\(157\) 13.5075 + 14.3171i 1.07801 + 1.14263i 0.989199 + 0.146579i \(0.0468263\pi\)
0.0888142 + 0.996048i \(0.471692\pi\)
\(158\) 3.48019 + 8.06798i 0.276869 + 0.641854i
\(159\) 0 0
\(160\) −7.23857 4.76088i −0.572259 0.376381i
\(161\) −13.1331 −1.03503
\(162\) 0 0
\(163\) −17.6622 −1.38341 −0.691707 0.722179i \(-0.743141\pi\)
−0.691707 + 0.722179i \(0.743141\pi\)
\(164\) 0.792504 + 0.521238i 0.0618842 + 0.0407018i
\(165\) 0 0
\(166\) −0.501989 1.16374i −0.0389619 0.0903238i
\(167\) 2.32646 + 2.46590i 0.180027 + 0.190817i 0.811102 0.584904i \(-0.198868\pi\)
−0.631076 + 0.775721i \(0.717386\pi\)
\(168\) 0 0
\(169\) −7.13182 + 0.833590i −0.548601 + 0.0641223i
\(170\) −0.920811 + 5.22218i −0.0706230 + 0.400523i
\(171\) 0 0
\(172\) −2.02465 11.4824i −0.154378 0.875524i
\(173\) −5.35719 17.8943i −0.407300 1.36048i −0.878201 0.478291i \(-0.841256\pi\)
0.470901 0.882186i \(-0.343929\pi\)
\(174\) 0 0
\(175\) −0.620513 10.6538i −0.0469064 0.805351i
\(176\) −3.19878 1.60649i −0.241117 0.121094i
\(177\) 0 0
\(178\) −0.559306 + 0.592829i −0.0419217 + 0.0444344i
\(179\) 11.1678 + 4.06476i 0.834723 + 0.303814i 0.723796 0.690014i \(-0.242396\pi\)
0.110927 + 0.993829i \(0.464618\pi\)
\(180\) 0 0
\(181\) 14.8329 5.39873i 1.10252 0.401284i 0.274275 0.961651i \(-0.411562\pi\)
0.828244 + 0.560367i \(0.189340\pi\)
\(182\) 5.28604 12.2544i 0.391828 0.908358i
\(183\) 0 0
\(184\) 2.62467 8.76699i 0.193493 0.646311i
\(185\) −1.47095 0.171929i −0.108146 0.0126405i
\(186\) 0 0
\(187\) −1.34665 + 23.1210i −0.0984765 + 1.69078i
\(188\) −5.51142 + 9.54607i −0.401962 + 0.696219i
\(189\) 0 0
\(190\) 2.58328 + 4.47437i 0.187411 + 0.324605i
\(191\) −5.15323 + 2.58805i −0.372875 + 0.187265i −0.625361 0.780336i \(-0.715048\pi\)
0.252486 + 0.967601i \(0.418752\pi\)
\(192\) 0 0
\(193\) 0.104955 0.140979i 0.00755483 0.0101479i −0.798330 0.602221i \(-0.794283\pi\)
0.805885 + 0.592073i \(0.201690\pi\)
\(194\) 3.79339 0.899050i 0.272349 0.0645480i
\(195\) 0 0
\(196\) −6.17991 8.30106i −0.441422 0.592933i
\(197\) −8.59155 7.20917i −0.612123 0.513632i 0.283194 0.959063i \(-0.408606\pi\)
−0.895316 + 0.445431i \(0.853050\pi\)
\(198\) 0 0
\(199\) −15.6873 + 13.1632i −1.11204 + 0.933114i −0.998175 0.0603824i \(-0.980768\pi\)
−0.113866 + 0.993496i \(0.536324\pi\)
\(200\) 7.23595 + 1.71495i 0.511659 + 0.121265i
\(201\) 0 0
\(202\) −6.24927 + 4.11021i −0.439697 + 0.289193i
\(203\) −2.07367 + 1.36388i −0.145543 + 0.0957254i
\(204\) 0 0
\(205\) 0.983806 + 0.233166i 0.0687120 + 0.0162850i
\(206\) 1.94885 1.63528i 0.135783 0.113935i
\(207\) 0 0
\(208\) −2.43709 2.04496i −0.168982 0.141792i
\(209\) 13.4752 + 18.1003i 0.932096 + 1.25202i
\(210\) 0 0
\(211\) 1.15927 0.274753i 0.0798076 0.0189147i −0.190518 0.981684i \(-0.561017\pi\)
0.270326 + 0.962769i \(0.412869\pi\)
\(212\) 3.44217 4.62364i 0.236409 0.317553i
\(213\) 0 0
\(214\) −11.7429 + 5.89751i −0.802728 + 0.403145i
\(215\) −6.21393 10.7628i −0.423786 0.734019i
\(216\) 0 0
\(217\) 1.25090 2.16663i 0.0849168 0.147080i
\(218\) −0.346977 + 5.95737i −0.0235003 + 0.403484i
\(219\) 0 0
\(220\) −10.3267 1.20702i −0.696224 0.0813769i
\(221\) −5.90362 + 19.7195i −0.397120 + 1.32647i
\(222\) 0 0
\(223\) −5.90154 + 13.6813i −0.395197 + 0.916169i 0.598190 + 0.801354i \(0.295887\pi\)
−0.993387 + 0.114815i \(0.963373\pi\)
\(224\) 20.9003 7.60707i 1.39646 0.508269i
\(225\) 0 0
\(226\) −7.35838 2.67823i −0.489472 0.178153i
\(227\) −16.8807 + 17.8925i −1.12041 + 1.18757i −0.140095 + 0.990138i \(0.544741\pi\)
−0.980317 + 0.197430i \(0.936741\pi\)
\(228\) 0 0
\(229\) 1.36456 + 0.685307i 0.0901726 + 0.0452864i 0.493314 0.869851i \(-0.335785\pi\)
−0.403141 + 0.915138i \(0.632082\pi\)
\(230\) −0.232477 3.99148i −0.0153291 0.263191i
\(231\) 0 0
\(232\) −0.496029 1.65685i −0.0325659 0.108778i
\(233\) −2.44148 13.8463i −0.159946 0.907101i −0.954123 0.299414i \(-0.903209\pi\)
0.794177 0.607687i \(-0.207902\pi\)
\(234\) 0 0
\(235\) −2.04023 + 11.5707i −0.133090 + 0.754791i
\(236\) −7.27145 + 0.849911i −0.473331 + 0.0553245i
\(237\) 0 0
\(238\) −9.34179 9.90172i −0.605539 0.641833i
\(239\) 9.07711 + 21.0431i 0.587149 + 1.36116i 0.909958 + 0.414701i \(0.136114\pi\)
−0.322809 + 0.946464i \(0.604627\pi\)
\(240\) 0 0
\(241\) 5.90585 + 3.88434i 0.380429 + 0.250212i 0.725293 0.688441i \(-0.241704\pi\)
−0.344864 + 0.938653i \(0.612075\pi\)
\(242\) 11.3694 0.730855
\(243\) 0 0
\(244\) 9.43390 0.603943
\(245\) −9.21612 6.06153i −0.588796 0.387257i
\(246\) 0 0
\(247\) 7.94362 + 18.4154i 0.505441 + 1.17174i
\(248\) 1.19634 + 1.26804i 0.0759674 + 0.0805207i
\(249\) 0 0
\(250\) 8.97414 1.04893i 0.567575 0.0663400i
\(251\) −0.0115419 + 0.0654574i −0.000728518 + 0.00413163i −0.985170 0.171582i \(-0.945112\pi\)
0.984441 + 0.175714i \(0.0562233\pi\)
\(252\) 0 0
\(253\) −3.03237 17.1974i −0.190644 1.08119i
\(254\) −0.870990 2.90931i −0.0546508 0.182546i
\(255\) 0 0
\(256\) 0.786748 + 13.5079i 0.0491718 + 0.844246i
\(257\) −17.2862 8.68143i −1.07828 0.541533i −0.181221 0.983442i \(-0.558005\pi\)
−0.897060 + 0.441909i \(0.854301\pi\)
\(258\) 0 0
\(259\) 2.60900 2.76537i 0.162115 0.171832i
\(260\) −8.68330 3.16046i −0.538515 0.196003i
\(261\) 0 0
\(262\) −12.2274 + 4.45042i −0.755413 + 0.274948i
\(263\) −5.96501 + 13.8284i −0.367818 + 0.852698i 0.629324 + 0.777143i \(0.283332\pi\)
−0.997142 + 0.0755547i \(0.975927\pi\)
\(264\) 0 0
\(265\) 1.76215 5.88599i 0.108248 0.361573i
\(266\) −13.1737 1.53979i −0.807732 0.0944104i
\(267\) 0 0
\(268\) 0.428198 7.35188i 0.0261564 0.449087i
\(269\) −5.86823 + 10.1641i −0.357792 + 0.619715i −0.987592 0.157043i \(-0.949804\pi\)
0.629799 + 0.776758i \(0.283137\pi\)
\(270\) 0 0
\(271\) 1.44013 + 2.49438i 0.0874817 + 0.151523i 0.906446 0.422322i \(-0.138785\pi\)
−0.818964 + 0.573844i \(0.805451\pi\)
\(272\) −2.89989 + 1.45638i −0.175832 + 0.0883060i
\(273\) 0 0
\(274\) −4.32913 + 5.81503i −0.261532 + 0.351299i
\(275\) 13.8076 3.27246i 0.832628 0.197337i
\(276\) 0 0
\(277\) −1.37408 1.84571i −0.0825603 0.110898i 0.758924 0.651179i \(-0.225725\pi\)
−0.841485 + 0.540281i \(0.818318\pi\)
\(278\) 9.53200 + 7.99830i 0.571692 + 0.479706i
\(279\) 0 0
\(280\) 11.4211 9.58343i 0.682540 0.572719i
\(281\) −6.17447 1.46338i −0.368338 0.0872977i 0.0422786 0.999106i \(-0.486538\pi\)
−0.410616 + 0.911808i \(0.634686\pi\)
\(282\) 0 0
\(283\) 12.2665 8.06777i 0.729165 0.479579i −0.129848 0.991534i \(-0.541449\pi\)
0.859012 + 0.511955i \(0.171078\pi\)
\(284\) 7.11834 4.68180i 0.422396 0.277814i
\(285\) 0 0
\(286\) 17.2674 + 4.09244i 1.02104 + 0.241991i
\(287\) −1.98831 + 1.66839i −0.117366 + 0.0984819i
\(288\) 0 0
\(289\) 3.06122 + 2.56867i 0.180072 + 0.151098i
\(290\) −0.451224 0.606100i −0.0264968 0.0355914i
\(291\) 0 0
\(292\) 5.94975 1.41012i 0.348183 0.0825208i
\(293\) 15.1411 20.3380i 0.884553 1.18816i −0.0966764 0.995316i \(-0.530821\pi\)
0.981229 0.192845i \(-0.0617714\pi\)
\(294\) 0 0
\(295\) −6.97336 + 3.50215i −0.406005 + 0.203903i
\(296\) 1.32461 + 2.29430i 0.0769916 + 0.133353i
\(297\) 0 0
\(298\) 9.12136 15.7987i 0.528386 0.915191i
\(299\) 0.902433 15.4942i 0.0521891 0.896051i
\(300\) 0 0
\(301\) 31.6886 + 3.70386i 1.82650 + 0.213487i
\(302\) 0.522740 1.74607i 0.0300803 0.100475i
\(303\) 0 0
\(304\) −1.25230 + 2.90315i −0.0718241 + 0.166507i
\(305\) 9.44914 3.43921i 0.541056 0.196928i
\(306\) 0 0
\(307\) 11.4486 + 4.16694i 0.653405 + 0.237820i 0.647386 0.762162i \(-0.275862\pi\)
0.00601852 + 0.999982i \(0.498084\pi\)
\(308\) 18.3163 19.4141i 1.04367 1.10622i
\(309\) 0 0
\(310\) 0.680636 + 0.341828i 0.0386575 + 0.0194145i
\(311\) −1.46151 25.0931i −0.0828745 1.42290i −0.741764 0.670661i \(-0.766011\pi\)
0.658890 0.752239i \(-0.271026\pi\)
\(312\) 0 0
\(313\) −8.47873 28.3209i −0.479246 1.60079i −0.766034 0.642800i \(-0.777773\pi\)
0.286787 0.957994i \(-0.407413\pi\)
\(314\) −2.67130 15.1497i −0.150750 0.854947i
\(315\) 0 0
\(316\) −2.71203 + 15.3807i −0.152563 + 0.865230i
\(317\) 4.25913 0.497821i 0.239217 0.0279604i 0.00436034 0.999990i \(-0.498612\pi\)
0.234856 + 0.972030i \(0.424538\pi\)
\(318\) 0 0
\(319\) −2.26476 2.40051i −0.126802 0.134403i
\(320\) 1.85126 + 4.29170i 0.103489 + 0.239913i
\(321\) 0 0
\(322\) 8.57557 + 5.64024i 0.477898 + 0.314318i
\(323\) 20.4570 1.13826
\(324\) 0 0
\(325\) 12.6118 0.699576
\(326\) 11.5330 + 7.58536i 0.638752 + 0.420114i
\(327\) 0 0
\(328\) −0.716366 1.66072i −0.0395547 0.0916981i
\(329\) −20.6985 21.9392i −1.14115 1.20954i
\(330\) 0 0
\(331\) 27.6432 3.23102i 1.51941 0.177593i 0.684918 0.728620i \(-0.259838\pi\)
0.834487 + 0.551027i \(0.185764\pi\)
\(332\) 0.391188 2.21854i 0.0214692 0.121758i
\(333\) 0 0
\(334\) −0.460091 2.60930i −0.0251750 0.142775i
\(335\) −2.25130 7.51986i −0.123002 0.410854i
\(336\) 0 0
\(337\) −1.56420 26.8562i −0.0852071 1.46295i −0.721988 0.691905i \(-0.756772\pi\)
0.636781 0.771045i \(-0.280266\pi\)
\(338\) 5.01489 + 2.51857i 0.272774 + 0.136992i
\(339\) 0 0
\(340\) −6.46816 + 6.85585i −0.350785 + 0.371811i
\(341\) 3.12596 + 1.13776i 0.169280 + 0.0616130i
\(342\) 0 0
\(343\) 1.60598 0.584529i 0.0867148 0.0315616i
\(344\) −8.80551 + 20.4135i −0.474761 + 1.10062i
\(345\) 0 0
\(346\) −4.18690 + 13.9852i −0.225089 + 0.751851i
\(347\) −30.2925 3.54069i −1.62619 0.190074i −0.746419 0.665476i \(-0.768229\pi\)
−0.879769 + 0.475402i \(0.842303\pi\)
\(348\) 0 0
\(349\) 0.463724 7.96184i 0.0248226 0.426187i −0.962889 0.269898i \(-0.913010\pi\)
0.987711 0.156289i \(-0.0499531\pi\)
\(350\) −4.17028 + 7.22314i −0.222911 + 0.386093i
\(351\) 0 0
\(352\) 14.7870 + 25.6119i 0.788151 + 1.36512i
\(353\) 19.5082 9.79737i 1.03831 0.521461i 0.153863 0.988092i \(-0.450829\pi\)
0.884452 + 0.466631i \(0.154532\pi\)
\(354\) 0 0
\(355\) 5.42305 7.28442i 0.287826 0.386617i
\(356\) −1.40964 + 0.334091i −0.0747109 + 0.0177068i
\(357\) 0 0
\(358\) −5.54662 7.45040i −0.293148 0.393766i
\(359\) 13.2606 + 11.1269i 0.699866 + 0.587258i 0.921736 0.387819i \(-0.126771\pi\)
−0.221869 + 0.975076i \(0.571216\pi\)
\(360\) 0 0
\(361\) 0.713665 0.598836i 0.0375613 0.0315177i
\(362\) −12.0041 2.84502i −0.630920 0.149531i
\(363\) 0 0
\(364\) 19.8195 13.0355i 1.03882 0.683244i
\(365\) 5.44529 3.58142i 0.285020 0.187460i
\(366\) 0 0
\(367\) −23.2623 5.51327i −1.21428 0.287790i −0.426926 0.904287i \(-0.640403\pi\)
−0.787358 + 0.616496i \(0.788552\pi\)
\(368\) 1.87433 1.57275i 0.0977062 0.0819853i
\(369\) 0 0
\(370\) 0.886651 + 0.743989i 0.0460948 + 0.0386781i
\(371\) 9.41892 + 12.6518i 0.489006 + 0.656849i
\(372\) 0 0
\(373\) −11.2201 + 2.65920i −0.580952 + 0.137688i −0.510576 0.859832i \(-0.670568\pi\)
−0.0703757 + 0.997521i \(0.522420\pi\)
\(374\) 10.8091 14.5191i 0.558923 0.750764i
\(375\) 0 0
\(376\) 18.7821 9.43272i 0.968613 0.486456i
\(377\) −1.46658 2.54020i −0.0755329 0.130827i
\(378\) 0 0
\(379\) −10.3656 + 17.9537i −0.532443 + 0.922218i 0.466839 + 0.884342i \(0.345393\pi\)
−0.999282 + 0.0378763i \(0.987941\pi\)
\(380\) −0.533970 + 9.16791i −0.0273921 + 0.470304i
\(381\) 0 0
\(382\) 4.47641 + 0.523217i 0.229033 + 0.0267701i
\(383\) −4.54732 + 15.1891i −0.232357 + 0.776126i 0.759693 + 0.650282i \(0.225349\pi\)
−0.992050 + 0.125845i \(0.959836\pi\)
\(384\) 0 0
\(385\) 11.2683 26.1228i 0.574285 1.33134i
\(386\) −0.129079 + 0.0469808i −0.00656994 + 0.00239126i
\(387\) 0 0
\(388\) 6.51155 + 2.37001i 0.330574 + 0.120319i
\(389\) −19.5641 + 20.7367i −0.991938 + 1.05139i 0.00673888 + 0.999977i \(0.497855\pi\)
−0.998677 + 0.0514160i \(0.983627\pi\)
\(390\) 0 0
\(391\) −14.1471 7.10495i −0.715451 0.359313i
\(392\) 1.14735 + 19.6992i 0.0579498 + 0.994959i
\(393\) 0 0
\(394\) 2.51395 + 8.39719i 0.126651 + 0.423044i
\(395\) 2.89074 + 16.3942i 0.145449 + 0.824882i
\(396\) 0 0
\(397\) 5.49087 31.1403i 0.275579 1.56289i −0.461538 0.887120i \(-0.652702\pi\)
0.737117 0.675765i \(-0.236187\pi\)
\(398\) 15.8965 1.85804i 0.796822 0.0931351i
\(399\) 0 0
\(400\) 1.36440 + 1.44618i 0.0682200 + 0.0723090i
\(401\) −6.75227 15.6535i −0.337192 0.781700i −0.999474 0.0324445i \(-0.989671\pi\)
0.662281 0.749255i \(-0.269588\pi\)
\(402\) 0 0
\(403\) 2.47019 + 1.62467i 0.123049 + 0.0809305i
\(404\) −13.2952 −0.661458
\(405\) 0 0
\(406\) 1.93980 0.0962705
\(407\) 4.22358 + 2.77790i 0.209355 + 0.137695i
\(408\) 0 0
\(409\) −9.44133 21.8875i −0.466844 1.08227i −0.975241 0.221143i \(-0.929021\pi\)
0.508397 0.861123i \(-0.330238\pi\)
\(410\) −0.542262 0.574764i −0.0267804 0.0283856i
\(411\) 0 0
\(412\) 4.49141 0.524970i 0.221276 0.0258634i
\(413\) 3.47862 19.7282i 0.171172 0.970762i
\(414\) 0 0
\(415\) −0.416966 2.36473i −0.0204681 0.116080i
\(416\) 7.53853 + 25.1804i 0.369607 + 1.23457i
\(417\) 0 0
\(418\) −1.02544 17.6061i −0.0501560 0.861145i
\(419\) 14.0624 + 7.06241i 0.686993 + 0.345021i 0.757816 0.652468i \(-0.226266\pi\)
−0.0708230 + 0.997489i \(0.522563\pi\)
\(420\) 0 0
\(421\) 16.1664 17.1354i 0.787901 0.835126i −0.201628 0.979462i \(-0.564623\pi\)
0.989529 + 0.144336i \(0.0461046\pi\)
\(422\) −0.874971 0.318464i −0.0425929 0.0155026i
\(423\) 0 0
\(424\) −10.3281 + 3.75912i −0.501577 + 0.182559i
\(425\) 5.09524 11.8121i 0.247155 0.572970i
\(426\) 0 0
\(427\) −7.40361 + 24.7298i −0.358286 + 1.19676i
\(428\) −23.1992 2.71160i −1.12138 0.131070i
\(429\) 0 0
\(430\) −0.564759 + 9.69653i −0.0272351 + 0.467608i
\(431\) −0.705848 + 1.22256i −0.0339995 + 0.0588888i −0.882524 0.470267i \(-0.844158\pi\)
0.848525 + 0.529155i \(0.177491\pi\)
\(432\) 0 0
\(433\) −6.50524 11.2674i −0.312622 0.541477i 0.666307 0.745677i \(-0.267874\pi\)
−0.978929 + 0.204200i \(0.934541\pi\)
\(434\) −1.74730 + 0.877528i −0.0838732 + 0.0421227i
\(435\) 0 0
\(436\) −6.33408 + 8.50814i −0.303347 + 0.407466i
\(437\) −15.0087 + 3.55713i −0.717964 + 0.170161i
\(438\) 0 0
\(439\) 12.3841 + 16.6347i 0.591061 + 0.793933i 0.992538 0.121936i \(-0.0389103\pi\)
−0.401477 + 0.915869i \(0.631503\pi\)
\(440\) 15.1863 + 12.7428i 0.723979 + 0.607490i
\(441\) 0 0
\(442\) 12.3238 10.3409i 0.586182 0.491865i
\(443\) −33.0519 7.83344i −1.57034 0.372178i −0.648955 0.760826i \(-0.724794\pi\)
−0.921386 + 0.388649i \(0.872942\pi\)
\(444\) 0 0
\(445\) −1.29012 + 0.848528i −0.0611578 + 0.0402241i
\(446\) 9.72924 6.39902i 0.460693 0.303002i
\(447\) 0 0
\(448\) −11.6754 2.76711i −0.551609 0.130734i
\(449\) −0.919709 + 0.771727i −0.0434038 + 0.0364201i −0.664231 0.747527i \(-0.731241\pi\)
0.620828 + 0.783947i \(0.286797\pi\)
\(450\) 0 0
\(451\) −2.64380 2.21841i −0.124492 0.104461i
\(452\) −8.31170 11.1645i −0.390949 0.525136i
\(453\) 0 0
\(454\) 18.7069 4.43362i 0.877959 0.208080i
\(455\) 15.0993 20.2819i 0.707866 0.950830i
\(456\) 0 0
\(457\) −28.6438 + 14.3855i −1.33990 + 0.672923i −0.966959 0.254932i \(-0.917947\pi\)
−0.372941 + 0.927855i \(0.621651\pi\)
\(458\) −0.596704 1.03352i −0.0278821 0.0482933i
\(459\) 0 0
\(460\) 3.55340 6.15466i 0.165678 0.286963i
\(461\) 0.0195765 0.336115i 0.000911768 0.0156545i −0.997822 0.0659703i \(-0.978986\pi\)
0.998733 + 0.0503158i \(0.0160228\pi\)
\(462\) 0 0
\(463\) 2.93276 + 0.342791i 0.136297 + 0.0159308i 0.183968 0.982932i \(-0.441106\pi\)
−0.0476708 + 0.998863i \(0.515180\pi\)
\(464\) 0.132620 0.442982i 0.00615673 0.0205649i
\(465\) 0 0
\(466\) −4.35232 + 10.0898i −0.201617 + 0.467401i
\(467\) 3.55605 1.29430i 0.164554 0.0598929i −0.258429 0.966030i \(-0.583205\pi\)
0.422984 + 0.906137i \(0.360983\pi\)
\(468\) 0 0
\(469\) 18.9360 + 6.89213i 0.874382 + 0.318249i
\(470\) 6.30147 6.67917i 0.290665 0.308087i
\(471\) 0 0
\(472\) 12.4744 + 6.26486i 0.574179 + 0.288363i
\(473\) 2.46664 + 42.3505i 0.113416 + 1.94728i
\(474\) 0 0
\(475\) −3.59474 12.0073i −0.164938 0.550931i
\(476\) −4.20172 23.8292i −0.192586 1.09221i
\(477\) 0 0
\(478\) 3.11022 17.6389i 0.142258 0.806785i
\(479\) −3.14535 + 0.367638i −0.143715 + 0.0167978i −0.187646 0.982237i \(-0.560086\pi\)
0.0439314 + 0.999035i \(0.486012\pi\)
\(480\) 0 0
\(481\) 3.08326 + 3.26806i 0.140584 + 0.149011i
\(482\) −2.18817 5.07274i −0.0996683 0.231057i
\(483\) 0 0
\(484\) 16.8843 + 11.1050i 0.767468 + 0.504771i
\(485\) 7.38607 0.335384
\(486\) 0 0
\(487\) 1.22501 0.0555106 0.0277553 0.999615i \(-0.491164\pi\)
0.0277553 + 0.999615i \(0.491164\pi\)
\(488\) −15.0287 9.88456i −0.680319 0.447453i
\(489\) 0 0
\(490\) 3.41465 + 7.91605i 0.154258 + 0.357610i
\(491\) −27.8255 29.4933i −1.25575 1.33101i −0.921425 0.388556i \(-0.872974\pi\)
−0.334323 0.942459i \(-0.608507\pi\)
\(492\) 0 0
\(493\) −2.97164 + 0.347335i −0.133836 + 0.0156432i
\(494\) 2.72183 15.4363i 0.122461 0.694512i
\(495\) 0 0
\(496\) 0.0809373 + 0.459018i 0.00363419 + 0.0206105i
\(497\) 6.68638 + 22.3341i 0.299925 + 1.00182i
\(498\) 0 0
\(499\) 2.39276 + 41.0820i 0.107114 + 1.83908i 0.442224 + 0.896905i \(0.354190\pi\)
−0.335109 + 0.942179i \(0.608773\pi\)
\(500\) 14.3517 + 7.20768i 0.641826 + 0.322337i
\(501\) 0 0
\(502\) 0.0356484 0.0377851i 0.00159106 0.00168643i
\(503\) −9.54144 3.47280i −0.425432 0.154845i 0.120426 0.992722i \(-0.461574\pi\)
−0.545858 + 0.837878i \(0.683796\pi\)
\(504\) 0 0
\(505\) −13.3166 + 4.84686i −0.592582 + 0.215682i
\(506\) −5.40568 + 12.5318i −0.240312 + 0.557105i
\(507\) 0 0
\(508\) 1.54816 5.17123i 0.0686887 0.229436i
\(509\) 24.0833 + 2.81493i 1.06747 + 0.124770i 0.631642 0.775260i \(-0.282381\pi\)
0.435829 + 0.900029i \(0.356455\pi\)
\(510\) 0 0
\(511\) −0.972849 + 16.7032i −0.0430363 + 0.738904i
\(512\) −3.94773 + 6.83768i −0.174467 + 0.302186i
\(513\) 0 0
\(514\) 7.55901 + 13.0926i 0.333414 + 0.577490i
\(515\) 4.30728 2.16320i 0.189802 0.0953219i
\(516\) 0 0
\(517\) 23.9495 32.1698i 1.05330 1.41483i
\(518\) −2.89124 + 0.685237i −0.127034 + 0.0301076i
\(519\) 0 0
\(520\) 10.5215 + 14.1329i 0.461400 + 0.619768i
\(521\) 4.86477 + 4.08202i 0.213129 + 0.178837i 0.743102 0.669178i \(-0.233354\pi\)
−0.529973 + 0.848014i \(0.677798\pi\)
\(522\) 0 0
\(523\) 21.5335 18.0688i 0.941595 0.790092i −0.0362674 0.999342i \(-0.511547\pi\)
0.977862 + 0.209250i \(0.0671024\pi\)
\(524\) −22.5054 5.33387i −0.983151 0.233011i
\(525\) 0 0
\(526\) 9.83386 6.46783i 0.428777 0.282011i
\(527\) 2.51962 1.65718i 0.109756 0.0721879i
\(528\) 0 0
\(529\) −10.7652 2.55141i −0.468054 0.110931i
\(530\) −3.67848 + 3.08661i −0.159783 + 0.134074i
\(531\) 0 0
\(532\) −18.0598 15.1540i −0.782991 0.657008i
\(533\) −1.83171 2.46041i −0.0793400 0.106572i
\(534\) 0 0
\(535\) −24.2253 + 5.74149i −1.04735 + 0.248226i
\(536\) −8.38522 + 11.2633i −0.362186 + 0.486501i
\(537\) 0 0
\(538\) 8.19694 4.11666i 0.353395 0.177482i
\(539\) 18.8268 + 32.6089i 0.810926 + 1.40457i
\(540\) 0 0
\(541\) −1.34390 + 2.32771i −0.0577788 + 0.100076i −0.893468 0.449127i \(-0.851735\pi\)
0.835689 + 0.549203i \(0.185068\pi\)
\(542\) 0.130888 2.24725i 0.00562211 0.0965279i
\(543\) 0 0
\(544\) 26.6294 + 3.11253i 1.14173 + 0.133449i
\(545\) −3.24260 + 10.8310i −0.138898 + 0.463950i
\(546\) 0 0
\(547\) 12.9944 30.1244i 0.555600 1.28802i −0.376699 0.926336i \(-0.622941\pi\)
0.932299 0.361689i \(-0.117800\pi\)
\(548\) −12.1088 + 4.40724i −0.517262 + 0.188268i
\(549\) 0 0
\(550\) −10.4214 3.79308i −0.444370 0.161737i
\(551\) −2.00042 + 2.12032i −0.0852207 + 0.0903287i
\(552\) 0 0
\(553\) −38.1901 19.1798i −1.62401 0.815608i
\(554\) 0.104565 + 1.79532i 0.00444256 + 0.0762758i
\(555\) 0 0
\(556\) 6.34334 + 21.1882i 0.269018 + 0.898581i
\(557\) −1.71906 9.74928i −0.0728390 0.413090i −0.999324 0.0367591i \(-0.988297\pi\)
0.926485 0.376331i \(-0.122815\pi\)
\(558\) 0 0
\(559\) −6.54721 + 37.1311i −0.276917 + 1.57048i
\(560\) 3.95921 0.462766i 0.167307 0.0195554i
\(561\) 0 0
\(562\) 3.40329 + 3.60728i 0.143559 + 0.152164i
\(563\) 2.78662 + 6.46011i 0.117442 + 0.272261i 0.966790 0.255572i \(-0.0822638\pi\)
−0.849348 + 0.527833i \(0.823005\pi\)
\(564\) 0 0
\(565\) −12.3953 8.15249i −0.521472 0.342978i
\(566\) −11.4745 −0.482310
\(567\) 0 0
\(568\) −16.2454 −0.681640
\(569\) 3.29025 + 2.16403i 0.137935 + 0.0907209i 0.616601 0.787276i \(-0.288509\pi\)
−0.478666 + 0.877997i \(0.658880\pi\)
\(570\) 0 0
\(571\) 10.1268 + 23.4765i 0.423791 + 0.982459i 0.987663 + 0.156596i \(0.0500521\pi\)
−0.563871 + 0.825863i \(0.690689\pi\)
\(572\) 21.6458 + 22.9432i 0.905057 + 0.959304i
\(573\) 0 0
\(574\) 2.01483 0.235500i 0.0840975 0.00982958i
\(575\) −1.68431 + 9.55219i −0.0702405 + 0.398354i
\(576\) 0 0
\(577\) 0.816045 + 4.62802i 0.0339724 + 0.192667i 0.997071 0.0764818i \(-0.0243687\pi\)
−0.963099 + 0.269149i \(0.913258\pi\)
\(578\) −0.895737 2.99197i −0.0372577 0.124450i
\(579\) 0 0
\(580\) −0.0780940 1.34082i −0.00324268 0.0556746i
\(581\) 5.50862 + 2.76653i 0.228536 + 0.114775i
\(582\) 0 0
\(583\) −14.3924 + 15.2551i −0.596073 + 0.631800i
\(584\) −10.9558 3.98757i −0.453353 0.165007i
\(585\) 0 0
\(586\) −18.6213 + 6.77759i −0.769238 + 0.279980i
\(587\) −11.0004 + 25.5017i −0.454034 + 1.05257i 0.525410 + 0.850849i \(0.323912\pi\)
−0.979443 + 0.201719i \(0.935347\pi\)
\(588\) 0 0
\(589\) 0.842715 2.81486i 0.0347235 0.115984i
\(590\) 6.05748 + 0.708018i 0.249383 + 0.0291487i
\(591\) 0 0
\(592\) −0.0411844 + 0.707108i −0.00169267 + 0.0290620i
\(593\) −7.16631 + 12.4124i −0.294285 + 0.509717i −0.974818 0.223000i \(-0.928415\pi\)
0.680533 + 0.732717i \(0.261748\pi\)
\(594\) 0 0
\(595\) −12.8956 22.3359i −0.528669 0.915682i
\(596\) 28.9769 14.5528i 1.18694 0.596104i
\(597\) 0 0
\(598\) −7.24351 + 9.72973i −0.296209 + 0.397878i
\(599\) −26.7617 + 6.34265i −1.09346 + 0.259154i −0.737499 0.675349i \(-0.763993\pi\)
−0.355957 + 0.934502i \(0.615845\pi\)
\(600\) 0 0
\(601\) 11.1968 + 15.0400i 0.456729 + 0.613493i 0.969518 0.245022i \(-0.0787951\pi\)
−0.512789 + 0.858515i \(0.671388\pi\)
\(602\) −19.1011 16.0277i −0.778503 0.653242i
\(603\) 0 0
\(604\) 2.48176 2.08244i 0.100981 0.0847333i
\(605\) 20.9600 + 4.96761i 0.852144 + 0.201962i
\(606\) 0 0
\(607\) −22.0641 + 14.5118i −0.895556 + 0.589016i −0.911701 0.410853i \(-0.865231\pi\)
0.0161458 + 0.999870i \(0.494860\pi\)
\(608\) 21.8248 14.3544i 0.885111 0.582146i
\(609\) 0 0
\(610\) −7.64707 1.81239i −0.309621 0.0733815i
\(611\) 27.3057 22.9122i 1.10467 0.926928i
\(612\) 0 0
\(613\) −26.7821 22.4728i −1.08172 0.907670i −0.0856560 0.996325i \(-0.527299\pi\)
−0.996062 + 0.0886553i \(0.971743\pi\)
\(614\) −5.68606 7.63770i −0.229471 0.308232i
\(615\) 0 0
\(616\) −49.5204 + 11.7365i −1.99523 + 0.472879i
\(617\) 4.27053 5.73631i 0.171925 0.230935i −0.707806 0.706407i \(-0.750315\pi\)
0.879731 + 0.475471i \(0.157722\pi\)
\(618\) 0 0
\(619\) −16.8196 + 8.44712i −0.676037 + 0.339518i −0.753473 0.657479i \(-0.771623\pi\)
0.0774361 + 0.996997i \(0.475327\pi\)
\(620\) 0.676908 + 1.17244i 0.0271853 + 0.0470863i
\(621\) 0 0
\(622\) −9.82235 + 17.0128i −0.393841 + 0.682152i
\(623\) 0.230492 3.95739i 0.00923446 0.158550i
\(624\) 0 0
\(625\) 3.06015 + 0.357680i 0.122406 + 0.0143072i
\(626\) −6.62654 + 22.1342i −0.264850 + 0.884660i
\(627\) 0 0
\(628\) 10.8303 25.1074i 0.432174 1.00189i
\(629\) 4.30649 1.56744i 0.171711 0.0624978i
\(630\) 0 0
\(631\) −22.0642 8.03070i −0.878361 0.319697i −0.136813 0.990597i \(-0.543686\pi\)
−0.741548 + 0.670900i \(0.765908\pi\)
\(632\) 20.4358 21.6607i 0.812893 0.861616i
\(633\) 0 0
\(634\) −2.99490 1.50410i −0.118943 0.0597353i
\(635\) −0.334549 5.74398i −0.0132762 0.227943i
\(636\) 0 0
\(637\) 9.59802 + 32.0596i 0.380287 + 1.27025i
\(638\) 0.447890 + 2.54011i 0.0177321 + 0.100564i
\(639\) 0 0
\(640\) −2.37461 + 13.4671i −0.0938648 + 0.532334i
\(641\) −4.32954 + 0.506050i −0.171006 + 0.0199878i −0.201165 0.979557i \(-0.564473\pi\)
0.0301588 + 0.999545i \(0.490399\pi\)
\(642\) 0 0
\(643\) −13.0468 13.8288i −0.514516 0.545355i 0.417071 0.908874i \(-0.363057\pi\)
−0.931587 + 0.363519i \(0.881575\pi\)
\(644\) 7.22619 + 16.7522i 0.284752 + 0.660129i
\(645\) 0 0
\(646\) −13.3579 8.78560i −0.525558 0.345665i
\(647\) 20.6268 0.810924 0.405462 0.914112i \(-0.367111\pi\)
0.405462 + 0.914112i \(0.367111\pi\)
\(648\) 0 0
\(649\) 26.6367 1.04558
\(650\) −8.23516 5.41635i −0.323010 0.212447i
\(651\) 0 0
\(652\) 9.71824 + 22.5294i 0.380596 + 0.882320i
\(653\) 4.11111 + 4.35752i 0.160880 + 0.170523i 0.802799 0.596249i \(-0.203343\pi\)
−0.641919 + 0.766772i \(0.721862\pi\)
\(654\) 0 0
\(655\) −24.4862 + 2.86203i −0.956756 + 0.111829i
\(656\) 0.0839701 0.476218i 0.00327848 0.0185932i
\(657\) 0 0
\(658\) 4.09344 + 23.2150i 0.159579 + 0.905016i
\(659\) −11.1391 37.2073i −0.433919 1.44939i −0.843506 0.537120i \(-0.819512\pi\)
0.409587 0.912271i \(-0.365673\pi\)
\(660\) 0 0
\(661\) −1.80224 30.9432i −0.0700989 1.20355i −0.831595 0.555382i \(-0.812572\pi\)
0.761496 0.648169i \(-0.224465\pi\)
\(662\) −19.4379 9.76207i −0.755474 0.379414i
\(663\) 0 0
\(664\) −2.94770 + 3.12438i −0.114393 + 0.121249i
\(665\) −23.6135 8.59460i −0.915691 0.333284i
\(666\) 0 0
\(667\) 2.11981 0.771549i 0.0820795 0.0298745i
\(668\) 1.86535 4.32436i 0.0721725 0.167315i
\(669\) 0 0
\(670\) −1.75950 + 5.87713i −0.0679753 + 0.227053i
\(671\) −34.0924 3.98483i −1.31612 0.153833i
\(672\) 0 0
\(673\) 2.24379 38.5243i 0.0864916 1.48500i −0.624070 0.781368i \(-0.714522\pi\)
0.710562 0.703635i \(-0.248441\pi\)
\(674\) −10.5125 + 18.2082i −0.404926 + 0.701352i
\(675\) 0 0
\(676\) 4.98742 + 8.63847i 0.191824 + 0.332249i
\(677\) −3.56442 + 1.79012i −0.136992 + 0.0688000i −0.515975 0.856604i \(-0.672570\pi\)
0.378983 + 0.925404i \(0.376274\pi\)
\(678\) 0 0
\(679\) −11.3229 + 15.2093i −0.434532 + 0.583677i
\(680\) 17.4875 4.14462i 0.670615 0.158939i
\(681\) 0 0
\(682\) −1.55254 2.08543i −0.0594499 0.0798551i
\(683\) −32.2624 27.0713i −1.23449 1.03586i −0.997935 0.0642370i \(-0.979539\pi\)
−0.236551 0.971619i \(-0.576017\pi\)
\(684\) 0 0
\(685\) −10.5217 + 8.82872i −0.402012 + 0.337328i
\(686\) −1.29970 0.308034i −0.0496227 0.0117608i
\(687\) 0 0
\(688\) −4.96609 + 3.26625i −0.189330 + 0.124524i
\(689\) −15.5736 + 10.2429i −0.593306 + 0.390224i
\(690\) 0 0
\(691\) −8.32013 1.97191i −0.316513 0.0750149i 0.0692889 0.997597i \(-0.477927\pi\)
−0.385802 + 0.922582i \(0.626075\pi\)
\(692\) −19.8777 + 16.6794i −0.755638 + 0.634056i
\(693\) 0 0
\(694\) 18.2596 + 15.3216i 0.693125 + 0.581601i
\(695\) 14.0779 + 18.9100i 0.534007 + 0.717296i
\(696\) 0 0
\(697\) −3.04442 + 0.721541i −0.115316 + 0.0273303i
\(698\) −3.72215 + 4.99972i −0.140885 + 0.189242i
\(699\) 0 0
\(700\) −13.2482 + 6.65352i −0.500737 + 0.251479i
\(701\) 0.440975 + 0.763791i 0.0166554 + 0.0288480i 0.874233 0.485507i \(-0.161365\pi\)
−0.857578 + 0.514355i \(0.828032\pi\)
\(702\) 0 0
\(703\) 2.23259 3.86697i 0.0842039 0.145845i
\(704\) 0.927670 15.9275i 0.0349629 0.600290i
\(705\) 0 0
\(706\) −16.9460 1.98070i −0.637770 0.0745446i
\(707\) 10.4339 34.8516i 0.392406 1.31073i
\(708\) 0 0
\(709\) −15.9358 + 36.9432i −0.598480 + 1.38743i 0.302324 + 0.953205i \(0.402238\pi\)
−0.900803 + 0.434227i \(0.857022\pi\)
\(710\) −6.66953 + 2.42751i −0.250303 + 0.0911028i
\(711\) 0 0
\(712\) 2.59569 + 0.944754i 0.0972777 + 0.0354062i
\(713\) −1.56042 + 1.65395i −0.0584382 + 0.0619409i
\(714\) 0 0
\(715\) 30.0449 + 15.0891i 1.12362 + 0.564301i
\(716\) −0.959961 16.4819i −0.0358754 0.615957i
\(717\) 0 0
\(718\) −3.88015 12.9606i −0.144806 0.483685i
\(719\) 2.39151 + 13.5629i 0.0891883 + 0.505812i 0.996374 + 0.0850815i \(0.0271151\pi\)
−0.907186 + 0.420730i \(0.861774\pi\)
\(720\) 0 0
\(721\) −2.14866 + 12.1857i −0.0800203 + 0.453817i
\(722\) −0.723185 + 0.0845282i −0.0269142 + 0.00314581i
\(723\) 0 0
\(724\) −15.0479 15.9499i −0.559251 0.592772i
\(725\) 0.726051 + 1.68318i 0.0269649 + 0.0625116i
\(726\) 0 0
\(727\) 10.4310 + 6.86056i 0.386864 + 0.254444i 0.728011 0.685566i \(-0.240445\pi\)
−0.341147 + 0.940010i \(0.610815\pi\)
\(728\) −45.2317 −1.67640
\(729\) 0 0
\(730\) −5.09374 −0.188528
\(731\) 32.1315 + 21.1332i 1.18843 + 0.781641i
\(732\) 0 0
\(733\) −10.6438 24.6752i −0.393139 0.911398i −0.993726 0.111839i \(-0.964326\pi\)
0.600587 0.799559i \(-0.294933\pi\)
\(734\) 12.8219 + 13.5904i 0.473266 + 0.501632i
\(735\) 0 0
\(736\) −20.0785 + 2.34684i −0.740103 + 0.0865056i
\(737\) −4.65283 + 26.3875i −0.171389 + 0.971996i
\(738\) 0 0
\(739\) −4.23374 24.0107i −0.155740 0.883248i −0.958106 0.286415i \(-0.907536\pi\)
0.802365 0.596833i \(-0.203575\pi\)
\(740\) 0.590047 + 1.97089i 0.0216906 + 0.0724515i
\(741\) 0 0
\(742\) −0.716768 12.3064i −0.0263134 0.451783i
\(743\) 32.2333 + 16.1882i 1.18253 + 0.593887i 0.927782 0.373122i \(-0.121713\pi\)
0.254743 + 0.967009i \(0.418009\pi\)
\(744\) 0 0
\(745\) 23.7184 25.1401i 0.868975 0.921060i
\(746\) 8.46844 + 3.08226i 0.310052 + 0.112850i
\(747\) 0 0
\(748\) 30.2335 11.0041i 1.10544 0.402349i
\(749\) 25.3146 58.6859i 0.924976 2.14434i
\(750\) 0 0
\(751\) 0.670091 2.23826i 0.0244520 0.0816753i −0.944893 0.327380i \(-0.893834\pi\)
0.969345 + 0.245705i \(0.0790194\pi\)
\(752\) 5.58137 + 0.652369i 0.203532 + 0.0237894i
\(753\) 0 0
\(754\) −0.133292 + 2.28853i −0.00485421 + 0.0833435i
\(755\) 1.72660 2.99055i 0.0628372 0.108837i
\(756\) 0 0
\(757\) 8.08646 + 14.0062i 0.293907 + 0.509063i 0.974730 0.223386i \(-0.0717109\pi\)
−0.680823 + 0.732448i \(0.738378\pi\)
\(758\) 14.4790 7.27161i 0.525899 0.264117i
\(759\) 0 0
\(760\) 10.4565 14.0455i 0.379297 0.509485i
\(761\) 44.1342 10.4600i 1.59986 0.379175i 0.668630 0.743595i \(-0.266881\pi\)
0.931234 + 0.364421i \(0.118733\pi\)
\(762\) 0 0
\(763\) −17.3321 23.2811i −0.627465 0.842832i
\(764\) 6.13669 + 5.14929i 0.222018 + 0.186295i
\(765\) 0 0
\(766\) 9.49250 7.96515i 0.342978 0.287793i
\(767\) 23.0359 + 5.45962i 0.831779 + 0.197135i
\(768\) 0 0
\(769\) −15.3444 + 10.0922i −0.553334 + 0.363934i −0.795173 0.606383i \(-0.792620\pi\)
0.241839 + 0.970316i \(0.422250\pi\)
\(770\) −18.5768 + 12.2182i −0.669462 + 0.440312i
\(771\) 0 0
\(772\) −0.237578 0.0563069i −0.00855061 0.00202653i
\(773\) −22.5821 + 18.9486i −0.812222 + 0.681536i −0.951137 0.308769i \(-0.900083\pi\)
0.138915 + 0.990304i \(0.455639\pi\)
\(774\) 0 0
\(775\) −1.41544 1.18769i −0.0508441 0.0426633i
\(776\) −7.89004 10.5982i −0.283236 0.380452i
\(777\) 0 0
\(778\) 21.6806 5.13839i 0.777286 0.184220i
\(779\) −1.82038 + 2.44520i −0.0652220 + 0.0876083i
\(780\) 0 0
\(781\) −27.7020 + 13.9125i −0.991255 + 0.497827i
\(782\) 6.18635 + 10.7151i 0.221224 + 0.383170i
\(783\)