Properties

Label 729.2.g.b.55.6
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.6
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.b.676.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.588281 - 1.36379i) q^{2} +(-0.141360 - 0.149832i) q^{4} +(0.0932044 + 1.60026i) q^{5} +(-1.85061 - 0.438602i) q^{7} +(2.50387 - 0.911335i) q^{8} +O(q^{10})\) \(q+(0.588281 - 1.36379i) q^{2} +(-0.141360 - 0.149832i) q^{4} +(0.0932044 + 1.60026i) q^{5} +(-1.85061 - 0.438602i) q^{7} +(2.50387 - 0.911335i) q^{8} +(2.23724 + 0.814290i) q^{10} +(3.38752 + 2.22800i) q^{11} +(1.67851 + 0.196189i) q^{13} +(-1.68684 + 2.26582i) q^{14} +(0.254067 - 4.36216i) q^{16} +(-4.14727 + 3.47997i) q^{17} +(3.70167 + 3.10607i) q^{19} +(0.226595 - 0.240177i) q^{20} +(5.03133 - 3.30916i) q^{22} +(-0.651612 + 0.154435i) q^{23} +(2.41405 - 0.282162i) q^{25} +(1.25499 - 2.17371i) q^{26} +(0.195884 + 0.339282i) q^{28} +(2.85835 + 3.83943i) q^{29} +(1.39576 - 4.66216i) q^{31} +(-1.03731 - 0.520955i) q^{32} +(2.30618 + 7.70319i) q^{34} +(0.529392 - 3.00233i) q^{35} +(-2.07926 - 11.7921i) q^{37} +(6.41363 - 3.22105i) q^{38} +(1.69174 + 3.92190i) q^{40} +(4.00621 + 9.28743i) q^{41} +(7.64192 - 3.83792i) q^{43} +(-0.145031 - 0.822509i) q^{44} +(-0.172714 + 0.979511i) q^{46} +(-0.0578400 - 0.193199i) q^{47} +(-3.02305 - 1.51823i) q^{49} +(1.03533 - 3.45825i) q^{50} +(-0.207877 - 0.279228i) q^{52} +(-2.48138 - 4.29788i) q^{53} +(-3.24965 + 5.62856i) q^{55} +(-5.03340 + 0.588321i) q^{56} +(6.91768 - 1.63952i) q^{58} +(-1.58520 + 1.04260i) q^{59} +(0.124028 - 0.131462i) q^{61} +(-5.53710 - 4.64618i) q^{62} +(5.37384 - 4.50919i) q^{64} +(-0.157509 + 2.70433i) q^{65} +(-7.95826 + 10.6898i) q^{67} +(1.10767 + 0.129468i) q^{68} +(-3.78311 - 2.48819i) q^{70} +(-9.41216 - 3.42575i) q^{71} +(-10.9327 + 3.97917i) q^{73} +(-17.3051 - 4.10138i) q^{74} +(-0.0578765 - 0.993701i) q^{76} +(-5.29176 - 5.60894i) q^{77} +(-1.45390 + 3.37053i) q^{79} +7.00426 q^{80} +15.0229 q^{82} +(2.17367 - 5.03914i) q^{83} +(-5.95539 - 6.31235i) q^{85} +(-0.738510 - 12.6797i) q^{86} +(10.5124 + 2.49148i) q^{88} +(6.65218 - 2.42120i) q^{89} +(-3.02021 - 1.09927i) q^{91} +(0.115251 + 0.0758017i) q^{92} +(-0.297508 - 0.0347738i) q^{94} +(-4.62550 + 6.21312i) q^{95} +(0.0778051 - 1.33586i) q^{97} +(-3.84894 + 3.22965i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} + 45 q^{29} + 9 q^{31} - 63 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} + 9 q^{38} + 9 q^{40} + 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} - 63 q^{47} + 9 q^{49} + 225 q^{50} + 27 q^{52} - 45 q^{53} - 9 q^{55} - 99 q^{56} + 9 q^{58} + 117 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} - 81 q^{65} + 36 q^{67} + 18 q^{68} + 63 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} + 90 q^{76} - 81 q^{77} + 63 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} + 63 q^{85} - 81 q^{86} + 90 q^{88} + 81 q^{89} - 18 q^{91} + 63 q^{92} + 63 q^{94} - 153 q^{95} + 36 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.588281 1.36379i 0.415977 0.964344i −0.573440 0.819247i \(-0.694392\pi\)
0.989418 0.145096i \(-0.0463492\pi\)
\(3\) 0 0
\(4\) −0.141360 0.149832i −0.0706798 0.0749162i
\(5\) 0.0932044 + 1.60026i 0.0416823 + 0.715657i 0.952816 + 0.303547i \(0.0981710\pi\)
−0.911134 + 0.412110i \(0.864792\pi\)
\(6\) 0 0
\(7\) −1.85061 0.438602i −0.699465 0.165776i −0.134527 0.990910i \(-0.542952\pi\)
−0.564937 + 0.825134i \(0.691100\pi\)
\(8\) 2.50387 0.911335i 0.885253 0.322206i
\(9\) 0 0
\(10\) 2.23724 + 0.814290i 0.707478 + 0.257501i
\(11\) 3.38752 + 2.22800i 1.02137 + 0.671769i 0.945592 0.325356i \(-0.105484\pi\)
0.0757828 + 0.997124i \(0.475854\pi\)
\(12\) 0 0
\(13\) 1.67851 + 0.196189i 0.465534 + 0.0544131i 0.345627 0.938372i \(-0.387666\pi\)
0.119907 + 0.992785i \(0.461740\pi\)
\(14\) −1.68684 + 2.26582i −0.450826 + 0.605565i
\(15\) 0 0
\(16\) 0.254067 4.36216i 0.0635167 1.09054i
\(17\) −4.14727 + 3.47997i −1.00586 + 0.844017i −0.987785 0.155820i \(-0.950198\pi\)
−0.0180743 + 0.999837i \(0.505754\pi\)
\(18\) 0 0
\(19\) 3.70167 + 3.10607i 0.849220 + 0.712581i 0.959618 0.281307i \(-0.0907679\pi\)
−0.110397 + 0.993888i \(0.535212\pi\)
\(20\) 0.226595 0.240177i 0.0506682 0.0537052i
\(21\) 0 0
\(22\) 5.03133 3.30916i 1.07268 0.705515i
\(23\) −0.651612 + 0.154435i −0.135870 + 0.0322019i −0.297988 0.954570i \(-0.596316\pi\)
0.162118 + 0.986771i \(0.448168\pi\)
\(24\) 0 0
\(25\) 2.41405 0.282162i 0.482811 0.0564325i
\(26\) 1.25499 2.17371i 0.246124 0.426300i
\(27\) 0 0
\(28\) 0.195884 + 0.339282i 0.0370187 + 0.0641182i
\(29\) 2.85835 + 3.83943i 0.530782 + 0.712965i 0.983947 0.178462i \(-0.0571123\pi\)
−0.453164 + 0.891427i \(0.649705\pi\)
\(30\) 0 0
\(31\) 1.39576 4.66216i 0.250686 0.837349i −0.736316 0.676638i \(-0.763436\pi\)
0.987002 0.160711i \(-0.0513786\pi\)
\(32\) −1.03731 0.520955i −0.183372 0.0920927i
\(33\) 0 0
\(34\) 2.30618 + 7.70319i 0.395507 + 1.32109i
\(35\) 0.529392 3.00233i 0.0894836 0.507487i
\(36\) 0 0
\(37\) −2.07926 11.7921i −0.341829 1.93861i −0.344973 0.938613i \(-0.612112\pi\)
0.00314382 0.999995i \(-0.498999\pi\)
\(38\) 6.41363 3.22105i 1.04043 0.522523i
\(39\) 0 0
\(40\) 1.69174 + 3.92190i 0.267488 + 0.620107i
\(41\) 4.00621 + 9.28743i 0.625664 + 1.45045i 0.876009 + 0.482296i \(0.160197\pi\)
−0.250344 + 0.968157i \(0.580544\pi\)
\(42\) 0 0
\(43\) 7.64192 3.83792i 1.16538 0.585277i 0.242421 0.970171i \(-0.422059\pi\)
0.922961 + 0.384895i \(0.125762\pi\)
\(44\) −0.145031 0.822509i −0.0218642 0.123998i
\(45\) 0 0
\(46\) −0.172714 + 0.979511i −0.0254653 + 0.144421i
\(47\) −0.0578400 0.193199i −0.00843683 0.0281810i 0.953667 0.300863i \(-0.0972746\pi\)
−0.962104 + 0.272682i \(0.912089\pi\)
\(48\) 0 0
\(49\) −3.02305 1.51823i −0.431864 0.216890i
\(50\) 1.03533 3.45825i 0.146418 0.489070i
\(51\) 0 0
\(52\) −0.207877 0.279228i −0.0288274 0.0387219i
\(53\) −2.48138 4.29788i −0.340844 0.590359i 0.643746 0.765240i \(-0.277379\pi\)
−0.984590 + 0.174880i \(0.944046\pi\)
\(54\) 0 0
\(55\) −3.24965 + 5.62856i −0.438183 + 0.758955i
\(56\) −5.03340 + 0.588321i −0.672617 + 0.0786177i
\(57\) 0 0
\(58\) 6.91768 1.63952i 0.908336 0.215280i
\(59\) −1.58520 + 1.04260i −0.206375 + 0.135735i −0.648489 0.761224i \(-0.724599\pi\)
0.442114 + 0.896959i \(0.354229\pi\)
\(60\) 0 0
\(61\) 0.124028 0.131462i 0.0158802 0.0168320i −0.719385 0.694612i \(-0.755576\pi\)
0.735265 + 0.677780i \(0.237058\pi\)
\(62\) −5.53710 4.64618i −0.703212 0.590065i
\(63\) 0 0
\(64\) 5.37384 4.50919i 0.671730 0.563648i
\(65\) −0.157509 + 2.70433i −0.0195366 + 0.335431i
\(66\) 0 0
\(67\) −7.95826 + 10.6898i −0.972256 + 1.30597i −0.0202796 + 0.999794i \(0.506456\pi\)
−0.951976 + 0.306172i \(0.900952\pi\)
\(68\) 1.10767 + 0.129468i 0.134324 + 0.0157003i
\(69\) 0 0
\(70\) −3.78311 2.48819i −0.452168 0.297396i
\(71\) −9.41216 3.42575i −1.11702 0.406561i −0.283455 0.958985i \(-0.591481\pi\)
−0.833563 + 0.552424i \(0.813703\pi\)
\(72\) 0 0
\(73\) −10.9327 + 3.97917i −1.27957 + 0.465726i −0.890291 0.455392i \(-0.849499\pi\)
−0.389282 + 0.921119i \(0.627277\pi\)
\(74\) −17.3051 4.10138i −2.01168 0.476776i
\(75\) 0 0
\(76\) −0.0578765 0.993701i −0.00663889 0.113985i
\(77\) −5.29176 5.60894i −0.603052 0.639198i
\(78\) 0 0
\(79\) −1.45390 + 3.37053i −0.163577 + 0.379214i −0.980215 0.197936i \(-0.936576\pi\)
0.816638 + 0.577150i \(0.195835\pi\)
\(80\) 7.00426 0.783100
\(81\) 0 0
\(82\) 15.0229 1.65900
\(83\) 2.17367 5.03914i 0.238592 0.553117i −0.756282 0.654246i \(-0.772986\pi\)
0.994873 + 0.101129i \(0.0322454\pi\)
\(84\) 0 0
\(85\) −5.95539 6.31235i −0.645953 0.684670i
\(86\) −0.738510 12.6797i −0.0796356 1.36729i
\(87\) 0 0
\(88\) 10.5124 + 2.49148i 1.12062 + 0.265592i
\(89\) 6.65218 2.42120i 0.705130 0.256646i 0.0355305 0.999369i \(-0.488688\pi\)
0.669600 + 0.742722i \(0.266466\pi\)
\(90\) 0 0
\(91\) −3.02021 1.09927i −0.316604 0.115234i
\(92\) 0.115251 + 0.0758017i 0.0120157 + 0.00790287i
\(93\) 0 0
\(94\) −0.297508 0.0347738i −0.0306857 0.00358664i
\(95\) −4.62550 + 6.21312i −0.474566 + 0.637453i
\(96\) 0 0
\(97\) 0.0778051 1.33586i 0.00789992 0.135636i −0.992052 0.125829i \(-0.959841\pi\)
0.999952 0.00980765i \(-0.00312192\pi\)
\(98\) −3.84894 + 3.22965i −0.388802 + 0.326244i
\(99\) 0 0
\(100\) −0.383526 0.321817i −0.0383526 0.0321817i
\(101\) 3.40131 3.60518i 0.338443 0.358729i −0.535690 0.844415i \(-0.679949\pi\)
0.874134 + 0.485686i \(0.161430\pi\)
\(102\) 0 0
\(103\) 1.90445 1.25258i 0.187652 0.123420i −0.452207 0.891913i \(-0.649363\pi\)
0.639859 + 0.768493i \(0.278993\pi\)
\(104\) 4.38156 1.03845i 0.429648 0.101828i
\(105\) 0 0
\(106\) −7.32115 + 0.855719i −0.711092 + 0.0831148i
\(107\) −2.21467 + 3.83593i −0.214101 + 0.370833i −0.952994 0.302989i \(-0.902015\pi\)
0.738893 + 0.673822i \(0.235349\pi\)
\(108\) 0 0
\(109\) −9.21824 15.9665i −0.882947 1.52931i −0.848049 0.529918i \(-0.822223\pi\)
−0.0348978 0.999391i \(-0.511111\pi\)
\(110\) 5.76445 + 7.74301i 0.549619 + 0.738267i
\(111\) 0 0
\(112\) −2.38343 + 7.96121i −0.225213 + 0.752264i
\(113\) −8.05934 4.04755i −0.758159 0.380762i 0.0273390 0.999626i \(-0.491297\pi\)
−0.785498 + 0.618865i \(0.787593\pi\)
\(114\) 0 0
\(115\) −0.307869 1.02835i −0.0287089 0.0958944i
\(116\) 0.171216 0.971014i 0.0158970 0.0901563i
\(117\) 0 0
\(118\) 0.489346 + 2.77522i 0.0450479 + 0.255479i
\(119\) 9.20129 4.62106i 0.843481 0.423612i
\(120\) 0 0
\(121\) 2.15438 + 4.99442i 0.195853 + 0.454038i
\(122\) −0.106323 0.246485i −0.00962604 0.0223157i
\(123\) 0 0
\(124\) −0.895846 + 0.449911i −0.0804493 + 0.0404032i
\(125\) 2.06830 + 11.7299i 0.184994 + 1.04915i
\(126\) 0 0
\(127\) −0.304561 + 1.72725i −0.0270254 + 0.153269i −0.995334 0.0964872i \(-0.969239\pi\)
0.968309 + 0.249756i \(0.0803504\pi\)
\(128\) −3.65408 12.2055i −0.322978 1.07882i
\(129\) 0 0
\(130\) 3.59547 + 1.80571i 0.315344 + 0.158372i
\(131\) 2.05452 6.86256i 0.179504 0.599585i −0.820121 0.572191i \(-0.806094\pi\)
0.999625 0.0273945i \(-0.00872103\pi\)
\(132\) 0 0
\(133\) −5.48801 7.37168i −0.475871 0.639205i
\(134\) 9.89692 + 17.1420i 0.854964 + 1.48084i
\(135\) 0 0
\(136\) −7.21281 + 12.4930i −0.618493 + 1.07126i
\(137\) −17.3549 + 2.02850i −1.48273 + 0.173307i −0.818624 0.574329i \(-0.805263\pi\)
−0.664109 + 0.747636i \(0.731189\pi\)
\(138\) 0 0
\(139\) −18.4877 + 4.38167i −1.56811 + 0.371649i −0.920630 0.390435i \(-0.872325\pi\)
−0.647478 + 0.762084i \(0.724176\pi\)
\(140\) −0.524681 + 0.345088i −0.0443436 + 0.0291653i
\(141\) 0 0
\(142\) −10.2090 + 10.8209i −0.856719 + 0.908069i
\(143\) 5.24886 + 4.40431i 0.438931 + 0.368307i
\(144\) 0 0
\(145\) −5.87767 + 4.93195i −0.488114 + 0.409576i
\(146\) −1.00474 + 17.2507i −0.0831528 + 1.42768i
\(147\) 0 0
\(148\) −1.47291 + 1.97847i −0.121073 + 0.162629i
\(149\) 7.32320 + 0.855959i 0.599940 + 0.0701229i 0.410642 0.911797i \(-0.365305\pi\)
0.189298 + 0.981920i \(0.439379\pi\)
\(150\) 0 0
\(151\) 2.23139 + 1.46761i 0.181588 + 0.119432i 0.637048 0.770824i \(-0.280155\pi\)
−0.455461 + 0.890256i \(0.650525\pi\)
\(152\) 12.0992 + 4.40374i 0.981372 + 0.357190i
\(153\) 0 0
\(154\) −10.7624 + 3.91721i −0.867262 + 0.315658i
\(155\) 7.59075 + 1.79904i 0.609704 + 0.144502i
\(156\) 0 0
\(157\) 0.332250 + 5.70452i 0.0265165 + 0.455270i 0.985267 + 0.171022i \(0.0547069\pi\)
−0.958751 + 0.284248i \(0.908256\pi\)
\(158\) 3.74138 + 3.96563i 0.297648 + 0.315489i
\(159\) 0 0
\(160\) 0.736981 1.70851i 0.0582635 0.135070i
\(161\) 1.27361 0.100375
\(162\) 0 0
\(163\) 16.0381 1.25620 0.628100 0.778132i \(-0.283833\pi\)
0.628100 + 0.778132i \(0.283833\pi\)
\(164\) 0.825242 1.91313i 0.0644406 0.149390i
\(165\) 0 0
\(166\) −5.59359 5.92886i −0.434147 0.460168i
\(167\) 1.11336 + 19.1157i 0.0861545 + 1.47922i 0.713599 + 0.700554i \(0.247064\pi\)
−0.627445 + 0.778661i \(0.715899\pi\)
\(168\) 0 0
\(169\) −9.87069 2.33940i −0.759284 0.179954i
\(170\) −12.1121 + 4.40846i −0.928959 + 0.338113i
\(171\) 0 0
\(172\) −1.65530 0.602480i −0.126216 0.0459387i
\(173\) −19.7483 12.9886i −1.50143 0.987509i −0.991895 0.127061i \(-0.959446\pi\)
−0.509539 0.860448i \(-0.670184\pi\)
\(174\) 0 0
\(175\) −4.59123 0.536637i −0.347064 0.0405660i
\(176\) 10.5796 14.2108i 0.797464 1.07118i
\(177\) 0 0
\(178\) 0.611352 10.4965i 0.0458228 0.786747i
\(179\) 3.43489 2.88222i 0.256736 0.215427i −0.505331 0.862926i \(-0.668629\pi\)
0.762066 + 0.647499i \(0.224185\pi\)
\(180\) 0 0
\(181\) 2.92076 + 2.45081i 0.217098 + 0.182167i 0.744851 0.667231i \(-0.232521\pi\)
−0.527752 + 0.849398i \(0.676965\pi\)
\(182\) −3.27590 + 3.47225i −0.242826 + 0.257380i
\(183\) 0 0
\(184\) −1.49081 + 0.980522i −0.109904 + 0.0722850i
\(185\) 18.6766 4.42643i 1.37313 0.325438i
\(186\) 0 0
\(187\) −21.8023 + 2.54833i −1.59434 + 0.186352i
\(188\) −0.0207712 + 0.0359768i −0.00151490 + 0.00262388i
\(189\) 0 0
\(190\) 5.75229 + 9.96325i 0.417315 + 0.722810i
\(191\) 10.9862 + 14.7571i 0.794936 + 1.06778i 0.996100 + 0.0882265i \(0.0281199\pi\)
−0.201165 + 0.979557i \(0.564473\pi\)
\(192\) 0 0
\(193\) 4.71004 15.7326i 0.339036 1.13246i −0.603223 0.797573i \(-0.706117\pi\)
0.942259 0.334886i \(-0.108698\pi\)
\(194\) −1.77606 0.891972i −0.127514 0.0640398i
\(195\) 0 0
\(196\) 0.199856 + 0.667566i 0.0142754 + 0.0476833i
\(197\) 3.25113 18.4381i 0.231633 1.31366i −0.617956 0.786213i \(-0.712039\pi\)
0.849589 0.527445i \(-0.176850\pi\)
\(198\) 0 0
\(199\) 0.155470 + 0.881713i 0.0110210 + 0.0625029i 0.989822 0.142309i \(-0.0454527\pi\)
−0.978801 + 0.204812i \(0.934342\pi\)
\(200\) 5.78734 2.90651i 0.409227 0.205521i
\(201\) 0 0
\(202\) −2.91577 6.75953i −0.205153 0.475599i
\(203\) −3.60571 8.35897i −0.253071 0.586685i
\(204\) 0 0
\(205\) −14.4889 + 7.27659i −1.01195 + 0.508219i
\(206\) −0.587899 3.33414i −0.0409609 0.232301i
\(207\) 0 0
\(208\) 1.28226 7.27206i 0.0889088 0.504227i
\(209\) 5.61912 + 18.7692i 0.388683 + 1.29829i
\(210\) 0 0
\(211\) 13.3695 + 6.71439i 0.920391 + 0.462238i 0.844909 0.534909i \(-0.179654\pi\)
0.0754817 + 0.997147i \(0.475951\pi\)
\(212\) −0.293194 + 0.979338i −0.0201367 + 0.0672612i
\(213\) 0 0
\(214\) 3.92854 + 5.27695i 0.268550 + 0.360725i
\(215\) 6.85392 + 11.8713i 0.467433 + 0.809618i
\(216\) 0 0
\(217\) −4.62784 + 8.01565i −0.314158 + 0.544138i
\(218\) −27.1978 + 3.17896i −1.84206 + 0.215306i
\(219\) 0 0
\(220\) 1.30271 0.308748i 0.0878286 0.0208158i
\(221\) −7.64395 + 5.02750i −0.514188 + 0.338186i
\(222\) 0 0
\(223\) 4.25530 4.51035i 0.284956 0.302036i −0.569046 0.822306i \(-0.692687\pi\)
0.854002 + 0.520270i \(0.174169\pi\)
\(224\) 1.69116 + 1.41905i 0.112995 + 0.0948142i
\(225\) 0 0
\(226\) −10.2612 + 8.61013i −0.682562 + 0.572737i
\(227\) 0.830506 14.2592i 0.0551226 0.946419i −0.851468 0.524407i \(-0.824287\pi\)
0.906590 0.422012i \(-0.138676\pi\)
\(228\) 0 0
\(229\) 11.6644 15.6680i 0.770804 1.03537i −0.227300 0.973825i \(-0.572990\pi\)
0.998104 0.0615447i \(-0.0196027\pi\)
\(230\) −1.58357 0.185093i −0.104417 0.0122046i
\(231\) 0 0
\(232\) 10.6560 + 7.00853i 0.699598 + 0.460133i
\(233\) −8.91628 3.24526i −0.584125 0.212604i 0.0330187 0.999455i \(-0.489488\pi\)
−0.617143 + 0.786851i \(0.711710\pi\)
\(234\) 0 0
\(235\) 0.303777 0.110566i 0.0198162 0.00721252i
\(236\) 0.380298 + 0.0901324i 0.0247553 + 0.00586712i
\(237\) 0 0
\(238\) −0.889207 15.2671i −0.0576387 0.989619i
\(239\) 7.55122 + 8.00383i 0.488448 + 0.517725i 0.923976 0.382451i \(-0.124920\pi\)
−0.435528 + 0.900175i \(0.643438\pi\)
\(240\) 0 0
\(241\) −0.867612 + 2.01135i −0.0558878 + 0.129562i −0.943872 0.330312i \(-0.892846\pi\)
0.887984 + 0.459874i \(0.152105\pi\)
\(242\) 8.07871 0.519319
\(243\) 0 0
\(244\) −0.0372298 −0.00238340
\(245\) 2.14780 4.97916i 0.137218 0.318107i
\(246\) 0 0
\(247\) 5.60389 + 5.93978i 0.356567 + 0.377939i
\(248\) −0.753987 12.9455i −0.0478782 0.822038i
\(249\) 0 0
\(250\) 17.2138 + 4.07975i 1.08870 + 0.258026i
\(251\) −6.59388 + 2.39998i −0.416202 + 0.151485i −0.541629 0.840618i \(-0.682192\pi\)
0.125427 + 0.992103i \(0.459970\pi\)
\(252\) 0 0
\(253\) −2.55143 0.928643i −0.160407 0.0583833i
\(254\) 2.17644 + 1.43147i 0.136562 + 0.0898181i
\(255\) 0 0
\(256\) −4.86005 0.568059i −0.303753 0.0355037i
\(257\) 0.279271 0.375126i 0.0174205 0.0233997i −0.793328 0.608795i \(-0.791653\pi\)
0.810748 + 0.585395i \(0.199061\pi\)
\(258\) 0 0
\(259\) −1.32414 + 22.7345i −0.0822778 + 1.41265i
\(260\) 0.427461 0.358683i 0.0265100 0.0222446i
\(261\) 0 0
\(262\) −8.15045 6.83904i −0.503536 0.422517i
\(263\) 13.0974 13.8824i 0.807621 0.856028i −0.184302 0.982870i \(-0.559003\pi\)
0.991923 + 0.126842i \(0.0404841\pi\)
\(264\) 0 0
\(265\) 6.64644 4.37143i 0.408288 0.268535i
\(266\) −13.2819 + 3.14787i −0.814365 + 0.193008i
\(267\) 0 0
\(268\) 2.72665 0.318700i 0.166557 0.0194677i
\(269\) 2.12061 3.67300i 0.129296 0.223947i −0.794108 0.607776i \(-0.792062\pi\)
0.923404 + 0.383830i \(0.125395\pi\)
\(270\) 0 0
\(271\) −3.83162 6.63656i −0.232754 0.403142i 0.725863 0.687839i \(-0.241440\pi\)
−0.958618 + 0.284697i \(0.908107\pi\)
\(272\) 14.1265 + 18.9752i 0.856544 + 1.15054i
\(273\) 0 0
\(274\) −7.44313 + 24.8618i −0.449656 + 1.50196i
\(275\) 8.80630 + 4.42269i 0.531040 + 0.266698i
\(276\) 0 0
\(277\) −4.25476 14.2119i −0.255644 0.853909i −0.985408 0.170210i \(-0.945555\pi\)
0.729764 0.683699i \(-0.239630\pi\)
\(278\) −4.90030 + 27.7910i −0.293901 + 1.66679i
\(279\) 0 0
\(280\) −1.41060 7.99991i −0.0842995 0.478086i
\(281\) −0.994631 + 0.499522i −0.0593347 + 0.0297990i −0.478219 0.878241i \(-0.658718\pi\)
0.418884 + 0.908040i \(0.362421\pi\)
\(282\) 0 0
\(283\) −2.61783 6.06882i −0.155614 0.360754i 0.822518 0.568739i \(-0.192569\pi\)
−0.978132 + 0.207985i \(0.933309\pi\)
\(284\) 0.817211 + 1.89451i 0.0484926 + 0.112418i
\(285\) 0 0
\(286\) 9.09435 4.56735i 0.537760 0.270073i
\(287\) −3.34043 18.9445i −0.197179 1.11826i
\(288\) 0 0
\(289\) 2.13761 12.1230i 0.125742 0.713117i
\(290\) 3.26841 + 10.9173i 0.191928 + 0.641084i
\(291\) 0 0
\(292\) 2.14165 + 1.07557i 0.125330 + 0.0629432i
\(293\) 0.892759 2.98202i 0.0521555 0.174212i −0.927943 0.372721i \(-0.878425\pi\)
0.980099 + 0.198509i \(0.0636100\pi\)
\(294\) 0 0
\(295\) −1.81618 2.43955i −0.105742 0.142036i
\(296\) −15.9528 27.6310i −0.927235 1.60602i
\(297\) 0 0
\(298\) 5.47544 9.48374i 0.317184 0.549379i
\(299\) −1.12403 + 0.131381i −0.0650045 + 0.00759794i
\(300\) 0 0
\(301\) −15.8255 + 3.75072i −0.912168 + 0.216188i
\(302\) 3.31418 2.17977i 0.190710 0.125432i
\(303\) 0 0
\(304\) 14.4896 15.3581i 0.831037 0.880848i
\(305\) 0.221933 + 0.186224i 0.0127079 + 0.0106632i
\(306\) 0 0
\(307\) −5.76257 + 4.83537i −0.328887 + 0.275969i −0.792246 0.610202i \(-0.791088\pi\)
0.463359 + 0.886171i \(0.346644\pi\)
\(308\) −0.0923596 + 1.58575i −0.00526268 + 0.0903567i
\(309\) 0 0
\(310\) 6.91900 9.29383i 0.392973 0.527854i
\(311\) −15.2831 1.78634i −0.866628 0.101294i −0.328851 0.944382i \(-0.606662\pi\)
−0.537777 + 0.843087i \(0.680736\pi\)
\(312\) 0 0
\(313\) 3.31693 + 2.18158i 0.187484 + 0.123310i 0.639781 0.768557i \(-0.279025\pi\)
−0.452297 + 0.891867i \(0.649395\pi\)
\(314\) 7.97521 + 2.90274i 0.450067 + 0.163811i
\(315\) 0 0
\(316\) 0.710537 0.258614i 0.0399708 0.0145482i
\(317\) −8.34397 1.97756i −0.468644 0.111071i −0.0104930 0.999945i \(-0.503340\pi\)
−0.458151 + 0.888874i \(0.651488\pi\)
\(318\) 0 0
\(319\) 1.12844 + 19.3746i 0.0631805 + 1.08477i
\(320\) 7.71673 + 8.17925i 0.431378 + 0.457234i
\(321\) 0 0
\(322\) 0.749242 1.73694i 0.0417536 0.0967958i
\(323\) −26.1608 −1.45563
\(324\) 0 0
\(325\) 4.10736 0.227835
\(326\) 9.43490 21.8726i 0.522551 1.21141i
\(327\) 0 0
\(328\) 18.4950 + 19.6035i 1.02121 + 1.08242i
\(329\) 0.0223016 + 0.382905i 0.00122953 + 0.0211102i
\(330\) 0 0
\(331\) −9.07927 2.15183i −0.499042 0.118275i −0.0266164 0.999646i \(-0.508473\pi\)
−0.472425 + 0.881371i \(0.656621\pi\)
\(332\) −1.06230 + 0.386644i −0.0583010 + 0.0212198i
\(333\) 0 0
\(334\) 26.7247 + 9.72699i 1.46231 + 0.532237i
\(335\) −17.8482 11.7389i −0.975150 0.641366i
\(336\) 0 0
\(337\) −4.37776 0.511687i −0.238472 0.0278734i −0.00398267 0.999992i \(-0.501268\pi\)
−0.234489 + 0.972119i \(0.575342\pi\)
\(338\) −8.99717 + 12.0853i −0.489382 + 0.657354i
\(339\) 0 0
\(340\) −0.103942 + 1.78462i −0.00563706 + 0.0967847i
\(341\) 15.1155 12.6834i 0.818548 0.686844i
\(342\) 0 0
\(343\) 15.1270 + 12.6931i 0.816782 + 0.685362i
\(344\) 15.6368 16.5740i 0.843078 0.893610i
\(345\) 0 0
\(346\) −29.3313 + 19.2915i −1.57686 + 1.03712i
\(347\) −19.4982 + 4.62117i −1.04672 + 0.248077i −0.717777 0.696273i \(-0.754840\pi\)
−0.328943 + 0.944350i \(0.606692\pi\)
\(348\) 0 0
\(349\) 33.4202 3.90626i 1.78894 0.209097i 0.844001 0.536342i \(-0.180194\pi\)
0.944939 + 0.327245i \(0.106120\pi\)
\(350\) −3.43279 + 5.94576i −0.183490 + 0.317814i
\(351\) 0 0
\(352\) −2.35320 4.07587i −0.125426 0.217244i
\(353\) −4.81620 6.46927i −0.256340 0.344325i 0.655259 0.755404i \(-0.272559\pi\)
−0.911600 + 0.411079i \(0.865152\pi\)
\(354\) 0 0
\(355\) 4.60483 15.3812i 0.244399 0.816349i
\(356\) −1.30312 0.654453i −0.0690654 0.0346859i
\(357\) 0 0
\(358\) −1.91005 6.38002i −0.100949 0.337194i
\(359\) 2.83469 16.0764i 0.149609 0.848477i −0.813940 0.580948i \(-0.802682\pi\)
0.963550 0.267529i \(-0.0862071\pi\)
\(360\) 0 0
\(361\) 0.755367 + 4.28390i 0.0397562 + 0.225468i
\(362\) 5.06061 2.54153i 0.265980 0.133580i
\(363\) 0 0
\(364\) 0.262230 + 0.607917i 0.0137446 + 0.0318635i
\(365\) −7.38667 17.1242i −0.386636 0.896323i
\(366\) 0 0
\(367\) 11.7615 5.90686i 0.613947 0.308336i −0.114516 0.993421i \(-0.536532\pi\)
0.728462 + 0.685086i \(0.240235\pi\)
\(368\) 0.508116 + 2.88167i 0.0264874 + 0.150217i
\(369\) 0 0
\(370\) 4.95036 28.0749i 0.257357 1.45954i
\(371\) 2.70701 + 9.04204i 0.140541 + 0.469439i
\(372\) 0 0
\(373\) 0.194504 + 0.0976835i 0.0100710 + 0.00505786i 0.453828 0.891090i \(-0.350058\pi\)
−0.443757 + 0.896147i \(0.646354\pi\)
\(374\) −9.35050 + 31.2329i −0.483503 + 1.61501i
\(375\) 0 0
\(376\) −0.320893 0.431034i −0.0165488 0.0222289i
\(377\) 4.04451 + 7.00529i 0.208303 + 0.360791i
\(378\) 0 0
\(379\) 12.0931 20.9458i 0.621180 1.07592i −0.368086 0.929792i \(-0.619987\pi\)
0.989266 0.146124i \(-0.0466797\pi\)
\(380\) 1.58478 0.185235i 0.0812977 0.00950234i
\(381\) 0 0
\(382\) 26.5885 6.30159i 1.36039 0.322417i
\(383\) −7.06738 + 4.64829i −0.361126 + 0.237516i −0.717086 0.696985i \(-0.754524\pi\)
0.355960 + 0.934501i \(0.384154\pi\)
\(384\) 0 0
\(385\) 8.48253 8.99096i 0.432310 0.458222i
\(386\) −18.6851 15.6787i −0.951048 0.798024i
\(387\) 0 0
\(388\) −0.211154 + 0.177179i −0.0107197 + 0.00899491i
\(389\) −1.46030 + 25.0723i −0.0740400 + 1.27122i 0.732799 + 0.680446i \(0.238214\pi\)
−0.806839 + 0.590772i \(0.798823\pi\)
\(390\) 0 0
\(391\) 2.16498 2.90807i 0.109488 0.147067i
\(392\) −8.95294 1.04645i −0.452192 0.0528536i
\(393\) 0 0
\(394\) −23.2330 15.2806i −1.17046 0.769826i
\(395\) −5.52922 2.01247i −0.278205 0.101258i
\(396\) 0 0
\(397\) 23.8173 8.66880i 1.19536 0.435074i 0.333756 0.942660i \(-0.391684\pi\)
0.861602 + 0.507585i \(0.169462\pi\)
\(398\) 1.29393 + 0.306667i 0.0648588 + 0.0153718i
\(399\) 0 0
\(400\) −0.617506 10.6022i −0.0308753 0.530108i
\(401\) −16.2900 17.2664i −0.813483 0.862242i 0.179097 0.983831i \(-0.442682\pi\)
−0.992580 + 0.121589i \(0.961201\pi\)
\(402\) 0 0
\(403\) 3.25746 7.55163i 0.162265 0.376174i
\(404\) −1.02098 −0.0507957
\(405\) 0 0
\(406\) −13.5210 −0.671037
\(407\) 19.2293 44.5785i 0.953160 2.20967i
\(408\) 0 0
\(409\) −6.44213 6.82826i −0.318543 0.337636i 0.548240 0.836321i \(-0.315298\pi\)
−0.866783 + 0.498685i \(0.833816\pi\)
\(410\) 1.40020 + 24.0404i 0.0691508 + 1.18727i
\(411\) 0 0
\(412\) −0.456890 0.108285i −0.0225093 0.00533481i
\(413\) 3.39087 1.23418i 0.166854 0.0607298i
\(414\) 0 0
\(415\) 8.26652 + 3.00877i 0.405787 + 0.147695i
\(416\) −1.63892 1.07794i −0.0803547 0.0528501i
\(417\) 0 0
\(418\) 28.9028 + 3.37825i 1.41368 + 0.165236i
\(419\) 7.01065 9.41694i 0.342493 0.460048i −0.597187 0.802102i \(-0.703715\pi\)
0.939680 + 0.342054i \(0.111123\pi\)
\(420\) 0 0
\(421\) −0.393410 + 6.75459i −0.0191736 + 0.329199i 0.975058 + 0.221948i \(0.0712416\pi\)
−0.994232 + 0.107250i \(0.965795\pi\)
\(422\) 17.0220 14.2831i 0.828618 0.695293i
\(423\) 0 0
\(424\) −10.1299 8.49998i −0.491950 0.412795i
\(425\) −9.02980 + 9.57103i −0.438010 + 0.464263i
\(426\) 0 0
\(427\) −0.287187 + 0.188886i −0.0138980 + 0.00914083i
\(428\) 0.887812 0.210415i 0.0429140 0.0101708i
\(429\) 0 0
\(430\) 20.2220 2.36361i 0.975191 0.113984i
\(431\) −3.90563 + 6.76475i −0.188128 + 0.325846i −0.944626 0.328149i \(-0.893575\pi\)
0.756498 + 0.653996i \(0.226908\pi\)
\(432\) 0 0
\(433\) −2.20878 3.82573i −0.106147 0.183853i 0.808059 0.589102i \(-0.200518\pi\)
−0.914206 + 0.405249i \(0.867185\pi\)
\(434\) 8.20918 + 11.0268i 0.394053 + 0.529305i
\(435\) 0 0
\(436\) −1.08921 + 3.63820i −0.0521635 + 0.174238i
\(437\) −2.89173 1.45228i −0.138330 0.0694721i
\(438\) 0 0
\(439\) 4.31161 + 14.4018i 0.205782 + 0.687360i 0.997110 + 0.0759684i \(0.0242048\pi\)
−0.791328 + 0.611392i \(0.790610\pi\)
\(440\) −3.00721 + 17.0547i −0.143363 + 0.813052i
\(441\) 0 0
\(442\) 2.35966 + 13.3823i 0.112238 + 0.636531i
\(443\) −10.1485 + 5.09675i −0.482168 + 0.242154i −0.673243 0.739422i \(-0.735099\pi\)
0.191075 + 0.981576i \(0.438803\pi\)
\(444\) 0 0
\(445\) 4.49455 + 10.4195i 0.213062 + 0.493934i
\(446\) −3.64786 8.45668i −0.172731 0.400435i
\(447\) 0 0
\(448\) −11.9226 + 5.98776i −0.563291 + 0.282895i
\(449\) 1.16004 + 6.57891i 0.0547457 + 0.310478i 0.999868 0.0162381i \(-0.00516898\pi\)
−0.945122 + 0.326716i \(0.894058\pi\)
\(450\) 0 0
\(451\) −7.12134 + 40.3871i −0.335331 + 1.90176i
\(452\) 0.532810 + 1.77971i 0.0250613 + 0.0837105i
\(453\) 0 0
\(454\) −18.9580 9.52106i −0.889743 0.446846i
\(455\) 1.47761 4.93557i 0.0692716 0.231383i
\(456\) 0 0
\(457\) 7.17351 + 9.63570i 0.335563 + 0.450739i 0.937593 0.347734i \(-0.113049\pi\)
−0.602030 + 0.798473i \(0.705641\pi\)
\(458\) −14.5059 25.1249i −0.677815 1.17401i
\(459\) 0 0
\(460\) −0.110560 + 0.191496i −0.00515490 + 0.00892855i
\(461\) 6.95142 0.812504i 0.323760 0.0378421i 0.0473393 0.998879i \(-0.484926\pi\)
0.276421 + 0.961037i \(0.410852\pi\)
\(462\) 0 0
\(463\) 27.2778 6.46495i 1.26771 0.300452i 0.458879 0.888499i \(-0.348251\pi\)
0.808827 + 0.588047i \(0.200103\pi\)
\(464\) 17.4744 11.4931i 0.811229 0.533554i
\(465\) 0 0
\(466\) −9.67112 + 10.2508i −0.448006 + 0.474858i
\(467\) 10.9662 + 9.20178i 0.507458 + 0.425807i 0.860233 0.509900i \(-0.170318\pi\)
−0.352776 + 0.935708i \(0.614762\pi\)
\(468\) 0 0
\(469\) 19.4162 16.2921i 0.896557 0.752300i
\(470\) 0.0279179 0.479331i 0.00128776 0.0221099i
\(471\) 0 0
\(472\) −3.01898 + 4.05519i −0.138960 + 0.186655i
\(473\) 34.4380 + 4.02523i 1.58346 + 0.185080i
\(474\) 0 0
\(475\) 9.81243 + 6.45374i 0.450225 + 0.296118i
\(476\) −1.99307 0.725420i −0.0913524 0.0332496i
\(477\) 0 0
\(478\) 15.3578 5.58977i 0.702448 0.255670i
\(479\) 21.8904 + 5.18813i 1.00020 + 0.237052i 0.697926 0.716170i \(-0.254106\pi\)
0.302273 + 0.953221i \(0.402255\pi\)
\(480\) 0 0
\(481\) −1.17658 20.2010i −0.0536473 0.921088i
\(482\) 2.23266 + 2.36648i 0.101695 + 0.107790i
\(483\) 0 0
\(484\) 0.443783 1.02881i 0.0201720 0.0467639i
\(485\) 2.14498 0.0973984
\(486\) 0 0
\(487\) −41.7203 −1.89053 −0.945264 0.326307i \(-0.894196\pi\)
−0.945264 + 0.326307i \(0.894196\pi\)
\(488\) 0.190745 0.442196i 0.00863460 0.0200173i
\(489\) 0 0
\(490\) −5.52701 5.85829i −0.249685 0.264650i
\(491\) −0.643607 11.0503i −0.0290456 0.498694i −0.981190 0.193045i \(-0.938164\pi\)
0.952144 0.305649i \(-0.0988733\pi\)
\(492\) 0 0
\(493\) −25.2154 5.97617i −1.13565 0.269153i
\(494\) 11.3973 4.14826i 0.512787 0.186639i
\(495\) 0 0
\(496\) −19.9825 7.27302i −0.897239 0.326568i
\(497\) 15.9157 + 10.4679i 0.713917 + 0.469550i
\(498\) 0 0
\(499\) −7.76171 0.907214i −0.347462 0.0406125i −0.0594278 0.998233i \(-0.518928\pi\)
−0.288034 + 0.957620i \(0.593002\pi\)
\(500\) 1.46514 1.96803i 0.0655232 0.0880130i
\(501\) 0 0
\(502\) −0.605994 + 10.4045i −0.0270468 + 0.464376i
\(503\) −18.1547 + 15.2336i −0.809478 + 0.679233i −0.950483 0.310776i \(-0.899411\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(504\) 0 0
\(505\) 6.08624 + 5.10696i 0.270834 + 0.227257i
\(506\) −2.76743 + 2.93330i −0.123027 + 0.130401i
\(507\) 0 0
\(508\) 0.301851 0.198530i 0.0133925 0.00880836i
\(509\) −12.1281 + 2.87442i −0.537570 + 0.127406i −0.490428 0.871482i \(-0.663159\pi\)
−0.0471419 + 0.998888i \(0.515011\pi\)
\(510\) 0 0
\(511\) 21.9774 2.56879i 0.972222 0.113636i
\(512\) 9.10692 15.7736i 0.402473 0.697103i
\(513\) 0 0
\(514\) −0.347303 0.601546i −0.0153189 0.0265331i
\(515\) 2.18195 + 2.93087i 0.0961484 + 0.129150i
\(516\) 0 0
\(517\) 0.234514 0.783332i 0.0103139 0.0344509i
\(518\) 30.2261 + 15.1801i 1.32806 + 0.666976i
\(519\) 0 0
\(520\) 2.07017 + 6.91484i 0.0907829 + 0.303236i
\(521\) −3.66734 + 20.7985i −0.160669 + 0.911200i 0.792749 + 0.609548i \(0.208649\pi\)
−0.953418 + 0.301652i \(0.902462\pi\)
\(522\) 0 0
\(523\) 7.23247 + 41.0174i 0.316254 + 1.79356i 0.565102 + 0.825021i \(0.308837\pi\)
−0.248848 + 0.968543i \(0.580052\pi\)
\(524\) −1.31866 + 0.662256i −0.0576059 + 0.0289308i
\(525\) 0 0
\(526\) −11.2277 26.0288i −0.489553 1.13491i
\(527\) 10.4356 + 24.1924i 0.454581 + 1.05384i
\(528\) 0 0
\(529\) −20.1528 + 10.1211i −0.876209 + 0.440049i
\(530\) −2.05173 11.6360i −0.0891217 0.505434i
\(531\) 0 0
\(532\) −0.328733 + 1.86434i −0.0142524 + 0.0808293i
\(533\) 4.90235 + 16.3750i 0.212344 + 0.709279i
\(534\) 0 0
\(535\) −6.34489 3.18653i −0.274314 0.137766i
\(536\) −10.1845 + 34.0185i −0.439902 + 1.46938i
\(537\) 0 0
\(538\) −3.76168 5.05281i −0.162177 0.217842i
\(539\) −6.85799 11.8784i −0.295395 0.511638i
\(540\) 0 0
\(541\) −4.87647 + 8.44629i −0.209656 + 0.363134i −0.951606 0.307320i \(-0.900568\pi\)
0.741950 + 0.670455i \(0.233901\pi\)
\(542\) −11.3049 + 1.32136i −0.485588 + 0.0567571i
\(543\) 0 0
\(544\) 6.11490 1.44926i 0.262174 0.0621364i
\(545\) 24.6913 16.2397i 1.05766 0.695632i
\(546\) 0 0
\(547\) −0.475687 + 0.504198i −0.0203389 + 0.0215580i −0.737463 0.675387i \(-0.763976\pi\)
0.717124 + 0.696945i \(0.245458\pi\)
\(548\) 2.75722 + 2.31358i 0.117783 + 0.0988314i
\(549\) 0 0
\(550\) 11.2122 9.40814i 0.478089 0.401164i
\(551\) −1.34487 + 23.0905i −0.0572934 + 0.983689i
\(552\) 0 0
\(553\) 4.16893 5.59984i 0.177281 0.238130i
\(554\) −21.8850 2.55799i −0.929804 0.108678i
\(555\) 0 0
\(556\) 3.26993 + 2.15067i 0.138676 + 0.0912087i
\(557\) 28.7125 + 10.4505i 1.21659 + 0.442801i 0.868984 0.494841i \(-0.164774\pi\)
0.347602 + 0.937642i \(0.386996\pi\)
\(558\) 0 0
\(559\) 13.5800 4.94270i 0.574371 0.209054i
\(560\) −12.9621 3.07208i −0.547751 0.129819i
\(561\) 0 0
\(562\) 0.0961204 + 1.65032i 0.00405460 + 0.0696147i
\(563\) −6.68923 7.09017i −0.281918 0.298815i 0.570905 0.821016i \(-0.306593\pi\)
−0.852822 + 0.522201i \(0.825111\pi\)
\(564\) 0 0
\(565\) 5.72596 13.2743i 0.240893 0.558453i
\(566\) −9.81660 −0.412622
\(567\) 0 0
\(568\) −26.6889 −1.11984
\(569\) 7.79560 18.0722i 0.326808 0.757627i −0.673029 0.739616i \(-0.735007\pi\)
0.999838 0.0180113i \(-0.00573349\pi\)
\(570\) 0 0
\(571\) 22.6458 + 24.0031i 0.947697 + 1.00450i 0.999983 + 0.00586776i \(0.00186778\pi\)
−0.0522860 + 0.998632i \(0.516651\pi\)
\(572\) −0.0820673 1.40904i −0.00343140 0.0589149i
\(573\) 0 0
\(574\) −27.8014 6.58906i −1.16041 0.275022i
\(575\) −1.52945 + 0.556674i −0.0637824 + 0.0232149i
\(576\) 0 0
\(577\) −19.1279 6.96197i −0.796303 0.289831i −0.0883494 0.996090i \(-0.528159\pi\)
−0.707954 + 0.706259i \(0.750381\pi\)
\(578\) −15.2757 10.0470i −0.635384 0.417899i
\(579\) 0 0
\(580\) 1.56983 + 0.183487i 0.0651837 + 0.00761888i
\(581\) −6.23280 + 8.37210i −0.258580 + 0.347333i
\(582\) 0 0
\(583\) 1.16997 20.0877i 0.0484553 0.831946i
\(584\) −23.7477 + 19.9267i −0.982686 + 0.824571i
\(585\) 0 0
\(586\) −3.54165 2.97180i −0.146304 0.122764i
\(587\) −24.1185 + 25.5641i −0.995477 + 1.05514i 0.00300161 + 0.999995i \(0.499045\pi\)
−0.998478 + 0.0551480i \(0.982437\pi\)
\(588\) 0 0
\(589\) 19.6476 12.9224i 0.809566 0.532460i
\(590\) −4.39545 + 1.04174i −0.180958 + 0.0428878i
\(591\) 0 0
\(592\) −51.9672 + 6.07410i −2.13584 + 0.249644i
\(593\) 4.46816 7.73909i 0.183485 0.317806i −0.759580 0.650414i \(-0.774595\pi\)
0.943065 + 0.332608i \(0.107929\pi\)
\(594\) 0 0
\(595\) 8.25249 + 14.2937i 0.338319 + 0.585986i
\(596\) −0.906953 1.21825i −0.0371503 0.0499015i
\(597\) 0 0
\(598\) −0.482071 + 1.61023i −0.0197134 + 0.0658472i
\(599\) 35.4506 + 17.8040i 1.44847 + 0.727451i 0.987152 0.159782i \(-0.0510791\pi\)
0.461322 + 0.887233i \(0.347375\pi\)
\(600\) 0 0
\(601\) −6.78673 22.6693i −0.276837 0.924699i −0.977452 0.211159i \(-0.932276\pi\)
0.700615 0.713539i \(-0.252909\pi\)
\(602\) −4.19466 + 23.7891i −0.170962 + 0.969572i
\(603\) 0 0
\(604\) −0.0955328 0.541794i −0.00388718 0.0220453i
\(605\) −7.79156 + 3.91307i −0.316772 + 0.159089i
\(606\) 0 0
\(607\) 7.03429 + 16.3073i 0.285513 + 0.661893i 0.999258 0.0385121i \(-0.0122618\pi\)
−0.713745 + 0.700405i \(0.753003\pi\)
\(608\) −2.22164 5.15035i −0.0900995 0.208874i
\(609\) 0 0
\(610\) 0.384529 0.193118i 0.0155691 0.00781911i
\(611\) −0.0591812 0.335633i −0.00239422 0.0135783i
\(612\) 0 0
\(613\) −0.410662 + 2.32898i −0.0165865 + 0.0940666i −0.991977 0.126417i \(-0.959652\pi\)
0.975391 + 0.220483i \(0.0707635\pi\)
\(614\) 3.20441 + 10.7035i 0.129319 + 0.431957i
\(615\) 0 0
\(616\) −18.3615 9.22150i −0.739807 0.371545i
\(617\) 9.69418 32.3808i 0.390273 1.30360i −0.506931 0.861986i \(-0.669220\pi\)
0.897204 0.441616i \(-0.145595\pi\)
\(618\) 0 0
\(619\) 28.3599 + 38.0940i 1.13988 + 1.53113i 0.809345 + 0.587334i \(0.199823\pi\)
0.330537 + 0.943793i \(0.392770\pi\)
\(620\) −0.803470 1.39165i −0.0322681 0.0558901i
\(621\) 0 0
\(622\) −11.4270 + 19.7921i −0.458180 + 0.793591i
\(623\) −13.3725 + 1.56303i −0.535759 + 0.0626213i
\(624\) 0 0
\(625\) −6.75322 + 1.60054i −0.270129 + 0.0640217i
\(626\) 4.92649 3.24021i 0.196902 0.129505i
\(627\) 0 0
\(628\) 0.807755 0.856170i 0.0322329 0.0341649i
\(629\) 49.6594 + 41.6692i 1.98005 + 1.66146i
\(630\) 0 0
\(631\) −14.6874 + 12.3242i −0.584695 + 0.490617i −0.886485 0.462757i \(-0.846860\pi\)
0.301790 + 0.953374i \(0.402416\pi\)
\(632\) −0.568709 + 9.76436i −0.0226220 + 0.388406i
\(633\) 0 0
\(634\) −7.60557 + 10.2161i −0.302056 + 0.405731i
\(635\) −2.79244 0.326389i −0.110814 0.0129523i
\(636\) 0 0
\(637\) −4.77634 3.14145i −0.189246 0.124469i
\(638\) 27.0866 + 9.85872i 1.07237 + 0.390311i
\(639\) 0 0
\(640\) 19.1913 6.98507i 0.758603 0.276109i
\(641\) −2.04822 0.485436i −0.0808997 0.0191736i 0.189967 0.981791i \(-0.439162\pi\)
−0.270866 + 0.962617i \(0.587310\pi\)
\(642\) 0 0
\(643\) 2.54772 + 43.7427i 0.100472 + 1.72504i 0.552905 + 0.833244i \(0.313519\pi\)
−0.452433 + 0.891798i \(0.649444\pi\)
\(644\) −0.180037 0.190829i −0.00709447 0.00751970i
\(645\) 0 0
\(646\) −15.3899 + 35.6778i −0.605507 + 1.40372i
\(647\) −2.17952 −0.0856859 −0.0428430 0.999082i \(-0.513642\pi\)
−0.0428430 + 0.999082i \(0.513642\pi\)
\(648\) 0 0
\(649\) −7.69281 −0.301969
\(650\) 2.41628 5.60157i 0.0947743 0.219712i
\(651\) 0 0
\(652\) −2.26714 2.40303i −0.0887880 0.0941098i
\(653\) −1.08815 18.6828i −0.0425826 0.731115i −0.950262 0.311451i \(-0.899185\pi\)
0.907680 0.419664i \(-0.137852\pi\)
\(654\) 0 0
\(655\) 11.1734 + 2.64814i 0.436579 + 0.103471i
\(656\) 41.5311 15.1161i 1.62152 0.590183i
\(657\) 0 0
\(658\) 0.535320 + 0.194841i 0.0208689 + 0.00759568i
\(659\) −11.9512 7.86043i −0.465553 0.306199i 0.294974 0.955505i \(-0.404689\pi\)
−0.760527 + 0.649306i \(0.775059\pi\)
\(660\) 0 0
\(661\) −24.8243 2.90155i −0.965555 0.112857i −0.381321 0.924443i \(-0.624531\pi\)
−0.584234 + 0.811586i \(0.698605\pi\)
\(662\) −8.27579 + 11.1163i −0.321648 + 0.432048i
\(663\) 0 0
\(664\) 0.850255 14.5983i 0.0329963 0.566524i
\(665\) 11.2851 9.46931i 0.437617 0.367204i
\(666\) 0 0
\(667\) −2.45548 2.06039i −0.0950764 0.0797786i
\(668\) 2.70676 2.86900i 0.104728 0.111005i
\(669\) 0 0
\(670\) −26.5091 + 17.4353i −1.02414 + 0.673586i
\(671\) 0.713045 0.168995i 0.0275268 0.00652397i
\(672\) 0 0
\(673\) 29.4895 3.44683i 1.13674 0.132866i 0.473163 0.880975i \(-0.343112\pi\)
0.663576 + 0.748109i \(0.269038\pi\)
\(674\) −3.27319 + 5.66933i −0.126078 + 0.218374i
\(675\) 0 0
\(676\) 1.04480 + 1.80964i 0.0401846 + 0.0696017i
\(677\) −23.1605 31.1099i −0.890129 1.19565i −0.979860 0.199685i \(-0.936008\pi\)
0.0897310 0.995966i \(-0.471399\pi\)
\(678\) 0 0
\(679\) −0.729900 + 2.43803i −0.0280110 + 0.0935632i
\(680\) −20.6642 10.3780i −0.792436 0.397977i
\(681\) 0 0
\(682\) −8.40530 28.0757i −0.321856 1.07507i
\(683\) 2.81006 15.9367i 0.107524 0.609799i −0.882658 0.470016i \(-0.844248\pi\)
0.990182 0.139784i \(-0.0446407\pi\)
\(684\) 0 0
\(685\) −4.86369 27.5833i −0.185832 1.05391i
\(686\) 26.2096 13.1630i 1.00069 0.502564i
\(687\) 0 0
\(688\) −14.8000 34.3103i −0.564246 1.30807i
\(689\) −3.32182 7.70084i −0.126551 0.293379i
\(690\) 0 0
\(691\) −15.7344 + 7.90210i −0.598564 + 0.300610i −0.722164 0.691722i \(-0.756852\pi\)
0.123600 + 0.992332i \(0.460556\pi\)
\(692\) 0.845488 + 4.79500i 0.0321406 + 0.182279i
\(693\) 0 0
\(694\) −5.16814 + 29.3100i −0.196180 + 1.11259i
\(695\) −8.73495 29.1768i −0.331335 1.10674i
\(696\) 0 0
\(697\) −48.9348 24.5760i −1.85354 0.930881i
\(698\) 14.3331 47.8760i 0.542517 1.81213i
\(699\) 0 0
\(700\) 0.568608 + 0.763773i 0.0214914 + 0.0288679i
\(701\) 9.33660 + 16.1715i 0.352639 + 0.610788i 0.986711 0.162486i \(-0.0519512\pi\)
−0.634072 + 0.773274i \(0.718618\pi\)
\(702\) 0 0
\(703\) 28.9303 50.1087i 1.09113 1.88989i
\(704\) 28.2504 3.30200i 1.06473 0.124449i
\(705\) 0 0
\(706\) −11.6560 + 2.76252i −0.438679 + 0.103969i
\(707\) −7.87574 + 5.17996i −0.296198 + 0.194812i
\(708\) 0 0
\(709\) −22.6076 + 23.9627i −0.849047 + 0.899938i −0.996013 0.0892040i \(-0.971568\pi\)
0.146966 + 0.989142i \(0.453049\pi\)
\(710\) −18.2677 15.3285i −0.685576 0.575267i
\(711\) 0 0
\(712\) 14.4497 12.1247i 0.541526 0.454394i
\(713\) −0.189493 + 3.25347i −0.00709657 + 0.121843i
\(714\) 0 0
\(715\) −6.55882 + 8.81003i −0.245286 + 0.329476i
\(716\) −0.917404 0.107229i −0.0342850 0.00400734i
\(717\) 0 0
\(718\) −20.2571 13.3233i −0.755990 0.497222i
\(719\) −43.1137 15.6921i −1.60787 0.585216i −0.626852 0.779139i \(-0.715657\pi\)
−0.981017 + 0.193922i \(0.937879\pi\)
\(720\) 0 0
\(721\) −4.07379 + 1.48274i −0.151716 + 0.0552200i
\(722\) 6.28670 + 1.48997i 0.233967 + 0.0554511i
\(723\) 0 0
\(724\) −0.0456669 0.784070i −0.00169720 0.0291397i
\(725\) 7.98355 + 8.46207i 0.296502 + 0.314273i
\(726\) 0 0
\(727\) 6.39466 14.8245i 0.237165 0.549810i −0.757516 0.652817i \(-0.773587\pi\)
0.994681 + 0.103007i \(0.0328464\pi\)
\(728\) −8.56403 −0.317404
\(729\) 0 0
\(730\) −27.6992 −1.02519
\(731\) −18.3372 + 42.5105i −0.678227 + 1.57231i
\(732\) 0 0
\(733\) 17.6698 + 18.7289i 0.652648 + 0.691767i 0.966197 0.257805i \(-0.0829993\pi\)
−0.313549 + 0.949572i \(0.601518\pi\)
\(734\) −1.13663 19.5151i −0.0419536 0.720316i
\(735\) 0 0
\(736\) 0.756375 + 0.179264i 0.0278803 + 0.00660776i
\(737\) −50.7756 + 18.4808i −1.87034 + 0.680750i
\(738\) 0 0
\(739\) −16.9934 6.18508i −0.625111 0.227522i 0.00999089 0.999950i \(-0.496820\pi\)
−0.635102 + 0.772428i \(0.719042\pi\)
\(740\) −3.30334 2.17264i −0.121433 0.0798678i
\(741\) 0 0
\(742\) 13.9239 + 1.62747i 0.511162 + 0.0597463i
\(743\) 26.4761 35.5636i 0.971314 1.30470i 0.0189230 0.999821i \(-0.493976\pi\)
0.952391 0.304880i \(-0.0986163\pi\)
\(744\) 0 0
\(745\) −0.687201 + 11.7988i −0.0251771 + 0.432274i
\(746\) 0.247642 0.207797i 0.00906683 0.00760798i
\(747\) 0 0
\(748\) 3.46379 + 2.90646i 0.126649 + 0.106271i
\(749\) 5.78095 6.12744i 0.211231 0.223892i
\(750\) 0 0
\(751\) −2.09320 + 1.37672i −0.0763819 + 0.0502372i −0.587126 0.809496i \(-0.699741\pi\)
0.510744 + 0.859733i \(0.329370\pi\)
\(752\) −0.857459 + 0.203222i −0.0312683 + 0.00741073i
\(753\) 0 0
\(754\) 11.9330 1.39477i 0.434575 0.0507946i
\(755\) −2.14057 + 3.70758i −0.0779034 + 0.134933i
\(756\) 0 0
\(757\) 21.8769 + 37.8919i 0.795129 + 1.37720i 0.922757 + 0.385381i \(0.125930\pi\)
−0.127629 + 0.991822i \(0.540737\pi\)
\(758\) −21.4515 28.8144i −0.779155 1.04659i
\(759\) 0 0
\(760\) −5.91942 + 19.7722i −0.214720 + 0.717215i
\(761\) −41.2979 20.7406i −1.49705 0.751846i −0.503366 0.864073i \(-0.667905\pi\)
−0.993683 + 0.112227i \(0.964202\pi\)
\(762\) 0 0
\(763\) 10.0564 + 33.5908i 0.364067 + 1.21607i
\(764\) 0.658078 3.73214i 0.0238084 0.135024i
\(765\) 0 0
\(766\) 2.18168 + 12.3729i 0.0788272 + 0.447051i
\(767\) −2.86531 + 1.43901i −0.103460 + 0.0519598i
\(768\) 0 0
\(769\) 11.5490 + 26.7737i 0.416469 + 0.965483i 0.989311 + 0.145818i \(0.0465814\pi\)
−0.572843 + 0.819665i \(0.694159\pi\)
\(770\) −7.27165 16.8576i −0.262052 0.607505i
\(771\) 0 0
\(772\) −3.02306 + 1.51824i −0.108802 + 0.0546427i
\(773\) 6.90323 + 39.1502i 0.248292 + 1.40813i 0.812721 + 0.582653i \(0.197985\pi\)
−0.564429 + 0.825481i \(0.690904\pi\)
\(774\) 0 0
\(775\) 2.05395 11.6485i 0.0737801 0.418427i
\(776\) −1.02260 3.41574i −0.0367094 0.122618i
\(777\) 0 0
\(778\) 33.3343 + 16.7411i 1.19509 + 0.600198i
\(779\) −14.0177 + 46.8225i −0.502238 + 1.67759i
\(780\) 0 0
\(781\) −24.2513 32.5751i −0.867779 1.16563i
\(782\) −2.69238 4.66333i −0.0962792 0.166760i