Properties

Label 729.2.g.b.55.5
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.5
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.b.676.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.314515 - 0.729128i) q^{2} +(0.939775 + 0.996103i) q^{4} +(-0.127484 - 2.18881i) q^{5} +(-3.45959 - 0.819939i) q^{7} +(2.51422 - 0.915103i) q^{8} +O(q^{10})\) \(q+(0.314515 - 0.729128i) q^{2} +(0.939775 + 0.996103i) q^{4} +(-0.127484 - 2.18881i) q^{5} +(-3.45959 - 0.819939i) q^{7} +(2.51422 - 0.915103i) q^{8} +(-1.63602 - 0.595462i) q^{10} +(-3.62940 - 2.38710i) q^{11} +(-6.02225 - 0.703900i) q^{13} +(-1.68594 + 2.26460i) q^{14} +(-0.0357186 + 0.613264i) q^{16} +(-1.52297 + 1.27793i) q^{17} +(-2.70233 - 2.26753i) q^{19} +(2.06047 - 2.18397i) q^{20} +(-2.88200 + 1.89552i) q^{22} +(5.36375 - 1.27123i) q^{23} +(0.191560 - 0.0223902i) q^{25} +(-2.40732 + 4.16961i) q^{26} +(-2.43450 - 4.21667i) q^{28} +(-0.388529 - 0.521885i) q^{29} +(0.732013 - 2.44509i) q^{31} +(5.21789 + 2.62052i) q^{32} +(0.452774 + 1.51237i) q^{34} +(-1.35365 + 7.67692i) q^{35} +(0.702191 + 3.98232i) q^{37} +(-2.50324 + 1.25718i) q^{38} +(-2.32351 - 5.38650i) q^{40} +(-3.24228 - 7.51644i) q^{41} +(2.08047 - 1.04485i) q^{43} +(-1.03303 - 5.85859i) q^{44} +(0.760089 - 4.31068i) q^{46} +(-0.837341 - 2.79691i) q^{47} +(5.04106 + 2.53172i) q^{49} +(0.0439233 - 0.146714i) q^{50} +(-4.95840 - 6.66029i) q^{52} +(1.34845 + 2.33558i) q^{53} +(-4.76221 + 8.24838i) q^{55} +(-9.44853 + 1.10437i) q^{56} +(-0.502720 + 0.119147i) q^{58} +(6.21681 - 4.08886i) q^{59} +(-1.80586 + 1.91410i) q^{61} +(-1.55256 - 1.30275i) q^{62} +(2.61064 - 2.19058i) q^{64} +(-0.772965 + 13.2713i) q^{65} +(2.18642 - 2.93688i) q^{67} +(-2.70420 - 0.316075i) q^{68} +(5.17172 + 3.40149i) q^{70} +(-1.04338 - 0.379759i) q^{71} +(-8.97377 + 3.26619i) q^{73} +(3.12448 + 0.740514i) q^{74} +(-0.280894 - 4.82277i) q^{76} +(10.5990 + 11.2343i) q^{77} +(1.09986 - 2.54976i) q^{79} +1.34687 q^{80} -6.50019 q^{82} +(4.95776 - 11.4934i) q^{83} +(2.99129 + 3.17058i) q^{85} +(-0.107491 - 1.84555i) q^{86} +(-11.3096 - 2.68042i) q^{88} +(3.58032 - 1.30313i) q^{89} +(20.2574 + 7.37309i) q^{91} +(6.30699 + 4.14817i) q^{92} +(-2.30267 - 0.269143i) q^{94} +(-4.61868 + 6.20396i) q^{95} +(-0.611885 + 10.5057i) q^{97} +(3.43144 - 2.87932i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} + 45 q^{29} + 9 q^{31} - 63 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} + 9 q^{38} + 9 q^{40} + 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} - 63 q^{47} + 9 q^{49} + 225 q^{50} + 27 q^{52} - 45 q^{53} - 9 q^{55} - 99 q^{56} + 9 q^{58} + 117 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} - 81 q^{65} + 36 q^{67} + 18 q^{68} + 63 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} + 90 q^{76} - 81 q^{77} + 63 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} + 63 q^{85} - 81 q^{86} + 90 q^{88} + 81 q^{89} - 18 q^{91} + 63 q^{92} + 63 q^{94} - 153 q^{95} + 36 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.314515 0.729128i 0.222396 0.515572i −0.770089 0.637936i \(-0.779788\pi\)
0.992485 + 0.122364i \(0.0390477\pi\)
\(3\) 0 0
\(4\) 0.939775 + 0.996103i 0.469888 + 0.498052i
\(5\) −0.127484 2.18881i −0.0570124 0.978865i −0.898607 0.438755i \(-0.855420\pi\)
0.841594 0.540110i \(-0.181617\pi\)
\(6\) 0 0
\(7\) −3.45959 0.819939i −1.30760 0.309908i −0.483001 0.875620i \(-0.660453\pi\)
−0.824603 + 0.565712i \(0.808601\pi\)
\(8\) 2.51422 0.915103i 0.888913 0.323538i
\(9\) 0 0
\(10\) −1.63602 0.595462i −0.517354 0.188302i
\(11\) −3.62940 2.38710i −1.09431 0.719736i −0.131876 0.991266i \(-0.542100\pi\)
−0.962430 + 0.271530i \(0.912470\pi\)
\(12\) 0 0
\(13\) −6.02225 0.703900i −1.67027 0.195227i −0.772293 0.635266i \(-0.780890\pi\)
−0.897979 + 0.440039i \(0.854965\pi\)
\(14\) −1.68594 + 2.26460i −0.450585 + 0.605241i
\(15\) 0 0
\(16\) −0.0357186 + 0.613264i −0.00892964 + 0.153316i
\(17\) −1.52297 + 1.27793i −0.369375 + 0.309942i −0.808514 0.588477i \(-0.799728\pi\)
0.439139 + 0.898419i \(0.355283\pi\)
\(18\) 0 0
\(19\) −2.70233 2.26753i −0.619958 0.520206i 0.277832 0.960630i \(-0.410384\pi\)
−0.897790 + 0.440423i \(0.854828\pi\)
\(20\) 2.06047 2.18397i 0.460736 0.488352i
\(21\) 0 0
\(22\) −2.88200 + 1.89552i −0.614445 + 0.404127i
\(23\) 5.36375 1.27123i 1.11842 0.265070i 0.370481 0.928840i \(-0.379193\pi\)
0.747937 + 0.663770i \(0.231045\pi\)
\(24\) 0 0
\(25\) 0.191560 0.0223902i 0.0383120 0.00447804i
\(26\) −2.40732 + 4.16961i −0.472115 + 0.817727i
\(27\) 0 0
\(28\) −2.43450 4.21667i −0.460077 0.796876i
\(29\) −0.388529 0.521885i −0.0721480 0.0969116i 0.764584 0.644524i \(-0.222944\pi\)
−0.836732 + 0.547612i \(0.815537\pi\)
\(30\) 0 0
\(31\) 0.732013 2.44509i 0.131473 0.439152i −0.866749 0.498744i \(-0.833795\pi\)
0.998223 + 0.0595921i \(0.0189800\pi\)
\(32\) 5.21789 + 2.62052i 0.922401 + 0.463247i
\(33\) 0 0
\(34\) 0.452774 + 1.51237i 0.0776500 + 0.259369i
\(35\) −1.35365 + 7.67692i −0.228808 + 1.29764i
\(36\) 0 0
\(37\) 0.702191 + 3.98232i 0.115440 + 0.654690i 0.986532 + 0.163570i \(0.0523011\pi\)
−0.871092 + 0.491120i \(0.836588\pi\)
\(38\) −2.50324 + 1.25718i −0.406080 + 0.203941i
\(39\) 0 0
\(40\) −2.32351 5.38650i −0.367379 0.851680i
\(41\) −3.24228 7.51644i −0.506358 1.17387i −0.959315 0.282338i \(-0.908890\pi\)
0.452957 0.891533i \(-0.350369\pi\)
\(42\) 0 0
\(43\) 2.08047 1.04485i 0.317269 0.159338i −0.283037 0.959109i \(-0.591342\pi\)
0.600306 + 0.799771i \(0.295046\pi\)
\(44\) −1.03303 5.85859i −0.155735 0.883216i
\(45\) 0 0
\(46\) 0.760089 4.31068i 0.112069 0.635575i
\(47\) −0.837341 2.79691i −0.122139 0.407972i 0.874951 0.484212i \(-0.160894\pi\)
−0.997089 + 0.0762401i \(0.975708\pi\)
\(48\) 0 0
\(49\) 5.04106 + 2.53172i 0.720152 + 0.361674i
\(50\) 0.0439233 0.146714i 0.00621169 0.0207485i
\(51\) 0 0
\(52\) −4.95840 6.66029i −0.687607 0.923616i
\(53\) 1.34845 + 2.33558i 0.185224 + 0.320817i 0.943652 0.330940i \(-0.107366\pi\)
−0.758428 + 0.651757i \(0.774032\pi\)
\(54\) 0 0
\(55\) −4.76221 + 8.24838i −0.642136 + 1.11221i
\(56\) −9.44853 + 1.10437i −1.26261 + 0.147578i
\(57\) 0 0
\(58\) −0.502720 + 0.119147i −0.0660103 + 0.0156447i
\(59\) 6.21681 4.08886i 0.809360 0.532324i −0.0760672 0.997103i \(-0.524236\pi\)
0.885427 + 0.464778i \(0.153866\pi\)
\(60\) 0 0
\(61\) −1.80586 + 1.91410i −0.231217 + 0.245076i −0.832586 0.553895i \(-0.813141\pi\)
0.601369 + 0.798971i \(0.294622\pi\)
\(62\) −1.55256 1.30275i −0.197175 0.165450i
\(63\) 0 0
\(64\) 2.61064 2.19058i 0.326329 0.273823i
\(65\) −0.772965 + 13.2713i −0.0958745 + 1.64610i
\(66\) 0 0
\(67\) 2.18642 2.93688i 0.267114 0.358797i −0.648247 0.761430i \(-0.724498\pi\)
0.915361 + 0.402633i \(0.131905\pi\)
\(68\) −2.70420 0.316075i −0.327932 0.0383298i
\(69\) 0 0
\(70\) 5.17172 + 3.40149i 0.618138 + 0.406556i
\(71\) −1.04338 0.379759i −0.123826 0.0450691i 0.279364 0.960185i \(-0.409876\pi\)
−0.403190 + 0.915116i \(0.632099\pi\)
\(72\) 0 0
\(73\) −8.97377 + 3.26619i −1.05030 + 0.382278i −0.808776 0.588117i \(-0.799870\pi\)
−0.241525 + 0.970395i \(0.577647\pi\)
\(74\) 3.12448 + 0.740514i 0.363213 + 0.0860830i
\(75\) 0 0
\(76\) −0.280894 4.82277i −0.0322208 0.553210i
\(77\) 10.5990 + 11.2343i 1.20787 + 1.28026i
\(78\) 0 0
\(79\) 1.09986 2.54976i 0.123744 0.286871i −0.845072 0.534653i \(-0.820442\pi\)
0.968816 + 0.247782i \(0.0797017\pi\)
\(80\) 1.34687 0.150585
\(81\) 0 0
\(82\) −6.50019 −0.717826
\(83\) 4.95776 11.4934i 0.544185 1.26156i −0.395168 0.918609i \(-0.629313\pi\)
0.939352 0.342953i \(-0.111427\pi\)
\(84\) 0 0
\(85\) 2.99129 + 3.17058i 0.324451 + 0.343898i
\(86\) −0.107491 1.84555i −0.0115911 0.199011i
\(87\) 0 0
\(88\) −11.3096 2.68042i −1.20560 0.285734i
\(89\) 3.58032 1.30313i 0.379514 0.138132i −0.145217 0.989400i \(-0.546388\pi\)
0.524731 + 0.851268i \(0.324166\pi\)
\(90\) 0 0
\(91\) 20.2574 + 7.37309i 2.12355 + 0.772909i
\(92\) 6.30699 + 4.14817i 0.657549 + 0.432477i
\(93\) 0 0
\(94\) −2.30267 0.269143i −0.237502 0.0277600i
\(95\) −4.61868 + 6.20396i −0.473867 + 0.636513i
\(96\) 0 0
\(97\) −0.611885 + 10.5057i −0.0621275 + 1.06669i 0.812834 + 0.582495i \(0.197923\pi\)
−0.874962 + 0.484192i \(0.839114\pi\)
\(98\) 3.43144 2.87932i 0.346628 0.290855i
\(99\) 0 0
\(100\) 0.202326 + 0.169772i 0.0202326 + 0.0169772i
\(101\) 6.34862 6.72914i 0.631711 0.669575i −0.329892 0.944019i \(-0.607012\pi\)
0.961603 + 0.274444i \(0.0884938\pi\)
\(102\) 0 0
\(103\) −8.61167 + 5.66398i −0.848533 + 0.558089i −0.897653 0.440704i \(-0.854729\pi\)
0.0491194 + 0.998793i \(0.484359\pi\)
\(104\) −15.7854 + 3.74122i −1.54789 + 0.366856i
\(105\) 0 0
\(106\) 2.12705 0.248616i 0.206597 0.0241477i
\(107\) −1.36475 + 2.36382i −0.131936 + 0.228519i −0.924423 0.381370i \(-0.875453\pi\)
0.792487 + 0.609889i \(0.208786\pi\)
\(108\) 0 0
\(109\) 0.572236 + 0.991142i 0.0548103 + 0.0949342i 0.892129 0.451781i \(-0.149211\pi\)
−0.837318 + 0.546715i \(0.815878\pi\)
\(110\) 4.51634 + 6.06650i 0.430616 + 0.578418i
\(111\) 0 0
\(112\) 0.626411 2.09236i 0.0591903 0.197709i
\(113\) −10.8348 5.44144i −1.01925 0.511887i −0.140961 0.990015i \(-0.545019\pi\)
−0.878290 + 0.478128i \(0.841316\pi\)
\(114\) 0 0
\(115\) −3.46627 11.5782i −0.323231 1.07967i
\(116\) 0.154722 0.877470i 0.0143655 0.0814710i
\(117\) 0 0
\(118\) −1.02602 5.81886i −0.0944530 0.535670i
\(119\) 6.31669 3.17236i 0.579050 0.290810i
\(120\) 0 0
\(121\) 3.11746 + 7.22709i 0.283406 + 0.657008i
\(122\) 0.827656 + 1.91872i 0.0749324 + 0.173713i
\(123\) 0 0
\(124\) 3.12349 1.56868i 0.280498 0.140871i
\(125\) −1.97706 11.2125i −0.176834 1.00287i
\(126\) 0 0
\(127\) 1.90657 10.8127i 0.169181 0.959471i −0.775468 0.631387i \(-0.782486\pi\)
0.944648 0.328084i \(-0.106403\pi\)
\(128\) 2.57314 + 8.59487i 0.227435 + 0.759687i
\(129\) 0 0
\(130\) 9.43336 + 4.73761i 0.827361 + 0.415516i
\(131\) −0.126951 + 0.424045i −0.0110917 + 0.0370490i −0.963356 0.268225i \(-0.913563\pi\)
0.952265 + 0.305274i \(0.0987481\pi\)
\(132\) 0 0
\(133\) 7.48974 + 10.0605i 0.649443 + 0.872354i
\(134\) −1.45370 2.51788i −0.125580 0.217511i
\(135\) 0 0
\(136\) −2.65966 + 4.60667i −0.228064 + 0.395019i
\(137\) −18.3072 + 2.13981i −1.56409 + 0.182816i −0.853615 0.520905i \(-0.825595\pi\)
−0.710476 + 0.703721i \(0.751521\pi\)
\(138\) 0 0
\(139\) 19.5674 4.63757i 1.65969 0.393353i 0.709420 0.704786i \(-0.248957\pi\)
0.950268 + 0.311433i \(0.100809\pi\)
\(140\) −8.91913 + 5.86620i −0.753804 + 0.495785i
\(141\) 0 0
\(142\) −0.605052 + 0.641317i −0.0507748 + 0.0538181i
\(143\) 20.1769 + 16.9304i 1.68728 + 1.41579i
\(144\) 0 0
\(145\) −1.09278 + 0.916948i −0.0907501 + 0.0761484i
\(146\) −0.440920 + 7.57030i −0.0364908 + 0.626522i
\(147\) 0 0
\(148\) −3.30691 + 4.44194i −0.271826 + 0.365126i
\(149\) −2.02579 0.236781i −0.165959 0.0193979i 0.0327074 0.999465i \(-0.489587\pi\)
−0.198667 + 0.980067i \(0.563661\pi\)
\(150\) 0 0
\(151\) 7.70340 + 5.06660i 0.626894 + 0.412314i 0.822818 0.568305i \(-0.192400\pi\)
−0.195925 + 0.980619i \(0.562771\pi\)
\(152\) −8.86930 3.22816i −0.719395 0.261838i
\(153\) 0 0
\(154\) 11.5248 4.19467i 0.928692 0.338016i
\(155\) −5.44516 1.29053i −0.437366 0.103658i
\(156\) 0 0
\(157\) 1.29436 + 22.2233i 0.103301 + 1.77362i 0.510116 + 0.860106i \(0.329602\pi\)
−0.406815 + 0.913511i \(0.633360\pi\)
\(158\) −1.51318 1.60388i −0.120382 0.127598i
\(159\) 0 0
\(160\) 5.07063 11.7550i 0.400868 0.929317i
\(161\) −19.5987 −1.54460
\(162\) 0 0
\(163\) 18.7475 1.46842 0.734210 0.678922i \(-0.237553\pi\)
0.734210 + 0.678922i \(0.237553\pi\)
\(164\) 4.44014 10.2934i 0.346717 0.803780i
\(165\) 0 0
\(166\) −6.82086 7.22969i −0.529401 0.561132i
\(167\) −0.251837 4.32388i −0.0194878 0.334592i −0.993935 0.109973i \(-0.964923\pi\)
0.974447 0.224619i \(-0.0721136\pi\)
\(168\) 0 0
\(169\) 23.1224 + 5.48012i 1.77865 + 0.421548i
\(170\) 3.25257 1.18384i 0.249460 0.0907962i
\(171\) 0 0
\(172\) 2.99595 + 1.09044i 0.228439 + 0.0831451i
\(173\) −7.94546 5.22581i −0.604082 0.397311i 0.210303 0.977636i \(-0.432555\pi\)
−0.814385 + 0.580325i \(0.802925\pi\)
\(174\) 0 0
\(175\) −0.681079 0.0796068i −0.0514848 0.00601770i
\(176\) 1.59356 2.14052i 0.120119 0.161348i
\(177\) 0 0
\(178\) 0.175917 3.02037i 0.0131855 0.226386i
\(179\) 14.6883 12.3250i 1.09786 0.921212i 0.100579 0.994929i \(-0.467930\pi\)
0.997279 + 0.0737166i \(0.0234860\pi\)
\(180\) 0 0
\(181\) 5.16508 + 4.33401i 0.383917 + 0.322145i 0.814238 0.580531i \(-0.197155\pi\)
−0.430321 + 0.902676i \(0.641600\pi\)
\(182\) 11.7472 12.4513i 0.870759 0.922951i
\(183\) 0 0
\(184\) 12.3224 8.10454i 0.908416 0.597475i
\(185\) 8.62703 2.04464i 0.634272 0.150325i
\(186\) 0 0
\(187\) 8.57801 1.00263i 0.627286 0.0733193i
\(188\) 1.99910 3.46255i 0.145800 0.252532i
\(189\) 0 0
\(190\) 3.07084 + 5.31885i 0.222782 + 0.385870i
\(191\) 10.9826 + 14.7521i 0.794671 + 1.06743i 0.996127 + 0.0879303i \(0.0280253\pi\)
−0.201456 + 0.979498i \(0.564567\pi\)
\(192\) 0 0
\(193\) 2.65584 8.87112i 0.191171 0.638557i −0.807634 0.589685i \(-0.799252\pi\)
0.998805 0.0488723i \(-0.0155627\pi\)
\(194\) 7.46752 + 3.75033i 0.536137 + 0.269258i
\(195\) 0 0
\(196\) 2.21561 + 7.40067i 0.158258 + 0.528619i
\(197\) 4.14143 23.4872i 0.295065 1.67340i −0.371874 0.928283i \(-0.621285\pi\)
0.666939 0.745112i \(-0.267604\pi\)
\(198\) 0 0
\(199\) −1.69676 9.62282i −0.120280 0.682144i −0.984000 0.178170i \(-0.942982\pi\)
0.863719 0.503973i \(-0.168129\pi\)
\(200\) 0.461136 0.231591i 0.0326073 0.0163760i
\(201\) 0 0
\(202\) −2.90967 6.74537i −0.204724 0.474603i
\(203\) 0.916239 + 2.12408i 0.0643074 + 0.149081i
\(204\) 0 0
\(205\) −16.0387 + 8.05494i −1.12019 + 0.562582i
\(206\) 1.42127 + 8.06042i 0.0990246 + 0.561596i
\(207\) 0 0
\(208\) 0.646783 3.66809i 0.0448463 0.254336i
\(209\) 4.39505 + 14.6805i 0.304012 + 1.01547i
\(210\) 0 0
\(211\) −15.3073 7.68759i −1.05380 0.529236i −0.164409 0.986392i \(-0.552572\pi\)
−0.889386 + 0.457156i \(0.848868\pi\)
\(212\) −1.05924 + 3.53812i −0.0727491 + 0.242999i
\(213\) 0 0
\(214\) 1.29429 + 1.73854i 0.0884760 + 0.118844i
\(215\) −2.55220 4.42055i −0.174059 0.301479i
\(216\) 0 0
\(217\) −4.53730 + 7.85883i −0.308012 + 0.533492i
\(218\) 0.902647 0.105504i 0.0611349 0.00714565i
\(219\) 0 0
\(220\) −12.6916 + 3.00798i −0.855671 + 0.202798i
\(221\) 10.0713 6.62397i 0.677466 0.445576i
\(222\) 0 0
\(223\) −10.9437 + 11.5997i −0.732845 + 0.776770i −0.981426 0.191841i \(-0.938554\pi\)
0.248581 + 0.968611i \(0.420036\pi\)
\(224\) −15.9031 13.3443i −1.06257 0.891603i
\(225\) 0 0
\(226\) −7.37521 + 6.18854i −0.490592 + 0.411656i
\(227\) 0.180528 3.09955i 0.0119821 0.205724i −0.987004 0.160697i \(-0.948626\pi\)
0.998986 0.0450268i \(-0.0143373\pi\)
\(228\) 0 0
\(229\) 1.68303 2.26070i 0.111218 0.149391i −0.743029 0.669259i \(-0.766611\pi\)
0.854247 + 0.519868i \(0.174019\pi\)
\(230\) −9.53215 1.11415i −0.628532 0.0734648i
\(231\) 0 0
\(232\) −1.45443 0.956593i −0.0954879 0.0628034i
\(233\) 0.753290 + 0.274175i 0.0493497 + 0.0179618i 0.366577 0.930388i \(-0.380530\pi\)
−0.317227 + 0.948350i \(0.602752\pi\)
\(234\) 0 0
\(235\) −6.01516 + 2.18934i −0.392386 + 0.142817i
\(236\) 9.91533 + 2.34998i 0.645433 + 0.152970i
\(237\) 0 0
\(238\) −0.326363 5.60343i −0.0211550 0.363216i
\(239\) −11.6903 12.3910i −0.756186 0.801510i 0.228923 0.973445i \(-0.426480\pi\)
−0.985108 + 0.171935i \(0.944998\pi\)
\(240\) 0 0
\(241\) 1.35982 3.15243i 0.0875940 0.203066i −0.868788 0.495184i \(-0.835101\pi\)
0.956382 + 0.292118i \(0.0943600\pi\)
\(242\) 6.24996 0.401763
\(243\) 0 0
\(244\) −3.60375 −0.230707
\(245\) 4.89879 11.3567i 0.312972 0.725551i
\(246\) 0 0
\(247\) 14.6780 + 15.5578i 0.933940 + 0.989919i
\(248\) −0.397067 6.81738i −0.0252138 0.432904i
\(249\) 0 0
\(250\) −8.79715 2.08496i −0.556381 0.131865i
\(251\) −18.8184 + 6.84933i −1.18781 + 0.432326i −0.858953 0.512055i \(-0.828884\pi\)
−0.328853 + 0.944381i \(0.606662\pi\)
\(252\) 0 0
\(253\) −22.5017 8.18996i −1.41467 0.514899i
\(254\) −7.28419 4.79089i −0.457051 0.300607i
\(255\) 0 0
\(256\) 13.8459 + 1.61835i 0.865366 + 0.101147i
\(257\) −4.34011 + 5.82977i −0.270728 + 0.363651i −0.916607 0.399788i \(-0.869084\pi\)
0.645879 + 0.763440i \(0.276491\pi\)
\(258\) 0 0
\(259\) 0.835966 14.3530i 0.0519444 0.891851i
\(260\) −13.9460 + 11.7021i −0.864894 + 0.725732i
\(261\) 0 0
\(262\) 0.269255 + 0.225932i 0.0166346 + 0.0139581i
\(263\) −16.9390 + 17.9542i −1.04450 + 1.10711i −0.0503907 + 0.998730i \(0.516047\pi\)
−0.994110 + 0.108376i \(0.965435\pi\)
\(264\) 0 0
\(265\) 4.94024 3.24925i 0.303476 0.199600i
\(266\) 9.69101 2.29681i 0.594194 0.140827i
\(267\) 0 0
\(268\) 4.98018 0.582100i 0.304213 0.0355574i
\(269\) 0.710882 1.23128i 0.0433432 0.0750727i −0.843540 0.537066i \(-0.819532\pi\)
0.886883 + 0.461994i \(0.152866\pi\)
\(270\) 0 0
\(271\) −5.71617 9.90069i −0.347232 0.601424i 0.638524 0.769602i \(-0.279545\pi\)
−0.985757 + 0.168177i \(0.946212\pi\)
\(272\) −0.729308 0.979630i −0.0442208 0.0593988i
\(273\) 0 0
\(274\) −4.19771 + 14.0213i −0.253593 + 0.847058i
\(275\) −0.748697 0.376010i −0.0451481 0.0226742i
\(276\) 0 0
\(277\) 5.74367 + 19.1852i 0.345104 + 1.15273i 0.937764 + 0.347274i \(0.112893\pi\)
−0.592660 + 0.805453i \(0.701922\pi\)
\(278\) 2.77287 15.7258i 0.166306 0.943168i
\(279\) 0 0
\(280\) 3.62180 + 20.5402i 0.216444 + 1.22751i
\(281\) 24.9957 12.5533i 1.49112 0.748867i 0.498132 0.867101i \(-0.334020\pi\)
0.992986 + 0.118234i \(0.0377232\pi\)
\(282\) 0 0
\(283\) −6.34849 14.7175i −0.377379 0.874862i −0.996015 0.0891846i \(-0.971574\pi\)
0.618636 0.785677i \(-0.287685\pi\)
\(284\) −0.602262 1.39620i −0.0357377 0.0828493i
\(285\) 0 0
\(286\) 18.6904 9.38667i 1.10519 0.555045i
\(287\) 5.05394 + 28.6623i 0.298324 + 1.69188i
\(288\) 0 0
\(289\) −2.26567 + 12.8492i −0.133275 + 0.755838i
\(290\) 0.324878 + 1.08517i 0.0190775 + 0.0637232i
\(291\) 0 0
\(292\) −11.6868 5.86933i −0.683918 0.343476i
\(293\) −6.62381 + 22.1251i −0.386967 + 1.29256i 0.513670 + 0.857988i \(0.328286\pi\)
−0.900637 + 0.434572i \(0.856900\pi\)
\(294\) 0 0
\(295\) −9.74228 13.0861i −0.567217 0.761905i
\(296\) 5.40970 + 9.36988i 0.314433 + 0.544613i
\(297\) 0 0
\(298\) −0.809786 + 1.40259i −0.0469097 + 0.0812499i
\(299\) −33.1966 + 3.88013i −1.91981 + 0.224394i
\(300\) 0 0
\(301\) −8.05429 + 1.90890i −0.464242 + 0.110027i
\(302\) 6.11704 4.02324i 0.351996 0.231511i
\(303\) 0 0
\(304\) 1.48712 1.57625i 0.0852920 0.0904042i
\(305\) 4.41983 + 3.70868i 0.253079 + 0.212358i
\(306\) 0 0
\(307\) 13.6869 11.4846i 0.781150 0.655463i −0.162388 0.986727i \(-0.551920\pi\)
0.943538 + 0.331264i \(0.107475\pi\)
\(308\) −1.22983 + 21.1154i −0.0700761 + 1.20316i
\(309\) 0 0
\(310\) −2.65355 + 3.56433i −0.150711 + 0.202440i
\(311\) 11.5637 + 1.35160i 0.655718 + 0.0766424i 0.437445 0.899245i \(-0.355884\pi\)
0.218273 + 0.975888i \(0.429958\pi\)
\(312\) 0 0
\(313\) −17.3722 11.4259i −0.981938 0.645831i −0.0463500 0.998925i \(-0.514759\pi\)
−0.935588 + 0.353095i \(0.885129\pi\)
\(314\) 16.6108 + 6.04583i 0.937400 + 0.341186i
\(315\) 0 0
\(316\) 3.57345 1.30063i 0.201022 0.0731661i
\(317\) −27.0983 6.42242i −1.52199 0.360719i −0.617282 0.786742i \(-0.711766\pi\)
−0.904712 + 0.426023i \(0.859914\pi\)
\(318\) 0 0
\(319\) 0.164339 + 2.82159i 0.00920120 + 0.157979i
\(320\) −5.12758 5.43492i −0.286640 0.303821i
\(321\) 0 0
\(322\) −6.16409 + 14.2900i −0.343512 + 0.796349i
\(323\) 7.01331 0.390231
\(324\) 0 0
\(325\) −1.16938 −0.0648658
\(326\) 5.89638 13.6694i 0.326570 0.757076i
\(327\) 0 0
\(328\) −15.0301 15.9310i −0.829900 0.879643i
\(329\) 0.603562 + 10.3628i 0.0332754 + 0.571317i
\(330\) 0 0
\(331\) 5.51555 + 1.30721i 0.303162 + 0.0718507i 0.379382 0.925240i \(-0.376137\pi\)
−0.0762194 + 0.997091i \(0.524285\pi\)
\(332\) 16.1078 5.86275i 0.884029 0.321760i
\(333\) 0 0
\(334\) −3.23187 1.17630i −0.176840 0.0643645i
\(335\) −6.70700 4.41126i −0.366442 0.241013i
\(336\) 0 0
\(337\) 3.22663 + 0.377139i 0.175766 + 0.0205441i 0.203520 0.979071i \(-0.434762\pi\)
−0.0277547 + 0.999615i \(0.508836\pi\)
\(338\) 11.2681 15.1356i 0.612902 0.823271i
\(339\) 0 0
\(340\) −0.347088 + 5.95927i −0.0188235 + 0.323187i
\(341\) −8.49344 + 7.12685i −0.459946 + 0.385940i
\(342\) 0 0
\(343\) 3.70115 + 3.10563i 0.199843 + 0.167688i
\(344\) 4.27462 4.53083i 0.230472 0.244286i
\(345\) 0 0
\(346\) −6.30925 + 4.14966i −0.339187 + 0.223087i
\(347\) 0.624696 0.148056i 0.0335354 0.00794804i −0.213814 0.976874i \(-0.568589\pi\)
0.247349 + 0.968926i \(0.420440\pi\)
\(348\) 0 0
\(349\) −35.7089 + 4.17377i −1.91145 + 0.223417i −0.987330 0.158682i \(-0.949275\pi\)
−0.924121 + 0.382099i \(0.875201\pi\)
\(350\) −0.272253 + 0.471557i −0.0145526 + 0.0252058i
\(351\) 0 0
\(352\) −12.6824 21.9665i −0.675973 1.17082i
\(353\) 19.3357 + 25.9723i 1.02913 + 1.38237i 0.921590 + 0.388165i \(0.126891\pi\)
0.107543 + 0.994200i \(0.465702\pi\)
\(354\) 0 0
\(355\) −0.698206 + 2.33217i −0.0370569 + 0.123779i
\(356\) 4.66275 + 2.34172i 0.247125 + 0.124111i
\(357\) 0 0
\(358\) −4.36679 14.5861i −0.230792 0.770898i
\(359\) −6.49719 + 36.8474i −0.342908 + 1.94473i −0.0154001 + 0.999881i \(0.504902\pi\)
−0.327508 + 0.944848i \(0.606209\pi\)
\(360\) 0 0
\(361\) −1.13839 6.45612i −0.0599151 0.339796i
\(362\) 4.78455 2.40289i 0.251470 0.126293i
\(363\) 0 0
\(364\) 11.6930 + 27.1075i 0.612881 + 1.42082i
\(365\) 8.29307 + 19.2255i 0.434079 + 1.00631i
\(366\) 0 0
\(367\) −8.18006 + 4.10818i −0.426996 + 0.214445i −0.649301 0.760532i \(-0.724938\pi\)
0.222305 + 0.974977i \(0.428642\pi\)
\(368\) 0.588015 + 3.33480i 0.0306524 + 0.173838i
\(369\) 0 0
\(370\) 1.22252 6.93328i 0.0635560 0.360444i
\(371\) −2.75005 9.18581i −0.142776 0.476904i
\(372\) 0 0
\(373\) −9.00646 4.52321i −0.466337 0.234203i 0.200084 0.979779i \(-0.435878\pi\)
−0.666421 + 0.745576i \(0.732175\pi\)
\(374\) 1.96687 6.56981i 0.101705 0.339717i
\(375\) 0 0
\(376\) −4.66473 6.26582i −0.240565 0.323135i
\(377\) 1.97246 + 3.41641i 0.101587 + 0.175954i
\(378\) 0 0
\(379\) 7.02304 12.1643i 0.360749 0.624836i −0.627335 0.778750i \(-0.715854\pi\)
0.988084 + 0.153913i \(0.0491876\pi\)
\(380\) −10.5203 + 1.22965i −0.539681 + 0.0630796i
\(381\) 0 0
\(382\) 14.2104 3.36792i 0.727067 0.172318i
\(383\) −18.5585 + 12.2061i −0.948293 + 0.623702i −0.926594 0.376063i \(-0.877278\pi\)
−0.0216984 + 0.999765i \(0.506907\pi\)
\(384\) 0 0
\(385\) 23.2385 24.6313i 1.18434 1.25533i
\(386\) −5.63288 4.72655i −0.286706 0.240575i
\(387\) 0 0
\(388\) −11.0397 + 9.26345i −0.560458 + 0.470280i
\(389\) 1.47416 25.3103i 0.0747428 1.28328i −0.727425 0.686187i \(-0.759283\pi\)
0.802168 0.597098i \(-0.203680\pi\)
\(390\) 0 0
\(391\) −6.54430 + 8.79052i −0.330959 + 0.444556i
\(392\) 14.9912 + 1.75221i 0.757167 + 0.0885002i
\(393\) 0 0
\(394\) −15.8227 10.4067i −0.797134 0.524283i
\(395\) −5.72116 2.08233i −0.287863 0.104773i
\(396\) 0 0
\(397\) 0.810757 0.295091i 0.0406907 0.0148102i −0.321595 0.946877i \(-0.604219\pi\)
0.362285 + 0.932067i \(0.381997\pi\)
\(398\) −7.54993 1.78937i −0.378444 0.0896928i
\(399\) 0 0
\(400\) 0.00688884 + 0.118277i 0.000344442 + 0.00591384i
\(401\) 6.03889 + 6.40085i 0.301568 + 0.319643i 0.860382 0.509650i \(-0.170225\pi\)
−0.558814 + 0.829293i \(0.688743\pi\)
\(402\) 0 0
\(403\) −6.12947 + 14.2097i −0.305331 + 0.707836i
\(404\) 12.6692 0.630316
\(405\) 0 0
\(406\) 1.83690 0.0911638
\(407\) 6.95765 16.1297i 0.344878 0.799517i
\(408\) 0 0
\(409\) −14.5025 15.3718i −0.717102 0.760084i 0.261643 0.965165i \(-0.415736\pi\)
−0.978745 + 0.205081i \(0.934254\pi\)
\(410\) 0.828668 + 14.2277i 0.0409250 + 0.702655i
\(411\) 0 0
\(412\) −13.7349 3.25524i −0.676672 0.160374i
\(413\) −24.8603 + 9.04839i −1.22329 + 0.445242i
\(414\) 0 0
\(415\) −25.7888 9.38637i −1.26592 0.460759i
\(416\) −29.5789 19.4543i −1.45022 0.953826i
\(417\) 0 0
\(418\) 12.0863 + 1.41268i 0.591159 + 0.0690966i
\(419\) 21.9968 29.5469i 1.07462 1.44346i 0.187296 0.982304i \(-0.440028\pi\)
0.887320 0.461155i \(-0.152565\pi\)
\(420\) 0 0
\(421\) 0.586747 10.0741i 0.0285963 0.490979i −0.953356 0.301849i \(-0.902396\pi\)
0.981952 0.189130i \(-0.0605668\pi\)
\(422\) −10.4196 + 8.74309i −0.507219 + 0.425607i
\(423\) 0 0
\(424\) 5.52760 + 4.63821i 0.268444 + 0.225251i
\(425\) −0.263128 + 0.278899i −0.0127636 + 0.0135286i
\(426\) 0 0
\(427\) 7.81701 5.14133i 0.378292 0.248806i
\(428\) −3.63717 + 0.862025i −0.175809 + 0.0416675i
\(429\) 0 0
\(430\) −4.02585 + 0.470555i −0.194144 + 0.0226922i
\(431\) 4.93273 8.54374i 0.237601 0.411537i −0.722424 0.691450i \(-0.756972\pi\)
0.960025 + 0.279913i \(0.0903055\pi\)
\(432\) 0 0
\(433\) 13.7845 + 23.8755i 0.662441 + 1.14738i 0.979972 + 0.199133i \(0.0638127\pi\)
−0.317532 + 0.948248i \(0.602854\pi\)
\(434\) 4.30304 + 5.77999i 0.206553 + 0.277448i
\(435\) 0 0
\(436\) −0.449507 + 1.50146i −0.0215275 + 0.0719067i
\(437\) −17.3772 8.72715i −0.831263 0.417476i
\(438\) 0 0
\(439\) −5.32810 17.7971i −0.254296 0.849408i −0.985851 0.167626i \(-0.946390\pi\)
0.731555 0.681783i \(-0.238795\pi\)
\(440\) −4.42514 + 25.0962i −0.210960 + 1.19641i
\(441\) 0 0
\(442\) −1.66216 9.42657i −0.0790609 0.448376i
\(443\) −0.318644 + 0.160029i −0.0151392 + 0.00760322i −0.456353 0.889799i \(-0.650844\pi\)
0.441213 + 0.897402i \(0.354548\pi\)
\(444\) 0 0
\(445\) −3.30874 7.67052i −0.156849 0.363617i
\(446\) 5.01567 + 11.6276i 0.237499 + 0.550584i
\(447\) 0 0
\(448\) −10.8279 + 5.43797i −0.511569 + 0.256920i
\(449\) −4.01408 22.7650i −0.189436 1.07435i −0.920122 0.391632i \(-0.871911\pi\)
0.730686 0.682714i \(-0.239201\pi\)
\(450\) 0 0
\(451\) −6.17494 + 35.0198i −0.290766 + 1.64902i
\(452\) −4.76203 15.9063i −0.223987 0.748170i
\(453\) 0 0
\(454\) −2.20319 1.10648i −0.103401 0.0519298i
\(455\) 13.5558 45.2795i 0.635505 2.12274i
\(456\) 0 0
\(457\) 14.3589 + 19.2874i 0.671683 + 0.902227i 0.999090 0.0426563i \(-0.0135820\pi\)
−0.327406 + 0.944884i \(0.606175\pi\)
\(458\) −1.11900 1.93817i −0.0522876 0.0905648i
\(459\) 0 0
\(460\) 8.27552 14.3336i 0.385848 0.668309i
\(461\) 35.9966 4.20740i 1.67653 0.195958i 0.775994 0.630741i \(-0.217249\pi\)
0.900535 + 0.434783i \(0.143175\pi\)
\(462\) 0 0
\(463\) −27.5609 + 6.53205i −1.28086 + 0.303570i −0.814055 0.580788i \(-0.802745\pi\)
−0.466809 + 0.884358i \(0.654596\pi\)
\(464\) 0.333931 0.219630i 0.0155024 0.0101961i
\(465\) 0 0
\(466\) 0.436830 0.463013i 0.0202358 0.0214487i
\(467\) −14.1681 11.8885i −0.655622 0.550132i 0.253149 0.967427i \(-0.418534\pi\)
−0.908771 + 0.417295i \(0.862978\pi\)
\(468\) 0 0
\(469\) −9.97220 + 8.36767i −0.460473 + 0.386383i
\(470\) −0.295550 + 5.07441i −0.0136327 + 0.234065i
\(471\) 0 0
\(472\) 11.8887 15.9693i 0.547223 0.735048i
\(473\) −10.0450 1.17409i −0.461871 0.0539849i
\(474\) 0 0
\(475\) −0.568430 0.373862i −0.0260814 0.0171540i
\(476\) 9.09626 + 3.31077i 0.416927 + 0.151749i
\(477\) 0 0
\(478\) −12.7115 + 4.62659i −0.581408 + 0.211615i
\(479\) −23.0375 5.45998i −1.05261 0.249473i −0.332334 0.943162i \(-0.607836\pi\)
−0.720275 + 0.693689i \(0.755984\pi\)
\(480\) 0 0
\(481\) −1.42561 24.4768i −0.0650024 1.11605i
\(482\) −1.87084 1.98297i −0.0852144 0.0903219i
\(483\) 0 0
\(484\) −4.26921 + 9.89715i −0.194055 + 0.449870i
\(485\) 23.0729 1.04768
\(486\) 0 0
\(487\) 3.88368 0.175986 0.0879932 0.996121i \(-0.471955\pi\)
0.0879932 + 0.996121i \(0.471955\pi\)
\(488\) −2.78875 + 6.46504i −0.126241 + 0.292659i
\(489\) 0 0
\(490\) −6.73973 7.14370i −0.304470 0.322719i
\(491\) 0.253301 + 4.34902i 0.0114313 + 0.196268i 0.999189 + 0.0402710i \(0.0128221\pi\)
−0.987757 + 0.155997i \(0.950141\pi\)
\(492\) 0 0
\(493\) 1.25865 + 0.298305i 0.0566867 + 0.0134350i
\(494\) 15.9601 5.80900i 0.718078 0.261359i
\(495\) 0 0
\(496\) 1.47334 + 0.536253i 0.0661550 + 0.0240785i
\(497\) 3.29829 + 2.16932i 0.147948 + 0.0973073i
\(498\) 0 0
\(499\) −9.49505 1.10981i −0.425057 0.0496820i −0.0991244 0.995075i \(-0.531604\pi\)
−0.325933 + 0.945393i \(0.605678\pi\)
\(500\) 9.31079 12.5066i 0.416391 0.559311i
\(501\) 0 0
\(502\) −0.924627 + 15.8752i −0.0412681 + 0.708546i
\(503\) 13.3954 11.2401i 0.597271 0.501170i −0.293296 0.956022i \(-0.594752\pi\)
0.890567 + 0.454852i \(0.150308\pi\)
\(504\) 0 0
\(505\) −15.5381 13.0381i −0.691439 0.580186i
\(506\) −13.0487 + 13.8308i −0.580084 + 0.614854i
\(507\) 0 0
\(508\) 12.5623 8.26236i 0.557362 0.366583i
\(509\) −4.67625 + 1.10829i −0.207271 + 0.0491242i −0.332940 0.942948i \(-0.608041\pi\)
0.125669 + 0.992072i \(0.459892\pi\)
\(510\) 0 0
\(511\) 33.7237 3.94173i 1.49185 0.174372i
\(512\) −3.43707 + 5.95318i −0.151898 + 0.263096i
\(513\) 0 0
\(514\) 2.88562 + 4.99805i 0.127279 + 0.220454i
\(515\) 13.4952 + 18.1272i 0.594671 + 0.798781i
\(516\) 0 0
\(517\) −3.63745 + 12.1499i −0.159975 + 0.534354i
\(518\) −10.2022 5.12376i −0.448261 0.225125i
\(519\) 0 0
\(520\) 10.2012 + 34.0744i 0.447352 + 1.49426i
\(521\) 1.19409 6.77202i 0.0523140 0.296688i −0.947414 0.320011i \(-0.896314\pi\)
0.999728 + 0.0233231i \(0.00742464\pi\)
\(522\) 0 0
\(523\) −4.96810 28.1755i −0.217240 1.23203i −0.876977 0.480532i \(-0.840444\pi\)
0.659738 0.751496i \(-0.270667\pi\)
\(524\) −0.541697 + 0.272051i −0.0236642 + 0.0118846i
\(525\) 0 0
\(526\) 7.76339 + 17.9976i 0.338500 + 0.784731i
\(527\) 2.00981 + 4.65927i 0.0875488 + 0.202961i
\(528\) 0 0
\(529\) 6.60019 3.31474i 0.286965 0.144119i
\(530\) −0.815337 4.62400i −0.0354160 0.200854i
\(531\) 0 0
\(532\) −2.98260 + 16.9151i −0.129312 + 0.733364i
\(533\) 14.2350 + 47.5481i 0.616585 + 2.05954i
\(534\) 0 0
\(535\) 5.34793 + 2.68583i 0.231211 + 0.116119i
\(536\) 2.80962 9.38477i 0.121357 0.405361i
\(537\) 0 0
\(538\) −0.674180 0.905581i −0.0290660 0.0390424i
\(539\) −12.2526 21.2221i −0.527757 0.914102i
\(540\) 0 0
\(541\) 16.4141 28.4300i 0.705695 1.22230i −0.260745 0.965408i \(-0.583968\pi\)
0.966440 0.256892i \(-0.0826985\pi\)
\(542\) −9.01670 + 1.05390i −0.387300 + 0.0452689i
\(543\) 0 0
\(544\) −11.2955 + 2.67709i −0.484292 + 0.114779i
\(545\) 2.09647 1.37887i 0.0898029 0.0590643i
\(546\) 0 0
\(547\) 24.9358 26.4304i 1.06618 1.13008i 0.0750494 0.997180i \(-0.476089\pi\)
0.991129 0.132903i \(-0.0424300\pi\)
\(548\) −19.3361 16.2249i −0.825999 0.693095i
\(549\) 0 0
\(550\) −0.509636 + 0.427635i −0.0217309 + 0.0182344i
\(551\) −0.133454 + 2.29131i −0.00568531 + 0.0976130i
\(552\) 0 0
\(553\) −5.89572 + 7.91933i −0.250712 + 0.336764i
\(554\) 15.7950 + 1.84617i 0.671063 + 0.0784360i
\(555\) 0 0
\(556\) 23.0085 + 15.1329i 0.975777 + 0.641779i
\(557\) 7.83290 + 2.85094i 0.331891 + 0.120798i 0.502590 0.864525i \(-0.332380\pi\)
−0.170699 + 0.985323i \(0.554603\pi\)
\(558\) 0 0
\(559\) −13.2646 + 4.82791i −0.561032 + 0.204199i
\(560\) −4.65963 1.10435i −0.196905 0.0466674i
\(561\) 0 0
\(562\) −1.29145 22.1733i −0.0544764 0.935323i
\(563\) −9.75835 10.3432i −0.411266 0.435916i 0.488317 0.872666i \(-0.337611\pi\)
−0.899583 + 0.436750i \(0.856129\pi\)
\(564\) 0 0
\(565\) −10.5290 + 24.4090i −0.442959 + 1.02689i
\(566\) −12.7276 −0.534981
\(567\) 0 0
\(568\) −2.97081 −0.124652
\(569\) −3.72797 + 8.64240i −0.156285 + 0.362308i −0.978311 0.207141i \(-0.933584\pi\)
0.822027 + 0.569449i \(0.192843\pi\)
\(570\) 0 0
\(571\) 18.5168 + 19.6267i 0.774905 + 0.821351i 0.987801 0.155724i \(-0.0497710\pi\)
−0.212896 + 0.977075i \(0.568290\pi\)
\(572\) 2.09729 + 36.0091i 0.0876921 + 1.50561i
\(573\) 0 0
\(574\) 22.4880 + 5.32976i 0.938632 + 0.222460i
\(575\) 0.999017 0.363613i 0.0416619 0.0151637i
\(576\) 0 0
\(577\) 35.2517 + 12.8306i 1.46755 + 0.534143i 0.947433 0.319954i \(-0.103667\pi\)
0.520113 + 0.854097i \(0.325890\pi\)
\(578\) 8.65616 + 5.69324i 0.360049 + 0.236808i
\(579\) 0 0
\(580\) −1.94034 0.226793i −0.0805682 0.00941707i
\(581\) −26.5757 + 35.6974i −1.10255 + 1.48098i
\(582\) 0 0
\(583\) 0.681194 11.6956i 0.0282122 0.484384i
\(584\) −19.5732 + 16.4239i −0.809944 + 0.679624i
\(585\) 0 0
\(586\) 14.0487 + 11.7883i 0.580347 + 0.486969i
\(587\) 17.8340 18.9029i 0.736087 0.780206i −0.245872 0.969302i \(-0.579074\pi\)
0.981959 + 0.189096i \(0.0605557\pi\)
\(588\) 0 0
\(589\) −7.52246 + 4.94760i −0.309958 + 0.203862i
\(590\) −12.6056 + 2.98758i −0.518963 + 0.122997i
\(591\) 0 0
\(592\) −2.46730 + 0.288386i −0.101405 + 0.0118526i
\(593\) 11.0981 19.2224i 0.455744 0.789371i −0.542987 0.839741i \(-0.682707\pi\)
0.998731 + 0.0503700i \(0.0160401\pi\)
\(594\) 0 0
\(595\) −7.74896 13.4216i −0.317676 0.550232i
\(596\) −1.66793 2.24042i −0.0683211 0.0917711i
\(597\) 0 0
\(598\) −7.61174 + 25.4250i −0.311267 + 1.03970i
\(599\) 24.7245 + 12.4171i 1.01022 + 0.507349i 0.875337 0.483513i \(-0.160639\pi\)
0.134878 + 0.990862i \(0.456936\pi\)
\(600\) 0 0
\(601\) −5.28556 17.6550i −0.215603 0.720163i −0.995543 0.0943089i \(-0.969936\pi\)
0.779940 0.625854i \(-0.215249\pi\)
\(602\) −1.14136 + 6.47299i −0.0465185 + 0.263819i
\(603\) 0 0
\(604\) 2.19260 + 12.4348i 0.0892156 + 0.505967i
\(605\) 15.4213 7.74486i 0.626964 0.314873i
\(606\) 0 0
\(607\) −2.32395 5.38752i −0.0943262 0.218673i 0.864520 0.502598i \(-0.167622\pi\)
−0.958846 + 0.283925i \(0.908363\pi\)
\(608\) −8.15837 18.9132i −0.330866 0.767033i
\(609\) 0 0
\(610\) 4.09420 2.05619i 0.165769 0.0832525i
\(611\) 3.07393 + 17.4331i 0.124358 + 0.705269i
\(612\) 0 0
\(613\) 4.27094 24.2217i 0.172502 0.978305i −0.768487 0.639866i \(-0.778990\pi\)
0.940988 0.338439i \(-0.109899\pi\)
\(614\) −4.06905 13.5916i −0.164213 0.548511i
\(615\) 0 0
\(616\) 36.9288 + 18.5463i 1.48790 + 0.747252i
\(617\) 1.10523 3.69173i 0.0444949 0.148623i −0.932856 0.360251i \(-0.882691\pi\)
0.977350 + 0.211627i \(0.0678763\pi\)
\(618\) 0 0
\(619\) 11.9740 + 16.0839i 0.481277 + 0.646467i 0.974751 0.223294i \(-0.0716808\pi\)
−0.493475 + 0.869760i \(0.664273\pi\)
\(620\) −3.83173 6.63675i −0.153886 0.266538i
\(621\) 0 0
\(622\) 4.62246 8.00633i 0.185344 0.321024i
\(623\) −13.4550 + 1.57266i −0.539061 + 0.0630072i
\(624\) 0 0
\(625\) −23.3516 + 5.53443i −0.934064 + 0.221377i
\(626\) −13.7948 + 9.07298i −0.551351 + 0.362629i
\(627\) 0 0
\(628\) −20.9203 + 22.1743i −0.834813 + 0.884850i
\(629\) −6.15853 5.16762i −0.245557 0.206047i
\(630\) 0 0
\(631\) −1.61408 + 1.35437i −0.0642554 + 0.0539167i −0.674350 0.738412i \(-0.735576\pi\)
0.610094 + 0.792329i \(0.291132\pi\)
\(632\) 0.432001 7.41716i 0.0171841 0.295039i
\(633\) 0 0
\(634\) −13.2056 + 17.7382i −0.524462 + 0.704474i
\(635\) −23.9100 2.79467i −0.948838 0.110903i
\(636\) 0 0
\(637\) −28.5765 18.7950i −1.13224 0.744687i
\(638\) 2.10899 + 0.767608i 0.0834956 + 0.0303899i
\(639\) 0 0
\(640\) 18.4845 6.72781i 0.730664 0.265940i
\(641\) 17.1457 + 4.06360i 0.677214 + 0.160503i 0.554809 0.831978i \(-0.312791\pi\)
0.122405 + 0.992480i \(0.460939\pi\)
\(642\) 0 0
\(643\) −1.98349 34.0553i −0.0782213 1.34301i −0.777827 0.628479i \(-0.783678\pi\)
0.699605 0.714529i \(-0.253359\pi\)
\(644\) −18.4184 19.5223i −0.725786 0.769288i
\(645\) 0 0
\(646\) 2.20579 5.11360i 0.0867858 0.201192i
\(647\) −14.3650 −0.564747 −0.282374 0.959305i \(-0.591122\pi\)
−0.282374 + 0.959305i \(0.591122\pi\)
\(648\) 0 0
\(649\) −32.3238 −1.26882
\(650\) −0.367789 + 0.852631i −0.0144259 + 0.0334429i
\(651\) 0 0
\(652\) 17.6185 + 18.6745i 0.689992 + 0.731349i
\(653\) −0.705096 12.1060i −0.0275925 0.473745i −0.983595 0.180388i \(-0.942265\pi\)
0.956003 0.293357i \(-0.0947725\pi\)
\(654\) 0 0
\(655\) 0.944337 + 0.223812i 0.0368983 + 0.00874506i
\(656\) 4.72537 1.71989i 0.184495 0.0671506i
\(657\) 0 0
\(658\) 7.74561 + 2.81917i 0.301955 + 0.109903i
\(659\) 16.7459 + 11.0140i 0.652328 + 0.429043i 0.832070 0.554671i \(-0.187156\pi\)
−0.179742 + 0.983714i \(0.557526\pi\)
\(660\) 0 0
\(661\) 3.52498 + 0.412011i 0.137106 + 0.0160254i 0.184369 0.982857i \(-0.440976\pi\)
−0.0472632 + 0.998882i \(0.515050\pi\)
\(662\) 2.68785 3.61041i 0.104466 0.140322i
\(663\) 0 0
\(664\) 1.94730 33.4338i 0.0755698 1.29748i
\(665\) 21.0656 17.6762i 0.816890 0.685452i
\(666\) 0 0
\(667\) −2.74741 2.30535i −0.106380 0.0892635i
\(668\) 4.07036 4.31433i 0.157487 0.166926i
\(669\) 0 0
\(670\) −5.32583 + 3.50285i −0.205755 + 0.135327i
\(671\) 11.1234 2.63628i 0.429413 0.101773i
\(672\) 0 0
\(673\) −26.5108 + 3.09867i −1.02192 + 0.119445i −0.610511 0.792008i \(-0.709036\pi\)
−0.411405 + 0.911453i \(0.634962\pi\)
\(674\) 1.28981 2.23401i 0.0496815 0.0860509i
\(675\) 0 0
\(676\) 16.2711 + 28.1824i 0.625813 + 1.08394i
\(677\) 21.2644 + 28.5631i 0.817258 + 1.09777i 0.993546 + 0.113430i \(0.0361837\pi\)
−0.176288 + 0.984339i \(0.556409\pi\)
\(678\) 0 0
\(679\) 10.7309 35.8436i 0.411813 1.37555i
\(680\) 10.4222 + 5.23422i 0.399672 + 0.200723i
\(681\) 0 0
\(682\) 2.52507 + 8.43431i 0.0966898 + 0.322966i
\(683\) 8.25887 46.8384i 0.316017 1.79222i −0.250442 0.968132i \(-0.580576\pi\)
0.566459 0.824090i \(-0.308313\pi\)
\(684\) 0 0
\(685\) 7.01750 + 39.7982i 0.268125 + 1.52061i
\(686\) 3.42847 1.72184i 0.130900 0.0657403i
\(687\) 0 0
\(688\) 0.566458 + 1.31320i 0.0215960 + 0.0500652i
\(689\) −6.47668 15.0146i −0.246742 0.572012i
\(690\) 0 0
\(691\) 2.78462 1.39849i 0.105932 0.0532011i −0.395044 0.918662i \(-0.629271\pi\)
0.500976 + 0.865461i \(0.332974\pi\)
\(692\) −2.26150 12.8256i −0.0859692 0.487555i
\(693\) 0 0
\(694\) 0.0885248 0.502049i 0.00336035 0.0190575i
\(695\) −12.6453 42.2382i −0.479663 1.60218i
\(696\) 0 0
\(697\) 14.5433 + 7.30394i 0.550869 + 0.276657i
\(698\) −8.18777 + 27.3490i −0.309912 + 1.03518i
\(699\) 0 0
\(700\) −0.560765 0.753238i −0.0211949 0.0284697i
\(701\) 7.89786 + 13.6795i 0.298298 + 0.516667i 0.975747 0.218903i \(-0.0702477\pi\)
−0.677449 + 0.735570i \(0.736914\pi\)
\(702\) 0 0
\(703\) 7.13247 12.3538i 0.269006 0.465933i
\(704\) −14.7042 + 1.71867i −0.554185 + 0.0647749i
\(705\) 0 0
\(706\) 25.0185 5.92949i 0.941583 0.223159i
\(707\) −27.4811 + 18.0746i −1.03353 + 0.679766i
\(708\) 0 0
\(709\) −11.7116 + 12.4135i −0.439837 + 0.466200i −0.908930 0.416949i \(-0.863099\pi\)
0.469093 + 0.883149i \(0.344581\pi\)
\(710\) 1.48085 + 1.24258i 0.0555755 + 0.0466334i
\(711\) 0 0
\(712\) 7.80924 6.55273i 0.292664 0.245574i
\(713\) 0.818052 14.0454i 0.0306363 0.526005i
\(714\) 0 0
\(715\) 34.4852 46.3217i 1.28967 1.73233i
\(716\) 26.0807 + 3.04840i 0.974681 + 0.113924i
\(717\) 0 0
\(718\) 24.8230 + 16.3263i 0.926386 + 0.609294i
\(719\) −9.60505 3.49595i −0.358208 0.130377i 0.156646 0.987655i \(-0.449932\pi\)
−0.514854 + 0.857278i \(0.672154\pi\)
\(720\) 0 0
\(721\) 34.4370 12.5340i 1.28250 0.466792i
\(722\) −5.06538 1.20052i −0.188514 0.0446786i
\(723\) 0 0
\(724\) 0.536884 + 9.21795i 0.0199531 + 0.342582i
\(725\) −0.0861118 0.0912732i −0.00319811 0.00338980i
\(726\) 0 0
\(727\) 14.7266 34.1401i 0.546179 1.26619i −0.391977 0.919975i \(-0.628209\pi\)
0.938157 0.346211i \(-0.112532\pi\)
\(728\) 57.6788 2.13772
\(729\) 0 0
\(730\) 16.6261 0.615361
\(731\) −1.83326 + 4.24996i −0.0678054 + 0.157191i
\(732\) 0 0
\(733\) 24.2509 + 25.7045i 0.895728 + 0.949416i 0.998976 0.0452398i \(-0.0144052\pi\)
−0.103249 + 0.994656i \(0.532924\pi\)
\(734\) 0.422637 + 7.25640i 0.0155998 + 0.267839i
\(735\) 0 0
\(736\) 31.3187 + 7.42267i 1.15442 + 0.273603i
\(737\) −14.9460 + 5.43991i −0.550544 + 0.200382i
\(738\) 0 0
\(739\) −23.2146 8.44943i −0.853964 0.310817i −0.122308 0.992492i \(-0.539030\pi\)
−0.731655 + 0.681675i \(0.761252\pi\)
\(740\) 10.1441 + 6.67191i 0.372906 + 0.245264i
\(741\) 0 0
\(742\) −7.56257 0.883938i −0.277631 0.0324504i
\(743\) −18.6294 + 25.0236i −0.683447 + 0.918028i −0.999529 0.0307037i \(-0.990225\pi\)
0.316082 + 0.948732i \(0.397633\pi\)
\(744\) 0 0
\(745\) −0.260013 + 4.46426i −0.00952615 + 0.163558i
\(746\) −6.13067 + 5.14424i −0.224460 + 0.188344i
\(747\) 0 0
\(748\) 9.06012 + 7.60234i 0.331271 + 0.277969i
\(749\) 6.65968 7.05885i 0.243339 0.257925i
\(750\) 0 0
\(751\) 18.1119 11.9124i 0.660911 0.434688i −0.174244 0.984703i \(-0.555748\pi\)
0.835155 + 0.550014i \(0.185378\pi\)
\(752\) 1.74516 0.413609i 0.0636393 0.0150828i
\(753\) 0 0
\(754\) 3.11137 0.363667i 0.113309 0.0132440i
\(755\) 10.1078 17.5072i 0.367859 0.637151i
\(756\) 0 0
\(757\) 20.8452 + 36.1050i 0.757632 + 1.31226i 0.944055 + 0.329788i \(0.106977\pi\)
−0.186422 + 0.982470i \(0.559689\pi\)
\(758\) −6.66046 8.94655i −0.241919 0.324953i
\(759\) 0 0
\(760\) −5.93513 + 19.8247i −0.215290 + 0.719119i
\(761\) −2.14236 1.07593i −0.0776604 0.0390025i 0.409545 0.912290i \(-0.365687\pi\)
−0.487206 + 0.873287i \(0.661984\pi\)
\(762\) 0 0
\(763\) −1.16703 3.89815i −0.0422493 0.141122i
\(764\) −4.37352 + 24.8035i −0.158228 + 0.897358i
\(765\) 0 0
\(766\) 3.06289 + 17.3705i 0.110667 + 0.627621i
\(767\) −40.3173 + 20.2481i −1.45577 + 0.731118i
\(768\) 0 0
\(769\) 11.1782 + 25.9140i 0.403096 + 0.934481i 0.991995 + 0.126275i \(0.0403021\pi\)
−0.588899 + 0.808206i \(0.700439\pi\)
\(770\) −10.6506 24.6908i −0.383819 0.889793i
\(771\) 0 0
\(772\) 11.3324 5.69136i 0.407863 0.204837i
\(773\) 5.35215 + 30.3536i 0.192504 + 1.09174i 0.915929 + 0.401340i \(0.131455\pi\)
−0.723426 + 0.690402i \(0.757434\pi\)
\(774\) 0 0
\(775\) 0.0854785 0.484773i 0.00307048 0.0174135i
\(776\) 8.07534 + 26.9735i 0.289888 + 0.968293i
\(777\) 0 0
\(778\) −17.9908 9.03534i −0.645003 0.323933i
\(779\) −8.28202 + 27.6639i −0.296734 + 0.991161i
\(780\) 0 0
\(781\) 2.88032 + 3.86894i 0.103066 + 0.138442i
\(782\) 4.35113 + 7.53638i 0.155596 + 0.269501i
\(783\)