Properties

Label 729.2.g.b.379.6
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.6
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.b.352.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.194062 + 0.648213i) q^{2} +(1.28846 - 0.847431i) q^{4} +(-0.373572 - 0.866038i) q^{5} +(0.0849292 - 1.45818i) q^{7} +(1.83603 + 1.54061i) q^{8} +(0.488880 - 0.410219i) q^{10} +(-3.65505 - 4.90959i) q^{11} +(3.60053 + 3.81633i) q^{13} +(0.961691 - 0.227925i) q^{14} +(0.579298 - 1.34296i) q^{16} +(0.00536485 + 0.0304256i) q^{17} +(0.634963 - 3.60105i) q^{19} +(-1.21524 - 0.799275i) q^{20} +(2.47315 - 3.32202i) q^{22} +(0.00607888 + 0.104370i) q^{23} +(2.82074 - 2.98981i) q^{25} +(-1.77507 + 3.07451i) q^{26} +(-1.12628 - 1.95077i) q^{28} +(-0.498884 - 0.118238i) q^{29} +(-7.30038 - 3.66639i) q^{31} +(5.74406 + 0.671384i) q^{32} +(-0.0186811 + 0.00938202i) q^{34} +(-1.29456 + 0.471183i) q^{35} +(5.42328 + 1.97391i) q^{37} +(2.45747 - 0.287237i) q^{38} +(0.648337 - 2.16560i) q^{40} +(1.25791 - 4.20171i) q^{41} +(-1.36737 + 0.159822i) q^{43} +(-8.86991 - 3.22838i) q^{44} +(-0.0664745 + 0.0241947i) q^{46} +(-5.01303 + 2.51764i) q^{47} +(4.83360 + 0.564967i) q^{49} +(2.48543 + 1.24823i) q^{50} +(7.87320 + 1.86598i) q^{52} +(4.89106 + 8.47157i) q^{53} +(-2.88646 + 4.99950i) q^{55} +(2.40241 - 2.54641i) q^{56} +(-0.0201713 - 0.346328i) q^{58} +(3.37359 - 4.53152i) q^{59} +(-1.43519 - 0.943940i) q^{61} +(0.959872 - 5.44370i) q^{62} +(0.171556 + 0.972942i) q^{64} +(1.96003 - 4.54387i) q^{65} +(2.66387 - 0.631349i) q^{67} +(0.0326960 + 0.0346557i) q^{68} +(-0.556652 - 0.747714i) q^{70} +(-1.66448 + 1.39666i) q^{71} +(-6.38204 - 5.35517i) q^{73} +(-0.227062 + 3.89850i) q^{74} +(-2.23352 - 5.17789i) q^{76} +(-7.46947 + 4.91275i) q^{77} +(3.61740 + 12.0829i) q^{79} -1.37947 q^{80} +2.96771 q^{82} +(5.11210 + 17.0756i) q^{83} +(0.0243456 - 0.0160123i) q^{85} +(-0.368953 - 0.855329i) q^{86} +(0.852982 - 14.6451i) q^{88} +(10.6853 + 8.96604i) q^{89} +(5.87068 - 4.92609i) q^{91} +(0.0962791 + 0.129325i) q^{92} +(-2.60480 - 2.76093i) q^{94} +(-3.35585 + 0.795351i) q^{95} +(-2.77706 + 6.43795i) q^{97} +(0.571800 + 3.24284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.194062 + 0.648213i 0.137223 + 0.458356i 0.998784 0.0492977i \(-0.0156983\pi\)
−0.861561 + 0.507653i \(0.830513\pi\)
\(3\) 0 0
\(4\) 1.28846 0.847431i 0.644228 0.423715i
\(5\) −0.373572 0.866038i −0.167067 0.387304i 0.814030 0.580823i \(-0.197269\pi\)
−0.981097 + 0.193519i \(0.938010\pi\)
\(6\) 0 0
\(7\) 0.0849292 1.45818i 0.0321002 0.551139i −0.943471 0.331455i \(-0.892460\pi\)
0.975571 0.219684i \(-0.0705026\pi\)
\(8\) 1.83603 + 1.54061i 0.649133 + 0.544688i
\(9\) 0 0
\(10\) 0.488880 0.410219i 0.154598 0.129723i
\(11\) −3.65505 4.90959i −1.10204 1.48030i −0.860183 0.509985i \(-0.829651\pi\)
−0.241857 0.970312i \(-0.577756\pi\)
\(12\) 0 0
\(13\) 3.60053 + 3.81633i 0.998606 + 1.05846i 0.998290 + 0.0584608i \(0.0186193\pi\)
0.000316539 1.00000i \(0.499899\pi\)
\(14\) 0.961691 0.227925i 0.257023 0.0609155i
\(15\) 0 0
\(16\) 0.579298 1.34296i 0.144825 0.335741i
\(17\) 0.00536485 + 0.0304256i 0.00130117 + 0.00737929i 0.985451 0.169957i \(-0.0543630\pi\)
−0.984150 + 0.177337i \(0.943252\pi\)
\(18\) 0 0
\(19\) 0.634963 3.60105i 0.145670 0.826138i −0.821156 0.570704i \(-0.806670\pi\)
0.966826 0.255434i \(-0.0822184\pi\)
\(20\) −1.21524 0.799275i −0.271736 0.178723i
\(21\) 0 0
\(22\) 2.47315 3.32202i 0.527277 0.708256i
\(23\) 0.00607888 + 0.104370i 0.00126753 + 0.0217627i 0.998883 0.0472600i \(-0.0150489\pi\)
−0.997615 + 0.0690227i \(0.978012\pi\)
\(24\) 0 0
\(25\) 2.82074 2.98981i 0.564149 0.597963i
\(26\) −1.77507 + 3.07451i −0.348120 + 0.602961i
\(27\) 0 0
\(28\) −1.12628 1.95077i −0.212846 0.368661i
\(29\) −0.498884 0.118238i −0.0926405 0.0219562i 0.184034 0.982920i \(-0.441084\pi\)
−0.276675 + 0.960964i \(0.589232\pi\)
\(30\) 0 0
\(31\) −7.30038 3.66639i −1.31119 0.658503i −0.350611 0.936521i \(-0.614026\pi\)
−0.960576 + 0.278019i \(0.910322\pi\)
\(32\) 5.74406 + 0.671384i 1.01542 + 0.118685i
\(33\) 0 0
\(34\) −0.0186811 + 0.00938202i −0.00320379 + 0.00160900i
\(35\) −1.29456 + 0.471183i −0.218821 + 0.0796444i
\(36\) 0 0
\(37\) 5.42328 + 1.97391i 0.891581 + 0.324509i 0.746874 0.664965i \(-0.231554\pi\)
0.144707 + 0.989475i \(0.453776\pi\)
\(38\) 2.45747 0.287237i 0.398654 0.0465960i
\(39\) 0 0
\(40\) 0.648337 2.16560i 0.102511 0.342411i
\(41\) 1.25791 4.20171i 0.196452 0.656197i −0.801827 0.597557i \(-0.796138\pi\)
0.998279 0.0586403i \(-0.0186765\pi\)
\(42\) 0 0
\(43\) −1.36737 + 0.159822i −0.208522 + 0.0243727i −0.219712 0.975565i \(-0.570512\pi\)
0.0111907 + 0.999937i \(0.496438\pi\)
\(44\) −8.86991 3.22838i −1.33719 0.486697i
\(45\) 0 0
\(46\) −0.0664745 + 0.0241947i −0.00980113 + 0.00356732i
\(47\) −5.01303 + 2.51764i −0.731225 + 0.367235i −0.775131 0.631801i \(-0.782316\pi\)
0.0439058 + 0.999036i \(0.486020\pi\)
\(48\) 0 0
\(49\) 4.83360 + 0.564967i 0.690514 + 0.0807095i
\(50\) 2.48543 + 1.24823i 0.351493 + 0.176527i
\(51\) 0 0
\(52\) 7.87320 + 1.86598i 1.09182 + 0.258765i
\(53\) 4.89106 + 8.47157i 0.671839 + 1.16366i 0.977382 + 0.211481i \(0.0678288\pi\)
−0.305543 + 0.952178i \(0.598838\pi\)
\(54\) 0 0
\(55\) −2.88646 + 4.99950i −0.389211 + 0.674132i
\(56\) 2.40241 2.54641i 0.321036 0.340278i
\(57\) 0 0
\(58\) −0.0201713 0.346328i −0.00264863 0.0454752i
\(59\) 3.37359 4.53152i 0.439204 0.589953i −0.526314 0.850290i \(-0.676426\pi\)
0.965518 + 0.260337i \(0.0838337\pi\)
\(60\) 0 0
\(61\) −1.43519 0.943940i −0.183757 0.120859i 0.454297 0.890850i \(-0.349890\pi\)
−0.638055 + 0.769991i \(0.720261\pi\)
\(62\) 0.959872 5.44370i 0.121904 0.691351i
\(63\) 0 0
\(64\) 0.171556 + 0.972942i 0.0214445 + 0.121618i
\(65\) 1.96003 4.54387i 0.243112 0.563597i
\(66\) 0 0
\(67\) 2.66387 0.631349i 0.325444 0.0771315i −0.0646466 0.997908i \(-0.520592\pi\)
0.390090 + 0.920777i \(0.372444\pi\)
\(68\) 0.0326960 + 0.0346557i 0.00396497 + 0.00420262i
\(69\) 0 0
\(70\) −0.556652 0.747714i −0.0665327 0.0893689i
\(71\) −1.66448 + 1.39666i −0.197537 + 0.165753i −0.736191 0.676774i \(-0.763377\pi\)
0.538654 + 0.842527i \(0.318933\pi\)
\(72\) 0 0
\(73\) −6.38204 5.35517i −0.746961 0.626775i 0.187736 0.982219i \(-0.439885\pi\)
−0.934697 + 0.355445i \(0.884329\pi\)
\(74\) −0.227062 + 3.89850i −0.0263954 + 0.453191i
\(75\) 0 0
\(76\) −2.23352 5.17789i −0.256203 0.593944i
\(77\) −7.46947 + 4.91275i −0.851225 + 0.559860i
\(78\) 0 0
\(79\) 3.61740 + 12.0829i 0.406989 + 1.35944i 0.878570 + 0.477614i \(0.158498\pi\)
−0.471581 + 0.881823i \(0.656316\pi\)
\(80\) −1.37947 −0.154229
\(81\) 0 0
\(82\) 2.96771 0.327729
\(83\) 5.11210 + 17.0756i 0.561126 + 1.87429i 0.479313 + 0.877644i \(0.340886\pi\)
0.0818133 + 0.996648i \(0.473929\pi\)
\(84\) 0 0
\(85\) 0.0243456 0.0160123i 0.00264065 0.00173678i
\(86\) −0.368953 0.855329i −0.0397852 0.0922325i
\(87\) 0 0
\(88\) 0.852982 14.6451i 0.0909282 1.56118i
\(89\) 10.6853 + 8.96604i 1.13264 + 0.950399i 0.999173 0.0406545i \(-0.0129443\pi\)
0.133468 + 0.991053i \(0.457389\pi\)
\(90\) 0 0
\(91\) 5.87068 4.92609i 0.615415 0.516394i
\(92\) 0.0962791 + 0.129325i 0.0100378 + 0.0134831i
\(93\) 0 0
\(94\) −2.60480 2.76093i −0.268665 0.284768i
\(95\) −3.35585 + 0.795351i −0.344303 + 0.0816013i
\(96\) 0 0
\(97\) −2.77706 + 6.43795i −0.281968 + 0.653675i −0.999062 0.0433014i \(-0.986212\pi\)
0.717094 + 0.696976i \(0.245472\pi\)
\(98\) 0.571800 + 3.24284i 0.0577605 + 0.327576i
\(99\) 0 0
\(100\) 1.10074 6.24263i 0.110074 0.624263i
\(101\) −7.26104 4.77566i −0.722501 0.475196i 0.134237 0.990949i \(-0.457142\pi\)
−0.856737 + 0.515753i \(0.827512\pi\)
\(102\) 0 0
\(103\) −3.06205 + 4.11304i −0.301712 + 0.405270i −0.926962 0.375155i \(-0.877590\pi\)
0.625250 + 0.780425i \(0.284997\pi\)
\(104\) 0.731181 + 12.5539i 0.0716982 + 1.23101i
\(105\) 0 0
\(106\) −4.54221 + 4.81446i −0.441178 + 0.467622i
\(107\) 4.97642 8.61941i 0.481089 0.833270i −0.518676 0.854971i \(-0.673575\pi\)
0.999765 + 0.0217011i \(0.00690820\pi\)
\(108\) 0 0
\(109\) 6.36856 + 11.0307i 0.609997 + 1.05655i 0.991240 + 0.132071i \(0.0421627\pi\)
−0.381243 + 0.924475i \(0.624504\pi\)
\(110\) −3.80089 0.900828i −0.362401 0.0858906i
\(111\) 0 0
\(112\) −1.90908 0.958776i −0.180391 0.0905958i
\(113\) 5.70803 + 0.667173i 0.536966 + 0.0627623i 0.380254 0.924882i \(-0.375836\pi\)
0.156712 + 0.987644i \(0.449911\pi\)
\(114\) 0 0
\(115\) 0.0881178 0.0442544i 0.00821703 0.00412675i
\(116\) −0.742989 + 0.270426i −0.0689848 + 0.0251084i
\(117\) 0 0
\(118\) 3.59207 + 1.30741i 0.330677 + 0.120357i
\(119\) 0.0448216 0.00523889i 0.00410879 0.000480248i
\(120\) 0 0
\(121\) −7.58981 + 25.3517i −0.689983 + 2.30470i
\(122\) 0.333357 1.11349i 0.0301808 0.100811i
\(123\) 0 0
\(124\) −12.5132 + 1.46259i −1.12372 + 0.131344i
\(125\) −8.07451 2.93888i −0.722206 0.262862i
\(126\) 0 0
\(127\) −9.96192 + 3.62584i −0.883977 + 0.321741i −0.743814 0.668387i \(-0.766985\pi\)
−0.140163 + 0.990128i \(0.544763\pi\)
\(128\) 9.73866 4.89094i 0.860784 0.432302i
\(129\) 0 0
\(130\) 3.32576 + 0.388726i 0.291689 + 0.0340935i
\(131\) −12.7466 6.40157i −1.11367 0.559308i −0.205817 0.978590i \(-0.565985\pi\)
−0.907856 + 0.419283i \(0.862282\pi\)
\(132\) 0 0
\(133\) −5.19705 1.23172i −0.450641 0.106804i
\(134\) 0.926205 + 1.60423i 0.0800119 + 0.138585i
\(135\) 0 0
\(136\) −0.0370239 + 0.0641273i −0.00317478 + 0.00549887i
\(137\) 3.66191 3.88140i 0.312858 0.331610i −0.551795 0.833980i \(-0.686057\pi\)
0.864653 + 0.502370i \(0.167538\pi\)
\(138\) 0 0
\(139\) 0.238054 + 4.08722i 0.0201915 + 0.346674i 0.993240 + 0.116075i \(0.0370314\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(140\) −1.26869 + 1.70415i −0.107224 + 0.144027i
\(141\) 0 0
\(142\) −1.22834 0.807895i −0.103080 0.0677971i
\(143\) 5.57652 31.6260i 0.466332 2.64470i
\(144\) 0 0
\(145\) 0.0839709 + 0.476223i 0.00697341 + 0.0395482i
\(146\) 2.23277 5.17615i 0.184786 0.428381i
\(147\) 0 0
\(148\) 8.66041 2.05255i 0.711881 0.168719i
\(149\) −12.9539 13.7303i −1.06122 1.12483i −0.991872 0.127237i \(-0.959389\pi\)
−0.0693495 0.997592i \(-0.522092\pi\)
\(150\) 0 0
\(151\) −1.83951 2.47089i −0.149697 0.201078i 0.720949 0.692988i \(-0.243706\pi\)
−0.870646 + 0.491910i \(0.836299\pi\)
\(152\) 6.71362 5.63340i 0.544547 0.456929i
\(153\) 0 0
\(154\) −4.63405 3.88843i −0.373422 0.313338i
\(155\) −0.448012 + 7.69206i −0.0359852 + 0.617841i
\(156\) 0 0
\(157\) −1.35800 3.14820i −0.108380 0.251254i 0.855391 0.517982i \(-0.173317\pi\)
−0.963772 + 0.266728i \(0.914057\pi\)
\(158\) −7.13032 + 4.68968i −0.567257 + 0.373091i
\(159\) 0 0
\(160\) −1.56438 5.22538i −0.123675 0.413103i
\(161\) 0.152707 0.0120350
\(162\) 0 0
\(163\) −19.7151 −1.54420 −0.772101 0.635500i \(-0.780794\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(164\) −1.93990 6.47971i −0.151481 0.505980i
\(165\) 0 0
\(166\) −10.0766 + 6.62746i −0.782093 + 0.514391i
\(167\) 7.66118 + 17.7606i 0.592840 + 1.37436i 0.905441 + 0.424473i \(0.139540\pi\)
−0.312601 + 0.949885i \(0.601200\pi\)
\(168\) 0 0
\(169\) −0.844740 + 14.5036i −0.0649800 + 1.11566i
\(170\) 0.0151039 + 0.0126737i 0.00115842 + 0.000972029i
\(171\) 0 0
\(172\) −1.62635 + 1.36467i −0.124008 + 0.104055i
\(173\) 3.68287 + 4.94696i 0.280004 + 0.376110i 0.919769 0.392460i \(-0.128376\pi\)
−0.639765 + 0.768570i \(0.720969\pi\)
\(174\) 0 0
\(175\) −4.12011 4.36707i −0.311451 0.330119i
\(176\) −8.71077 + 2.06449i −0.656599 + 0.155617i
\(177\) 0 0
\(178\) −3.73829 + 8.66632i −0.280196 + 0.649568i
\(179\) 0.601129 + 3.40917i 0.0449305 + 0.254814i 0.998997 0.0447821i \(-0.0142593\pi\)
−0.954066 + 0.299596i \(0.903148\pi\)
\(180\) 0 0
\(181\) −3.31327 + 18.7905i −0.246273 + 1.39668i 0.571244 + 0.820780i \(0.306461\pi\)
−0.817517 + 0.575904i \(0.804650\pi\)
\(182\) 4.33243 + 2.84948i 0.321141 + 0.211218i
\(183\) 0 0
\(184\) −0.149633 + 0.200992i −0.0110311 + 0.0148173i
\(185\) −0.316504 5.43416i −0.0232698 0.399528i
\(186\) 0 0
\(187\) 0.129768 0.137546i 0.00948960 0.0100584i
\(188\) −4.32554 + 7.49206i −0.315473 + 0.546415i
\(189\) 0 0
\(190\) −1.16680 2.02096i −0.0846486 0.146616i
\(191\) 19.3906 + 4.59566i 1.40306 + 0.332530i 0.861339 0.508031i \(-0.169626\pi\)
0.541717 + 0.840561i \(0.317774\pi\)
\(192\) 0 0
\(193\) −9.57740 4.80995i −0.689396 0.346228i 0.0693698 0.997591i \(-0.477901\pi\)
−0.758766 + 0.651363i \(0.774197\pi\)
\(194\) −4.71208 0.550763i −0.338308 0.0395425i
\(195\) 0 0
\(196\) 6.70665 3.36821i 0.479047 0.240586i
\(197\) −22.2725 + 8.10651i −1.58685 + 0.577565i −0.976679 0.214707i \(-0.931120\pi\)
−0.610169 + 0.792272i \(0.708898\pi\)
\(198\) 0 0
\(199\) −8.20833 2.98759i −0.581873 0.211785i 0.0342781 0.999412i \(-0.489087\pi\)
−0.616151 + 0.787628i \(0.711309\pi\)
\(200\) 9.78509 1.14371i 0.691910 0.0808727i
\(201\) 0 0
\(202\) 1.68655 5.63347i 0.118665 0.396370i
\(203\) −0.214781 + 0.717420i −0.0150747 + 0.0503530i
\(204\) 0 0
\(205\) −4.10876 + 0.480245i −0.286968 + 0.0335418i
\(206\) −3.26035 1.18667i −0.227160 0.0826793i
\(207\) 0 0
\(208\) 7.21098 2.62458i 0.499991 0.181982i
\(209\) −20.0005 + 10.0446i −1.38346 + 0.694802i
\(210\) 0 0
\(211\) 7.22885 + 0.844932i 0.497655 + 0.0581675i 0.361218 0.932481i \(-0.382361\pi\)
0.136437 + 0.990649i \(0.456435\pi\)
\(212\) 13.4810 + 6.77041i 0.925878 + 0.464994i
\(213\) 0 0
\(214\) 6.55294 + 1.55308i 0.447950 + 0.106166i
\(215\) 0.649223 + 1.12449i 0.0442766 + 0.0766894i
\(216\) 0 0
\(217\) −5.96626 + 10.3339i −0.405016 + 0.701508i
\(218\) −5.91432 + 6.26881i −0.400568 + 0.424578i
\(219\) 0 0
\(220\) 0.517650 + 8.88771i 0.0349000 + 0.599210i
\(221\) −0.0967980 + 0.130022i −0.00651134 + 0.00874624i
\(222\) 0 0
\(223\) −0.625341 0.411293i −0.0418759 0.0275422i 0.528398 0.848997i \(-0.322793\pi\)
−0.570274 + 0.821454i \(0.693163\pi\)
\(224\) 1.46684 8.31884i 0.0980071 0.555826i
\(225\) 0 0
\(226\) 0.675242 + 3.82949i 0.0449164 + 0.254734i
\(227\) −3.01257 + 6.98392i −0.199951 + 0.463539i −0.988460 0.151485i \(-0.951594\pi\)
0.788508 + 0.615024i \(0.210854\pi\)
\(228\) 0 0
\(229\) −15.1813 + 3.59803i −1.00321 + 0.237765i −0.699216 0.714910i \(-0.746468\pi\)
−0.303991 + 0.952675i \(0.598319\pi\)
\(230\) 0.0457866 + 0.0485310i 0.00301908 + 0.00320004i
\(231\) 0 0
\(232\) −0.733806 0.985673i −0.0481768 0.0647126i
\(233\) 12.6227 10.5917i 0.826940 0.693885i −0.127647 0.991820i \(-0.540742\pi\)
0.954586 + 0.297935i \(0.0962979\pi\)
\(234\) 0 0
\(235\) 4.05310 + 3.40095i 0.264395 + 0.221854i
\(236\) 0.506574 8.69755i 0.0329752 0.566162i
\(237\) 0 0
\(238\) 0.0120941 + 0.0280372i 0.000783943 + 0.00181738i
\(239\) 16.1641 10.6313i 1.04557 0.687682i 0.0941436 0.995559i \(-0.469989\pi\)
0.951426 + 0.307876i \(0.0996184\pi\)
\(240\) 0 0
\(241\) −1.65339 5.52271i −0.106504 0.355749i 0.888079 0.459691i \(-0.152040\pi\)
−0.994583 + 0.103941i \(0.966855\pi\)
\(242\) −17.9062 −1.15105
\(243\) 0 0
\(244\) −2.64910 −0.169591
\(245\) −1.31642 4.39714i −0.0841027 0.280923i
\(246\) 0 0
\(247\) 16.0290 10.5425i 1.01990 0.670800i
\(248\) −7.75521 17.9786i −0.492457 1.14164i
\(249\) 0 0
\(250\) 0.338063 5.80433i 0.0213810 0.367098i
\(251\) 14.4752 + 12.1462i 0.913668 + 0.766659i 0.972813 0.231591i \(-0.0743930\pi\)
−0.0591449 + 0.998249i \(0.518837\pi\)
\(252\) 0 0
\(253\) 0.490197 0.411324i 0.0308184 0.0258597i
\(254\) −4.28355 5.75380i −0.268774 0.361026i
\(255\) 0 0
\(256\) 6.41622 + 6.80080i 0.401014 + 0.425050i
\(257\) 17.6323 4.17892i 1.09987 0.260674i 0.359683 0.933075i \(-0.382885\pi\)
0.740187 + 0.672401i \(0.234737\pi\)
\(258\) 0 0
\(259\) 3.33891 7.74046i 0.207470 0.480969i
\(260\) −1.32520 7.51557i −0.0821853 0.466096i
\(261\) 0 0
\(262\) 1.67595 9.50479i 0.103541 0.587208i
\(263\) 7.24297 + 4.76377i 0.446621 + 0.293747i 0.752827 0.658218i \(-0.228690\pi\)
−0.306207 + 0.951965i \(0.599060\pi\)
\(264\) 0 0
\(265\) 5.50953 7.40059i 0.338448 0.454615i
\(266\) −0.210132 3.60782i −0.0128840 0.221210i
\(267\) 0 0
\(268\) 2.89726 3.07091i 0.176978 0.187586i
\(269\) 5.59305 9.68745i 0.341014 0.590654i −0.643607 0.765356i \(-0.722563\pi\)
0.984621 + 0.174702i \(0.0558962\pi\)
\(270\) 0 0
\(271\) 5.08705 + 8.81103i 0.309016 + 0.535232i 0.978147 0.207912i \(-0.0666669\pi\)
−0.669131 + 0.743144i \(0.733334\pi\)
\(272\) 0.0439683 + 0.0104207i 0.00266597 + 0.000631847i
\(273\) 0 0
\(274\) 3.22661 + 1.62046i 0.194926 + 0.0978957i
\(275\) −24.9887 2.92076i −1.50688 0.176129i
\(276\) 0 0
\(277\) −1.16354 + 0.584354i −0.0699106 + 0.0351104i −0.483411 0.875394i \(-0.660602\pi\)
0.413500 + 0.910504i \(0.364306\pi\)
\(278\) −2.60319 + 0.947485i −0.156129 + 0.0568264i
\(279\) 0 0
\(280\) −3.10276 1.12931i −0.185425 0.0674894i
\(281\) −6.36648 + 0.744134i −0.379792 + 0.0443913i −0.303847 0.952721i \(-0.598271\pi\)
−0.0759447 + 0.997112i \(0.524197\pi\)
\(282\) 0 0
\(283\) 5.48286 18.3140i 0.325922 1.08866i −0.625361 0.780336i \(-0.715048\pi\)
0.951283 0.308319i \(-0.0997666\pi\)
\(284\) −0.961030 + 3.21006i −0.0570267 + 0.190482i
\(285\) 0 0
\(286\) 21.5826 2.52264i 1.27620 0.149167i
\(287\) −6.02001 2.19110i −0.355350 0.129337i
\(288\) 0 0
\(289\) 15.9739 5.81402i 0.939640 0.342001i
\(290\) −0.292398 + 0.146848i −0.0171702 + 0.00862320i
\(291\) 0 0
\(292\) −12.7611 1.49156i −0.746787 0.0872869i
\(293\) 1.63183 + 0.819535i 0.0953324 + 0.0478777i 0.495826 0.868422i \(-0.334865\pi\)
−0.400494 + 0.916299i \(0.631161\pi\)
\(294\) 0 0
\(295\) −5.18474 1.22881i −0.301868 0.0715439i
\(296\) 6.91625 + 11.9793i 0.401999 + 0.696283i
\(297\) 0 0
\(298\) 6.38629 11.0614i 0.369948 0.640769i
\(299\) −0.376425 + 0.398987i −0.0217692 + 0.0230740i
\(300\) 0 0
\(301\) 0.116920 + 2.00744i 0.00673916 + 0.115707i
\(302\) 1.24468 1.67190i 0.0716234 0.0962069i
\(303\) 0 0
\(304\) −4.46825 2.93881i −0.256272 0.168553i
\(305\) −0.281340 + 1.59556i −0.0161095 + 0.0913614i
\(306\) 0 0
\(307\) −2.60207 14.7571i −0.148508 0.842232i −0.964483 0.264145i \(-0.914910\pi\)
0.815975 0.578087i \(-0.196201\pi\)
\(308\) −5.46087 + 12.6597i −0.311162 + 0.721355i
\(309\) 0 0
\(310\) −5.07303 + 1.20233i −0.288129 + 0.0682878i
\(311\) 14.1776 + 15.0274i 0.803937 + 0.852123i 0.991497 0.130130i \(-0.0415394\pi\)
−0.187560 + 0.982253i \(0.560058\pi\)
\(312\) 0 0
\(313\) 13.3306 + 17.9062i 0.753492 + 1.01212i 0.999086 + 0.0427428i \(0.0136096\pi\)
−0.245594 + 0.969373i \(0.578983\pi\)
\(314\) 1.77717 1.49122i 0.100291 0.0841545i
\(315\) 0 0
\(316\) 14.9003 + 12.5028i 0.838208 + 0.703340i
\(317\) 0.660533 11.3409i 0.0370992 0.636969i −0.927593 0.373591i \(-0.878126\pi\)
0.964693 0.263378i \(-0.0848367\pi\)
\(318\) 0 0
\(319\) 1.24295 + 2.88148i 0.0695918 + 0.161332i
\(320\) 0.778516 0.512038i 0.0435204 0.0286238i
\(321\) 0 0
\(322\) 0.0296346 + 0.0989865i 0.00165147 + 0.00551630i
\(323\) 0.112971 0.00628586
\(324\) 0 0
\(325\) 21.5663 1.19628
\(326\) −3.82594 12.7795i −0.211899 0.707794i
\(327\) 0 0
\(328\) 8.78275 5.77650i 0.484946 0.318954i
\(329\) 3.24541 + 7.52371i 0.178925 + 0.414795i
\(330\) 0 0
\(331\) −0.837706 + 14.3829i −0.0460445 + 0.790553i 0.893698 + 0.448670i \(0.148102\pi\)
−0.939742 + 0.341884i \(0.888935\pi\)
\(332\) 21.0571 + 17.6690i 1.15566 + 0.969714i
\(333\) 0 0
\(334\) −10.0259 + 8.41273i −0.548593 + 0.460324i
\(335\) −1.54192 2.07116i −0.0842441 0.113159i
\(336\) 0 0
\(337\) 6.79901 + 7.20653i 0.370366 + 0.392565i 0.885573 0.464501i \(-0.153766\pi\)
−0.515207 + 0.857066i \(0.672285\pi\)
\(338\) −9.56536 + 2.26703i −0.520287 + 0.123310i
\(339\) 0 0
\(340\) 0.0177988 0.0412624i 0.000965278 0.00223777i
\(341\) 8.68281 + 49.2427i 0.470201 + 2.66664i
\(342\) 0 0
\(343\) 3.00981 17.0695i 0.162514 0.921665i
\(344\) −2.75675 1.81314i −0.148634 0.0977580i
\(345\) 0 0
\(346\) −2.49197 + 3.34730i −0.133969 + 0.179952i
\(347\) −0.196427 3.37252i −0.0105448 0.181046i −0.999468 0.0326179i \(-0.989616\pi\)
0.988923 0.148428i \(-0.0474215\pi\)
\(348\) 0 0
\(349\) 0.912656 0.967359i 0.0488534 0.0517815i −0.702486 0.711698i \(-0.747927\pi\)
0.751339 + 0.659916i \(0.229408\pi\)
\(350\) 2.03123 3.51819i 0.108574 0.188055i
\(351\) 0 0
\(352\) −17.6986 30.6549i −0.943340 1.63391i
\(353\) −11.4757 2.71979i −0.610789 0.144760i −0.0864312 0.996258i \(-0.527546\pi\)
−0.524357 + 0.851498i \(0.675694\pi\)
\(354\) 0 0
\(355\) 1.83136 + 0.919745i 0.0971987 + 0.0488150i
\(356\) 21.3657 + 2.49729i 1.13238 + 0.132356i
\(357\) 0 0
\(358\) −2.09321 + 1.05125i −0.110630 + 0.0555603i
\(359\) −27.9195 + 10.1619i −1.47353 + 0.536323i −0.949058 0.315102i \(-0.897961\pi\)
−0.524477 + 0.851425i \(0.675739\pi\)
\(360\) 0 0
\(361\) 5.28976 + 1.92531i 0.278408 + 0.101332i
\(362\) −12.8232 + 1.49882i −0.673972 + 0.0787760i
\(363\) 0 0
\(364\) 3.38960 11.3220i 0.177663 0.593437i
\(365\) −2.25362 + 7.52763i −0.117960 + 0.394014i
\(366\) 0 0
\(367\) 7.97273 0.931879i 0.416173 0.0486437i 0.0945701 0.995518i \(-0.469852\pi\)
0.321603 + 0.946875i \(0.395778\pi\)
\(368\) 0.143687 + 0.0522978i 0.00749021 + 0.00272621i
\(369\) 0 0
\(370\) 3.46107 1.25973i 0.179933 0.0654901i
\(371\) 12.7684 6.41256i 0.662905 0.332923i
\(372\) 0 0
\(373\) 2.97358 + 0.347562i 0.153966 + 0.0179961i 0.192727 0.981252i \(-0.438267\pi\)
−0.0387606 + 0.999249i \(0.512341\pi\)
\(374\) 0.114342 + 0.0574249i 0.00591251 + 0.00296937i
\(375\) 0 0
\(376\) −13.0827 3.10067i −0.674691 0.159905i
\(377\) −1.34501 2.32963i −0.0692716 0.119982i
\(378\) 0 0
\(379\) 11.0537 19.1456i 0.567792 0.983444i −0.428992 0.903308i \(-0.641131\pi\)
0.996784 0.0801362i \(-0.0255355\pi\)
\(380\) −3.64986 + 3.86863i −0.187234 + 0.198456i
\(381\) 0 0
\(382\) 0.784019 + 13.4611i 0.0401139 + 0.688729i
\(383\) −8.57378 + 11.5166i −0.438100 + 0.588470i −0.965259 0.261297i \(-0.915850\pi\)
0.527159 + 0.849767i \(0.323257\pi\)
\(384\) 0 0
\(385\) 7.04501 + 4.63358i 0.359047 + 0.236149i
\(386\) 1.25926 7.14162i 0.0640947 0.363499i
\(387\) 0 0
\(388\) 1.87760 + 10.6484i 0.0953206 + 0.540590i
\(389\) 7.22054 16.7391i 0.366096 0.848706i −0.631228 0.775597i \(-0.717449\pi\)
0.997324 0.0731085i \(-0.0232919\pi\)
\(390\) 0 0
\(391\) −0.00314292 0.000744886i −0.000158944 3.76705e-5i
\(392\) 8.00422 + 8.48398i 0.404274 + 0.428506i
\(393\) 0 0
\(394\) −9.57698 12.8641i −0.482481 0.648085i
\(395\) 9.11293 7.64665i 0.458521 0.384745i
\(396\) 0 0
\(397\) 1.06250 + 0.891545i 0.0533255 + 0.0447454i 0.669061 0.743208i \(-0.266697\pi\)
−0.615735 + 0.787953i \(0.711141\pi\)
\(398\) 0.343666 5.90052i 0.0172264 0.295766i
\(399\) 0 0
\(400\) −2.38116 5.52015i −0.119058 0.276007i
\(401\) 18.4528 12.1366i 0.921490 0.606074i 0.00234714 0.999997i \(-0.499253\pi\)
0.919143 + 0.393923i \(0.128883\pi\)
\(402\) 0 0
\(403\) −12.2930 41.0616i −0.612360 2.04542i
\(404\) −13.4026 −0.666803
\(405\) 0 0
\(406\) −0.506722 −0.0251482
\(407\) −10.1313 33.8408i −0.502189 1.67743i
\(408\) 0 0
\(409\) −0.482395 + 0.317276i −0.0238529 + 0.0156883i −0.561379 0.827559i \(-0.689729\pi\)
0.537527 + 0.843247i \(0.319359\pi\)
\(410\) −1.10866 2.57015i −0.0547526 0.126931i
\(411\) 0 0
\(412\) −0.459793 + 7.89435i −0.0226524 + 0.388927i
\(413\) −6.32124 5.30415i −0.311048 0.261000i
\(414\) 0 0
\(415\) 12.8784 10.8062i 0.632175 0.530458i
\(416\) 18.1194 + 24.3386i 0.888377 + 1.19330i
\(417\) 0 0
\(418\) −10.3924 11.0153i −0.508309 0.538776i
\(419\) 12.2911 2.91303i 0.600457 0.142311i 0.0808646 0.996725i \(-0.474232\pi\)
0.519593 + 0.854414i \(0.326084\pi\)
\(420\) 0 0
\(421\) 8.48642 19.6737i 0.413603 0.958839i −0.576319 0.817225i \(-0.695511\pi\)
0.989922 0.141614i \(-0.0452292\pi\)
\(422\) 0.855151 + 4.84980i 0.0416281 + 0.236085i
\(423\) 0 0
\(424\) −4.07126 + 23.0892i −0.197718 + 1.12131i
\(425\) 0.106100 + 0.0697829i 0.00514659 + 0.00338497i
\(426\) 0 0
\(427\) −1.49832 + 2.01259i −0.0725088 + 0.0973963i
\(428\) −0.892458 15.3229i −0.0431386 0.740661i
\(429\) 0 0
\(430\) −0.602917 + 0.639055i −0.0290752 + 0.0308179i
\(431\) 2.23566 3.87227i 0.107688 0.186521i −0.807145 0.590353i \(-0.798989\pi\)
0.914833 + 0.403832i \(0.132322\pi\)
\(432\) 0 0
\(433\) −4.56671 7.90977i −0.219462 0.380119i 0.735182 0.677870i \(-0.237097\pi\)
−0.954644 + 0.297751i \(0.903763\pi\)
\(434\) −7.85636 1.86199i −0.377118 0.0893785i
\(435\) 0 0
\(436\) 17.5533 + 8.81562i 0.840652 + 0.422191i
\(437\) 0.379703 + 0.0443809i 0.0181637 + 0.00212303i
\(438\) 0 0
\(439\) 2.54563 1.27847i 0.121496 0.0610178i −0.387013 0.922074i \(-0.626493\pi\)
0.508509 + 0.861057i \(0.330197\pi\)
\(440\) −13.0019 + 4.73230i −0.619841 + 0.225604i
\(441\) 0 0
\(442\) −0.103067 0.0375133i −0.00490239 0.00178432i
\(443\) −12.2879 + 1.43625i −0.583816 + 0.0682383i −0.402874 0.915255i \(-0.631989\pi\)
−0.180942 + 0.983494i \(0.557915\pi\)
\(444\) 0 0
\(445\) 3.77320 12.6033i 0.178867 0.597456i
\(446\) 0.145250 0.485170i 0.00687781 0.0229735i
\(447\) 0 0
\(448\) 1.43329 0.167528i 0.0677167 0.00791495i
\(449\) 16.1389 + 5.87407i 0.761640 + 0.277214i 0.693495 0.720461i \(-0.256070\pi\)
0.0681449 + 0.997675i \(0.478292\pi\)
\(450\) 0 0
\(451\) −25.2264 + 9.18166i −1.18786 + 0.432347i
\(452\) 7.91993 3.97754i 0.372522 0.187088i
\(453\) 0 0
\(454\) −5.11169 0.597471i −0.239903 0.0280407i
\(455\) −6.45930 3.24398i −0.302817 0.152080i
\(456\) 0 0
\(457\) 0.860915 + 0.204041i 0.0402719 + 0.00954461i 0.250702 0.968064i \(-0.419338\pi\)
−0.210431 + 0.977609i \(0.567487\pi\)
\(458\) −5.27840 9.14246i −0.246644 0.427199i
\(459\) 0 0
\(460\) 0.0760334 0.131694i 0.00354507 0.00614025i
\(461\) −10.4527 + 11.0792i −0.486831 + 0.516011i −0.923493 0.383615i \(-0.874679\pi\)
0.436662 + 0.899626i \(0.356161\pi\)
\(462\) 0 0
\(463\) −1.95582 33.5801i −0.0908945 1.56060i −0.668145 0.744031i \(-0.732912\pi\)
0.577251 0.816567i \(-0.304126\pi\)
\(464\) −0.447792 + 0.601489i −0.0207882 + 0.0279234i
\(465\) 0 0
\(466\) 9.31525 + 6.12674i 0.431521 + 0.283816i
\(467\) −1.91520 + 10.8616i −0.0886249 + 0.502617i 0.907890 + 0.419207i \(0.137692\pi\)
−0.996515 + 0.0834093i \(0.973419\pi\)
\(468\) 0 0
\(469\) −0.694378 3.93802i −0.0320634 0.181841i
\(470\) −1.41799 + 3.28726i −0.0654069 + 0.151630i
\(471\) 0 0
\(472\) 13.1753 3.12260i 0.606442 0.143729i
\(473\) 5.78246 + 6.12905i 0.265878 + 0.281814i
\(474\) 0 0
\(475\) −8.97541 12.0561i −0.411820 0.553170i
\(476\) 0.0533110 0.0447333i 0.00244351 0.00205035i
\(477\) 0 0
\(478\) 10.0282 + 8.41465i 0.458679 + 0.384877i
\(479\) −0.693250 + 11.9026i −0.0316754 + 0.543846i 0.944723 + 0.327869i \(0.106331\pi\)
−0.976399 + 0.215977i \(0.930706\pi\)
\(480\) 0 0
\(481\) 11.9935 + 27.8042i 0.546859 + 1.26776i
\(482\) 3.25903 2.14350i 0.148445 0.0976337i
\(483\) 0 0
\(484\) 11.7047 + 39.0964i 0.532032 + 1.77711i
\(485\) 6.61294 0.300278
\(486\) 0 0
\(487\) 38.2435 1.73298 0.866489 0.499196i \(-0.166371\pi\)
0.866489 + 0.499196i \(0.166371\pi\)
\(488\) −1.18081 3.94417i −0.0534526 0.178544i
\(489\) 0 0
\(490\) 2.59481 1.70663i 0.117222 0.0770979i
\(491\) −1.67921 3.89284i −0.0757815 0.175681i 0.876114 0.482104i \(-0.160127\pi\)
−0.951896 + 0.306423i \(0.900868\pi\)
\(492\) 0 0
\(493\) 0.000921013 0.0158132i 4.14803e−5 0.000712190i
\(494\) 9.94438 + 8.34432i 0.447419 + 0.375429i
\(495\) 0 0
\(496\) −9.15292 + 7.68021i −0.410978 + 0.344852i
\(497\) 1.89522 + 2.54572i 0.0850121 + 0.114191i
\(498\) 0 0
\(499\) −25.6682 27.2067i −1.14906 1.21794i −0.972313 0.233682i \(-0.924923\pi\)
−0.176752 0.984255i \(-0.556559\pi\)
\(500\) −12.8942 + 3.05597i −0.576644 + 0.136667i
\(501\) 0 0
\(502\) −5.06420 + 11.7401i −0.226026 + 0.523988i
\(503\) −0.0594062 0.336909i −0.00264879 0.0150220i 0.983455 0.181154i \(-0.0579833\pi\)
−0.986104 + 0.166132i \(0.946872\pi\)
\(504\) 0 0
\(505\) −1.42338 + 8.07239i −0.0633396 + 0.359217i
\(506\) 0.361754 + 0.237929i 0.0160819 + 0.0105773i
\(507\) 0 0
\(508\) −9.76284 + 13.1138i −0.433156 + 0.581830i
\(509\) −0.363632 6.24332i −0.0161177 0.276730i −0.996732 0.0807816i \(-0.974258\pi\)
0.980614 0.195949i \(-0.0627787\pi\)
\(510\) 0 0
\(511\) −8.35080 + 8.85134i −0.369418 + 0.391560i
\(512\) 7.73462 13.3968i 0.341825 0.592059i
\(513\) 0 0
\(514\) 6.13058 + 10.6185i 0.270408 + 0.468361i
\(515\) 4.70595 + 1.11533i 0.207369 + 0.0491473i
\(516\) 0 0
\(517\) 30.6834 + 15.4098i 1.34946 + 0.677722i
\(518\) 5.66542 + 0.662193i 0.248924 + 0.0290951i
\(519\) 0 0
\(520\) 10.5990 5.32302i 0.464797 0.233430i
\(521\) −29.5418 + 10.7523i −1.29425 + 0.471068i −0.895119 0.445827i \(-0.852910\pi\)
−0.399129 + 0.916895i \(0.630687\pi\)
\(522\) 0 0
\(523\) −20.1279 7.32597i −0.880134 0.320342i −0.137870 0.990450i \(-0.544026\pi\)
−0.742264 + 0.670108i \(0.766248\pi\)
\(524\) −21.8483 + 2.55370i −0.954447 + 0.111559i
\(525\) 0 0
\(526\) −1.68235 + 5.61945i −0.0733541 + 0.245020i
\(527\) 0.0723866 0.241788i 0.00315321 0.0105325i
\(528\) 0 0
\(529\) 22.8336 2.66887i 0.992766 0.116038i
\(530\) 5.86635 + 2.13518i 0.254818 + 0.0927461i
\(531\) 0 0
\(532\) −7.73997 + 2.81712i −0.335570 + 0.122138i
\(533\) 20.5643 10.3278i 0.890737 0.447345i
\(534\) 0 0
\(535\) −9.32379 1.08979i −0.403102 0.0471159i
\(536\) 5.86360 + 2.94481i 0.253269 + 0.127196i
\(537\) 0 0
\(538\) 7.36492 + 1.74552i 0.317524 + 0.0752547i
\(539\) −14.8933 25.7960i −0.641500 1.11111i
\(540\) 0 0
\(541\) 0.188033 0.325682i 0.00808416 0.0140022i −0.861955 0.506985i \(-0.830760\pi\)
0.870039 + 0.492983i \(0.164093\pi\)
\(542\) −4.72422 + 5.00738i −0.202922 + 0.215085i
\(543\) 0 0
\(544\) 0.0103888 + 0.178368i 0.000445415 + 0.00764748i
\(545\) 7.17386 9.63616i 0.307294 0.412768i
\(546\) 0 0
\(547\) 5.57872 + 3.66918i 0.238529 + 0.156883i 0.663146 0.748490i \(-0.269221\pi\)
−0.424617 + 0.905373i \(0.639591\pi\)
\(548\) 1.42899 8.10422i 0.0610436 0.346195i
\(549\) 0 0
\(550\) −2.95609 16.7648i −0.126048 0.714854i
\(551\) −0.742553 + 1.72143i −0.0316338 + 0.0733355i
\(552\) 0 0
\(553\) 17.9263 4.24861i 0.762304 0.180669i
\(554\) −0.604586 0.640823i −0.0256864 0.0272260i
\(555\) 0 0
\(556\) 3.77036 + 5.06448i 0.159899 + 0.214782i
\(557\) −2.30382 + 1.93313i −0.0976160 + 0.0819095i −0.690290 0.723533i \(-0.742517\pi\)
0.592674 + 0.805443i \(0.298072\pi\)
\(558\) 0 0
\(559\) −5.53318 4.64289i −0.234028 0.196373i
\(560\) −0.117157 + 2.01151i −0.00495079 + 0.0850017i
\(561\) 0 0
\(562\) −1.71785 3.98242i −0.0724631 0.167988i
\(563\) −27.4131 + 18.0299i −1.15533 + 0.759870i −0.974664 0.223675i \(-0.928194\pi\)
−0.180662 + 0.983545i \(0.557824\pi\)
\(564\) 0 0
\(565\) −1.55456 5.19261i −0.0654010 0.218455i
\(566\) 12.9354 0.543715
\(567\) 0 0
\(568\) −5.20773 −0.218511
\(569\) 7.49905 + 25.0486i 0.314376 + 1.05009i 0.958482 + 0.285154i \(0.0920446\pi\)
−0.644105 + 0.764937i \(0.722770\pi\)
\(570\) 0 0
\(571\) 0.669019 0.440021i 0.0279976 0.0184143i −0.535433 0.844578i \(-0.679852\pi\)
0.563431 + 0.826163i \(0.309481\pi\)
\(572\) −19.6158 45.4744i −0.820176 1.90138i
\(573\) 0 0
\(574\) 0.252046 4.32745i 0.0105202 0.180624i
\(575\) 0.329195 + 0.276227i 0.0137284 + 0.0115195i
\(576\) 0 0
\(577\) −32.3968 + 27.1841i −1.34869 + 1.13169i −0.369395 + 0.929273i \(0.620435\pi\)
−0.979300 + 0.202416i \(0.935121\pi\)
\(578\) 6.86864 + 9.22619i 0.285698 + 0.383759i
\(579\) 0 0
\(580\) 0.511759 + 0.542433i 0.0212496 + 0.0225233i
\(581\) 25.3334 6.00414i 1.05101 0.249094i
\(582\) 0 0
\(583\) 23.7148 54.9772i 0.982168 2.27692i
\(584\) −3.46737 19.6644i −0.143481 0.813721i
\(585\) 0 0
\(586\) −0.214557 + 1.21681i −0.00886326 + 0.0502661i
\(587\) 11.1494 + 7.33310i 0.460186 + 0.302669i 0.758352 0.651845i \(-0.226005\pi\)
−0.298166 + 0.954514i \(0.596375\pi\)
\(588\) 0 0
\(589\) −17.8383 + 23.9610i −0.735015 + 0.987297i
\(590\) −0.209634 3.59928i −0.00863051 0.148180i
\(591\) 0 0
\(592\) 5.79259 6.13978i 0.238074 0.252344i
\(593\) 17.2045 29.7990i 0.706503 1.22370i −0.259644 0.965704i \(-0.583605\pi\)
0.966147 0.257994i \(-0.0830615\pi\)
\(594\) 0 0
\(595\) −0.0212812 0.0368601i −0.000872443 0.00151112i
\(596\) −28.3260 6.71338i −1.16028 0.274991i
\(597\) 0 0
\(598\) −0.331679 0.166575i −0.0135633 0.00681177i
\(599\) −39.7896 4.65074i −1.62576 0.190024i −0.746169 0.665757i \(-0.768109\pi\)
−0.879590 + 0.475733i \(0.842183\pi\)
\(600\) 0 0
\(601\) −38.5925 + 19.3819i −1.57422 + 0.790603i −0.999613 0.0278267i \(-0.991141\pi\)
−0.574607 + 0.818430i \(0.694845\pi\)
\(602\) −1.27856 + 0.465357i −0.0521101 + 0.0189665i
\(603\) 0 0
\(604\) −4.46403 1.62477i −0.181639 0.0661111i
\(605\) 24.7909 2.89764i 1.00789 0.117806i
\(606\) 0 0
\(607\) −5.05347 + 16.8798i −0.205114 + 0.685129i 0.792090 + 0.610404i \(0.208993\pi\)
−0.997204 + 0.0747248i \(0.976192\pi\)
\(608\) 6.06495 20.2583i 0.245966 0.821585i
\(609\) 0 0
\(610\) −1.08886 + 0.127269i −0.0440866 + 0.00515298i
\(611\) −27.6577 10.0666i −1.11891 0.407250i
\(612\) 0 0
\(613\) 25.9691 9.45198i 1.04888 0.381762i 0.240641 0.970614i \(-0.422642\pi\)
0.808241 + 0.588852i \(0.200420\pi\)
\(614\) 9.06077 4.55049i 0.365663 0.183643i
\(615\) 0 0
\(616\) −21.2828 2.48760i −0.857507 0.100228i
\(617\) −3.94054 1.97901i −0.158640 0.0796720i 0.367708 0.929941i \(-0.380143\pi\)
−0.526348 + 0.850269i \(0.676439\pi\)
\(618\) 0 0
\(619\) −24.3417 5.76908i −0.978375 0.231879i −0.289834 0.957077i \(-0.593600\pi\)
−0.688541 + 0.725198i \(0.741748\pi\)
\(620\) 5.94125 + 10.2905i 0.238606 + 0.413278i
\(621\) 0 0
\(622\) −6.98959 + 12.1063i −0.280257 + 0.485420i
\(623\) 13.9816 14.8196i 0.560160 0.593735i
\(624\) 0 0
\(625\) −0.723768 12.4266i −0.0289507 0.497065i
\(626\) −9.02002 + 12.1160i −0.360513 + 0.484252i
\(627\) 0 0
\(628\) −4.41761 2.90551i −0.176282 0.115942i
\(629\) −0.0309624 + 0.175596i −0.00123455 + 0.00700148i
\(630\) 0 0
\(631\) 2.45133 + 13.9022i 0.0975857 + 0.553436i 0.993924 + 0.110066i \(0.0351062\pi\)
−0.896339 + 0.443370i \(0.853783\pi\)
\(632\) −11.9735 + 27.7576i −0.476279 + 1.10414i
\(633\) 0 0
\(634\) 7.47951 1.77268i 0.297049 0.0704020i
\(635\) 6.86161 + 7.27288i 0.272295 + 0.288616i
\(636\) 0 0
\(637\) 15.2474 + 20.4808i 0.604124 + 0.811479i
\(638\) −1.62660 + 1.36488i −0.0643978 + 0.0540362i
\(639\) 0 0
\(640\) −7.87383 6.60693i −0.311241 0.261162i
\(641\) 1.98908 34.1512i 0.0785639 1.34889i −0.696750 0.717314i \(-0.745371\pi\)
0.775314 0.631576i \(-0.217592\pi\)
\(642\) 0 0
\(643\) −5.34174 12.3835i −0.210658 0.488359i 0.779825 0.625998i \(-0.215308\pi\)
−0.990483 + 0.137639i \(0.956049\pi\)
\(644\) 0.196756 0.129409i 0.00775328 0.00509941i
\(645\) 0 0
\(646\) 0.0219233 + 0.0732290i 0.000862562 + 0.00288116i
\(647\) −3.19249 −0.125510 −0.0627548 0.998029i \(-0.519989\pi\)
−0.0627548 + 0.998029i \(0.519989\pi\)
\(648\) 0 0
\(649\) −34.5785 −1.35733
\(650\) 4.18520 + 13.9795i 0.164157 + 0.548323i
\(651\) 0 0
\(652\) −25.4020 + 16.7071i −0.994818 + 0.654302i
\(653\) 12.7409 + 29.5367i 0.498589 + 1.15586i 0.962819 + 0.270146i \(0.0870718\pi\)
−0.464230 + 0.885715i \(0.653669\pi\)
\(654\) 0 0
\(655\) −0.782235 + 13.4305i −0.0305645 + 0.524772i
\(656\) −4.91404 4.12337i −0.191861 0.160991i
\(657\) 0 0
\(658\) −4.24715 + 3.56378i −0.165571 + 0.138931i
\(659\) −8.71506 11.7064i −0.339490 0.456015i 0.599289 0.800532i \(-0.295450\pi\)
−0.938780 + 0.344518i \(0.888042\pi\)
\(660\) 0 0
\(661\) 5.34701 + 5.66750i 0.207975 + 0.220440i 0.822962 0.568097i \(-0.192320\pi\)
−0.614987 + 0.788537i \(0.710839\pi\)
\(662\) −9.48572 + 2.24816i −0.368673 + 0.0873771i
\(663\) 0 0
\(664\) −16.9209 + 39.2270i −0.656658 + 1.52230i
\(665\) 0.874754 + 4.96098i 0.0339215 + 0.192378i
\(666\) 0 0
\(667\) 0.00930786 0.0527875i 0.000360402 0.00204394i
\(668\) 24.9220 + 16.3914i 0.964260 + 0.634204i
\(669\) 0 0
\(670\) 1.04332 1.40143i 0.0403071 0.0541418i
\(671\) 0.611343 + 10.4963i 0.0236006 + 0.405207i
\(672\) 0 0
\(673\) −5.50205 + 5.83183i −0.212088 + 0.224801i −0.824681 0.565598i \(-0.808645\pi\)
0.612592 + 0.790399i \(0.290127\pi\)
\(674\) −3.35193 + 5.80572i −0.129112 + 0.223628i
\(675\) 0 0
\(676\) 11.2024 + 19.4031i 0.430862 + 0.746274i
\(677\) −8.28940 1.96462i −0.318588 0.0755067i 0.0682108 0.997671i \(-0.478271\pi\)
−0.386798 + 0.922164i \(0.626419\pi\)
\(678\) 0 0
\(679\) 9.15182 + 4.59622i 0.351215 + 0.176387i
\(680\) 0.0693678 + 0.00810794i 0.00266013 + 0.000310925i
\(681\) 0 0
\(682\) −30.2347 + 15.1844i −1.15775 + 0.581443i
\(683\) 13.5460 4.93034i 0.518323 0.188654i −0.0695940 0.997575i \(-0.522170\pi\)
0.587917 + 0.808921i \(0.299948\pi\)
\(684\) 0 0
\(685\) −4.72942 1.72137i −0.180702 0.0657701i
\(686\) 11.6487 1.36154i 0.444751 0.0519839i
\(687\) 0 0
\(688\) −0.577478 + 1.92891i −0.0220161 + 0.0735390i
\(689\) −14.7199 + 49.1680i −0.560785 + 1.87315i
\(690\) 0 0
\(691\) −36.2228 + 4.23384i −1.37798 + 0.161063i −0.772610 0.634881i \(-0.781049\pi\)
−0.605371 + 0.795944i \(0.706975\pi\)
\(692\) 8.93742 + 3.25296i 0.339750 + 0.123659i
\(693\) 0 0
\(694\) 2.14799 0.781805i 0.0815366 0.0296769i
\(695\) 3.45076 1.73304i 0.130895 0.0657378i
\(696\) 0 0
\(697\) 0.134588 + 0.0157311i 0.00509789 + 0.000595857i
\(698\) 0.804166 + 0.403867i 0.0304381 + 0.0152866i
\(699\) 0 0
\(700\) −9.00937 2.13526i −0.340522 0.0807053i
\(701\) 4.76010 + 8.24474i 0.179787 + 0.311399i 0.941807 0.336153i \(-0.109126\pi\)
−0.762021 + 0.647553i \(0.775793\pi\)
\(702\) 0 0
\(703\) 10.5517 18.2761i 0.397966 0.689298i
\(704\) 4.14970 4.39842i 0.156398 0.165772i
\(705\) 0 0
\(706\) −0.463995 7.96648i −0.0174627 0.299823i
\(707\) −7.58044 + 10.1823i −0.285092 + 0.382945i
\(708\) 0 0
\(709\) −9.99222 6.57198i −0.375266 0.246816i 0.347840 0.937554i \(-0.386915\pi\)
−0.723105 + 0.690738i \(0.757286\pi\)
\(710\) −0.240792 + 1.36560i −0.00903677 + 0.0512501i
\(711\) 0 0
\(712\) 5.80535 + 32.9238i 0.217565 + 1.23387i
\(713\) 0.338284 0.784231i 0.0126688 0.0293697i
\(714\) 0 0
\(715\) −29.4725 + 6.98512i −1.10221 + 0.261229i
\(716\) 3.66357 + 3.88316i 0.136914 + 0.145120i
\(717\) 0 0
\(718\) −12.0052 16.1257i −0.448029 0.601807i
\(719\) 16.3766 13.7416i 0.610743 0.512474i −0.284135 0.958784i \(-0.591706\pi\)
0.894879 + 0.446310i \(0.147262\pi\)
\(720\) 0 0
\(721\) 5.73749 + 4.81433i 0.213675 + 0.179295i
\(722\) −0.221472 + 3.80252i −0.00824232 + 0.141515i
\(723\) 0 0
\(724\) 11.6546 + 27.0185i 0.433141 + 1.00413i
\(725\) −1.76073 + 1.15805i −0.0653920 + 0.0430090i
\(726\) 0 0
\(727\) 2.26034 + 7.55006i 0.0838313 + 0.280016i 0.989619 0.143716i \(-0.0459051\pi\)
−0.905788 + 0.423732i \(0.860720\pi\)
\(728\) 18.3679 0.680760
\(729\) 0 0
\(730\) −5.31685 −0.196785
\(731\) −0.0121984 0.0407456i −0.000451175 0.00150703i
\(732\) 0 0
\(733\) −29.0944 + 19.1357i −1.07463 + 0.706794i −0.958112 0.286395i \(-0.907543\pi\)
−0.116516 + 0.993189i \(0.537173\pi\)
\(734\) 2.15126 + 4.98718i 0.0794045 + 0.184080i
\(735\) 0 0
\(736\) −0.0351552 + 0.603591i −0.00129584 + 0.0222487i
\(737\) −12.8363 10.7709i −0.472829 0.396751i
\(738\) 0 0
\(739\) 33.5899 28.1853i 1.23563 1.03681i 0.237772 0.971321i \(-0.423583\pi\)
0.997853 0.0654916i \(-0.0208615\pi\)
\(740\) −5.01288 6.73346i −0.184277 0.247527i
\(741\) 0 0
\(742\) 6.63457 + 7.03224i 0.243563 + 0.258161i
\(743\) −20.7769 + 4.92421i −0.762229 + 0.180652i −0.593305 0.804978i \(-0.702177\pi\)
−0.168924 + 0.985629i \(0.554029\pi\)
\(744\) 0 0
\(745\) −7.05175 + 16.3478i −0.258356 + 0.598937i
\(746\) 0.351765 + 1.99496i 0.0128790 + 0.0730407i
\(747\) 0 0
\(748\) 0.0506397 0.287192i 0.00185157 0.0105008i
\(749\) −12.1460 7.98854i −0.443805 0.291895i
\(750\) 0 0
\(751\) 2.70404 3.63215i 0.0986718 0.132539i −0.750045 0.661387i \(-0.769968\pi\)
0.848717 + 0.528848i \(0.177376\pi\)
\(752\) 0.477058 + 8.19078i 0.0173965 + 0.298687i
\(753\) 0 0
\(754\) 1.24908 1.32395i 0.0454887 0.0482152i
\(755\) −1.45269 + 2.51614i −0.0528689 + 0.0915716i
\(756\) 0 0
\(757\) −15.3969 26.6682i −0.559610 0.969273i −0.997529 0.0702583i \(-0.977618\pi\)
0.437919 0.899014i \(-0.355716\pi\)
\(758\) 14.5555 + 3.44973i 0.528681 + 0.125300i
\(759\) 0 0
\(760\) −7.38676 3.70977i −0.267946 0.134567i
\(761\) −3.55461 0.415474i −0.128854 0.0150609i 0.0514212 0.998677i \(-0.483625\pi\)
−0.180276 + 0.983616i \(0.557699\pi\)
\(762\) 0 0
\(763\) 16.6255 8.34966i 0.601885 0.302278i
\(764\) 28.8785 10.5109i 1.04479 0.380271i
\(765\) 0 0
\(766\) −9.12904 3.32270i −0.329846 0.120054i
\(767\) 29.4405 3.44110i 1.06303 0.124251i
\(768\) 0 0
\(769\) 4.18876 13.9914i 0.151051 0.504544i −0.848652 0.528952i \(-0.822585\pi\)
0.999702 + 0.0244085i \(0.00777023\pi\)
\(770\) −1.63637 + 5.46587i −0.0589708 + 0.196976i
\(771\) 0 0
\(772\) −16.4162 + 1.91877i −0.590831 + 0.0690582i
\(773\) 18.7983 + 6.84203i 0.676129 + 0.246091i 0.657184 0.753730i \(-0.271747\pi\)
0.0189442 + 0.999821i \(0.493970\pi\)
\(774\) 0 0
\(775\) −31.5543 + 11.4848i −1.13346 + 0.412547i
\(776\) −15.0171 + 7.54188i −0.539083 + 0.270738i
\(777\) 0 0
\(778\) 12.2517 + 1.43202i 0.439246 + 0.0513404i
\(779\) −14.3319 7.19773i −0.513492 0.257885i
\(780\) 0 0
\(781\) 12.9408 + 3.06702i 0.463057 + 0.109747i
\(782\) −0.00109277 0.00189273i −3.90772e−5 6.76838e-5i
\(783\) 0 0
\(784\) 3.55882 6.16407i 0.127101 0.220145i
\(785\) −2.21915 + 2.35216i −0.0792049 + 0.0839523i
\(786\) 0 0
\(787\) 0.787575 + 13.5221i 0.0280740 + 0.482012i 0.982817 + 0.184581i \(0.0590928\pi\)
−0.954743 + 0.297431i \(0.903870\pi\)
\(788\) −21.8274 + 29.3193i −0.777568 + 1.04446i
\(789\) 0 0
\(790\) 6.72513 + 4.42319i 0.239269 + 0.157370i
\(791\) 1.45763 8.26666i 0.0518275 0.293929i
\(792\) 0 0
\(793\) −1.56505 8.87585i −0.0555766 0.315191i
\(794\) −0.371719 + 0.861743i −0.0131918 + 0.0305821i
\(795\) 0 0
\(796\) −13.1079 + 3.10662i −0.464595 + 0.110111i
\(797\) −20.5872 21.8212i −0.729237 0.772946i 0.251588 0.967834i \(-0.419047\pi\)
−0.980825 + 0.194888i \(0.937566\pi\)
\(798\) 0 0
\(799\) −0.103495 0.139018i −0.00366138 0.00491809i
\(800\) 18.2098 15.2799i 0.643814 0.540225i
\(801\) 0 0
\(802\) 11.4481 + 9.60610i 0.404247 + 0.339203i
\(803\) −2.96497 + 50.9066i −0.104632 + 1.79645i
\(804\) 0 0
\(805\) −0.0570470 0.132250i −0.00201064 0.00466120i
\(806\) 24.2310 15.9370i 0.853502 0.561357i
\(807\) 0 0
\(808\) −5.97404 19.9547i −0.210166 0.702003i
\(809\) −48.8577 −1.71774 −0.858872 0.512190i \(-0.828834\pi\)
−0.858872 + 0.512190i \(0.828834\pi\)
\(810\) 0 0
\(811\) −14.0558 −0.493566 −0.246783 0.969071i \(-0.579373\pi\)
−0.246783 + 0.969071i \(0.579373\pi\)
\(812\) 0.331227 + 1.10638i 0.0116238 + 0.0388262i
\(813\) 0 0
\(814\) 19.9699 13.1344i 0.699946 0.460362i
\(815\) 7.36500 + 17.0740i 0.257985 + 0.598075i
\(816\) 0 0
\(817\) −0.292699 + 5.02544i −0.0102402 + 0.175818i
\(818\) −0.299277 0.251123i −0.0104640 0.00878032i
\(819\) 0 0
\(820\) −4.88698 + 4.10067i −0.170661 + 0.143201i
\(821\) −19.2557 25.8649i −0.672030 0.902692i 0.327075 0.944998i \(-0.393937\pi\)
−0.999105 + 0.0423060i \(0.986530\pi\)
\(822\) 0 0
\(823\) 22.7018 + 24.0626i 0.791337 + 0.838768i 0.989966 0.141307i \(-0.0451304\pi\)
−0.198629 + 0.980075i \(0.563649\pi\)
\(824\) −11.9586 + 2.83424i −0.416597 + 0.0987353i
\(825\) 0 0
\(826\) 2.21150 5.12684i 0.0769481 0.178386i
\(827\) −6.93056 39.3051i −0.240999 1.36677i −0.829604 0.558352i \(-0.811434\pi\)
0.588605 0.808421i \(-0.299677\pi\)
\(828\) 0 0
\(829\) −3.03189 + 17.1947i −0.105302 + 0.597198i 0.885797 + 0.464073i \(0.153612\pi\)
−0.991099 + 0.133125i \(0.957499\pi\)
\(830\) 9.50395 + 6.25085i 0.329887 + 0.216970i
\(831\) 0 0
\(832\) −3.09538 + 4.15782i −0.107313 + 0.144146i
\(833\) 0.00874210 + 0.150096i 0.000302896 + 0.00520052i
\(834\) 0 0
\(835\) 12.5194 13.2697i 0.433250 0.459218i
\(836\) −17.2576 + 29.8911i −0.596868 + 1.03381i
\(837\) 0 0
\(838\) 4.27349 + 7.40191i 0.147625 + 0.255695i
\(839\) 38.4211 + 9.10598i 1.32645 + 0.314373i 0.831971 0.554819i \(-0.187212\pi\)
0.494474 + 0.869192i \(0.335361\pi\)
\(840\) 0 0
\(841\) −25.6804 12.8972i −0.885532 0.444731i
\(842\) 14.3997 + 1.68308i 0.496245 + 0.0580027i
\(843\) 0 0
\(844\) 10.0301 5.03730i 0.345250 0.173391i
\(845\) 12.8763 4.68657i 0.442957 0.161223i
\(846\) 0 0
\(847\) 36.3227 + 13.2204i 1.24806 + 0.454258i
\(848\) 14.2104 1.66096i 0.487987 0.0570375i
\(849\) 0 0
\(850\) −0.0246442 + 0.0823174i −0.000845289 + 0.00282346i
\(851\) −0.173050 + 0.578029i −0.00593209 + 0.0198146i
\(852\) 0 0
\(853\) 31.1073 3.63592i 1.06509 0.124491i 0.434551 0.900647i \(-0.356907\pi\)
0.630541 + 0.776156i \(0.282833\pi\)
\(854\) −1.59536 0.580662i −0.0545920 0.0198699i
\(855\) 0 0
\(856\) 22.4160 8.15875i 0.766162 0.278860i
\(857\) −31.5874 + 15.8638i −1.07901 + 0.541897i −0.897284 0.441453i \(-0.854463\pi\)
−0.181721 + 0.983350i \(0.558167\pi\)
\(858\) 0 0
\(859\) −28.0616 3.27993i −0.957450 0.111910i −0.377007 0.926211i \(-0.623047\pi\)
−0.580443 + 0.814301i \(0.697121\pi\)
\(860\) 1.78942 + 0.898680i 0.0610187 + 0.0306447i
\(861\) 0 0
\(862\) 2.94391 + 0.697720i 0.100270 + 0.0237644i
\(863\) 1.91089 + 3.30976i 0.0650475 + 0.112666i 0.896715 0.442608i \(-0.145947\pi\)
−0.831668 + 0.555274i \(0.812613\pi\)
\(864\) 0 0
\(865\) 2.90843 5.03755i 0.0988896 0.171282i
\(866\) 4.24099 4.49518i 0.144115 0.152752i
\(867\) 0 0
\(868\) 1.06997 + 18.3707i 0.0363172 + 0.623543i
\(869\) 46.1005 61.9237i 1.56385 2.10062i
\(870\) 0 0
\(871\) 12.0008 + 7.89303i 0.406631 + 0.267445i
\(872\) −5.30110 + 30.0640i −0.179518 + 1.01810i
\(873\) 0 0
\(874\) 0.0449177 + 0.254741i 0.00151936 + 0.00861674i
\(875\) −4.97117 + 11.5245i −0.168056 + 0.389598i
\(876\) 0 0
\(877\) −33.3655 + 7.90777i −1.12667 + 0.267026i −0.751374 0.659877i \(-0.770608\pi\)
−0.375300 + 0.926904i \(0.622460\pi\)
\(878\) 1.32273 + 1.40201i 0.0446399 + 0.0473156i
\(879\) 0 0
\(880\) 5.04203 + 6.77262i 0.169967 + 0.228305i
\(881\) −39.1151 + 32.8215i −1.31782 + 1.10578i −0.331059 + 0.943610i \(0.607406\pi\)
−0.986762 + 0.162173i \(0.948150\pi\)
\(882\) 0 0
\(883\) −30.6669 25.7326i −1.03202 0.865972i −0.0409344 0.999162i \(-0.513033\pi\)
−0.991091 + 0.133190i \(0.957478\pi\)
\(884\) −0.0145351 + 0.249558i −0.000488867 + 0.00839353i
\(885\) 0 0
\(886\) −3.31561 7.68646i −0.111390 0.258232i
\(887\) 19.1315 12.5830i 0.642374 0.422496i −0.186095 0.982532i \(-0.559583\pi\)
0.828468 + 0.560036i \(0.189213\pi\)
\(888\) 0 0
\(889\) 4.44106 + 14.8342i 0.148948 + 0.497523i
\(890\) 8.90188 0.298392
\(891\) 0 0
\(892\) −1.15427 −0.0386477
\(893\) 5.88306 + 19.6508i 0.196869 + 0.657588i
\(894\) 0 0
\(895\) 2.72791 1.79417i 0.0911839 0.0599726i
\(896\) −6.30476 14.6161i −0.210627 0.488289i
\(897\) 0 0
\(898\) −0.675702 + 11.6014i −0.0225485 + 0.387142i
\(899\) 3.20854 + 2.69228i 0.107011 + 0.0897927i
\(900\) 0 0
\(901\) −0.231513 + 0.194262i −0.00771281 + 0.00647182i
\(902\) −10.8472 14.5703i −0.361171 0.485136i
\(903\) 0 0
\(904\) 9.45224 + 10.0188i 0.314377 + 0.333220i
\(905\) 17.5110 4.15018i 0.582085 0.137957i
\(906\) 0 0
\(907\) −9.48338 + 21.9850i −0.314891 + 0.729998i 0.685108 + 0.728441i \(0.259755\pi\)
−0.999999 + 0.00155714i \(0.999504\pi\)
\(908\) 2.03683 + 11.5514i 0.0675944 + 0.383347i
\(909\) 0 0
\(910\) 0.849285 4.81654i 0.0281535 0.159667i
\(911\) −25.7190 16.9157i −0.852110 0.560441i 0.0466357 0.998912i \(-0.485150\pi\)
−0.898746 + 0.438470i \(0.855520\pi\)
\(912\) 0 0
\(913\) 65.1492 87.5106i 2.15612 2.89618i
\(914\) 0.0348093 + 0.597652i 0.00115139 + 0.0197686i
\(915\) 0 0
\(916\) −16.5113 + 17.5010i −0.545550 + 0.578249i
\(917\) −10.4172 + 18.0431i −0.344006 + 0.595835i
\(918\) 0 0
\(919\) 21.9894 + 38.0868i 0.725365 + 1.25637i 0.958824 + 0.284002i \(0.0916623\pi\)
−0.233459 + 0.972367i \(0.575004\pi\)
\(920\) 0.229965 + 0.0545028i 0.00758173 + 0.00179690i
\(921\) 0 0
\(922\) −9.21017 4.62552i −0.303321 0.152333i
\(923\) −11.3231 1.32348i −0.372705 0.0435629i
\(924\) 0 0
\(925\) 21.1993 10.6467i 0.697029 0.350061i
\(926\) 21.3875 7.78440i 0.702836 0.255811i
\(927\) 0 0
\(928\) −2.78624 1.01411i −0.0914627 0.0332897i
\(929\) −28.1444 + 3.28960i −0.923386 + 0.107928i −0.564481 0.825446i \(-0.690924\pi\)
−0.358905 + 0.933374i \(0.616850\pi\)
\(930\) 0 0
\(931\) 5.10363 17.0473i 0.167265 0.558703i
\(932\) 7.28805 24.3438i 0.238728 0.797407i
\(933\) 0 0
\(934\) −7.41232 + 0.866376i −0.242539 + 0.0283487i
\(935\) −0.167598 0.0610008i −0.00548105 0.00199494i
\(936\) 0 0
\(937\) 12.4825 4.54327i 0.407787 0.148422i −0.129979 0.991517i \(-0.541491\pi\)
0.537765 + 0.843095i \(0.319269\pi\)
\(938\) 2.41792 1.21432i 0.0789479 0.0396491i
\(939\) 0 0
\(940\) 8.10431 + 0.947258i 0.264333 + 0.0308961i
\(941\) 12.6023 + 6.32910i 0.410822 + 0.206323i 0.642193 0.766543i \(-0.278025\pi\)
−0.231371 + 0.972866i \(0.574321\pi\)
\(942\) 0 0
\(943\) 0.446181 + 0.105747i 0.0145296 + 0.00344359i
\(944\) −4.13135 7.15571i −0.134464 0.232898i
\(945\) 0 0
\(946\) −2.85077 + 4.93768i −0.0926866 + 0.160538i
\(947\) 16.6076 17.6030i 0.539673 0.572020i −0.398946 0.916974i \(-0.630624\pi\)
0.938620 + 0.344954i \(0.112105\pi\)
\(948\) 0 0
\(949\) −2.54159 43.6374i −0.0825035 1.41653i
\(950\) 6.07311 8.15760i 0.197038 0.264667i
\(951\) 0 0
\(952\) 0.0903646 + 0.0594338i 0.00292874 + 0.00192626i
\(953\) 0.315523 1.78942i 0.0102208 0.0579650i −0.979271 0.202555i \(-0.935075\pi\)
0.989492 + 0.144590i \(0.0461865\pi\)
\(954\) 0 0
\(955\) −3.26378 18.5098i −0.105613 0.598964i
\(956\) 11.8175 27.3959i 0.382204 0.886048i
\(957\) 0 0
\(958\) −7.84998 + 1.86048i −0.253621 + 0.0601094i
\(959\) −5.34876 5.66936i −0.172721 0.183073i
\(960\) 0 0
\(961\) 21.3412 + 28.6662i 0.688425 + 0.924716i
\(962\) −15.6955 + 13.1701i −0.506044 + 0.424621i
\(963\) 0 0
\(964\) −6.81044 5.71464i −0.219350 0.184056i
\(965\) −0.587749 + 10.0913i −0.0189203 + 0.324849i
\(966\) 0 0
\(967\) −0.751265 1.74163i −0.0241591 0.0560070i 0.905709 0.423899i \(-0.139339\pi\)
−0.929869 + 0.367892i \(0.880080\pi\)
\(968\) −52.9922 + 34.8535i −1.70323 + 1.12023i
\(969\) 0 0
\(970\) 1.28332 + 4.28659i 0.0412050 + 0.137634i
\(971\) 27.1629 0.871698 0.435849 0.900020i \(-0.356448\pi\)
0.435849 + 0.900020i \(0.356448\pi\)
\(972\) 0 0
\(973\) 5.98012 0.191714
\(974\) 7.42161 + 24.7899i 0.237804 + 0.794320i
\(975\) 0 0
\(976\) −2.09908 + 1.38059i −0.0671899 + 0.0441915i
\(977\) 10.1432 + 23.5146i 0.324510 + 0.752298i 0.999890 + 0.0148287i \(0.00472028\pi\)
−0.675380 + 0.737470i \(0.736020\pi\)
\(978\) 0 0
\(979\) 4.96419 85.2319i 0.158656 2.72402i
\(980\) −5.42241 4.54994i −0.173213 0.145343i
\(981\) 0 0
\(982\) 2.19751 1.84393i 0.0701255 0.0588423i
\(983\) 17.3432 + 23.2960i 0.553163 + 0.743026i 0.987482 0.157733i \(-0.0504184\pi\)
−0.434319 + 0.900759i \(0.643011\pi\)
\(984\) 0 0
\(985\) 15.3409 + 16.2604i 0.488802 + 0.518100i
\(986\) 0.0104290 0.00247173i 0.000332128 7.87158e-5i
\(987\) 0 0
\(988\) 11.7187 27.1670i 0.372821 0.864297i
\(989\) −0.0249928 0.141741i −0.000794725 0.00450711i
\(990\) 0 0
\(991\) 6.28903 35.6669i 0.199778 1.13300i −0.705671 0.708539i \(-0.749354\pi\)
0.905449 0.424456i \(-0.139534\pi\)
\(992\) −39.4722 25.9613i −1.25324 0.824272i
\(993\) 0 0
\(994\) −1.28238 + 1.72253i −0.0406745 + 0.0546354i
\(995\) 0.479040 + 8.22481i 0.0151866 + 0.260744i
\(996\) 0 0
\(997\) 10.4130 11.0372i 0.329784 0.349550i −0.541172 0.840912i \(-0.682019\pi\)
0.870956 + 0.491362i \(0.163501\pi\)
\(998\) 12.6545 21.9182i 0.400571 0.693809i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.379.6 144
3.2 odd 2 729.2.g.c.379.3 144
9.2 odd 6 729.2.g.d.622.3 144
9.4 even 3 243.2.g.a.208.3 144
9.5 odd 6 81.2.g.a.16.6 144
9.7 even 3 729.2.g.a.622.6 144
81.5 odd 54 729.2.g.d.109.3 144
81.7 even 27 6561.2.a.d.1.27 72
81.22 even 27 243.2.g.a.118.3 144
81.32 odd 54 729.2.g.c.352.3 144
81.49 even 27 inner 729.2.g.b.352.6 144
81.59 odd 54 81.2.g.a.76.6 yes 144
81.74 odd 54 6561.2.a.c.1.46 72
81.76 even 27 729.2.g.a.109.6 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.6 144 9.5 odd 6
81.2.g.a.76.6 yes 144 81.59 odd 54
243.2.g.a.118.3 144 81.22 even 27
243.2.g.a.208.3 144 9.4 even 3
729.2.g.a.109.6 144 81.76 even 27
729.2.g.a.622.6 144 9.7 even 3
729.2.g.b.352.6 144 81.49 even 27 inner
729.2.g.b.379.6 144 1.1 even 1 trivial
729.2.g.c.352.3 144 81.32 odd 54
729.2.g.c.379.3 144 3.2 odd 2
729.2.g.d.109.3 144 81.5 odd 54
729.2.g.d.622.3 144 9.2 odd 6
6561.2.a.c.1.46 72 81.74 odd 54
6561.2.a.d.1.27 72 81.7 even 27