Properties

Label 729.2.g.b.379.5
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.5
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.b.352.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0909953 + 0.303945i) q^{2} +(1.58687 - 1.04370i) q^{4} +(-0.840209 - 1.94782i) q^{5} +(0.147894 - 2.53924i) q^{7} +(0.947719 + 0.795231i) q^{8} +(0.515577 - 0.432621i) q^{10} +(1.82733 + 2.45453i) q^{11} +(-3.78737 - 4.01438i) q^{13} +(0.785249 - 0.186107i) q^{14} +(1.34911 - 3.12759i) q^{16} +(0.745021 + 4.22522i) q^{17} +(-0.0105922 + 0.0600713i) q^{19} +(-3.36625 - 2.21402i) q^{20} +(-0.579765 + 0.778760i) q^{22} +(-0.248909 - 4.27360i) q^{23} +(0.343143 - 0.363710i) q^{25} +(0.875520 - 1.51644i) q^{26} +(-2.41553 - 4.18381i) q^{28} +(-10.3910 - 2.46271i) q^{29} +(4.12278 + 2.07054i) q^{31} +(3.53097 + 0.412711i) q^{32} +(-1.21644 + 0.610921i) q^{34} +(-5.07026 + 1.84542i) q^{35} +(-3.30730 - 1.20376i) q^{37} +(-0.0192222 + 0.00224676i) q^{38} +(0.752687 - 2.51415i) q^{40} +(0.722754 - 2.41417i) q^{41} +(0.770554 - 0.0900648i) q^{43} +(5.46154 + 1.98784i) q^{44} +(1.27629 - 0.464532i) q^{46} +(4.06294 - 2.04049i) q^{47} +(0.526786 + 0.0615725i) q^{49} +(0.141773 + 0.0712008i) q^{50} +(-10.1999 - 2.41742i) q^{52} +(-0.986349 - 1.70841i) q^{53} +(3.24565 - 5.62164i) q^{55} +(2.15945 - 2.28888i) q^{56} +(-0.197001 - 3.38238i) q^{58} +(-4.30754 + 5.78603i) q^{59} +(9.75766 + 6.41771i) q^{61} +(-0.254177 + 1.44151i) q^{62} +(-0.987085 - 5.59804i) q^{64} +(-4.63712 + 10.7501i) q^{65} +(-1.18028 + 0.279730i) q^{67} +(5.59213 + 5.92731i) q^{68} +(-1.02228 - 1.37316i) q^{70} +(10.9300 - 9.17137i) q^{71} +(7.44218 + 6.24473i) q^{73} +(0.0649282 - 1.11477i) q^{74} +(0.0458881 + 0.106381i) q^{76} +(6.50290 - 4.27703i) q^{77} +(-0.462085 - 1.54347i) q^{79} -7.22552 q^{80} +0.799542 q^{82} +(0.947094 + 3.16351i) q^{83} +(7.60402 - 5.00124i) q^{85} +(0.0974916 + 0.226011i) q^{86} +(-0.220122 + 3.77936i) q^{88} +(10.7606 + 9.02919i) q^{89} +(-10.7536 + 9.02336i) q^{91} +(-4.85535 - 6.52187i) q^{92} +(0.989905 + 1.04924i) q^{94} +(0.125908 - 0.0298407i) q^{95} +(2.78173 - 6.44878i) q^{97} +(0.0292204 + 0.165717i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0909953 + 0.303945i 0.0643434 + 0.214922i 0.984115 0.177532i \(-0.0568114\pi\)
−0.919772 + 0.392454i \(0.871626\pi\)
\(3\) 0 0
\(4\) 1.58687 1.04370i 0.793436 0.521851i
\(5\) −0.840209 1.94782i −0.375753 0.871093i −0.996220 0.0868610i \(-0.972316\pi\)
0.620468 0.784232i \(-0.286943\pi\)
\(6\) 0 0
\(7\) 0.147894 2.53924i 0.0558987 0.959744i −0.847460 0.530859i \(-0.821870\pi\)
0.903359 0.428885i \(-0.141093\pi\)
\(8\) 0.947719 + 0.795231i 0.335069 + 0.281157i
\(9\) 0 0
\(10\) 0.515577 0.432621i 0.163040 0.136807i
\(11\) 1.82733 + 2.45453i 0.550961 + 0.740069i 0.987152 0.159785i \(-0.0510802\pi\)
−0.436191 + 0.899854i \(0.643673\pi\)
\(12\) 0 0
\(13\) −3.78737 4.01438i −1.05043 1.11339i −0.993363 0.115018i \(-0.963307\pi\)
−0.0570649 0.998370i \(-0.518174\pi\)
\(14\) 0.785249 0.186107i 0.209867 0.0497393i
\(15\) 0 0
\(16\) 1.34911 3.12759i 0.337277 0.781897i
\(17\) 0.745021 + 4.22522i 0.180694 + 1.02477i 0.931364 + 0.364090i \(0.118620\pi\)
−0.750670 + 0.660678i \(0.770269\pi\)
\(18\) 0 0
\(19\) −0.0105922 + 0.0600713i −0.00243002 + 0.0137813i −0.985999 0.166753i \(-0.946672\pi\)
0.983569 + 0.180535i \(0.0577828\pi\)
\(20\) −3.36625 2.21402i −0.752717 0.495070i
\(21\) 0 0
\(22\) −0.579765 + 0.778760i −0.123606 + 0.166032i
\(23\) −0.248909 4.27360i −0.0519010 0.891107i −0.919316 0.393521i \(-0.871257\pi\)
0.867415 0.497586i \(-0.165780\pi\)
\(24\) 0 0
\(25\) 0.343143 0.363710i 0.0686286 0.0727421i
\(26\) 0.875520 1.51644i 0.171704 0.297399i
\(27\) 0 0
\(28\) −2.41553 4.18381i −0.456491 0.790666i
\(29\) −10.3910 2.46271i −1.92956 0.457313i −0.994776 0.102086i \(-0.967448\pi\)
−0.934780 0.355227i \(-0.884404\pi\)
\(30\) 0 0
\(31\) 4.12278 + 2.07054i 0.740473 + 0.371880i 0.778706 0.627389i \(-0.215877\pi\)
−0.0382327 + 0.999269i \(0.512173\pi\)
\(32\) 3.53097 + 0.412711i 0.624193 + 0.0729577i
\(33\) 0 0
\(34\) −1.21644 + 0.610921i −0.208618 + 0.104772i
\(35\) −5.07026 + 1.84542i −0.857030 + 0.311933i
\(36\) 0 0
\(37\) −3.30730 1.20376i −0.543716 0.197896i 0.0555362 0.998457i \(-0.482313\pi\)
−0.599252 + 0.800560i \(0.704535\pi\)
\(38\) −0.0192222 + 0.00224676i −0.00311826 + 0.000364472i
\(39\) 0 0
\(40\) 0.752687 2.51415i 0.119010 0.397522i
\(41\) 0.722754 2.41417i 0.112875 0.377030i −0.882821 0.469710i \(-0.844358\pi\)
0.995696 + 0.0926807i \(0.0295436\pi\)
\(42\) 0 0
\(43\) 0.770554 0.0900648i 0.117508 0.0137348i −0.0571354 0.998366i \(-0.518197\pi\)
0.174644 + 0.984632i \(0.444123\pi\)
\(44\) 5.46154 + 1.98784i 0.823359 + 0.299678i
\(45\) 0 0
\(46\) 1.27629 0.464532i 0.188179 0.0684915i
\(47\) 4.06294 2.04049i 0.592641 0.297635i −0.127087 0.991892i \(-0.540563\pi\)
0.719728 + 0.694256i \(0.244267\pi\)
\(48\) 0 0
\(49\) 0.526786 + 0.0615725i 0.0752551 + 0.00879607i
\(50\) 0.141773 + 0.0712008i 0.0200497 + 0.0100693i
\(51\) 0 0
\(52\) −10.1999 2.41742i −1.41447 0.335236i
\(53\) −0.986349 1.70841i −0.135485 0.234668i 0.790297 0.612724i \(-0.209926\pi\)
−0.925783 + 0.378056i \(0.876593\pi\)
\(54\) 0 0
\(55\) 3.24565 5.62164i 0.437644 0.758021i
\(56\) 2.15945 2.28888i 0.288568 0.305864i
\(57\) 0 0
\(58\) −0.197001 3.38238i −0.0258676 0.444129i
\(59\) −4.30754 + 5.78603i −0.560794 + 0.753277i −0.988595 0.150596i \(-0.951881\pi\)
0.427801 + 0.903873i \(0.359288\pi\)
\(60\) 0 0
\(61\) 9.75766 + 6.41771i 1.24934 + 0.821704i 0.989582 0.143970i \(-0.0459869\pi\)
0.259758 + 0.965674i \(0.416357\pi\)
\(62\) −0.254177 + 1.44151i −0.0322805 + 0.183072i
\(63\) 0 0
\(64\) −0.987085 5.59804i −0.123386 0.699755i
\(65\) −4.63712 + 10.7501i −0.575164 + 1.33338i
\(66\) 0 0
\(67\) −1.18028 + 0.279730i −0.144194 + 0.0341745i −0.302079 0.953283i \(-0.597681\pi\)
0.157885 + 0.987457i \(0.449532\pi\)
\(68\) 5.59213 + 5.92731i 0.678145 + 0.718792i
\(69\) 0 0
\(70\) −1.02228 1.37316i −0.122186 0.164124i
\(71\) 10.9300 9.17137i 1.29715 1.08844i 0.306525 0.951863i \(-0.400834\pi\)
0.990629 0.136579i \(-0.0436107\pi\)
\(72\) 0 0
\(73\) 7.44218 + 6.24473i 0.871042 + 0.730891i 0.964317 0.264750i \(-0.0852893\pi\)
−0.0932755 + 0.995640i \(0.529734\pi\)
\(74\) 0.0649282 1.11477i 0.00754775 0.129590i
\(75\) 0 0
\(76\) 0.0458881 + 0.106381i 0.00526373 + 0.0122027i
\(77\) 6.50290 4.27703i 0.741075 0.487412i
\(78\) 0 0
\(79\) −0.462085 1.54347i −0.0519886 0.173654i 0.928052 0.372450i \(-0.121482\pi\)
−0.980041 + 0.198796i \(0.936297\pi\)
\(80\) −7.22552 −0.807838
\(81\) 0 0
\(82\) 0.799542 0.0882947
\(83\) 0.947094 + 3.16351i 0.103957 + 0.347241i 0.994104 0.108433i \(-0.0345834\pi\)
−0.890147 + 0.455674i \(0.849398\pi\)
\(84\) 0 0
\(85\) 7.60402 5.00124i 0.824771 0.542461i
\(86\) 0.0974916 + 0.226011i 0.0105128 + 0.0243714i
\(87\) 0 0
\(88\) −0.220122 + 3.77936i −0.0234651 + 0.402881i
\(89\) 10.7606 + 9.02919i 1.14062 + 0.957092i 0.999459 0.0328946i \(-0.0104726\pi\)
0.141159 + 0.989987i \(0.454917\pi\)
\(90\) 0 0
\(91\) −10.7536 + 9.02336i −1.12729 + 0.945905i
\(92\) −4.85535 6.52187i −0.506205 0.679952i
\(93\) 0 0
\(94\) 0.989905 + 1.04924i 0.102101 + 0.108221i
\(95\) 0.125908 0.0298407i 0.0129179 0.00306160i
\(96\) 0 0
\(97\) 2.78173 6.44878i 0.282442 0.654774i −0.716648 0.697436i \(-0.754324\pi\)
0.999090 + 0.0426612i \(0.0135836\pi\)
\(98\) 0.0292204 + 0.165717i 0.00295170 + 0.0167399i
\(99\) 0 0
\(100\) 0.164919 0.935301i 0.0164919 0.0935301i
\(101\) 9.06820 + 5.96425i 0.902320 + 0.593465i 0.913664 0.406471i \(-0.133241\pi\)
−0.0113443 + 0.999936i \(0.503611\pi\)
\(102\) 0 0
\(103\) −7.42672 + 9.97581i −0.731776 + 0.982946i 0.268033 + 0.963410i \(0.413626\pi\)
−0.999809 + 0.0195364i \(0.993781\pi\)
\(104\) −0.397007 6.81634i −0.0389297 0.668397i
\(105\) 0 0
\(106\) 0.429509 0.455253i 0.0417176 0.0442181i
\(107\) 2.48915 4.31134i 0.240636 0.416793i −0.720260 0.693704i \(-0.755977\pi\)
0.960896 + 0.276911i \(0.0893108\pi\)
\(108\) 0 0
\(109\) −0.180626 0.312853i −0.0173008 0.0299659i 0.857245 0.514908i \(-0.172174\pi\)
−0.874546 + 0.484942i \(0.838841\pi\)
\(110\) 2.00401 + 0.474959i 0.191075 + 0.0452856i
\(111\) 0 0
\(112\) −7.74218 3.88827i −0.731567 0.367407i
\(113\) −19.6084 2.29190i −1.84461 0.215604i −0.879219 0.476419i \(-0.841935\pi\)
−0.965389 + 0.260815i \(0.916009\pi\)
\(114\) 0 0
\(115\) −8.11508 + 4.07554i −0.756735 + 0.380047i
\(116\) −19.0595 + 6.93709i −1.76963 + 0.644092i
\(117\) 0 0
\(118\) −2.15060 0.782756i −0.197979 0.0720585i
\(119\) 10.8391 1.26690i 0.993614 0.116137i
\(120\) 0 0
\(121\) 0.469250 1.56740i 0.0426591 0.142491i
\(122\) −1.06273 + 3.54978i −0.0962154 + 0.321382i
\(123\) 0 0
\(124\) 8.70335 1.01728i 0.781584 0.0913541i
\(125\) −10.9637 3.99045i −0.980620 0.356916i
\(126\) 0 0
\(127\) 13.5556 4.93382i 1.20286 0.437806i 0.338639 0.940916i \(-0.390033\pi\)
0.864222 + 0.503111i \(0.167811\pi\)
\(128\) 7.96541 4.00038i 0.704050 0.353587i
\(129\) 0 0
\(130\) −3.68939 0.431227i −0.323581 0.0378211i
\(131\) −2.72986 1.37099i −0.238509 0.119784i 0.325530 0.945532i \(-0.394457\pi\)
−0.564040 + 0.825748i \(0.690753\pi\)
\(132\) 0 0
\(133\) 0.150969 + 0.0357803i 0.0130907 + 0.00310255i
\(134\) −0.192422 0.333285i −0.0166228 0.0287915i
\(135\) 0 0
\(136\) −2.65396 + 4.59679i −0.227575 + 0.394171i
\(137\) 1.78765 1.89480i 0.152729 0.161883i −0.646492 0.762921i \(-0.723764\pi\)
0.799221 + 0.601038i \(0.205246\pi\)
\(138\) 0 0
\(139\) 1.10383 + 18.9519i 0.0936252 + 1.60748i 0.638943 + 0.769254i \(0.279372\pi\)
−0.545318 + 0.838229i \(0.683591\pi\)
\(140\) −6.11978 + 8.22030i −0.517216 + 0.694742i
\(141\) 0 0
\(142\) 3.78218 + 2.48758i 0.317393 + 0.208753i
\(143\) 2.93264 16.6318i 0.245240 1.39082i
\(144\) 0 0
\(145\) 3.93367 + 22.3090i 0.326674 + 1.85266i
\(146\) −1.22085 + 2.83026i −0.101039 + 0.234234i
\(147\) 0 0
\(148\) −6.50462 + 1.54162i −0.534677 + 0.126721i
\(149\) 2.81196 + 2.98051i 0.230365 + 0.244173i 0.832237 0.554420i \(-0.187060\pi\)
−0.601872 + 0.798592i \(0.705578\pi\)
\(150\) 0 0
\(151\) 5.93650 + 7.97411i 0.483106 + 0.648923i 0.975124 0.221662i \(-0.0711480\pi\)
−0.492018 + 0.870585i \(0.663741\pi\)
\(152\) −0.0578090 + 0.0485075i −0.00468893 + 0.00393448i
\(153\) 0 0
\(154\) 1.89172 + 1.58734i 0.152439 + 0.127911i
\(155\) 0.569045 9.77013i 0.0457068 0.784756i
\(156\) 0 0
\(157\) 4.57455 + 10.6050i 0.365089 + 0.846371i 0.997428 + 0.0716789i \(0.0228357\pi\)
−0.632339 + 0.774692i \(0.717905\pi\)
\(158\) 0.427084 0.280897i 0.0339770 0.0223470i
\(159\) 0 0
\(160\) −2.16286 7.22446i −0.170989 0.571144i
\(161\) −10.8885 −0.858135
\(162\) 0 0
\(163\) −14.1333 −1.10700 −0.553502 0.832848i \(-0.686709\pi\)
−0.553502 + 0.832848i \(0.686709\pi\)
\(164\) −1.37275 4.58532i −0.107194 0.358053i
\(165\) 0 0
\(166\) −0.875354 + 0.575730i −0.0679407 + 0.0446853i
\(167\) 2.65513 + 6.15528i 0.205460 + 0.476310i 0.989524 0.144370i \(-0.0461157\pi\)
−0.784064 + 0.620681i \(0.786856\pi\)
\(168\) 0 0
\(169\) −1.01518 + 17.4299i −0.0780905 + 1.34076i
\(170\) 2.21203 + 1.85612i 0.169655 + 0.142358i
\(171\) 0 0
\(172\) 1.12877 0.947150i 0.0860679 0.0722195i
\(173\) 8.83125 + 11.8624i 0.671427 + 0.901884i 0.999079 0.0429151i \(-0.0136645\pi\)
−0.327651 + 0.944799i \(0.606257\pi\)
\(174\) 0 0
\(175\) −0.872800 0.925114i −0.0659775 0.0699321i
\(176\) 10.1420 2.40370i 0.764484 0.181186i
\(177\) 0 0
\(178\) −1.76522 + 4.09224i −0.132309 + 0.306726i
\(179\) 0.110050 + 0.624125i 0.00822552 + 0.0466493i 0.988644 0.150275i \(-0.0480159\pi\)
−0.980419 + 0.196924i \(0.936905\pi\)
\(180\) 0 0
\(181\) −2.42311 + 13.7421i −0.180108 + 1.02145i 0.751972 + 0.659195i \(0.229103\pi\)
−0.932081 + 0.362251i \(0.882008\pi\)
\(182\) −3.72114 2.44743i −0.275829 0.181416i
\(183\) 0 0
\(184\) 3.16260 4.24811i 0.233150 0.313175i
\(185\) 0.434113 + 7.45344i 0.0319166 + 0.547988i
\(186\) 0 0
\(187\) −9.00954 + 9.54956i −0.658843 + 0.698333i
\(188\) 4.31771 7.47849i 0.314901 0.545425i
\(189\) 0 0
\(190\) 0.0205270 + 0.0355538i 0.00148918 + 0.00257934i
\(191\) −8.26432 1.95868i −0.597985 0.141725i −0.0795338 0.996832i \(-0.525343\pi\)
−0.518451 + 0.855107i \(0.673491\pi\)
\(192\) 0 0
\(193\) 11.8416 + 5.94705i 0.852374 + 0.428078i 0.820659 0.571419i \(-0.193607\pi\)
0.0317154 + 0.999497i \(0.489903\pi\)
\(194\) 2.21320 + 0.258686i 0.158899 + 0.0185726i
\(195\) 0 0
\(196\) 0.900206 0.452100i 0.0643004 0.0322929i
\(197\) −7.09307 + 2.58167i −0.505360 + 0.183936i −0.582103 0.813115i \(-0.697770\pi\)
0.0767431 + 0.997051i \(0.475548\pi\)
\(198\) 0 0
\(199\) 1.98595 + 0.722827i 0.140780 + 0.0512399i 0.411449 0.911433i \(-0.365023\pi\)
−0.270669 + 0.962672i \(0.587245\pi\)
\(200\) 0.614437 0.0718174i 0.0434473 0.00507826i
\(201\) 0 0
\(202\) −0.987643 + 3.29896i −0.0694903 + 0.232114i
\(203\) −7.79017 + 26.0210i −0.546763 + 1.82632i
\(204\) 0 0
\(205\) −5.30964 + 0.620607i −0.370841 + 0.0433451i
\(206\) −3.70790 1.34957i −0.258342 0.0940287i
\(207\) 0 0
\(208\) −17.6649 + 6.42950i −1.22484 + 0.445805i
\(209\) −0.166802 + 0.0837713i −0.0115380 + 0.00579458i
\(210\) 0 0
\(211\) −0.652038 0.0762123i −0.0448882 0.00524667i 0.0936192 0.995608i \(-0.470156\pi\)
−0.138507 + 0.990361i \(0.544230\pi\)
\(212\) −3.34828 1.68157i −0.229961 0.115491i
\(213\) 0 0
\(214\) 1.53691 + 0.364255i 0.105061 + 0.0249000i
\(215\) −0.822857 1.42523i −0.0561184 0.0971998i
\(216\) 0 0
\(217\) 5.86733 10.1625i 0.398301 0.689877i
\(218\) 0.0786542 0.0833686i 0.00532714 0.00564643i
\(219\) 0 0
\(220\) −0.716878 12.3083i −0.0483319 0.829827i
\(221\) 14.1400 18.9933i 0.951158 1.27763i
\(222\) 0 0
\(223\) −18.8077 12.3700i −1.25945 0.828356i −0.268595 0.963253i \(-0.586559\pi\)
−0.990860 + 0.134897i \(0.956930\pi\)
\(224\) 1.57018 8.90495i 0.104912 0.594987i
\(225\) 0 0
\(226\) −1.08766 6.16845i −0.0723503 0.410319i
\(227\) 5.31087 12.3120i 0.352495 0.817175i −0.646052 0.763293i \(-0.723581\pi\)
0.998547 0.0538820i \(-0.0171595\pi\)
\(228\) 0 0
\(229\) 6.05564 1.43521i 0.400168 0.0948415i −0.0256038 0.999672i \(-0.508151\pi\)
0.425772 + 0.904831i \(0.360003\pi\)
\(230\) −1.97718 2.09569i −0.130371 0.138185i
\(231\) 0 0
\(232\) −7.88931 10.5972i −0.517958 0.695739i
\(233\) 9.49107 7.96396i 0.621781 0.521736i −0.276582 0.960990i \(-0.589202\pi\)
0.898363 + 0.439254i \(0.144757\pi\)
\(234\) 0 0
\(235\) −7.38822 6.19946i −0.481955 0.404408i
\(236\) −0.796623 + 13.6775i −0.0518557 + 0.890329i
\(237\) 0 0
\(238\) 1.37137 + 3.17920i 0.0888929 + 0.206077i
\(239\) −8.21456 + 5.40280i −0.531356 + 0.349478i −0.786664 0.617382i \(-0.788193\pi\)
0.255308 + 0.966860i \(0.417823\pi\)
\(240\) 0 0
\(241\) 4.97235 + 16.6088i 0.320297 + 1.06987i 0.954875 + 0.297009i \(0.0959890\pi\)
−0.634577 + 0.772859i \(0.718826\pi\)
\(242\) 0.519105 0.0333693
\(243\) 0 0
\(244\) 22.1823 1.42008
\(245\) −0.322678 1.07782i −0.0206151 0.0688594i
\(246\) 0 0
\(247\) 0.281266 0.184991i 0.0178965 0.0117707i
\(248\) 2.26068 + 5.24085i 0.143553 + 0.332794i
\(249\) 0 0
\(250\) 0.215237 3.69547i 0.0136128 0.233722i
\(251\) 19.1764 + 16.0909i 1.21040 + 1.01565i 0.999270 + 0.0381908i \(0.0121595\pi\)
0.211132 + 0.977458i \(0.432285\pi\)
\(252\) 0 0
\(253\) 10.0348 8.42023i 0.630885 0.529375i
\(254\) 2.73310 + 3.67120i 0.171490 + 0.230351i
\(255\) 0 0
\(256\) −5.86103 6.21233i −0.366314 0.388270i
\(257\) −2.34548 + 0.555890i −0.146307 + 0.0346755i −0.303117 0.952953i \(-0.598027\pi\)
0.156810 + 0.987629i \(0.449879\pi\)
\(258\) 0 0
\(259\) −3.54576 + 8.22000i −0.220323 + 0.510766i
\(260\) 3.86134 + 21.8987i 0.239470 + 1.35810i
\(261\) 0 0
\(262\) 0.168301 0.954483i 0.0103977 0.0589682i
\(263\) −3.27743 2.15560i −0.202095 0.132920i 0.444428 0.895815i \(-0.353407\pi\)
−0.646523 + 0.762895i \(0.723777\pi\)
\(264\) 0 0
\(265\) −2.49894 + 3.35665i −0.153508 + 0.206198i
\(266\) 0.00286221 + 0.0491422i 0.000175493 + 0.00301310i
\(267\) 0 0
\(268\) −1.58099 + 1.67575i −0.0965745 + 0.102363i
\(269\) 5.54513 9.60445i 0.338093 0.585594i −0.645981 0.763353i \(-0.723552\pi\)
0.984074 + 0.177760i \(0.0568849\pi\)
\(270\) 0 0
\(271\) −0.397309 0.688159i −0.0241348 0.0418027i 0.853706 0.520756i \(-0.174350\pi\)
−0.877841 + 0.478953i \(0.841016\pi\)
\(272\) 14.2199 + 3.37017i 0.862206 + 0.204347i
\(273\) 0 0
\(274\) 0.738582 + 0.370930i 0.0446194 + 0.0224087i
\(275\) 1.51977 + 0.177636i 0.0916458 + 0.0107119i
\(276\) 0 0
\(277\) 26.0832 13.0995i 1.56719 0.787070i 0.567837 0.823141i \(-0.307780\pi\)
0.999349 + 0.0360708i \(0.0114842\pi\)
\(278\) −5.65991 + 2.06004i −0.339459 + 0.123553i
\(279\) 0 0
\(280\) −6.27272 2.28308i −0.374867 0.136440i
\(281\) −27.4024 + 3.20288i −1.63469 + 0.191068i −0.883306 0.468798i \(-0.844687\pi\)
−0.751384 + 0.659865i \(0.770613\pi\)
\(282\) 0 0
\(283\) 1.46517 4.89400i 0.0870951 0.290918i −0.903334 0.428937i \(-0.858888\pi\)
0.990430 + 0.138019i \(0.0440735\pi\)
\(284\) 7.77236 25.9615i 0.461205 1.54053i
\(285\) 0 0
\(286\) 5.32202 0.622055i 0.314698 0.0367829i
\(287\) −6.02327 2.19229i −0.355542 0.129407i
\(288\) 0 0
\(289\) −1.32268 + 0.481415i −0.0778046 + 0.0283185i
\(290\) −6.42277 + 3.22563i −0.377158 + 0.189416i
\(291\) 0 0
\(292\) 18.3274 + 2.14217i 1.07253 + 0.125361i
\(293\) 2.09418 + 1.05174i 0.122344 + 0.0614432i 0.508918 0.860815i \(-0.330046\pi\)
−0.386575 + 0.922258i \(0.626342\pi\)
\(294\) 0 0
\(295\) 14.8894 + 3.52885i 0.866895 + 0.205458i
\(296\) −2.17712 3.77089i −0.126543 0.219178i
\(297\) 0 0
\(298\) −0.650036 + 1.12590i −0.0376556 + 0.0652214i
\(299\) −16.2131 + 17.1849i −0.937630 + 0.993829i
\(300\) 0 0
\(301\) −0.114736 1.96994i −0.00661328 0.113546i
\(302\) −1.88350 + 2.52998i −0.108383 + 0.145584i
\(303\) 0 0
\(304\) 0.173588 + 0.114171i 0.00995597 + 0.00654814i
\(305\) 4.30210 24.3984i 0.246337 1.39705i
\(306\) 0 0
\(307\) −2.80743 15.9217i −0.160228 0.908700i −0.953849 0.300287i \(-0.902918\pi\)
0.793620 0.608413i \(-0.208194\pi\)
\(308\) 5.85534 13.5742i 0.333639 0.773462i
\(309\) 0 0
\(310\) 3.02137 0.716077i 0.171602 0.0406705i
\(311\) −14.5476 15.4196i −0.824919 0.874363i 0.168871 0.985638i \(-0.445988\pi\)
−0.993790 + 0.111276i \(0.964506\pi\)
\(312\) 0 0
\(313\) −3.23147 4.34062i −0.182654 0.245346i 0.701360 0.712807i \(-0.252576\pi\)
−0.884014 + 0.467461i \(0.845169\pi\)
\(314\) −2.80708 + 2.35542i −0.158413 + 0.132924i
\(315\) 0 0
\(316\) −2.34420 1.96701i −0.131871 0.110653i
\(317\) 0.507449 8.71256i 0.0285012 0.489346i −0.953610 0.301045i \(-0.902665\pi\)
0.982111 0.188302i \(-0.0602983\pi\)
\(318\) 0 0
\(319\) −12.9430 30.0052i −0.724667 1.67997i
\(320\) −10.0746 + 6.62619i −0.563189 + 0.370415i
\(321\) 0 0
\(322\) −0.990803 3.30951i −0.0552153 0.184432i
\(323\) −0.261706 −0.0145617
\(324\) 0 0
\(325\) −2.75968 −0.153080
\(326\) −1.28606 4.29574i −0.0712283 0.237919i
\(327\) 0 0
\(328\) 2.60479 1.71320i 0.143825 0.0945954i
\(329\) −4.58040 10.6186i −0.252526 0.585421i
\(330\) 0 0
\(331\) 1.14258 19.6173i 0.0628019 1.07827i −0.808810 0.588070i \(-0.799888\pi\)
0.871612 0.490196i \(-0.163075\pi\)
\(332\) 4.80468 + 4.03161i 0.263691 + 0.221263i
\(333\) 0 0
\(334\) −1.62927 + 1.36712i −0.0891495 + 0.0748053i
\(335\) 1.53654 + 2.06394i 0.0839504 + 0.112765i
\(336\) 0 0
\(337\) 5.04080 + 5.34293i 0.274590 + 0.291048i 0.849962 0.526843i \(-0.176625\pi\)
−0.575373 + 0.817891i \(0.695143\pi\)
\(338\) −5.39012 + 1.27748i −0.293184 + 0.0694858i
\(339\) 0 0
\(340\) 6.84680 15.8727i 0.371320 0.860816i
\(341\) 2.45148 + 13.9030i 0.132755 + 0.752892i
\(342\) 0 0
\(343\) 3.32603 18.8629i 0.179589 1.01850i
\(344\) 0.801891 + 0.527412i 0.0432351 + 0.0284361i
\(345\) 0 0
\(346\) −2.80193 + 3.76364i −0.150633 + 0.202335i
\(347\) 1.05931 + 18.1877i 0.0568668 + 0.976365i 0.899236 + 0.437464i \(0.144123\pi\)
−0.842369 + 0.538901i \(0.818840\pi\)
\(348\) 0 0
\(349\) 11.0555 11.7182i 0.591788 0.627258i −0.360390 0.932802i \(-0.617357\pi\)
0.952178 + 0.305543i \(0.0988380\pi\)
\(350\) 0.201764 0.349465i 0.0107847 0.0186797i
\(351\) 0 0
\(352\) 5.43923 + 9.42103i 0.289912 + 0.502142i
\(353\) 16.7207 + 3.96288i 0.889953 + 0.210923i 0.650066 0.759878i \(-0.274741\pi\)
0.239887 + 0.970801i \(0.422890\pi\)
\(354\) 0 0
\(355\) −27.0477 13.5839i −1.43554 0.720957i
\(356\) 26.4994 + 3.09734i 1.40447 + 0.164159i
\(357\) 0 0
\(358\) −0.179686 + 0.0902416i −0.00949669 + 0.00476942i
\(359\) −26.7193 + 9.72505i −1.41019 + 0.513268i −0.931187 0.364543i \(-0.881225\pi\)
−0.479007 + 0.877811i \(0.659003\pi\)
\(360\) 0 0
\(361\) 17.8507 + 6.49711i 0.939509 + 0.341953i
\(362\) −4.39735 + 0.513977i −0.231120 + 0.0270140i
\(363\) 0 0
\(364\) −7.64692 + 25.5425i −0.400808 + 1.33879i
\(365\) 5.91065 19.7429i 0.309377 1.03339i
\(366\) 0 0
\(367\) −10.3069 + 1.20471i −0.538017 + 0.0628851i −0.380762 0.924673i \(-0.624338\pi\)
−0.157254 + 0.987558i \(0.550264\pi\)
\(368\) −13.7018 4.98706i −0.714258 0.259969i
\(369\) 0 0
\(370\) −2.22594 + 0.810174i −0.115721 + 0.0421190i
\(371\) −4.48394 + 2.25192i −0.232794 + 0.116914i
\(372\) 0 0
\(373\) −14.7918 1.72891i −0.765890 0.0895198i −0.275828 0.961207i \(-0.588952\pi\)
−0.490063 + 0.871687i \(0.663026\pi\)
\(374\) −3.72237 1.86944i −0.192479 0.0966667i
\(375\) 0 0
\(376\) 5.47318 + 1.29717i 0.282258 + 0.0668963i
\(377\) 29.4683 + 51.0405i 1.51769 + 2.62872i
\(378\) 0 0
\(379\) −5.81217 + 10.0670i −0.298551 + 0.517106i −0.975805 0.218644i \(-0.929837\pi\)
0.677253 + 0.735750i \(0.263170\pi\)
\(380\) 0.168655 0.178764i 0.00865182 0.00917040i
\(381\) 0 0
\(382\) −0.156682 2.69013i −0.00801657 0.137639i
\(383\) 17.0286 22.8733i 0.870119 1.16877i −0.114389 0.993436i \(-0.536491\pi\)
0.984508 0.175337i \(-0.0561015\pi\)
\(384\) 0 0
\(385\) −13.7947 9.07291i −0.703042 0.462398i
\(386\) −0.730054 + 4.14034i −0.0371588 + 0.210738i
\(387\) 0 0
\(388\) −2.31635 13.1367i −0.117595 0.666915i
\(389\) −1.21611 + 2.81926i −0.0616592 + 0.142942i −0.946260 0.323407i \(-0.895172\pi\)
0.884601 + 0.466349i \(0.154431\pi\)
\(390\) 0 0
\(391\) 17.8715 4.23561i 0.903798 0.214204i
\(392\) 0.450281 + 0.477270i 0.0227426 + 0.0241058i
\(393\) 0 0
\(394\) −1.43012 1.92099i −0.0720485 0.0967779i
\(395\) −2.61816 + 2.19690i −0.131734 + 0.110538i
\(396\) 0 0
\(397\) −8.05095 6.75555i −0.404065 0.339051i 0.417997 0.908448i \(-0.362732\pi\)
−0.822063 + 0.569397i \(0.807177\pi\)
\(398\) −0.0389878 + 0.669395i −0.00195428 + 0.0335537i
\(399\) 0 0
\(400\) −0.674598 1.56389i −0.0337299 0.0781947i
\(401\) 22.1390 14.5610i 1.10557 0.727143i 0.140745 0.990046i \(-0.455050\pi\)
0.964822 + 0.262903i \(0.0846799\pi\)
\(402\) 0 0
\(403\) −7.30258 24.3923i −0.363767 1.21507i
\(404\) 20.6150 1.02563
\(405\) 0 0
\(406\) −8.61783 −0.427696
\(407\) −3.08886 10.3175i −0.153109 0.511421i
\(408\) 0 0
\(409\) −22.0172 + 14.4809i −1.08868 + 0.716036i −0.961213 0.275807i \(-0.911055\pi\)
−0.127466 + 0.991843i \(0.540684\pi\)
\(410\) −0.671783 1.55737i −0.0331770 0.0769129i
\(411\) 0 0
\(412\) −1.37347 + 23.5816i −0.0676662 + 1.16178i
\(413\) 14.0551 + 11.7936i 0.691605 + 0.580326i
\(414\) 0 0
\(415\) 5.36621 4.50278i 0.263417 0.221033i
\(416\) −11.7163 15.7377i −0.574439 0.771606i
\(417\) 0 0
\(418\) −0.0406401 0.0430760i −0.00198777 0.00210692i
\(419\) −7.62045 + 1.80608i −0.372284 + 0.0882328i −0.412499 0.910958i \(-0.635344\pi\)
0.0402151 + 0.999191i \(0.487196\pi\)
\(420\) 0 0
\(421\) −12.6159 + 29.2469i −0.614860 + 1.42541i 0.271513 + 0.962435i \(0.412476\pi\)
−0.886373 + 0.462971i \(0.846783\pi\)
\(422\) −0.0361680 0.205119i −0.00176063 0.00998504i
\(423\) 0 0
\(424\) 0.423796 2.40347i 0.0205813 0.116723i
\(425\) 1.79241 + 1.17888i 0.0869445 + 0.0571843i
\(426\) 0 0
\(427\) 17.7392 23.8279i 0.858461 1.15311i
\(428\) −0.549788 9.43949i −0.0265750 0.456275i
\(429\) 0 0
\(430\) 0.358316 0.379793i 0.0172795 0.0183152i
\(431\) −16.6567 + 28.8502i −0.802324 + 1.38967i 0.115759 + 0.993277i \(0.463070\pi\)
−0.918083 + 0.396389i \(0.870263\pi\)
\(432\) 0 0
\(433\) 2.75793 + 4.77688i 0.132538 + 0.229562i 0.924654 0.380808i \(-0.124354\pi\)
−0.792116 + 0.610370i \(0.791021\pi\)
\(434\) 3.62275 + 0.858608i 0.173898 + 0.0412145i
\(435\) 0 0
\(436\) −0.613156 0.307939i −0.0293649 0.0147476i
\(437\) 0.259357 + 0.0303145i 0.0124067 + 0.00145014i
\(438\) 0 0
\(439\) −2.95797 + 1.48555i −0.141176 + 0.0709013i −0.517985 0.855390i \(-0.673318\pi\)
0.376809 + 0.926291i \(0.377021\pi\)
\(440\) 7.54647 2.74669i 0.359764 0.130943i
\(441\) 0 0
\(442\) 7.05960 + 2.56948i 0.335791 + 0.122218i
\(443\) 17.0697 1.99516i 0.811004 0.0947928i 0.299525 0.954088i \(-0.403172\pi\)
0.511479 + 0.859296i \(0.329098\pi\)
\(444\) 0 0
\(445\) 8.54614 28.5461i 0.405126 1.35321i
\(446\) 2.04840 6.84212i 0.0969944 0.323984i
\(447\) 0 0
\(448\) −14.3608 + 1.67853i −0.678482 + 0.0793032i
\(449\) −16.5392 6.01977i −0.780532 0.284090i −0.0791375 0.996864i \(-0.525217\pi\)
−0.701394 + 0.712773i \(0.747439\pi\)
\(450\) 0 0
\(451\) 7.24636 2.63746i 0.341218 0.124193i
\(452\) −33.5082 + 16.8284i −1.57609 + 0.791543i
\(453\) 0 0
\(454\) 4.22544 + 0.493883i 0.198310 + 0.0231791i
\(455\) 26.6112 + 13.3646i 1.24755 + 0.626544i
\(456\) 0 0
\(457\) 17.3927 + 4.12215i 0.813597 + 0.192826i 0.616294 0.787516i \(-0.288633\pi\)
0.197304 + 0.980342i \(0.436782\pi\)
\(458\) 0.987261 + 1.70999i 0.0461317 + 0.0799024i
\(459\) 0 0
\(460\) −8.62394 + 14.9371i −0.402093 + 0.696446i
\(461\) −3.44987 + 3.65664i −0.160676 + 0.170307i −0.802710 0.596369i \(-0.796609\pi\)
0.642034 + 0.766676i \(0.278091\pi\)
\(462\) 0 0
\(463\) −1.00039 17.1761i −0.0464922 0.798240i −0.938299 0.345824i \(-0.887599\pi\)
0.891807 0.452416i \(-0.149438\pi\)
\(464\) −21.7209 + 29.1762i −1.00837 + 1.35447i
\(465\) 0 0
\(466\) 3.28425 + 2.16009i 0.152140 + 0.100064i
\(467\) 6.50441 36.8883i 0.300988 1.70699i −0.340824 0.940127i \(-0.610706\pi\)
0.641812 0.766862i \(-0.278183\pi\)
\(468\) 0 0
\(469\) 0.535748 + 3.03838i 0.0247385 + 0.140299i
\(470\) 1.21200 2.80974i 0.0559055 0.129604i
\(471\) 0 0
\(472\) −8.68357 + 2.05804i −0.399694 + 0.0947292i
\(473\) 1.62912 + 1.72677i 0.0749072 + 0.0793970i
\(474\) 0 0
\(475\) 0.0182139 + 0.0244655i 0.000835712 + 0.00112256i
\(476\) 15.8779 13.3232i 0.727764 0.610666i
\(477\) 0 0
\(478\) −2.38964 2.00515i −0.109300 0.0917134i
\(479\) −0.199015 + 3.41695i −0.00909321 + 0.156124i 0.990705 + 0.136029i \(0.0434340\pi\)
−0.999798 + 0.0200954i \(0.993603\pi\)
\(480\) 0 0
\(481\) 7.69362 + 17.8358i 0.350799 + 0.813244i
\(482\) −4.59571 + 3.02265i −0.209329 + 0.137678i
\(483\) 0 0
\(484\) −0.891264 2.97703i −0.0405120 0.135319i
\(485\) −14.8983 −0.676498
\(486\) 0 0
\(487\) −5.43342 −0.246212 −0.123106 0.992394i \(-0.539285\pi\)
−0.123106 + 0.992394i \(0.539285\pi\)
\(488\) 4.14396 + 13.8418i 0.187588 + 0.626588i
\(489\) 0 0
\(490\) 0.298236 0.196153i 0.0134729 0.00886129i
\(491\) −1.57397 3.64886i −0.0710321 0.164671i 0.879001 0.476820i \(-0.158211\pi\)
−0.950033 + 0.312149i \(0.898951\pi\)
\(492\) 0 0
\(493\) 2.66399 45.7390i 0.119980 2.05998i
\(494\) 0.0818212 + 0.0686561i 0.00368131 + 0.00308898i
\(495\) 0 0
\(496\) 12.0379 10.1010i 0.540516 0.453547i
\(497\) −21.6719 29.1104i −0.972116 1.30578i
\(498\) 0 0
\(499\) 14.7243 + 15.6069i 0.659151 + 0.698659i 0.967573 0.252591i \(-0.0812826\pi\)
−0.308423 + 0.951249i \(0.599801\pi\)
\(500\) −21.5628 + 5.11047i −0.964317 + 0.228547i
\(501\) 0 0
\(502\) −3.14579 + 7.29277i −0.140404 + 0.325492i
\(503\) −4.28340 24.2924i −0.190987 1.08314i −0.918018 0.396538i \(-0.870211\pi\)
0.727031 0.686605i \(-0.240900\pi\)
\(504\) 0 0
\(505\) 3.99812 22.6745i 0.177914 1.00900i
\(506\) 3.47241 + 2.28384i 0.154368 + 0.101529i
\(507\) 0 0
\(508\) 16.3615 21.9773i 0.725924 0.975086i
\(509\) −0.427185 7.33448i −0.0189346 0.325095i −0.994453 0.105179i \(-0.966459\pi\)
0.975519 0.219916i \(-0.0705785\pi\)
\(510\) 0 0
\(511\) 16.9576 17.9740i 0.750158 0.795121i
\(512\) 10.2684 17.7854i 0.453804 0.786011i
\(513\) 0 0
\(514\) −0.382388 0.662316i −0.0168664 0.0292135i
\(515\) 25.6711 + 6.08417i 1.13120 + 0.268100i
\(516\) 0 0
\(517\) 12.4328 + 6.24397i 0.546793 + 0.274610i
\(518\) −2.82108 0.329737i −0.123951 0.0144878i
\(519\) 0 0
\(520\) −12.9435 + 6.50045i −0.567608 + 0.285064i
\(521\) 25.5909 9.31432i 1.12116 0.408068i 0.286082 0.958205i \(-0.407647\pi\)
0.835074 + 0.550137i \(0.185425\pi\)
\(522\) 0 0
\(523\) −14.3006 5.20499i −0.625321 0.227598i 0.00987267 0.999951i \(-0.496857\pi\)
−0.635193 + 0.772353i \(0.719080\pi\)
\(524\) −5.76285 + 0.673581i −0.251751 + 0.0294255i
\(525\) 0 0
\(526\) 0.356954 1.19231i 0.0155639 0.0519872i
\(527\) −5.67693 + 18.9623i −0.247291 + 0.826009i
\(528\) 0 0
\(529\) 4.64281 0.542667i 0.201861 0.0235942i
\(530\) −1.24763 0.454101i −0.0541936 0.0197249i
\(531\) 0 0
\(532\) 0.276913 0.100788i 0.0120057 0.00436972i
\(533\) −12.4287 + 6.24194i −0.538348 + 0.270368i
\(534\) 0 0
\(535\) −10.4891 1.22600i −0.453485 0.0530048i
\(536\) −1.34102 0.673486i −0.0579233 0.0290902i
\(537\) 0 0
\(538\) 3.42381 + 0.811458i 0.147611 + 0.0349844i
\(539\) 0.811481 + 1.40553i 0.0349530 + 0.0605403i
\(540\) 0 0
\(541\) −8.31159 + 14.3961i −0.357343 + 0.618937i −0.987516 0.157518i \(-0.949651\pi\)
0.630173 + 0.776455i \(0.282984\pi\)
\(542\) 0.173009 0.183379i 0.00743139 0.00787682i
\(543\) 0 0
\(544\) 0.886848 + 15.2266i 0.0380233 + 0.652835i
\(545\) −0.457619 + 0.614690i −0.0196023 + 0.0263304i
\(546\) 0 0
\(547\) −9.42672 6.20005i −0.403057 0.265095i 0.331755 0.943366i \(-0.392359\pi\)
−0.734812 + 0.678271i \(0.762730\pi\)
\(548\) 0.859166 4.87257i 0.0367018 0.208146i
\(549\) 0 0
\(550\) 0.0843006 + 0.478093i 0.00359459 + 0.0203859i
\(551\) 0.258001 0.598114i 0.0109912 0.0254805i
\(552\) 0 0
\(553\) −3.98759 + 0.945076i −0.169570 + 0.0401887i
\(554\) 6.35497 + 6.73587i 0.269997 + 0.286180i
\(555\) 0 0
\(556\) 21.5318 + 28.9223i 0.913153 + 1.22658i
\(557\) −22.3339 + 18.7404i −0.946318 + 0.794055i −0.978674 0.205421i \(-0.934144\pi\)
0.0323557 + 0.999476i \(0.489699\pi\)
\(558\) 0 0
\(559\) −3.27993 2.75219i −0.138726 0.116405i
\(560\) −1.06861 + 18.3474i −0.0451571 + 0.775317i
\(561\) 0 0
\(562\) −3.46699 8.03739i −0.146246 0.339037i
\(563\) −17.9346 + 11.7958i −0.755853 + 0.497133i −0.868003 0.496559i \(-0.834597\pi\)
0.112150 + 0.993691i \(0.464226\pi\)
\(564\) 0 0
\(565\) 12.0110 + 40.1195i 0.505306 + 1.68784i
\(566\) 1.62083 0.0681286
\(567\) 0 0
\(568\) 17.6519 0.740659
\(569\) −0.768966 2.56852i −0.0322367 0.107678i 0.940357 0.340189i \(-0.110491\pi\)
−0.972594 + 0.232511i \(0.925306\pi\)
\(570\) 0 0
\(571\) 2.37346 1.56105i 0.0993261 0.0653278i −0.498874 0.866674i \(-0.666253\pi\)
0.598200 + 0.801347i \(0.295883\pi\)
\(572\) −12.7050 29.4534i −0.531221 1.23151i
\(573\) 0 0
\(574\) 0.118248 2.03023i 0.00493556 0.0847403i
\(575\) −1.63976 1.37592i −0.0683828 0.0573800i
\(576\) 0 0
\(577\) 4.53692 3.80692i 0.188874 0.158484i −0.543447 0.839443i \(-0.682881\pi\)
0.732322 + 0.680959i \(0.238437\pi\)
\(578\) −0.266681 0.358215i −0.0110925 0.0148998i
\(579\) 0 0
\(580\) 29.5262 + 31.2959i 1.22601 + 1.29949i
\(581\) 8.17300 1.93704i 0.339073 0.0803618i
\(582\) 0 0
\(583\) 2.39095 5.54285i 0.0990231 0.229561i
\(584\) 2.08710 + 11.8365i 0.0863646 + 0.489798i
\(585\) 0 0
\(586\) −0.129110 + 0.732221i −0.00533350 + 0.0302478i
\(587\) −9.41411 6.19176i −0.388562 0.255561i 0.340165 0.940366i \(-0.389517\pi\)
−0.728727 + 0.684805i \(0.759888\pi\)
\(588\) 0 0
\(589\) −0.168049 + 0.225729i −0.00692435 + 0.00930101i
\(590\) 0.282287 + 4.84668i 0.0116216 + 0.199535i
\(591\) 0 0
\(592\) −8.22676 + 8.71985i −0.338118 + 0.358384i
\(593\) −4.74627 + 8.22078i −0.194906 + 0.337587i −0.946870 0.321617i \(-0.895774\pi\)
0.751964 + 0.659205i \(0.229107\pi\)
\(594\) 0 0
\(595\) −11.5748 20.0481i −0.474519 0.821892i
\(596\) 7.57299 + 1.79483i 0.310202 + 0.0735191i
\(597\) 0 0
\(598\) −6.69860 3.36416i −0.273926 0.137571i
\(599\) 24.7821 + 2.89661i 1.01257 + 0.118352i 0.606163 0.795341i \(-0.292708\pi\)
0.406405 + 0.913693i \(0.366782\pi\)
\(600\) 0 0
\(601\) −10.2652 + 5.15539i −0.418728 + 0.210293i −0.645672 0.763615i \(-0.723423\pi\)
0.226945 + 0.973908i \(0.427126\pi\)
\(602\) 0.588315 0.214129i 0.0239779 0.00872725i
\(603\) 0 0
\(604\) 17.7431 + 6.45795i 0.721955 + 0.262770i
\(605\) −3.44729 + 0.402931i −0.140152 + 0.0163815i
\(606\) 0 0
\(607\) −11.4303 + 38.1799i −0.463942 + 1.54967i 0.331386 + 0.943495i \(0.392484\pi\)
−0.795328 + 0.606180i \(0.792701\pi\)
\(608\) −0.0621928 + 0.207738i −0.00252225 + 0.00842490i
\(609\) 0 0
\(610\) 7.80726 0.912537i 0.316107 0.0369476i
\(611\) −23.5792 8.58211i −0.953911 0.347195i
\(612\) 0 0
\(613\) −16.9065 + 6.15347i −0.682848 + 0.248536i −0.660070 0.751204i \(-0.729473\pi\)
−0.0227782 + 0.999741i \(0.507251\pi\)
\(614\) 4.58387 2.30211i 0.184990 0.0929054i
\(615\) 0 0
\(616\) 9.56415 + 1.11789i 0.385351 + 0.0450410i
\(617\) −16.3959 8.23431i −0.660072 0.331501i 0.0870339 0.996205i \(-0.472261\pi\)
−0.747106 + 0.664704i \(0.768557\pi\)
\(618\) 0 0
\(619\) −43.7258 10.3632i −1.75749 0.416532i −0.779703 0.626149i \(-0.784630\pi\)
−0.977784 + 0.209617i \(0.932778\pi\)
\(620\) −9.29411 16.0979i −0.373260 0.646506i
\(621\) 0 0
\(622\) 3.36294 5.82478i 0.134842 0.233553i
\(623\) 24.5187 25.9883i 0.982322 1.04120i
\(624\) 0 0
\(625\) 1.29371 + 22.2122i 0.0517484 + 0.888487i
\(626\) 1.02526 1.37717i 0.0409778 0.0550427i
\(627\) 0 0
\(628\) 18.3277 + 12.0543i 0.731354 + 0.481019i
\(629\) 2.62214 14.8709i 0.104552 0.592941i
\(630\) 0 0
\(631\) 5.90645 + 33.4972i 0.235132 + 1.33350i 0.842335 + 0.538954i \(0.181180\pi\)
−0.607203 + 0.794547i \(0.707708\pi\)
\(632\) 0.789489 1.83024i 0.0314042 0.0728031i
\(633\) 0 0
\(634\) 2.69432 0.638565i 0.107005 0.0253607i
\(635\) −20.9997 22.2584i −0.833348 0.883297i
\(636\) 0 0
\(637\) −1.74796 2.34792i −0.0692567 0.0930279i
\(638\) 7.94218 6.66428i 0.314434 0.263841i
\(639\) 0 0
\(640\) −14.4847 12.1541i −0.572556 0.480432i
\(641\) −0.0182934 + 0.314085i −0.000722545 + 0.0124056i −0.998650 0.0519409i \(-0.983459\pi\)
0.997928 + 0.0643465i \(0.0204963\pi\)
\(642\) 0 0
\(643\) −13.1236 30.4240i −0.517546 1.19981i −0.953926 0.300043i \(-0.902999\pi\)
0.436380 0.899762i \(-0.356260\pi\)
\(644\) −17.2787 + 11.3644i −0.680876 + 0.447819i
\(645\) 0 0
\(646\) −0.0238140 0.0795444i −0.000936950 0.00312963i
\(647\) −14.0510 −0.552403 −0.276201 0.961100i \(-0.589076\pi\)
−0.276201 + 0.961100i \(0.589076\pi\)
\(648\) 0 0
\(649\) −22.0733 −0.866453
\(650\) −0.251118 0.838793i −0.00984966 0.0329002i
\(651\) 0 0
\(652\) −22.4277 + 14.7509i −0.878337 + 0.577691i
\(653\) 17.7892 + 41.2399i 0.696144 + 1.61384i 0.786248 + 0.617911i \(0.212021\pi\)
−0.0901041 + 0.995932i \(0.528720\pi\)
\(654\) 0 0
\(655\) −0.376789 + 6.46921i −0.0147223 + 0.252773i
\(656\) −6.57544 5.51745i −0.256728 0.215420i
\(657\) 0 0
\(658\) 2.81067 2.35843i 0.109571 0.0919413i
\(659\) 20.0167 + 26.8871i 0.779741 + 1.04737i 0.997451 + 0.0713607i \(0.0227341\pi\)
−0.217709 + 0.976014i \(0.569858\pi\)
\(660\) 0 0
\(661\) −11.1359 11.8033i −0.433134 0.459096i 0.473636 0.880721i \(-0.342941\pi\)
−0.906770 + 0.421625i \(0.861460\pi\)
\(662\) 6.06657 1.43780i 0.235784 0.0558818i
\(663\) 0 0
\(664\) −1.61814 + 3.75128i −0.0627962 + 0.145578i
\(665\) −0.0571518 0.324124i −0.00221625 0.0125690i
\(666\) 0 0
\(667\) −7.93821 + 45.0198i −0.307369 + 1.74317i
\(668\) 10.6376 + 6.99649i 0.411583 + 0.270702i
\(669\) 0 0
\(670\) −0.487506 + 0.654834i −0.0188340 + 0.0252985i
\(671\) 2.07799 + 35.6778i 0.0802200 + 1.37732i
\(672\) 0 0
\(673\) −1.34992 + 1.43083i −0.0520355 + 0.0551545i −0.752868 0.658171i \(-0.771330\pi\)
0.700833 + 0.713325i \(0.252812\pi\)
\(674\) −1.16527 + 2.01831i −0.0448846 + 0.0777424i
\(675\) 0 0
\(676\) 16.5807 + 28.7186i 0.637719 + 1.10456i
\(677\) −19.9663 4.73209i −0.767366 0.181869i −0.171752 0.985140i \(-0.554943\pi\)
−0.595613 + 0.803271i \(0.703091\pi\)
\(678\) 0 0
\(679\) −15.9636 8.01723i −0.612627 0.307673i
\(680\) 11.1836 + 1.30718i 0.428872 + 0.0501279i
\(681\) 0 0
\(682\) −4.00270 + 2.01023i −0.153271 + 0.0769756i
\(683\) −20.1405 + 7.33055i −0.770656 + 0.280496i −0.697271 0.716808i \(-0.745602\pi\)
−0.0733852 + 0.997304i \(0.523380\pi\)
\(684\) 0 0
\(685\) −5.19273 1.89000i −0.198404 0.0722131i
\(686\) 6.03593 0.705500i 0.230453 0.0269361i
\(687\) 0 0
\(688\) 0.757876 2.53148i 0.0288937 0.0965118i
\(689\) −3.12252 + 10.4300i −0.118959 + 0.397350i
\(690\) 0 0
\(691\) −27.5730 + 3.22282i −1.04893 + 0.122602i −0.623052 0.782180i \(-0.714108\pi\)
−0.425875 + 0.904782i \(0.640034\pi\)
\(692\) 26.3949 + 9.60696i 1.00338 + 0.365202i
\(693\) 0 0
\(694\) −5.43167 + 1.97696i −0.206183 + 0.0750446i
\(695\) 35.9876 18.0737i 1.36509 0.685573i
\(696\) 0 0
\(697\) 10.7389 + 1.25519i 0.406763 + 0.0475438i
\(698\) 4.56768 + 2.29397i 0.172889 + 0.0868282i
\(699\) 0 0
\(700\) −2.35057 0.557095i −0.0888431 0.0210562i
\(701\) 0.354873 + 0.614659i 0.0134034 + 0.0232153i 0.872649 0.488347i \(-0.162400\pi\)
−0.859246 + 0.511563i \(0.829067\pi\)
\(702\) 0 0
\(703\) 0.107343 0.185923i 0.00404851 0.00701223i
\(704\) 11.9368 12.6523i 0.449886 0.476852i
\(705\) 0 0
\(706\) 0.317006 + 5.44278i 0.0119307 + 0.204842i
\(707\) 16.4858 22.1443i 0.620013 0.832822i
\(708\) 0 0
\(709\) 16.8691 + 11.0950i 0.633533 + 0.416681i 0.825249 0.564769i \(-0.191035\pi\)
−0.191716 + 0.981450i \(0.561405\pi\)
\(710\) 1.66754 9.45710i 0.0625817 0.354919i
\(711\) 0 0
\(712\) 3.01771 + 17.1143i 0.113093 + 0.641385i
\(713\) 7.82245 18.1345i 0.292953 0.679141i
\(714\) 0 0
\(715\) −34.8599 + 8.26195i −1.30369 + 0.308979i
\(716\) 0.826036 + 0.875547i 0.0308704 + 0.0327207i
\(717\) 0 0
\(718\) −5.38722 7.23629i −0.201049 0.270056i
\(719\) −12.8502 + 10.7826i −0.479231 + 0.402123i −0.850148 0.526543i \(-0.823488\pi\)
0.370917 + 0.928666i \(0.379043\pi\)
\(720\) 0 0
\(721\) 24.2326 + 20.3336i 0.902471 + 0.757263i
\(722\) −0.350441 + 6.01683i −0.0130421 + 0.223923i
\(723\) 0 0
\(724\) 10.4975 + 24.3360i 0.390138 + 0.904442i
\(725\) −4.46130 + 2.93424i −0.165689 + 0.108975i
\(726\) 0 0
\(727\) 6.36767 + 21.2695i 0.236164 + 0.788842i 0.991109 + 0.133054i \(0.0424783\pi\)
−0.754945 + 0.655788i \(0.772337\pi\)
\(728\) −17.3671 −0.643666
\(729\) 0 0
\(730\) 6.53862 0.242005
\(731\) 0.954622 + 3.18866i 0.0353080 + 0.117937i
\(732\) 0 0
\(733\) −3.25396 + 2.14016i −0.120188 + 0.0790488i −0.608180 0.793799i \(-0.708100\pi\)
0.487992 + 0.872848i \(0.337730\pi\)
\(734\) −1.30405 3.02312i −0.0481332 0.111585i
\(735\) 0 0
\(736\) 0.884871 15.1927i 0.0326168 0.560009i
\(737\) −2.84336 2.38586i −0.104737 0.0878844i
\(738\) 0 0
\(739\) −15.2233 + 12.7738i −0.559997 + 0.469894i −0.878310 0.478092i \(-0.841328\pi\)
0.318312 + 0.947986i \(0.396884\pi\)
\(740\) 8.46805 + 11.3746i 0.311292 + 0.418138i
\(741\) 0 0
\(742\) −1.09248 1.15796i −0.0401061 0.0425100i
\(743\) −6.05085 + 1.43408i −0.221984 + 0.0526112i −0.340103 0.940388i \(-0.610462\pi\)
0.118119 + 0.992999i \(0.462314\pi\)
\(744\) 0 0
\(745\) 3.44286 7.98145i 0.126137 0.292418i
\(746\) −0.820489 4.65322i −0.0300402 0.170367i
\(747\) 0 0
\(748\) −4.33010 + 24.5572i −0.158324 + 0.897901i
\(749\) −10.5794 6.95819i −0.386563 0.254247i
\(750\) 0 0
\(751\) −9.62286 + 12.9257i −0.351143 + 0.471667i −0.942242 0.334932i \(-0.891287\pi\)
0.591099 + 0.806599i \(0.298694\pi\)
\(752\) −0.900444 15.4600i −0.0328358 0.563769i
\(753\) 0 0
\(754\) −12.8321 + 13.6012i −0.467316 + 0.495326i
\(755\) 10.5442 18.2632i 0.383744 0.664665i
\(756\) 0 0
\(757\) 17.7618 + 30.7643i 0.645563 + 1.11815i 0.984171 + 0.177221i \(0.0567106\pi\)
−0.338608 + 0.940928i \(0.609956\pi\)
\(758\) −3.58869 0.850536i −0.130347 0.0308929i
\(759\) 0 0
\(760\) 0.143056 + 0.0718453i 0.00518917 + 0.00260610i
\(761\) −20.2160 2.36292i −0.732831 0.0856556i −0.258511 0.966008i \(-0.583232\pi\)
−0.474320 + 0.880353i \(0.657306\pi\)
\(762\) 0 0
\(763\) −0.821124 + 0.412384i −0.0297267 + 0.0149293i
\(764\) −15.1587 + 5.51732i −0.548423 + 0.199610i
\(765\) 0 0
\(766\) 8.50177 + 3.09439i 0.307181 + 0.111805i
\(767\) 39.5416 4.62175i 1.42776 0.166882i
\(768\) 0 0
\(769\) 5.34047 17.8384i 0.192582 0.643270i −0.806092 0.591791i \(-0.798421\pi\)
0.998674 0.0514792i \(-0.0163936\pi\)
\(770\) 1.50242 5.01843i 0.0541434 0.180852i
\(771\) 0 0
\(772\) 24.9980 2.92185i 0.899698 0.105160i
\(773\) −3.69733 1.34572i −0.132984 0.0484021i 0.274671 0.961538i \(-0.411431\pi\)
−0.407655 + 0.913136i \(0.633653\pi\)
\(774\) 0 0
\(775\) 2.16778 0.789007i 0.0778689 0.0283420i
\(776\) 7.76457 3.89951i 0.278732 0.139984i
\(777\) 0 0
\(778\) −0.967561 0.113092i −0.0346888 0.00405453i
\(779\) 0.137367 + 0.0689881i 0.00492167 + 0.00247176i
\(780\) 0 0
\(781\) 42.4842 + 10.0689i 1.52020 + 0.360295i
\(782\) 2.91361 + 5.04653i 0.104191 + 0.180463i
\(783\) 0 0
\(784\) 0.903265 1.56450i 0.0322595 0.0558750i
\(785\) 16.8131 17.8208i 0.600085 0.636052i
\(786\) 0 0
\(787\) −0.428922 7.36431i −0.0152894 0.262509i −0.997287 0.0736146i \(-0.976547\pi\)
0.981997 0.188895i \(-0.0604905\pi\)
\(788\) −8.56131 + 11.4998i −0.304984 + 0.409664i
\(789\) 0 0
\(790\) −0.905978 0.595871i −0.0322333 0.0212001i
\(791\) −8.71966 + 49.4517i −0.310035 + 1.75830i
\(792\) 0 0
\(793\) −11.1927 63.4772i −0.397466 2.25414i
\(794\) 1.32072 3.06177i 0.0468706 0.108658i
\(795\) 0 0
\(796\) 3.90587 0.925708i 0.138440 0.0328108i
\(797\) 10.2575 + 10.8723i 0.363340 + 0.385118i 0.883093 0.469199i \(-0.155457\pi\)
−0.519752 + 0.854317i \(0.673976\pi\)
\(798\) 0 0
\(799\) 11.6485 + 15.6466i 0.412094 + 0.553538i
\(800\) 1.36173 1.14263i 0.0481446 0.0403981i
\(801\) 0 0
\(802\) 6.44030 + 5.40405i 0.227415 + 0.190824i
\(803\) −1.72856 + 29.6783i −0.0609996 + 1.04732i
\(804\) 0 0
\(805\) 9.14863 + 21.2089i 0.322447 + 0.747516i
\(806\) 6.74943 4.43917i 0.237739 0.156363i
\(807\) 0 0
\(808\) 3.85115 + 12.8637i 0.135483 + 0.452545i
\(809\) 28.6228 1.00633 0.503163 0.864192i \(-0.332170\pi\)
0.503163 + 0.864192i \(0.332170\pi\)
\(810\) 0 0
\(811\) 15.2720 0.536273 0.268136 0.963381i \(-0.413592\pi\)
0.268136 + 0.963381i \(0.413592\pi\)
\(812\) 14.7962 + 49.4226i 0.519244 + 1.73439i
\(813\) 0 0
\(814\) 2.85489 1.87769i 0.100064 0.0658131i
\(815\) 11.8749 + 27.5291i 0.415960 + 0.964303i
\(816\) 0 0
\(817\) −0.00275154 + 0.0472422i −9.62643e−5 + 0.00165279i
\(818\) −6.40487 5.37433i −0.223941 0.187909i
\(819\) 0 0
\(820\) −7.77799 + 6.52651i −0.271619 + 0.227915i
\(821\) 1.85868 + 2.49663i 0.0648682 + 0.0871331i 0.833373 0.552711i \(-0.186406\pi\)
−0.768505 + 0.639844i \(0.778999\pi\)
\(822\) 0 0
\(823\) −26.4373 28.0219i −0.921546 0.976781i 0.0782513 0.996934i \(-0.475066\pi\)
−0.999797 + 0.0201524i \(0.993585\pi\)
\(824\) −14.9715 + 3.54831i −0.521558 + 0.123611i
\(825\) 0 0
\(826\) −2.30567 + 5.34514i −0.0802245 + 0.185981i
\(827\) 1.37656 + 7.80687i 0.0478677 + 0.271471i 0.999343 0.0362552i \(-0.0115429\pi\)
−0.951475 + 0.307727i \(0.900432\pi\)
\(828\) 0 0
\(829\) 5.51283 31.2648i 0.191469 1.08587i −0.725890 0.687811i \(-0.758572\pi\)
0.917359 0.398061i \(-0.130317\pi\)
\(830\) 1.85690 + 1.22130i 0.0644540 + 0.0423920i
\(831\) 0 0
\(832\) −18.7342 + 25.1644i −0.649492 + 0.872419i
\(833\) 0.132309 + 2.27166i 0.00458424 + 0.0787084i
\(834\) 0 0
\(835\) 9.75854 10.3435i 0.337708 0.357950i
\(836\) −0.177262 + 0.307026i −0.00613073 + 0.0106187i
\(837\) 0 0
\(838\) −1.24238 2.15186i −0.0429172 0.0743347i
\(839\) −44.0468 10.4393i −1.52067 0.360404i −0.616420 0.787417i \(-0.711418\pi\)
−0.904246 + 0.427013i \(0.859566\pi\)
\(840\) 0 0
\(841\) 75.9921 + 38.1647i 2.62042 + 1.31602i
\(842\) −10.0374 1.17321i −0.345913 0.0404314i
\(843\) 0 0
\(844\) −1.11424 + 0.559595i −0.0383539 + 0.0192620i
\(845\) 34.8033 12.6674i 1.19727 0.435771i
\(846\) 0 0
\(847\) −3.91062 1.42335i −0.134370 0.0489069i
\(848\) −6.67388 + 0.780065i −0.229182 + 0.0267875i
\(849\) 0 0
\(850\) −0.195216 + 0.652067i −0.00669585 + 0.0223657i
\(851\) −4.32116 + 14.4337i −0.148127 + 0.494780i
\(852\) 0 0
\(853\) −46.3159 + 5.41356i −1.58583 + 0.185357i −0.862830 0.505494i \(-0.831310\pi\)
−0.722997 + 0.690851i \(0.757236\pi\)
\(854\) 8.85657 + 3.22353i 0.303066 + 0.110307i
\(855\) 0 0
\(856\) 5.78753 2.10649i 0.197814 0.0719983i
\(857\) 6.10059 3.06383i 0.208392 0.104659i −0.341542 0.939867i \(-0.610949\pi\)
0.549934 + 0.835208i \(0.314653\pi\)
\(858\) 0 0
\(859\) −10.9129 1.27554i −0.372344 0.0435207i −0.0721365 0.997395i \(-0.522982\pi\)
−0.300207 + 0.953874i \(0.597056\pi\)
\(860\) −2.79328 1.40284i −0.0952502 0.0478365i
\(861\) 0 0
\(862\) −10.2846 2.43749i −0.350294 0.0830212i
\(863\) −27.8142 48.1756i −0.946807 1.63992i −0.752092 0.659058i \(-0.770955\pi\)
−0.194715 0.980860i \(-0.562378\pi\)
\(864\) 0 0
\(865\) 15.6858 27.1686i 0.533334 0.923761i
\(866\) −1.20095 + 1.27293i −0.0408100 + 0.0432561i
\(867\) 0 0
\(868\) −1.29594 22.2504i −0.0439870 0.755227i
\(869\) 2.94412 3.95464i 0.0998723 0.134152i
\(870\) 0 0
\(871\) 5.59309 + 3.67863i 0.189515 + 0.124646i
\(872\) 0.0776079 0.440136i 0.00262814 0.0149049i
\(873\) 0 0
\(874\) 0.0143863 + 0.0815889i 0.000486625 + 0.00275979i
\(875\) −11.7542 + 27.2492i −0.397364 + 0.921193i
\(876\) 0 0
\(877\) 24.0085 5.69012i 0.810710 0.192142i 0.195703 0.980663i \(-0.437301\pi\)
0.615007 + 0.788522i \(0.289153\pi\)
\(878\) −0.720687 0.763883i −0.0243220 0.0257798i
\(879\) 0 0
\(880\) −13.2034 17.7353i −0.445087 0.597856i
\(881\) 13.2241 11.0964i 0.445532 0.373846i −0.392243 0.919862i \(-0.628301\pi\)
0.837775 + 0.546016i \(0.183856\pi\)
\(882\) 0 0
\(883\) −24.0818 20.2071i −0.810419 0.680022i 0.140289 0.990111i \(-0.455197\pi\)
−0.950708 + 0.310089i \(0.899641\pi\)
\(884\) 2.61500 44.8979i 0.0879521 1.51008i
\(885\) 0 0
\(886\) 2.15968 + 5.00670i 0.0725558 + 0.168203i
\(887\) 36.9492 24.3019i 1.24063 0.815977i 0.252206 0.967674i \(-0.418844\pi\)
0.988427 + 0.151696i \(0.0484735\pi\)
\(888\) 0 0
\(889\) −10.5234 35.1505i −0.352943 1.17891i
\(890\) 9.45412 0.316903
\(891\) 0 0
\(892\) −42.7560 −1.43158
\(893\) 0.0795392 + 0.265679i 0.00266168 + 0.00889062i
\(894\) 0 0
\(895\) 1.12322 0.738753i 0.0375451 0.0246938i
\(896\) −8.97990 20.8178i −0.299998 0.695472i
\(897\) 0 0
\(898\) 0.324694 5.57478i 0.0108352 0.186033i
\(899\) −37.7406 31.6681i −1.25872 1.05619i
\(900\) 0 0
\(901\) 6.48355 5.44034i 0.215998 0.181244i
\(902\) 1.46103 + 1.96250i 0.0486469 + 0.0653442i
\(903\) 0 0
\(904\) −16.7607 17.7653i −0.557453 0.590866i
\(905\) 28.8032 6.82648i 0.957450 0.226920i
\(906\) 0 0
\(907\) 5.85457 13.5724i 0.194398 0.450665i −0.792939 0.609301i \(-0.791450\pi\)
0.987337 + 0.158636i \(0.0507096\pi\)
\(908\) −4.42237 25.0805i −0.146762 0.832327i
\(909\) 0 0
\(910\) −1.64063 + 9.30447i −0.0543863 + 0.308440i
\(911\) −32.3790 21.2960i −1.07276 0.705567i −0.115069 0.993357i \(-0.536709\pi\)
−0.957693 + 0.287790i \(0.907079\pi\)
\(912\) 0 0
\(913\) −6.03429 + 8.10546i −0.199706 + 0.268251i
\(914\) 0.329747 + 5.66154i 0.0109071 + 0.187267i
\(915\) 0 0
\(916\) 8.11159 8.59779i 0.268015 0.284079i
\(917\) −3.88500 + 6.72903i −0.128294 + 0.222212i
\(918\) 0 0
\(919\) −20.8939 36.1894i −0.689228 1.19378i −0.972088 0.234616i \(-0.924617\pi\)
0.282860 0.959161i \(-0.408717\pi\)
\(920\) −10.9318 2.59089i −0.360411 0.0854190i
\(921\) 0 0
\(922\) −1.42534 0.715834i −0.0469412 0.0235747i
\(923\) −78.2134 9.14184i −2.57443 0.300907i
\(924\) 0 0
\(925\) −1.57269 + 0.789837i −0.0517099 + 0.0259697i
\(926\) 5.12956 1.86701i 0.168568 0.0613536i
\(927\) 0 0
\(928\) −35.6738 12.9842i −1.17105 0.426227i
\(929\) −26.4446 + 3.09093i −0.867619 + 0.101410i −0.538244 0.842789i \(-0.680912\pi\)
−0.329375 + 0.944199i \(0.606838\pi\)
\(930\) 0 0
\(931\) −0.00927856 + 0.0309925i −0.000304092 + 0.00101574i
\(932\) 6.74912 22.5436i 0.221075 0.738442i
\(933\) 0 0
\(934\) 11.8039 1.37968i 0.386236 0.0451445i
\(935\) 26.1707 + 9.52537i 0.855875 + 0.311513i
\(936\) 0 0
\(937\) 10.5874 3.85350i 0.345875 0.125888i −0.163241 0.986586i \(-0.552195\pi\)
0.509116 + 0.860698i \(0.329972\pi\)
\(938\) −0.874751 + 0.439316i −0.0285616 + 0.0143442i
\(939\) 0 0
\(940\) −18.1946 2.12664i −0.593441 0.0693633i
\(941\) −15.8260 7.94813i −0.515914 0.259102i 0.171737 0.985143i \(-0.445062\pi\)
−0.687651 + 0.726041i \(0.741358\pi\)
\(942\) 0 0
\(943\) −10.4971 2.48785i −0.341832 0.0810156i
\(944\) 12.2850 + 21.2782i 0.399842 + 0.692546i
\(945\) 0 0
\(946\) −0.376601 + 0.652293i −0.0122444 + 0.0212079i
\(947\) −40.7779 + 43.2221i −1.32510 + 1.40453i −0.473086 + 0.881016i \(0.656860\pi\)
−0.852018 + 0.523513i \(0.824621\pi\)
\(948\) 0 0
\(949\) −3.11759 53.5269i −0.101201 1.73756i
\(950\) −0.00577881 + 0.00776229i −0.000187489 + 0.000251842i
\(951\) 0 0
\(952\) 11.2799 + 7.41888i 0.365582 + 0.240447i
\(953\) −9.46496 + 53.6784i −0.306600 + 1.73881i 0.309277 + 0.950972i \(0.399913\pi\)
−0.615876 + 0.787843i \(0.711198\pi\)
\(954\) 0 0
\(955\) 3.12859 + 17.7431i 0.101239 + 0.574155i
\(956\) −7.39654 + 17.1471i −0.239221 + 0.554577i
\(957\) 0 0
\(958\) −1.05668 + 0.250437i −0.0341396 + 0.00809124i
\(959\) −4.54696 4.81950i −0.146829 0.155630i
\(960\) 0 0
\(961\) −5.80173 7.79308i −0.187153 0.251390i
\(962\) −4.72103 + 3.96142i −0.152212 + 0.127721i
\(963\) 0 0
\(964\) 25.2252 + 21.1664i 0.812448 + 0.681725i
\(965\) 1.63443 28.0620i 0.0526141 0.903349i
\(966\) 0 0
\(967\) 11.2247 + 26.0218i 0.360962 + 0.836804i 0.997831 + 0.0658319i \(0.0209701\pi\)
−0.636869 + 0.770972i \(0.719771\pi\)
\(968\) 1.69117 1.11230i 0.0543561 0.0357506i
\(969\) 0 0
\(970\) −1.35568 4.52828i −0.0435282 0.145394i
\(971\) 34.6038 1.11049 0.555244 0.831687i \(-0.312625\pi\)
0.555244 + 0.831687i \(0.312625\pi\)
\(972\) 0 0
\(973\) 48.2868 1.54801
\(974\) −0.494416 1.65146i −0.0158421 0.0529163i
\(975\) 0 0
\(976\) 33.2361 21.8597i 1.06386 0.699713i
\(977\) 5.25612 + 12.1851i 0.168158 + 0.389835i 0.981368 0.192135i \(-0.0615413\pi\)
−0.813210 + 0.581970i \(0.802282\pi\)
\(978\) 0 0
\(979\) −2.49931 + 42.9115i −0.0798782 + 1.37146i
\(980\) −1.63697 1.37358i −0.0522912 0.0438775i
\(981\) 0 0
\(982\) 0.965832 0.810430i 0.0308209 0.0258618i
\(983\) −21.4988 28.8779i −0.685706 0.921063i 0.313891 0.949459i \(-0.398367\pi\)
−0.999597 + 0.0283960i \(0.990960\pi\)
\(984\) 0 0
\(985\) 10.9883 + 11.6469i 0.350116 + 0.371101i
\(986\) 14.1446 3.35232i 0.450455 0.106760i
\(987\) 0 0
\(988\) 0.253257 0.587116i 0.00805718 0.0186786i
\(989\) −0.576698 3.27062i −0.0183379 0.104000i
\(990\) 0 0
\(991\) 9.06181 51.3921i 0.287858 1.63252i −0.407037 0.913412i \(-0.633438\pi\)
0.694895 0.719111i \(-0.255451\pi\)
\(992\) 13.7029 + 9.01252i 0.435066 + 0.286148i
\(993\) 0 0
\(994\) 6.87592 9.23597i 0.218091 0.292947i
\(995\) −0.260674 4.47561i −0.00826394 0.141886i
\(996\) 0 0
\(997\) −12.3868 + 13.1292i −0.392293 + 0.415806i −0.893175 0.449709i \(-0.851528\pi\)
0.500882 + 0.865516i \(0.333009\pi\)
\(998\) −3.40379 + 5.89554i −0.107745 + 0.186620i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.379.5 144
3.2 odd 2 729.2.g.c.379.4 144
9.2 odd 6 729.2.g.d.622.4 144
9.4 even 3 243.2.g.a.208.4 144
9.5 odd 6 81.2.g.a.16.5 144
9.7 even 3 729.2.g.a.622.5 144
81.5 odd 54 729.2.g.d.109.4 144
81.7 even 27 6561.2.a.d.1.31 72
81.22 even 27 243.2.g.a.118.4 144
81.32 odd 54 729.2.g.c.352.4 144
81.49 even 27 inner 729.2.g.b.352.5 144
81.59 odd 54 81.2.g.a.76.5 yes 144
81.74 odd 54 6561.2.a.c.1.42 72
81.76 even 27 729.2.g.a.109.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.5 144 9.5 odd 6
81.2.g.a.76.5 yes 144 81.59 odd 54
243.2.g.a.118.4 144 81.22 even 27
243.2.g.a.208.4 144 9.4 even 3
729.2.g.a.109.5 144 81.76 even 27
729.2.g.a.622.5 144 9.7 even 3
729.2.g.b.352.5 144 81.49 even 27 inner
729.2.g.b.379.5 144 1.1 even 1 trivial
729.2.g.c.352.4 144 81.32 odd 54
729.2.g.c.379.4 144 3.2 odd 2
729.2.g.d.109.4 144 81.5 odd 54
729.2.g.d.622.4 144 9.2 odd 6
6561.2.a.c.1.42 72 81.74 odd 54
6561.2.a.d.1.31 72 81.7 even 27