Properties

Label 729.2.g.b.379.2
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.2
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.b.352.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.579169 - 1.93456i) q^{2} +(-1.73611 + 1.14185i) q^{4} +(1.09641 + 2.54176i) q^{5} +(0.0355426 - 0.610243i) q^{7} +(0.120591 + 0.101188i) q^{8} +(4.28217 - 3.59317i) q^{10} +(2.23626 + 3.00382i) q^{11} +(-2.34689 - 2.48756i) q^{13} +(-1.20114 + 0.284675i) q^{14} +(-1.52016 + 3.52413i) q^{16} +(1.31516 + 7.45862i) q^{17} +(0.132568 - 0.751830i) q^{19} +(-4.80579 - 3.16082i) q^{20} +(4.51590 - 6.06590i) q^{22} +(0.126403 + 2.17026i) q^{23} +(-1.82720 + 1.93672i) q^{25} +(-3.45308 + 5.98091i) q^{26} +(0.635103 + 1.10003i) q^{28} +(4.42027 + 1.04762i) q^{29} +(7.31490 + 3.67368i) q^{31} +(8.01077 + 0.936325i) q^{32} +(13.6674 - 6.86404i) q^{34} +(1.59006 - 0.578734i) q^{35} +(3.96908 + 1.44463i) q^{37} +(-1.53124 + 0.178976i) q^{38} +(-0.124978 + 0.417456i) q^{40} +(2.59329 - 8.66219i) q^{41} +(-1.74287 + 0.203712i) q^{43} +(-7.31231 - 2.66146i) q^{44} +(4.12528 - 1.50148i) q^{46} +(-10.5125 + 5.27956i) q^{47} +(6.58154 + 0.769271i) q^{49} +(4.80497 + 2.41314i) q^{50} +(6.91487 + 1.63886i) q^{52} +(2.80062 + 4.85082i) q^{53} +(-5.18313 + 8.97744i) q^{55} +(0.0660353 - 0.0699933i) q^{56} +(-0.533395 - 9.15803i) q^{58} +(-0.903619 + 1.21377i) q^{59} +(-2.52614 - 1.66147i) q^{61} +(2.87039 - 16.2788i) q^{62} +(-1.49529 - 8.48019i) q^{64} +(3.74962 - 8.69259i) q^{65} +(-7.44589 + 1.76471i) q^{67} +(-10.7999 - 11.4472i) q^{68} +(-2.04051 - 2.74088i) q^{70} +(5.19850 - 4.36206i) q^{71} +(0.438511 + 0.367955i) q^{73} +(0.495949 - 8.51511i) q^{74} +(0.628329 + 1.45663i) q^{76} +(1.91254 - 1.25790i) q^{77} +(-2.64293 - 8.82799i) q^{79} -10.6242 q^{80} -18.2595 q^{82} +(-1.77486 - 5.92845i) q^{83} +(-17.5160 + 11.5205i) q^{85} +(1.40351 + 3.25370i) q^{86} +(-0.0342772 + 0.588516i) q^{88} +(3.52742 + 2.95986i) q^{89} +(-1.60143 + 1.34376i) q^{91} +(-2.69757 - 3.62346i) q^{92} +(16.3021 + 17.2792i) q^{94} +(2.05632 - 0.487356i) q^{95} +(-4.16552 + 9.65675i) q^{97} +(-2.32362 - 13.1779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.579169 1.93456i −0.409534 1.36794i −0.875535 0.483155i \(-0.839491\pi\)
0.466001 0.884784i \(-0.345694\pi\)
\(3\) 0 0
\(4\) −1.73611 + 1.14185i −0.868053 + 0.570927i
\(5\) 1.09641 + 2.54176i 0.490328 + 1.13671i 0.966340 + 0.257269i \(0.0828226\pi\)
−0.476012 + 0.879439i \(0.657918\pi\)
\(6\) 0 0
\(7\) 0.0355426 0.610243i 0.0134338 0.230650i −0.984908 0.173081i \(-0.944628\pi\)
0.998341 0.0575696i \(-0.0183351\pi\)
\(8\) 0.120591 + 0.101188i 0.0426353 + 0.0357753i
\(9\) 0 0
\(10\) 4.28217 3.59317i 1.35414 1.13626i
\(11\) 2.23626 + 3.00382i 0.674258 + 0.905686i 0.999198 0.0400487i \(-0.0127513\pi\)
−0.324939 + 0.945735i \(0.605344\pi\)
\(12\) 0 0
\(13\) −2.34689 2.48756i −0.650910 0.689924i 0.314915 0.949120i \(-0.398024\pi\)
−0.965825 + 0.259196i \(0.916542\pi\)
\(14\) −1.20114 + 0.284675i −0.321017 + 0.0760825i
\(15\) 0 0
\(16\) −1.52016 + 3.52413i −0.380040 + 0.881032i
\(17\) 1.31516 + 7.45862i 0.318972 + 1.80898i 0.549030 + 0.835803i \(0.314997\pi\)
−0.230058 + 0.973177i \(0.573891\pi\)
\(18\) 0 0
\(19\) 0.132568 0.751830i 0.0304132 0.172482i −0.965818 0.259222i \(-0.916534\pi\)
0.996231 + 0.0867403i \(0.0276450\pi\)
\(20\) −4.80579 3.16082i −1.07461 0.706781i
\(21\) 0 0
\(22\) 4.51590 6.06590i 0.962792 1.29325i
\(23\) 0.126403 + 2.17026i 0.0263569 + 0.452530i 0.985507 + 0.169633i \(0.0542584\pi\)
−0.959150 + 0.282897i \(0.908705\pi\)
\(24\) 0 0
\(25\) −1.82720 + 1.93672i −0.365441 + 0.387345i
\(26\) −3.45308 + 5.98091i −0.677205 + 1.17295i
\(27\) 0 0
\(28\) 0.635103 + 1.10003i 0.120023 + 0.207886i
\(29\) 4.42027 + 1.04762i 0.820824 + 0.194539i 0.619511 0.784988i \(-0.287331\pi\)
0.201313 + 0.979527i \(0.435479\pi\)
\(30\) 0 0
\(31\) 7.31490 + 3.67368i 1.31379 + 0.659812i 0.961171 0.275953i \(-0.0889934\pi\)
0.352623 + 0.935765i \(0.385290\pi\)
\(32\) 8.01077 + 0.936325i 1.41612 + 0.165520i
\(33\) 0 0
\(34\) 13.6674 6.86404i 2.34395 1.17717i
\(35\) 1.59006 0.578734i 0.268769 0.0978239i
\(36\) 0 0
\(37\) 3.96908 + 1.44463i 0.652513 + 0.237495i 0.647001 0.762489i \(-0.276023\pi\)
0.00551256 + 0.999985i \(0.498245\pi\)
\(38\) −1.53124 + 0.178976i −0.248400 + 0.0290338i
\(39\) 0 0
\(40\) −0.124978 + 0.417456i −0.0197608 + 0.0660055i
\(41\) 2.59329 8.66219i 0.405004 1.35281i −0.475895 0.879502i \(-0.657876\pi\)
0.880899 0.473304i \(-0.156939\pi\)
\(42\) 0 0
\(43\) −1.74287 + 0.203712i −0.265785 + 0.0310658i −0.247942 0.968775i \(-0.579754\pi\)
−0.0178433 + 0.999841i \(0.505680\pi\)
\(44\) −7.31231 2.66146i −1.10237 0.401231i
\(45\) 0 0
\(46\) 4.12528 1.50148i 0.608240 0.221381i
\(47\) −10.5125 + 5.27956i −1.53340 + 0.770103i −0.997256 0.0740235i \(-0.976416\pi\)
−0.536144 + 0.844126i \(0.680120\pi\)
\(48\) 0 0
\(49\) 6.58154 + 0.769271i 0.940219 + 0.109896i
\(50\) 4.80497 + 2.41314i 0.679525 + 0.341270i
\(51\) 0 0
\(52\) 6.91487 + 1.63886i 0.958920 + 0.227268i
\(53\) 2.80062 + 4.85082i 0.384695 + 0.666312i 0.991727 0.128366i \(-0.0409732\pi\)
−0.607032 + 0.794678i \(0.707640\pi\)
\(54\) 0 0
\(55\) −5.18313 + 8.97744i −0.698893 + 1.21052i
\(56\) 0.0660353 0.0699933i 0.00882434 0.00935325i
\(57\) 0 0
\(58\) −0.533395 9.15803i −0.0700381 1.20251i
\(59\) −0.903619 + 1.21377i −0.117641 + 0.158020i −0.857043 0.515245i \(-0.827701\pi\)
0.739402 + 0.673264i \(0.235108\pi\)
\(60\) 0 0
\(61\) −2.52614 1.66147i −0.323439 0.212729i 0.377397 0.926052i \(-0.376819\pi\)
−0.700836 + 0.713322i \(0.747190\pi\)
\(62\) 2.87039 16.2788i 0.364540 2.06741i
\(63\) 0 0
\(64\) −1.49529 8.48019i −0.186911 1.06002i
\(65\) 3.74962 8.69259i 0.465083 1.07818i
\(66\) 0 0
\(67\) −7.44589 + 1.76471i −0.909660 + 0.215593i −0.658701 0.752405i \(-0.728894\pi\)
−0.250958 + 0.967998i \(0.580746\pi\)
\(68\) −10.7999 11.4472i −1.30968 1.38818i
\(69\) 0 0
\(70\) −2.04051 2.74088i −0.243887 0.327597i
\(71\) 5.19850 4.36206i 0.616948 0.517681i −0.279895 0.960031i \(-0.590299\pi\)
0.896843 + 0.442350i \(0.145855\pi\)
\(72\) 0 0
\(73\) 0.438511 + 0.367955i 0.0513238 + 0.0430658i 0.668089 0.744082i \(-0.267113\pi\)
−0.616765 + 0.787147i \(0.711557\pi\)
\(74\) 0.495949 8.51511i 0.0576529 0.989861i
\(75\) 0 0
\(76\) 0.628329 + 1.45663i 0.0720742 + 0.167087i
\(77\) 1.91254 1.25790i 0.217955 0.143351i
\(78\) 0 0
\(79\) −2.64293 8.82799i −0.297353 0.993227i −0.967895 0.251355i \(-0.919124\pi\)
0.670542 0.741871i \(-0.266061\pi\)
\(80\) −10.6242 −1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) −1.77486 5.92845i −0.194816 0.650732i −0.998452 0.0556113i \(-0.982289\pi\)
0.803636 0.595121i \(-0.202896\pi\)
\(84\) 0 0
\(85\) −17.5160 + 11.5205i −1.89988 + 1.24957i
\(86\) 1.40351 + 3.25370i 0.151344 + 0.350855i
\(87\) 0 0
\(88\) −0.0342772 + 0.588516i −0.00365396 + 0.0627360i
\(89\) 3.52742 + 2.95986i 0.373906 + 0.313744i 0.810304 0.586009i \(-0.199302\pi\)
−0.436399 + 0.899753i \(0.643746\pi\)
\(90\) 0 0
\(91\) −1.60143 + 1.34376i −0.167875 + 0.140864i
\(92\) −2.69757 3.62346i −0.281241 0.377772i
\(93\) 0 0
\(94\) 16.3021 + 17.2792i 1.68143 + 1.78222i
\(95\) 2.05632 0.487356i 0.210974 0.0500017i
\(96\) 0 0
\(97\) −4.16552 + 9.65675i −0.422944 + 0.980495i 0.564916 + 0.825148i \(0.308909\pi\)
−0.987860 + 0.155346i \(0.950351\pi\)
\(98\) −2.32362 13.1779i −0.234721 1.33117i
\(99\) 0 0
\(100\) 0.960763 5.44876i 0.0960763 0.544876i
\(101\) 2.04573 + 1.34549i 0.203557 + 0.133882i 0.647195 0.762324i \(-0.275942\pi\)
−0.443638 + 0.896206i \(0.646312\pi\)
\(102\) 0 0
\(103\) 10.1863 13.6825i 1.00368 1.34818i 0.0670938 0.997747i \(-0.478627\pi\)
0.936588 0.350432i \(-0.113965\pi\)
\(104\) −0.0313031 0.537453i −0.00306952 0.0527016i
\(105\) 0 0
\(106\) 7.76217 8.22742i 0.753929 0.799118i
\(107\) −0.402056 + 0.696381i −0.0388682 + 0.0673217i −0.884805 0.465961i \(-0.845709\pi\)
0.845937 + 0.533283i \(0.179042\pi\)
\(108\) 0 0
\(109\) 2.11135 + 3.65696i 0.202230 + 0.350273i 0.949247 0.314532i \(-0.101848\pi\)
−0.747016 + 0.664806i \(0.768514\pi\)
\(110\) 20.3693 + 4.82761i 1.94214 + 0.460295i
\(111\) 0 0
\(112\) 2.09654 + 1.05292i 0.198105 + 0.0994920i
\(113\) −12.2597 1.43296i −1.15330 0.134801i −0.482125 0.876102i \(-0.660135\pi\)
−0.671173 + 0.741301i \(0.734209\pi\)
\(114\) 0 0
\(115\) −5.37768 + 2.70077i −0.501471 + 0.251848i
\(116\) −8.87030 + 3.22852i −0.823586 + 0.299761i
\(117\) 0 0
\(118\) 2.87146 + 1.04513i 0.264339 + 0.0962116i
\(119\) 4.59831 0.537466i 0.421527 0.0492694i
\(120\) 0 0
\(121\) −0.867238 + 2.89678i −0.0788398 + 0.263343i
\(122\) −1.75115 + 5.84924i −0.158541 + 0.529565i
\(123\) 0 0
\(124\) −16.8942 + 1.97465i −1.51715 + 0.177329i
\(125\) 6.07999 + 2.21294i 0.543811 + 0.197931i
\(126\) 0 0
\(127\) −9.37360 + 3.41171i −0.831772 + 0.302740i −0.722586 0.691281i \(-0.757047\pi\)
−0.109186 + 0.994021i \(0.534824\pi\)
\(128\) −1.12455 + 0.564772i −0.0993973 + 0.0499192i
\(129\) 0 0
\(130\) −18.9880 2.21938i −1.66536 0.194652i
\(131\) −4.90886 2.46532i −0.428889 0.215396i 0.221241 0.975219i \(-0.428989\pi\)
−0.650130 + 0.759823i \(0.725286\pi\)
\(132\) 0 0
\(133\) −0.454087 0.107621i −0.0393744 0.00933190i
\(134\) 7.72636 + 13.3824i 0.667456 + 1.15607i
\(135\) 0 0
\(136\) −0.596125 + 1.03252i −0.0511173 + 0.0885378i
\(137\) −10.4519 + 11.0783i −0.892962 + 0.946484i −0.998852 0.0478934i \(-0.984749\pi\)
0.105890 + 0.994378i \(0.466231\pi\)
\(138\) 0 0
\(139\) −0.931263 15.9892i −0.0789887 1.35618i −0.772168 0.635419i \(-0.780828\pi\)
0.693179 0.720765i \(-0.256210\pi\)
\(140\) −2.09968 + 2.82036i −0.177455 + 0.238364i
\(141\) 0 0
\(142\) −11.4495 7.53043i −0.960818 0.631940i
\(143\) 2.22392 12.6125i 0.185973 1.05471i
\(144\) 0 0
\(145\) 2.18361 + 12.3839i 0.181339 + 1.02842i
\(146\) 0.457858 1.06143i 0.0378926 0.0878449i
\(147\) 0 0
\(148\) −8.54030 + 2.02409i −0.702009 + 0.166379i
\(149\) 6.06663 + 6.43025i 0.496997 + 0.526786i 0.926508 0.376275i \(-0.122795\pi\)
−0.429510 + 0.903062i \(0.641314\pi\)
\(150\) 0 0
\(151\) 0.589901 + 0.792374i 0.0480054 + 0.0644825i 0.825478 0.564435i \(-0.190906\pi\)
−0.777472 + 0.628917i \(0.783498\pi\)
\(152\) 0.0920625 0.0772496i 0.00746726 0.00626577i
\(153\) 0 0
\(154\) −3.54117 2.97139i −0.285355 0.239442i
\(155\) −1.31750 + 22.6205i −0.105824 + 1.81692i
\(156\) 0 0
\(157\) 7.20807 + 16.7102i 0.575267 + 1.33362i 0.918891 + 0.394511i \(0.129086\pi\)
−0.343624 + 0.939107i \(0.611655\pi\)
\(158\) −15.5476 + 10.2258i −1.23690 + 0.813521i
\(159\) 0 0
\(160\) 6.40315 + 21.3880i 0.506214 + 1.69087i
\(161\) 1.32888 0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) 5.38873 + 17.9996i 0.420789 + 1.40553i
\(165\) 0 0
\(166\) −10.4410 + 6.86715i −0.810379 + 0.532994i
\(167\) −2.33733 5.41854i −0.180868 0.419299i 0.803528 0.595267i \(-0.202954\pi\)
−0.984396 + 0.175968i \(0.943695\pi\)
\(168\) 0 0
\(169\) 0.0758312 1.30197i 0.00583317 0.100152i
\(170\) 32.4318 + 27.2135i 2.48740 + 2.08718i
\(171\) 0 0
\(172\) 2.79319 2.34377i 0.212979 0.178711i
\(173\) −5.37008 7.21327i −0.408280 0.548415i 0.549658 0.835389i \(-0.314758\pi\)
−0.957938 + 0.286975i \(0.907350\pi\)
\(174\) 0 0
\(175\) 1.11693 + 1.18388i 0.0844319 + 0.0894926i
\(176\) −13.9853 + 3.31458i −1.05418 + 0.249846i
\(177\) 0 0
\(178\) 3.68305 8.53826i 0.276056 0.639970i
\(179\) −0.223820 1.26935i −0.0167291 0.0948754i 0.975300 0.220884i \(-0.0708943\pi\)
−0.992029 + 0.126009i \(0.959783\pi\)
\(180\) 0 0
\(181\) 0.645386 3.66017i 0.0479712 0.272058i −0.951382 0.308013i \(-0.900336\pi\)
0.999353 + 0.0359546i \(0.0114472\pi\)
\(182\) 3.52708 + 2.31980i 0.261444 + 0.171955i
\(183\) 0 0
\(184\) −0.204361 + 0.274504i −0.0150657 + 0.0202367i
\(185\) 0.679836 + 11.6723i 0.0499826 + 0.858167i
\(186\) 0 0
\(187\) −19.4633 + 20.6299i −1.42330 + 1.50861i
\(188\) 12.2223 21.1696i 0.891400 1.54395i
\(189\) 0 0
\(190\) −2.13377 3.69580i −0.154800 0.268122i
\(191\) −7.09353 1.68120i −0.513270 0.121647i −0.0341846 0.999416i \(-0.510883\pi\)
−0.479085 + 0.877768i \(0.659032\pi\)
\(192\) 0 0
\(193\) −8.60314 4.32066i −0.619267 0.311008i 0.111364 0.993780i \(-0.464478\pi\)
−0.730632 + 0.682772i \(0.760774\pi\)
\(194\) 21.0941 + 2.46555i 1.51447 + 0.177016i
\(195\) 0 0
\(196\) −12.3046 + 6.17962i −0.878902 + 0.441401i
\(197\) −4.63898 + 1.68845i −0.330513 + 0.120297i −0.501946 0.864899i \(-0.667383\pi\)
0.171433 + 0.985196i \(0.445160\pi\)
\(198\) 0 0
\(199\) −2.36550 0.860973i −0.167686 0.0610327i 0.256813 0.966461i \(-0.417328\pi\)
−0.424499 + 0.905428i \(0.639550\pi\)
\(200\) −0.416317 + 0.0486605i −0.0294381 + 0.00344082i
\(201\) 0 0
\(202\) 1.41812 4.73684i 0.0997784 0.333283i
\(203\) 0.796414 2.66021i 0.0558973 0.186710i
\(204\) 0 0
\(205\) 24.8605 2.90577i 1.73633 0.202948i
\(206\) −32.3692 11.7814i −2.25527 0.820851i
\(207\) 0 0
\(208\) 12.3341 4.48925i 0.855217 0.311273i
\(209\) 2.55482 1.28308i 0.176721 0.0887524i
\(210\) 0 0
\(211\) −6.94056 0.811235i −0.477808 0.0558477i −0.126219 0.992002i \(-0.540284\pi\)
−0.351589 + 0.936155i \(0.614358\pi\)
\(212\) −10.4011 5.22364i −0.714351 0.358761i
\(213\) 0 0
\(214\) 1.58005 + 0.374478i 0.108010 + 0.0255988i
\(215\) −2.42868 4.20659i −0.165634 0.286887i
\(216\) 0 0
\(217\) 2.50183 4.33330i 0.169835 0.294163i
\(218\) 5.85178 6.20253i 0.396333 0.420088i
\(219\) 0 0
\(220\) −1.25247 21.5042i −0.0844418 1.44981i
\(221\) 15.4672 20.7761i 1.04044 1.39755i
\(222\) 0 0
\(223\) 15.0373 + 9.89018i 1.00697 + 0.662295i 0.942007 0.335592i \(-0.108936\pi\)
0.0649637 + 0.997888i \(0.479307\pi\)
\(224\) 0.856110 4.85524i 0.0572012 0.324404i
\(225\) 0 0
\(226\) 4.32831 + 24.5471i 0.287915 + 1.63285i
\(227\) 0.242999 0.563336i 0.0161284 0.0373899i −0.909962 0.414693i \(-0.863889\pi\)
0.926090 + 0.377303i \(0.123148\pi\)
\(228\) 0 0
\(229\) −4.86058 + 1.15198i −0.321196 + 0.0761249i −0.388051 0.921638i \(-0.626852\pi\)
0.0668550 + 0.997763i \(0.478704\pi\)
\(230\) 8.33938 + 8.83923i 0.549883 + 0.582842i
\(231\) 0 0
\(232\) 0.427038 + 0.573612i 0.0280364 + 0.0376595i
\(233\) −10.0792 + 8.45747i −0.660311 + 0.554067i −0.910180 0.414213i \(-0.864057\pi\)
0.249869 + 0.968280i \(0.419613\pi\)
\(234\) 0 0
\(235\) −24.9453 20.9316i −1.62725 1.36543i
\(236\) 0.182828 3.13904i 0.0119011 0.204334i
\(237\) 0 0
\(238\) −3.70296 8.58442i −0.240027 0.556446i
\(239\) −7.60142 + 4.99953i −0.491695 + 0.323393i −0.771028 0.636802i \(-0.780257\pi\)
0.279333 + 0.960194i \(0.409887\pi\)
\(240\) 0 0
\(241\) 4.08698 + 13.6515i 0.263265 + 0.879368i 0.982763 + 0.184872i \(0.0591872\pi\)
−0.719497 + 0.694496i \(0.755628\pi\)
\(242\) 6.10626 0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) 5.26074 + 17.5721i 0.336096 + 1.12264i
\(246\) 0 0
\(247\) −2.18134 + 1.43469i −0.138795 + 0.0912872i
\(248\) 0.510379 + 1.18319i 0.0324091 + 0.0751327i
\(249\) 0 0
\(250\) 0.759713 13.0438i 0.0480484 0.824960i
\(251\) −6.58379 5.52445i −0.415565 0.348700i 0.410908 0.911677i \(-0.365212\pi\)
−0.826473 + 0.562976i \(0.809656\pi\)
\(252\) 0 0
\(253\) −6.23640 + 5.23296i −0.392079 + 0.328993i
\(254\) 12.0291 + 16.1578i 0.754770 + 1.01383i
\(255\) 0 0
\(256\) −10.0746 10.6784i −0.629661 0.667401i
\(257\) 21.5984 5.11891i 1.34727 0.319309i 0.507219 0.861817i \(-0.330674\pi\)
0.840050 + 0.542509i \(0.182525\pi\)
\(258\) 0 0
\(259\) 1.02265 2.37076i 0.0635441 0.147312i
\(260\) 3.41594 + 19.3728i 0.211848 + 1.20145i
\(261\) 0 0
\(262\) −1.92625 + 10.9243i −0.119004 + 0.674906i
\(263\) 4.39677 + 2.89180i 0.271117 + 0.178316i 0.677786 0.735259i \(-0.262940\pi\)
−0.406669 + 0.913575i \(0.633310\pi\)
\(264\) 0 0
\(265\) −9.25898 + 12.4370i −0.568775 + 0.763997i
\(266\) 0.0547947 + 0.940789i 0.00335968 + 0.0576835i
\(267\) 0 0
\(268\) 10.9118 11.5658i 0.666545 0.706496i
\(269\) 3.11423 5.39401i 0.189878 0.328878i −0.755331 0.655343i \(-0.772524\pi\)
0.945209 + 0.326465i \(0.105857\pi\)
\(270\) 0 0
\(271\) −3.65935 6.33818i −0.222290 0.385017i 0.733213 0.679999i \(-0.238020\pi\)
−0.955503 + 0.294982i \(0.904686\pi\)
\(272\) −28.2844 6.70351i −1.71499 0.406460i
\(273\) 0 0
\(274\) 27.4850 + 13.8035i 1.66043 + 0.833900i
\(275\) −9.90368 1.15757i −0.597214 0.0698043i
\(276\) 0 0
\(277\) −16.6496 + 8.36174i −1.00038 + 0.502409i −0.872099 0.489330i \(-0.837242\pi\)
−0.128279 + 0.991738i \(0.540945\pi\)
\(278\) −30.3926 + 11.0620i −1.82283 + 0.663456i
\(279\) 0 0
\(280\) 0.250307 + 0.0911045i 0.0149587 + 0.00544453i
\(281\) −1.01503 + 0.118640i −0.0605517 + 0.00707747i −0.146315 0.989238i \(-0.546741\pi\)
0.0857631 + 0.996316i \(0.472667\pi\)
\(282\) 0 0
\(283\) 3.14431 10.5027i 0.186910 0.624322i −0.812249 0.583311i \(-0.801757\pi\)
0.999159 0.0410113i \(-0.0130580\pi\)
\(284\) −4.04430 + 13.5089i −0.239985 + 0.801607i
\(285\) 0 0
\(286\) −25.6876 + 3.00245i −1.51894 + 0.177538i
\(287\) −5.19387 1.89041i −0.306584 0.111588i
\(288\) 0 0
\(289\) −37.9265 + 13.8041i −2.23097 + 0.812008i
\(290\) 22.6927 11.3967i 1.33256 0.669236i
\(291\) 0 0
\(292\) −1.18145 0.138092i −0.0691393 0.00808122i
\(293\) −21.6970 10.8966i −1.26755 0.636588i −0.317375 0.948300i \(-0.602801\pi\)
−0.950177 + 0.311712i \(0.899098\pi\)
\(294\) 0 0
\(295\) −4.07584 0.965992i −0.237305 0.0562422i
\(296\) 0.332457 + 0.575832i 0.0193237 + 0.0334696i
\(297\) 0 0
\(298\) 8.92609 15.4604i 0.517075 0.895599i
\(299\) 5.10199 5.40779i 0.295056 0.312741i
\(300\) 0 0
\(301\) 0.0623678 + 1.07081i 0.00359482 + 0.0617207i
\(302\) 1.19124 1.60012i 0.0685483 0.0920763i
\(303\) 0 0
\(304\) 2.44802 + 1.61009i 0.140404 + 0.0923449i
\(305\) 1.45337 8.24247i 0.0832198 0.471963i
\(306\) 0 0
\(307\) −4.31169 24.4528i −0.246081 1.39560i −0.817968 0.575264i \(-0.804899\pi\)
0.571887 0.820333i \(-0.306212\pi\)
\(308\) −1.88404 + 4.36769i −0.107353 + 0.248872i
\(309\) 0 0
\(310\) 44.5238 10.5523i 2.52878 0.599332i
\(311\) 1.27003 + 1.34616i 0.0720170 + 0.0763335i 0.762380 0.647130i \(-0.224031\pi\)
−0.690363 + 0.723463i \(0.742549\pi\)
\(312\) 0 0
\(313\) −4.15117 5.57599i −0.234638 0.315173i 0.669172 0.743108i \(-0.266649\pi\)
−0.903810 + 0.427934i \(0.859242\pi\)
\(314\) 28.1521 23.6225i 1.58872 1.33309i
\(315\) 0 0
\(316\) 14.6687 + 12.3085i 0.825178 + 0.692406i
\(317\) 1.51393 25.9932i 0.0850310 1.45993i −0.638493 0.769627i \(-0.720442\pi\)
0.723524 0.690299i \(-0.242521\pi\)
\(318\) 0 0
\(319\) 6.73802 + 15.6205i 0.377256 + 0.874579i
\(320\) 19.9151 13.0984i 1.11329 0.732222i
\(321\) 0 0
\(322\) −0.769645 2.57079i −0.0428906 0.143265i
\(323\) 5.78196 0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) −9.93094 33.1717i −0.550024 1.83721i
\(327\) 0 0
\(328\) 1.18923 0.782172i 0.0656645 0.0431882i
\(329\) 2.84817 + 6.60281i 0.157025 + 0.364025i
\(330\) 0 0
\(331\) 1.51383 25.9914i 0.0832075 1.42862i −0.655807 0.754928i \(-0.727672\pi\)
0.739015 0.673689i \(-0.235291\pi\)
\(332\) 9.85078 + 8.26579i 0.540632 + 0.453644i
\(333\) 0 0
\(334\) −9.12878 + 7.65996i −0.499505 + 0.419134i
\(335\) −12.6492 16.9908i −0.691098 0.928306i
\(336\) 0 0
\(337\) 10.3150 + 10.9332i 0.561892 + 0.595571i 0.944570 0.328311i \(-0.106479\pi\)
−0.382677 + 0.923882i \(0.624998\pi\)
\(338\) −2.56266 + 0.607362i −0.139390 + 0.0330361i
\(339\) 0 0
\(340\) 17.2550 40.0015i 0.935782 2.16939i
\(341\) 5.32295 + 30.1880i 0.288254 + 1.63477i
\(342\) 0 0
\(343\) 1.44640 8.20293i 0.0780981 0.442917i
\(344\) −0.230787 0.151791i −0.0124432 0.00818403i
\(345\) 0 0
\(346\) −10.8443 + 14.5664i −0.582994 + 0.783097i
\(347\) −1.47816 25.3791i −0.0793520 1.36242i −0.769451 0.638706i \(-0.779470\pi\)
0.690099 0.723715i \(-0.257567\pi\)
\(348\) 0 0
\(349\) 20.0832 21.2870i 1.07503 1.13947i 0.0853248 0.996353i \(-0.472807\pi\)
0.989706 0.143113i \(-0.0457113\pi\)
\(350\) 1.64339 2.84643i 0.0878427 0.152148i
\(351\) 0 0
\(352\) 15.1016 + 26.1568i 0.804920 + 1.39416i
\(353\) −27.9183 6.61675i −1.48594 0.352174i −0.594051 0.804428i \(-0.702472\pi\)
−0.891890 + 0.452253i \(0.850620\pi\)
\(354\) 0 0
\(355\) 16.7869 + 8.43072i 0.890958 + 0.447456i
\(356\) −9.50370 1.11082i −0.503695 0.0588735i
\(357\) 0 0
\(358\) −2.32599 + 1.16816i −0.122933 + 0.0617391i
\(359\) −19.5984 + 7.13322i −1.03436 + 0.376477i −0.802740 0.596329i \(-0.796625\pi\)
−0.231622 + 0.972806i \(0.574403\pi\)
\(360\) 0 0
\(361\) 17.3065 + 6.29905i 0.910868 + 0.331529i
\(362\) −7.45460 + 0.871318i −0.391805 + 0.0457954i
\(363\) 0 0
\(364\) 1.24587 4.16151i 0.0653015 0.218122i
\(365\) −0.454464 + 1.51802i −0.0237877 + 0.0794566i
\(366\) 0 0
\(367\) 34.3330 4.01296i 1.79217 0.209475i 0.846009 0.533169i \(-0.178999\pi\)
0.946162 + 0.323694i \(0.104925\pi\)
\(368\) −7.84042 2.85368i −0.408710 0.148758i
\(369\) 0 0
\(370\) 22.1871 8.07544i 1.15345 0.419822i
\(371\) 3.05972 1.53665i 0.158853 0.0797790i
\(372\) 0 0
\(373\) 9.30608 + 1.08773i 0.481851 + 0.0563203i 0.353551 0.935415i \(-0.384974\pi\)
0.128300 + 0.991735i \(0.459048\pi\)
\(374\) 51.1823 + 25.7047i 2.64657 + 1.32916i
\(375\) 0 0
\(376\) −1.80194 0.427067i −0.0929277 0.0220243i
\(377\) −7.76787 13.4543i −0.400065 0.692934i
\(378\) 0 0
\(379\) 0.963771 1.66930i 0.0495056 0.0857462i −0.840211 0.542260i \(-0.817569\pi\)
0.889716 + 0.456514i \(0.150902\pi\)
\(380\) −3.01349 + 3.19411i −0.154589 + 0.163855i
\(381\) 0 0
\(382\) 0.855977 + 14.6966i 0.0437956 + 0.751941i
\(383\) −11.6398 + 15.6350i −0.594768 + 0.798912i −0.992968 0.118387i \(-0.962228\pi\)
0.398199 + 0.917299i \(0.369635\pi\)
\(384\) 0 0
\(385\) 5.29420 + 3.48205i 0.269817 + 0.177462i
\(386\) −3.37590 + 19.1457i −0.171829 + 0.974489i
\(387\) 0 0
\(388\) −3.79483 21.5216i −0.192653 1.09259i
\(389\) 3.62013 8.39242i 0.183548 0.425512i −0.801454 0.598057i \(-0.795940\pi\)
0.985002 + 0.172545i \(0.0551989\pi\)
\(390\) 0 0
\(391\) −16.0209 + 3.79702i −0.810211 + 0.192024i
\(392\) 0.715833 + 0.758738i 0.0361550 + 0.0383221i
\(393\) 0 0
\(394\) 5.95315 + 7.99647i 0.299916 + 0.402857i
\(395\) 19.5409 16.3967i 0.983208 0.825009i
\(396\) 0 0
\(397\) 25.5466 + 21.4361i 1.28215 + 1.07585i 0.992944 + 0.118581i \(0.0378344\pi\)
0.289202 + 0.957268i \(0.406610\pi\)
\(398\) −0.295577 + 5.07485i −0.0148159 + 0.254379i
\(399\) 0 0
\(400\) −4.04762 9.38343i −0.202381 0.469172i
\(401\) −2.96491 + 1.95005i −0.148061 + 0.0973809i −0.621378 0.783511i \(-0.713427\pi\)
0.473317 + 0.880892i \(0.343056\pi\)
\(402\) 0 0
\(403\) −8.02876 26.8179i −0.399941 1.33590i
\(404\) −5.08795 −0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) 4.53651 + 15.1530i 0.224866 + 0.751106i
\(408\) 0 0
\(409\) 26.7647 17.6034i 1.32343 0.870435i 0.326237 0.945288i \(-0.394219\pi\)
0.997195 + 0.0748535i \(0.0238489\pi\)
\(410\) −20.0198 46.4111i −0.988707 2.29208i
\(411\) 0 0
\(412\) −2.06097 + 35.3855i −0.101537 + 1.74332i
\(413\) 0.708579 + 0.594568i 0.0348669 + 0.0292568i
\(414\) 0 0
\(415\) 13.1227 11.0113i 0.644168 0.540522i
\(416\) −16.4712 22.1247i −0.807568 1.08475i
\(417\) 0 0
\(418\) −3.96186 4.19933i −0.193781 0.205396i
\(419\) 14.4349 3.42114i 0.705192 0.167134i 0.137653 0.990480i \(-0.456044\pi\)
0.567538 + 0.823347i \(0.307896\pi\)
\(420\) 0 0
\(421\) −6.17082 + 14.3056i −0.300747 + 0.697210i −0.999841 0.0178193i \(-0.994328\pi\)
0.699094 + 0.715030i \(0.253587\pi\)
\(422\) 2.45037 + 13.8968i 0.119282 + 0.676484i
\(423\) 0 0
\(424\) −0.153114 + 0.868355i −0.00743589 + 0.0421710i
\(425\) −16.8483 11.0813i −0.817264 0.537523i
\(426\) 0 0
\(427\) −1.10369 + 1.48251i −0.0534111 + 0.0717435i
\(428\) −0.0971546 1.66808i −0.00469614 0.0806297i
\(429\) 0 0
\(430\) −6.73129 + 7.13475i −0.324611 + 0.344068i
\(431\) 0.648713 1.12360i 0.0312474 0.0541221i −0.849979 0.526817i \(-0.823385\pi\)
0.881226 + 0.472695i \(0.156719\pi\)
\(432\) 0 0
\(433\) −8.76506 15.1815i −0.421222 0.729577i 0.574838 0.818268i \(-0.305065\pi\)
−0.996059 + 0.0886901i \(0.971732\pi\)
\(434\) −9.83200 2.33023i −0.471951 0.111854i
\(435\) 0 0
\(436\) −7.84124 3.93802i −0.375527 0.188597i
\(437\) 1.64842 + 0.192673i 0.0788548 + 0.00921680i
\(438\) 0 0
\(439\) 19.4081 9.74712i 0.926298 0.465205i 0.0793304 0.996848i \(-0.474722\pi\)
0.846968 + 0.531644i \(0.178426\pi\)
\(440\) −1.53345 + 0.558129i −0.0731042 + 0.0266077i
\(441\) 0 0
\(442\) −49.1506 17.8894i −2.33786 0.850910i
\(443\) 9.08183 1.06151i 0.431491 0.0504340i 0.102424 0.994741i \(-0.467340\pi\)
0.329066 + 0.944307i \(0.393266\pi\)
\(444\) 0 0
\(445\) −3.65575 + 12.2110i −0.173299 + 0.578859i
\(446\) 10.4240 34.8186i 0.493591 1.64871i
\(447\) 0 0
\(448\) −5.22812 + 0.611080i −0.247006 + 0.0288708i
\(449\) 11.6732 + 4.24870i 0.550893 + 0.200509i 0.602443 0.798162i \(-0.294194\pi\)
−0.0515501 + 0.998670i \(0.516416\pi\)
\(450\) 0 0
\(451\) 31.8189 11.5811i 1.49829 0.545335i
\(452\) 22.9204 11.5111i 1.07809 0.541435i
\(453\) 0 0
\(454\) −1.23054 0.143830i −0.0577523 0.00675027i
\(455\) −5.17132 2.59714i −0.242435 0.121756i
\(456\) 0 0
\(457\) −18.1910 4.31134i −0.850938 0.201676i −0.218067 0.975934i \(-0.569975\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(458\) 5.04367 + 8.73589i 0.235675 + 0.408201i
\(459\) 0 0
\(460\) 6.25233 10.8293i 0.291516 0.504921i
\(461\) 28.1921 29.8819i 1.31304 1.39174i 0.444768 0.895646i \(-0.353286\pi\)
0.868270 0.496093i \(-0.165232\pi\)
\(462\) 0 0
\(463\) 0.240127 + 4.12282i 0.0111597 + 0.191604i 0.999281 + 0.0379254i \(0.0120749\pi\)
−0.988121 + 0.153678i \(0.950888\pi\)
\(464\) −10.4115 + 13.9851i −0.483341 + 0.649240i
\(465\) 0 0
\(466\) 22.1990 + 14.6005i 1.02835 + 0.676357i
\(467\) 4.38922 24.8925i 0.203109 1.15189i −0.697279 0.716799i \(-0.745606\pi\)
0.900388 0.435087i \(-0.143283\pi\)
\(468\) 0 0
\(469\) 0.812254 + 4.60652i 0.0375064 + 0.212710i
\(470\) −26.0458 + 60.3810i −1.20140 + 2.78517i
\(471\) 0 0
\(472\) −0.231787 + 0.0549346i −0.0106689 + 0.00252857i
\(473\) −4.50942 4.77971i −0.207344 0.219771i
\(474\) 0 0
\(475\) 1.21386 + 1.63049i 0.0556956 + 0.0748122i
\(476\) −7.36945 + 6.18370i −0.337778 + 0.283430i
\(477\) 0 0
\(478\) 14.0744 + 11.8098i 0.643748 + 0.540168i
\(479\) −1.20953 + 20.7669i −0.0552650 + 0.948863i 0.850737 + 0.525591i \(0.176156\pi\)
−0.906002 + 0.423272i \(0.860881\pi\)
\(480\) 0 0
\(481\) −5.72140 13.2637i −0.260873 0.604773i
\(482\) 24.0425 15.8130i 1.09511 0.720263i
\(483\) 0 0
\(484\) −1.80208 6.01937i −0.0819128 0.273608i
\(485\) −29.1122 −1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) −0.136509 0.455973i −0.00617949 0.0206409i
\(489\) 0 0
\(490\) 30.9474 20.3544i 1.39806 0.919518i
\(491\) 14.4749 + 33.5565i 0.653241 + 1.51438i 0.846026 + 0.533142i \(0.178989\pi\)
−0.192785 + 0.981241i \(0.561752\pi\)
\(492\) 0 0
\(493\) −2.00048 + 34.3469i −0.0900971 + 1.54691i
\(494\) 4.03886 + 3.38900i 0.181717 + 0.152479i
\(495\) 0 0
\(496\) −24.0663 + 20.1941i −1.08061 + 0.906740i
\(497\) −2.47715 3.32739i −0.111115 0.149254i
\(498\) 0 0
\(499\) −24.9750 26.4720i −1.11804 1.18505i −0.980903 0.194496i \(-0.937693\pi\)
−0.137132 0.990553i \(-0.543788\pi\)
\(500\) −13.0824 + 3.10058i −0.585061 + 0.138662i
\(501\) 0 0
\(502\) −6.87426 + 15.9363i −0.306813 + 0.711273i
\(503\) −1.38230 7.83939i −0.0616335 0.349541i −0.999992 0.00387871i \(-0.998765\pi\)
0.938359 0.345662i \(-0.112346\pi\)
\(504\) 0 0
\(505\) −1.17697 + 6.67494i −0.0523746 + 0.297031i
\(506\) 13.7354 + 9.03391i 0.610613 + 0.401606i
\(507\) 0 0
\(508\) 12.3779 16.6264i 0.549180 0.737676i
\(509\) −0.0970326 1.66599i −0.00430090 0.0738435i 0.995475 0.0950268i \(-0.0302937\pi\)
−0.999776 + 0.0211833i \(0.993257\pi\)
\(510\) 0 0
\(511\) 0.240128 0.254520i 0.0106226 0.0112593i
\(512\) −16.0816 + 27.8541i −0.710711 + 1.23099i
\(513\) 0 0
\(514\) −22.4119 38.8186i −0.988548 1.71221i
\(515\) 45.9459 + 10.8894i 2.02462 + 0.479843i
\(516\) 0 0
\(517\) −39.3675 19.7711i −1.73138 0.869532i
\(518\) −5.17866 0.605299i −0.227537 0.0265953i
\(519\) 0 0
\(520\) 1.33175 0.668832i 0.0584013 0.0293302i
\(521\) −32.9725 + 12.0010i −1.44455 + 0.525773i −0.941063 0.338230i \(-0.890172\pi\)
−0.503486 + 0.864003i \(0.667950\pi\)
\(522\) 0 0
\(523\) 11.3086 + 4.11600i 0.494491 + 0.179980i 0.577214 0.816593i \(-0.304140\pi\)
−0.0827236 + 0.996573i \(0.526362\pi\)
\(524\) 11.3373 1.32514i 0.495274 0.0578892i
\(525\) 0 0
\(526\) 3.04789 10.1807i 0.132894 0.443898i
\(527\) −17.7803 + 59.3905i −0.774524 + 2.58709i
\(528\) 0 0
\(529\) 18.1504 2.12148i 0.789149 0.0922383i
\(530\) 29.4226 + 10.7089i 1.27803 + 0.465167i
\(531\) 0 0
\(532\) 0.911231 0.331661i 0.0395069 0.0143793i
\(533\) −27.6338 + 13.8782i −1.19695 + 0.601133i
\(534\) 0 0
\(535\) −2.21085 0.258411i −0.0955832 0.0111721i
\(536\) −1.07647 0.540625i −0.0464966 0.0233515i
\(537\) 0 0
\(538\) −12.2387 2.90062i −0.527647 0.125055i
\(539\) 12.4073 + 21.4900i 0.534420 + 0.925642i
\(540\) 0 0
\(541\) −9.81306 + 16.9967i −0.421896 + 0.730746i −0.996125 0.0879490i \(-0.971969\pi\)
0.574229 + 0.818695i \(0.305302\pi\)
\(542\) −10.1422 + 10.7501i −0.435645 + 0.461757i
\(543\) 0 0
\(544\) 3.55172 + 60.9807i 0.152279 + 2.61452i
\(545\) −6.98021 + 9.37604i −0.298999 + 0.401626i
\(546\) 0 0
\(547\) −7.28872 4.79386i −0.311643 0.204971i 0.384046 0.923314i \(-0.374530\pi\)
−0.695689 + 0.718343i \(0.744901\pi\)
\(548\) 5.49569 31.1676i 0.234764 1.33141i
\(549\) 0 0
\(550\) 3.49651 + 19.8297i 0.149092 + 0.845540i
\(551\) 1.37362 3.18441i 0.0585183 0.135661i
\(552\) 0 0
\(553\) −5.48116 + 1.29906i −0.233083 + 0.0552416i
\(554\) 25.8192 + 27.3668i 1.09695 + 1.16270i
\(555\) 0 0
\(556\) 19.8741 + 26.6955i 0.842849 + 1.13214i
\(557\) −15.1698 + 12.7290i −0.642765 + 0.539344i −0.904866 0.425696i \(-0.860029\pi\)
0.262101 + 0.965041i \(0.415585\pi\)
\(558\) 0 0
\(559\) 4.59706 + 3.85739i 0.194435 + 0.163150i
\(560\) −0.377611 + 6.48333i −0.0159570 + 0.273971i
\(561\) 0 0
\(562\) 0.817391 + 1.89492i 0.0344795 + 0.0799326i
\(563\) 28.3702 18.6594i 1.19566 0.786400i 0.213964 0.976841i \(-0.431362\pi\)
0.981699 + 0.190442i \(0.0609920\pi\)
\(564\) 0 0
\(565\) −9.79942 32.7323i −0.412265 1.37706i
\(566\) −22.1392 −0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) −5.51785 18.4309i −0.231320 0.772664i −0.992297 0.123884i \(-0.960465\pi\)
0.760976 0.648780i \(-0.224720\pi\)
\(570\) 0 0
\(571\) 2.07779 1.36658i 0.0869528 0.0571898i −0.505288 0.862951i \(-0.668614\pi\)
0.592241 + 0.805761i \(0.298243\pi\)
\(572\) 10.5406 + 24.4360i 0.440726 + 1.02172i
\(573\) 0 0
\(574\) −0.648989 + 11.1427i −0.0270883 + 0.465088i
\(575\) −4.43416 3.72070i −0.184917 0.155164i
\(576\) 0 0
\(577\) 19.5278 16.3857i 0.812951 0.682147i −0.138359 0.990382i \(-0.544183\pi\)
0.951310 + 0.308235i \(0.0997383\pi\)
\(578\) 48.6708 + 65.3762i 2.02444 + 2.71929i
\(579\) 0 0
\(580\) −17.9316 19.0063i −0.744568 0.789196i
\(581\) −3.68088 + 0.872385i −0.152709 + 0.0361926i
\(582\) 0 0
\(583\) −8.30808 + 19.2603i −0.344085 + 0.797680i
\(584\) 0.0156480 + 0.0887440i 0.000647517 + 0.00367225i
\(585\) 0 0
\(586\) −8.51396 + 48.2851i −0.351709 + 1.99464i
\(587\) 0.748080 + 0.492020i 0.0308765 + 0.0203078i 0.564853 0.825191i \(-0.308933\pi\)
−0.533977 + 0.845499i \(0.679303\pi\)
\(588\) 0 0
\(589\) 3.73170 5.01255i 0.153762 0.206538i
\(590\) 0.491832 + 8.44443i 0.0202484 + 0.347652i
\(591\) 0 0
\(592\) −11.1247 + 11.7915i −0.457222 + 0.484627i
\(593\) 16.2145 28.0843i 0.665848 1.15328i −0.313207 0.949685i \(-0.601403\pi\)
0.979055 0.203597i \(-0.0652634\pi\)
\(594\) 0 0
\(595\) 6.40773 + 11.0985i 0.262691 + 0.454994i
\(596\) −17.8747 4.23638i −0.732177 0.173529i
\(597\) 0 0
\(598\) −13.4166 6.73807i −0.548646 0.275540i
\(599\) −41.8092 4.88680i −1.70828 0.199669i −0.794889 0.606755i \(-0.792471\pi\)
−0.913390 + 0.407086i \(0.866545\pi\)
\(600\) 0 0
\(601\) −27.6486 + 13.8857i −1.12781 + 0.566408i −0.912067 0.410042i \(-0.865514\pi\)
−0.215744 + 0.976450i \(0.569218\pi\)
\(602\) 2.03543 0.740836i 0.0829580 0.0301942i
\(603\) 0 0
\(604\) −1.92891 0.702064i −0.0784861 0.0285666i
\(605\) −8.31375 + 0.971737i −0.338002 + 0.0395067i
\(606\) 0 0
\(607\) 4.29468 14.3452i 0.174316 0.582255i −0.825524 0.564367i \(-0.809120\pi\)
0.999840 0.0178885i \(-0.00569440\pi\)
\(608\) 1.76593 5.89861i 0.0716179 0.239220i
\(609\) 0 0
\(610\) −16.7873 + 1.96215i −0.679698 + 0.0794453i
\(611\) 37.8048 + 13.7598i 1.52942 + 0.556663i
\(612\) 0 0
\(613\) 17.2467 6.27730i 0.696589 0.253538i 0.0306353 0.999531i \(-0.490247\pi\)
0.665954 + 0.745993i \(0.268025\pi\)
\(614\) −44.8082 + 22.5035i −1.80831 + 0.908169i
\(615\) 0 0
\(616\) 0.357920 + 0.0418348i 0.0144210 + 0.00168557i
\(617\) 29.2891 + 14.7095i 1.17913 + 0.592184i 0.926836 0.375466i \(-0.122517\pi\)
0.252299 + 0.967649i \(0.418813\pi\)
\(618\) 0 0
\(619\) −5.84054 1.38423i −0.234751 0.0556370i 0.111556 0.993758i \(-0.464416\pi\)
−0.346307 + 0.938121i \(0.612565\pi\)
\(620\) −23.5420 40.7760i −0.945471 1.63760i
\(621\) 0 0
\(622\) 1.86865 3.23661i 0.0749262 0.129776i
\(623\) 1.93161 2.04738i 0.0773882 0.0820267i
\(624\) 0 0
\(625\) 1.81549 + 31.1707i 0.0726195 + 1.24683i
\(626\) −8.38285 + 11.2601i −0.335046 + 0.450045i
\(627\) 0 0
\(628\) −31.5946 20.7801i −1.26076 0.829215i
\(629\) −5.55497 + 31.5038i −0.221491 + 1.25614i
\(630\) 0 0
\(631\) −4.24361 24.0667i −0.168935 0.958080i −0.944914 0.327320i \(-0.893854\pi\)
0.775978 0.630760i \(-0.217257\pi\)
\(632\) 0.574572 1.33201i 0.0228553 0.0529844i
\(633\) 0 0
\(634\) −51.1623 + 12.1257i −2.03191 + 0.481572i
\(635\) −18.9490 20.0848i −0.751968 0.797040i
\(636\) 0 0
\(637\) −13.5325 18.1773i −0.536178 0.720212i
\(638\) 26.3163 22.0820i 1.04187 0.874234i
\(639\) 0 0
\(640\) −2.66848 2.23912i −0.105481 0.0885089i
\(641\) 0.599772 10.2977i 0.0236896 0.406734i −0.965530 0.260293i \(-0.916181\pi\)
0.989219 0.146441i \(-0.0467820\pi\)
\(642\) 0 0
\(643\) −17.1529 39.7650i −0.676446 1.56818i −0.816057 0.577971i \(-0.803845\pi\)
0.139612 0.990206i \(-0.455415\pi\)
\(644\) −2.30707 + 1.51739i −0.0909114 + 0.0597934i
\(645\) 0 0
\(646\) −3.34873 11.1855i −0.131754 0.440089i
\(647\) −6.50021 −0.255550 −0.127775 0.991803i \(-0.540783\pi\)
−0.127775 + 0.991803i \(0.540783\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) −5.27389 17.6160i −0.206859 0.690956i
\(651\) 0 0
\(652\) −29.7688 + 19.5792i −1.16584 + 0.766782i
\(653\) −1.17917 2.73362i −0.0461444 0.106975i 0.893585 0.448895i \(-0.148182\pi\)
−0.939729 + 0.341920i \(0.888923\pi\)
\(654\) 0 0
\(655\) 0.884140 15.1801i 0.0345462 0.593136i
\(656\) 26.5844 + 22.3070i 1.03795 + 0.870941i
\(657\) 0 0
\(658\) 11.1240 9.33410i 0.433657 0.363881i
\(659\) 16.7861 + 22.5476i 0.653893 + 0.878330i 0.998166 0.0605394i \(-0.0192821\pi\)
−0.344273 + 0.938869i \(0.611875\pi\)
\(660\) 0 0
\(661\) 2.23073 + 2.36443i 0.0867653 + 0.0919658i 0.769301 0.638886i \(-0.220604\pi\)
−0.682536 + 0.730852i \(0.739123\pi\)
\(662\) −51.1587 + 12.1248i −1.98834 + 0.471245i
\(663\) 0 0
\(664\) 0.385855 0.894513i 0.0149741 0.0347138i
\(665\) −0.224319 1.27217i −0.00869871 0.0493328i
\(666\) 0 0
\(667\) −1.71488 + 9.72556i −0.0664004 + 0.376575i
\(668\) 10.2450 + 6.73827i 0.396393 + 0.260711i
\(669\) 0 0
\(670\) −25.5437 + 34.3111i −0.986838 + 1.32555i
\(671\) −0.658357 11.3036i −0.0254156 0.436369i
\(672\) 0 0
\(673\) −9.53489 + 10.1064i −0.367543 + 0.389573i −0.884579 0.466391i \(-0.845554\pi\)
0.517036 + 0.855964i \(0.327035\pi\)
\(674\) 15.1769 26.2871i 0.584591 1.01254i
\(675\) 0 0
\(676\) 1.35501 + 2.34695i 0.0521158 + 0.0902672i
\(677\) 10.5640 + 2.50372i 0.406009 + 0.0962259i 0.428546 0.903520i \(-0.359026\pi\)
−0.0225368 + 0.999746i \(0.507174\pi\)
\(678\) 0 0
\(679\) 5.74491 + 2.88520i 0.220470 + 0.110724i
\(680\) −3.27801 0.383144i −0.125706 0.0146929i
\(681\) 0 0
\(682\) 55.3175 27.7815i 2.11822 1.06381i
\(683\) 31.5858 11.4963i 1.20860 0.439893i 0.342380 0.939562i \(-0.388767\pi\)
0.866217 + 0.499668i \(0.166545\pi\)
\(684\) 0 0
\(685\) −39.6178 14.4197i −1.51372 0.550949i
\(686\) −16.7068 + 1.95274i −0.637867 + 0.0745560i
\(687\) 0 0
\(688\) 1.93153 6.45176i 0.0736389 0.245971i
\(689\) 5.49394 18.3511i 0.209303 0.699119i
\(690\) 0 0
\(691\) 0.444637 0.0519706i 0.0169148 0.00197706i −0.107631 0.994191i \(-0.534327\pi\)
0.124546 + 0.992214i \(0.460253\pi\)
\(692\) 17.5595 + 6.39115i 0.667513 + 0.242955i
\(693\) 0 0
\(694\) −48.2412 + 17.5584i −1.83121 + 0.666507i
\(695\) 39.6195 19.8977i 1.50285 0.754762i
\(696\) 0 0
\(697\) 68.0185 + 7.95022i 2.57638 + 0.301136i
\(698\) −52.8125 26.5234i −1.99898 1.00393i
\(699\) 0 0
\(700\) −3.29092 0.779962i −0.124385 0.0294798i
\(701\) −1.94332 3.36593i −0.0733982 0.127129i 0.826990 0.562216i \(-0.190051\pi\)
−0.900389 + 0.435087i \(0.856718\pi\)
\(702\) 0 0
\(703\) 1.61229 2.79256i 0.0608086 0.105324i
\(704\) 22.1291 23.4555i 0.834022 0.884012i
\(705\) 0 0
\(706\) 3.36890 + 57.8418i 0.126790 + 2.17690i
\(707\) 0.893789 1.20057i 0.0336144 0.0451520i
\(708\) 0 0
\(709\) 12.3151 + 8.09975i 0.462502 + 0.304193i 0.759292 0.650750i \(-0.225546\pi\)
−0.296789 + 0.954943i \(0.595916\pi\)
\(710\) 6.58725 37.3581i 0.247215 1.40203i
\(711\) 0 0
\(712\) 0.125874 + 0.713864i 0.00471731 + 0.0267532i
\(713\) −7.04821 + 16.3396i −0.263958 + 0.611922i
\(714\) 0 0
\(715\) 34.4961 8.17573i 1.29008 0.305755i
\(716\) 1.83798 + 1.94815i 0.0686887 + 0.0728057i
\(717\) 0 0
\(718\) 25.1504 + 33.7829i 0.938605 + 1.26076i
\(719\) −24.7821 + 20.7947i −0.924218 + 0.775511i −0.974770 0.223210i \(-0.928346\pi\)
0.0505523 + 0.998721i \(0.483902\pi\)
\(720\) 0 0
\(721\) −7.98762 6.70241i −0.297474 0.249611i
\(722\) 2.16250 37.1286i 0.0804798 1.38178i
\(723\) 0 0
\(724\) 3.05892 + 7.09138i 0.113684 + 0.263549i
\(725\) −10.1057 + 6.64663i −0.375316 + 0.246849i
\(726\) 0 0
\(727\) 2.64725 + 8.84244i 0.0981811 + 0.327948i 0.992942 0.118597i \(-0.0378396\pi\)
−0.894761 + 0.446545i \(0.852654\pi\)
\(728\) −0.329090 −0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) −3.81155 12.7315i −0.140975 0.470890i
\(732\) 0 0
\(733\) 44.2756 29.1205i 1.63535 1.07559i 0.704820 0.709386i \(-0.251028\pi\)
0.930535 0.366204i \(-0.119343\pi\)
\(734\) −27.6479 64.0951i −1.02050 2.36579i
\(735\) 0 0
\(736\) −1.01948 + 17.5038i −0.0375786 + 0.645199i
\(737\) −21.9518 18.4198i −0.808606 0.678501i
\(738\) 0 0
\(739\) 2.18316 1.83188i 0.0803087 0.0673870i −0.601750 0.798685i \(-0.705529\pi\)
0.682058 + 0.731298i \(0.261085\pi\)
\(740\) −14.5084 19.4881i −0.533339 0.716398i
\(741\) 0 0
\(742\) −4.74484 5.02924i −0.174189 0.184629i
\(743\) 28.6198 6.78302i 1.04996 0.248845i 0.330807 0.943698i \(-0.392679\pi\)
0.719151 + 0.694854i \(0.244531\pi\)
\(744\) 0 0
\(745\) −9.69263 + 22.4700i −0.355110 + 0.823239i
\(746\) −3.28553 18.6331i −0.120292 0.682208i
\(747\) 0 0
\(748\) 10.2340 58.0400i 0.374193 2.12215i
\(749\) 0.410672 + 0.270103i 0.0150056 + 0.00986935i
\(750\) 0 0
\(751\) −16.3799 + 22.0021i −0.597712 + 0.802866i −0.993300 0.115561i \(-0.963133\pi\)
0.395588 + 0.918428i \(0.370541\pi\)
\(752\) −2.62521 45.0730i −0.0957314 1.64364i
\(753\) 0 0
\(754\) −21.5293 + 22.8197i −0.784051 + 0.831045i
\(755\) −1.36725 + 2.36815i −0.0497593 + 0.0861857i
\(756\) 0 0
\(757\) 14.2323 + 24.6511i 0.517282 + 0.895959i 0.999799 + 0.0200719i \(0.00638952\pi\)
−0.482516 + 0.875887i \(0.660277\pi\)
\(758\) −3.78754 0.897664i −0.137570 0.0326046i
\(759\) 0 0
\(760\) 0.297288 + 0.149303i 0.0107838 + 0.00541580i
\(761\) 27.7831 + 3.24738i 1.00714 + 0.117717i 0.603634 0.797261i \(-0.293719\pi\)
0.403502 + 0.914979i \(0.367793\pi\)
\(762\) 0 0
\(763\) 2.30668 1.15846i 0.0835074 0.0419390i
\(764\) 14.2348 5.18104i 0.514997 0.187444i
\(765\) 0 0
\(766\) 36.9883 + 13.4626i 1.33644 + 0.486425i
\(767\) 5.14002 0.600782i 0.185595 0.0216930i
\(768\) 0 0
\(769\) −13.4693 + 44.9907i −0.485717 + 1.62241i 0.266742 + 0.963768i \(0.414053\pi\)
−0.752459 + 0.658640i \(0.771132\pi\)
\(770\) 3.66999 12.2586i 0.132257 0.441770i
\(771\) 0 0
\(772\) 19.8695 2.32241i 0.715120 0.0835855i
\(773\) −41.5507 15.1232i −1.49447 0.543944i −0.539851 0.841761i \(-0.681519\pi\)
−0.954623 + 0.297816i \(0.903742\pi\)
\(774\) 0 0
\(775\) −20.4807 + 7.45437i −0.735689 + 0.267769i
\(776\) −1.47947 + 0.743018i −0.0531099 + 0.0266728i
\(777\) 0 0
\(778\) −18.3323 2.14274i −0.657244 0.0768209i
\(779\) −6.16870 3.09804i −0.221017 0.110999i
\(780\) 0 0
\(781\) 24.7280 + 5.86065i 0.884839 + 0.209711i
\(782\) 16.6244 + 28.7942i 0.594486 + 1.02968i
\(783\) 0 0
\(784\) −12.7160 + 22.0247i −0.454143 + 0.786598i
\(785\) −34.5702 + 36.6423i −1.23386 + 1.30782i
\(786\) 0 0
\(787\) −2.12128 36.4210i −0.0756155 1.29827i −0.796256 0.604959i \(-0.793189\pi\)
0.720641 0.693308i \(-0.243848\pi\)
\(788\) 6.12579 8.22836i 0.218222 0.293123i
\(789\) 0 0
\(790\) −43.0379 28.3065i −1.53122 1.00710i
\(791\) −1.31019 + 7.43049i −0.0465852 + 0.264198i
\(792\) 0 0
\(793\) 1.79557 + 10.1832i 0.0637627 + 0.361616i
\(794\) 26.6737 61.8365i 0.946613 2.19450i
\(795\) 0 0
\(796\) 5.08987 1.20632i 0.180406 0.0427569i
\(797\) −10.3741 10.9959i −0.367469 0.389494i 0.517084 0.855935i \(-0.327018\pi\)
−0.884552 + 0.466441i \(0.845536\pi\)
\(798\) 0 0
\(799\) −53.2037 71.4650i −1.88221 2.52825i
\(800\) −16.4507 + 13.8038i −0.581621 + 0.488038i
\(801\) 0 0
\(802\) 5.48967 + 4.60638i 0.193847 + 0.162657i
\(803\) −0.124644 + 2.14005i −0.00439859 + 0.0755208i
\(804\) 0 0
\(805\) 1.45699 + 3.37768i 0.0513522 + 0.119048i
\(806\) −47.2309 + 31.0642i −1.66364 + 1.09419i
\(807\) 0 0
\(808\) 0.110548 + 0.369257i 0.00388908 + 0.0129904i
\(809\) 49.6978 1.74728 0.873641 0.486571i \(-0.161753\pi\)
0.873641 + 0.486571i \(0.161753\pi\)
\(810\) 0 0
\(811\) −8.76133 −0.307652 −0.153826 0.988098i \(-0.549159\pi\)
−0.153826 + 0.988098i \(0.549159\pi\)
\(812\) 1.65491 + 5.52779i 0.0580760 + 0.193987i
\(813\) 0 0
\(814\) 26.6869 17.5523i 0.935377 0.615207i
\(815\) 18.7999 + 43.5832i 0.658533 + 1.52665i
\(816\) 0 0
\(817\) −0.0778915 + 1.33735i −0.00272508 + 0.0467878i
\(818\) −49.5562 41.5826i −1.73269 1.45390i
\(819\) 0 0
\(820\) −39.8424 + 33.4317i −1.39136 + 1.16749i
\(821\) 21.1777 + 28.4466i 0.739106 + 0.992792i 0.999627 + 0.0273238i \(0.00869851\pi\)
−0.260520 + 0.965468i \(0.583894\pi\)
\(822\) 0 0
\(823\) 1.28955 + 1.36684i 0.0449508 + 0.0476451i 0.749459 0.662051i \(-0.230314\pi\)
−0.704508 + 0.709696i \(0.748832\pi\)
\(824\) 2.61288 0.619263i 0.0910238 0.0215730i
\(825\) 0 0
\(826\) 0.739840 1.71514i 0.0257423 0.0596774i
\(827\) −1.66995 9.47075i −0.0580698 0.329330i 0.941909 0.335869i \(-0.109030\pi\)
−0.999979 + 0.00653851i \(0.997919\pi\)
\(828\) 0 0
\(829\) −1.31856 + 7.47791i −0.0457954 + 0.259719i −0.999106 0.0422726i \(-0.986540\pi\)
0.953311 + 0.301991i \(0.0976513\pi\)
\(830\) −28.9022 19.0093i −1.00321 0.659821i
\(831\) 0 0
\(832\) −17.5857 + 23.6217i −0.609673 + 0.818934i
\(833\) 2.91804 + 50.1008i 0.101104 + 1.73589i
\(834\) 0 0
\(835\) 11.2099 11.8818i 0.387936 0.411188i
\(836\) −2.97035 + 5.14479i −0.102732 + 0.177936i
\(837\) 0 0
\(838\) −14.9786 25.9438i −0.517429 0.896213i
\(839\) 38.5546 + 9.13760i 1.33105 + 0.315465i 0.833764 0.552121i \(-0.186181\pi\)
0.497288 + 0.867586i \(0.334329\pi\)
\(840\) 0 0
\(841\) −7.47404 3.75360i −0.257725 0.129435i
\(842\) 31.2489 + 3.65247i 1.07691 + 0.125873i
\(843\) 0 0
\(844\) 12.9759 6.51672i 0.446647 0.224315i
\(845\) 3.39243 1.23475i 0.116703 0.0424765i
\(846\) 0 0
\(847\) 1.73692 + 0.632185i 0.0596811 + 0.0217221i
\(848\) −21.3523 + 2.49573i −0.733242 + 0.0857036i
\(849\) 0 0
\(850\) −11.6794 + 39.0120i −0.400601 + 1.33810i
\(851\) −2.63351 + 8.79654i −0.0902756 + 0.301542i
\(852\) 0 0
\(853\) −3.42041 + 0.399789i −0.117113 + 0.0136885i −0.174447 0.984667i \(-0.555814\pi\)
0.0573346 + 0.998355i \(0.481740\pi\)
\(854\) 3.50722 + 1.27652i 0.120015 + 0.0436817i
\(855\) 0 0
\(856\) −0.118950 + 0.0432941i −0.00406561 + 0.00147976i
\(857\) 19.7908 9.93930i 0.676040 0.339520i −0.0774344 0.996997i \(-0.524673\pi\)
0.753474 + 0.657477i \(0.228377\pi\)
\(858\) 0 0
\(859\) −35.3818 4.13554i −1.20721 0.141103i −0.511409 0.859337i \(-0.670876\pi\)
−0.695801 + 0.718235i \(0.744950\pi\)
\(860\) 9.01976 + 4.52989i 0.307571 + 0.154468i
\(861\) 0 0
\(862\) −2.54939 0.604217i −0.0868327 0.0205797i
\(863\) −10.4873 18.1645i −0.356992 0.618328i 0.630465 0.776218i \(-0.282864\pi\)
−0.987457 + 0.157890i \(0.949531\pi\)
\(864\) 0 0
\(865\) 12.4466 21.5581i 0.423196 0.732998i
\(866\) −24.2931 + 25.7492i −0.825513 + 0.874993i
\(867\) 0 0
\(868\) 0.604553 + 10.3798i 0.0205199 + 0.352313i
\(869\) 20.6074 27.6806i 0.699059 0.938999i
\(870\) 0 0
\(871\) 21.8645 + 14.3805i 0.740849 + 0.487264i
\(872\) −0.115431 + 0.654639i −0.00390897 + 0.0221689i
\(873\) 0 0
\(874\) −0.581978 3.30056i −0.0196857 0.111643i
\(875\) 1.56653 3.63162i 0.0529583 0.122771i
\(876\) 0 0
\(877\) 41.0756 9.73510i 1.38702 0.328731i 0.531748 0.846903i \(-0.321535\pi\)
0.855277 + 0.518172i \(0.173387\pi\)
\(878\) −30.0969 31.9009i −1.01572 1.07660i
\(879\) 0 0
\(880\) −23.7585 31.9131i −0.800897 1.07579i
\(881\) 29.2913 24.5783i 0.986848 0.828064i 0.00173943 0.999998i \(-0.499446\pi\)
0.985108 + 0.171935i \(0.0550019\pi\)
\(882\) 0 0
\(883\) −22.0694 18.5184i −0.742693 0.623194i 0.190866 0.981616i \(-0.438870\pi\)
−0.933560 + 0.358422i \(0.883315\pi\)
\(884\) −3.12946 + 53.7307i −0.105255 + 1.80716i
\(885\) 0 0
\(886\) −7.31347 16.9545i −0.245701 0.569599i
\(887\) −11.4615 + 7.53832i −0.384838 + 0.253112i −0.727156 0.686472i \(-0.759158\pi\)
0.342318 + 0.939584i \(0.388788\pi\)
\(888\) 0 0
\(889\) 1.74881 + 5.84144i 0.0586532 + 0.195915i
\(890\) 25.7403 0.862816
\(891\) 0 0
\(892\) −37.3995 −1.25223
\(893\) 2.57571 + 8.60349i 0.0861930 + 0.287905i
\(894\) 0 0
\(895\) 2.98097 1.96061i 0.0996428 0.0655361i
\(896\) 0.304678 + 0.706324i 0.0101786 + 0.0235966i
\(897\) 0 0
\(898\) 1.45860 25.0432i 0.0486742 0.835704i
\(899\) 28.4852 + 23.9019i 0.950035 + 0.797174i
\(900\) 0 0
\(901\) −32.4972 + 27.2684i −1.08264 + 0.908441i
\(902\) −40.8329 54.8482i −1.35959 1.82624i
\(903\) 0 0
\(904\) −1.33341 1.41334i −0.0443487 0.0470069i
\(905\) 10.0109 2.37262i 0.332772 0.0788685i
\(906\) 0 0
\(907\) 22.4724 52.0969i 0.746184 1.72985i 0.0648290 0.997896i \(-0.479350\pi\)
0.681355 0.731953i \(-0.261391\pi\)
\(908\) 0.221375 + 1.25548i 0.00734659 + 0.0416646i
\(909\) 0 0
\(910\) −2.02924 + 11.5084i −0.0672687 + 0.381500i
\(911\) −0.596300 0.392193i −0.0197563 0.0129939i 0.539592 0.841926i \(-0.318578\pi\)
−0.559349 + 0.828932i \(0.688949\pi\)
\(912\) 0 0
\(913\) 13.8390 18.5889i 0.458003 0.615204i
\(914\) 2.19510 + 37.6885i 0.0726076 + 1.24662i
\(915\) 0 0
\(916\) 7.12309 7.55004i 0.235354 0.249460i
\(917\) −1.67892 + 2.90797i −0.0554428 + 0.0960297i
\(918\) 0 0
\(919\) 28.6606 + 49.6416i 0.945425 + 1.63752i 0.754898 + 0.655842i \(0.227686\pi\)
0.190527 + 0.981682i \(0.438980\pi\)
\(920\) −0.921785 0.218467i −0.0303903 0.00720264i
\(921\) 0 0
\(922\) −74.1363 37.2326i −2.44155 1.22619i
\(923\) −23.0512 2.69429i −0.758738 0.0886837i
\(924\) 0 0
\(925\) −10.0502 + 5.04739i −0.330448 + 0.165957i
\(926\) 7.83677 2.85235i 0.257532 0.0937341i
\(927\) 0 0
\(928\) 34.4289 + 12.5311i 1.13018 + 0.411353i
\(929\) 14.8620 1.73711i 0.487605 0.0569928i 0.131261 0.991348i \(-0.458097\pi\)
0.356344 + 0.934355i \(0.384023\pi\)
\(930\) 0 0
\(931\) 1.45086 4.84621i 0.0475501 0.158828i
\(932\) 7.84139 26.1921i 0.256853 0.857949i
\(933\) 0 0
\(934\) −50.6981 + 5.92575i −1.65889 + 0.193897i
\(935\) −73.7759 26.8522i −2.41273 0.878162i
\(936\) 0 0
\(937\) 23.1819 8.43751i 0.757319 0.275641i 0.0656366 0.997844i \(-0.479092\pi\)
0.691682 + 0.722202i \(0.256870\pi\)
\(938\) 8.44116 4.23931i 0.275614 0.138418i
\(939\) 0 0
\(940\) 67.2084 + 7.85554i 2.19210 + 0.256219i
\(941\) 20.7862 + 10.4392i 0.677612 + 0.340310i 0.754099 0.656761i \(-0.228074\pi\)
−0.0764865 + 0.997071i \(0.524370\pi\)
\(942\) 0 0
\(943\) 19.1270 + 4.53318i 0.622860 + 0.147621i
\(944\) −2.90384 5.02959i −0.0945119 0.163699i
\(945\) 0 0
\(946\) −6.63491 + 11.4920i −0.215720 + 0.373637i
\(947\) −13.1603 + 13.9491i −0.427653 + 0.453286i −0.904989 0.425435i \(-0.860121\pi\)
0.477336 + 0.878721i \(0.341603\pi\)
\(948\) 0 0
\(949\) −0.113829 1.95437i −0.00369505 0.0634415i
\(950\) 2.45126 3.29261i 0.0795293 0.106826i
\(951\) 0 0
\(952\) 0.608900 + 0.400480i 0.0197346 + 0.0129796i
\(953\) −5.37991 + 30.5110i −0.174272 + 0.988348i 0.764708 + 0.644377i \(0.222883\pi\)
−0.938980 + 0.343971i \(0.888228\pi\)
\(954\) 0 0
\(955\) −3.50420 19.8733i −0.113393 0.643085i
\(956\) 7.48812 17.3594i 0.242183 0.561444i
\(957\) 0 0
\(958\) 40.8753 9.68762i 1.32062 0.312993i
\(959\) 6.38898 + 6.77192i 0.206311 + 0.218677i
\(960\) 0 0
\(961\) 21.4999 + 28.8794i 0.693545 + 0.931593i
\(962\) −22.3457 + 18.7503i −0.720456 + 0.604534i
\(963\) 0 0
\(964\) −22.6834 19.0336i −0.730583 0.613032i
\(965\) 1.54952 26.6043i 0.0498809 0.856422i
\(966\) 0 0
\(967\) 7.86525 + 18.2337i 0.252929 + 0.586356i 0.996618 0.0821696i \(-0.0261849\pi\)
−0.743689 + 0.668526i \(0.766926\pi\)
\(968\) −0.397700 + 0.261571i −0.0127826 + 0.00840722i
\(969\) 0 0
\(970\) 16.8609 + 56.3193i 0.541370 + 1.80830i
\(971\) 3.39436 0.108930 0.0544651 0.998516i \(-0.482655\pi\)
0.0544651 + 0.998516i \(0.482655\pi\)
\(972\) 0 0
\(973\) −9.79039 −0.313865
\(974\) 3.82286 + 12.7693i 0.122492 + 0.409153i
\(975\) 0 0
\(976\) 9.69536 6.37674i 0.310341 0.204115i
\(977\) 21.2170 + 49.1866i 0.678793 + 1.57362i 0.812738 + 0.582630i \(0.197976\pi\)
−0.133945 + 0.990989i \(0.542765\pi\)
\(978\) 0 0
\(979\) −1.00265 + 17.2148i −0.0320447 + 0.550186i
\(980\) −29.1980 24.5000i −0.932694 0.782624i
\(981\) 0 0
\(982\) 56.5336 47.4373i 1.80406 1.51379i
\(983\) −16.6147 22.3174i −0.529925 0.711813i 0.453878 0.891064i \(-0.350040\pi\)
−0.983803 + 0.179250i \(0.942633\pi\)
\(984\) 0 0
\(985\) −9.37783 9.93992i −0.298802 0.316712i
\(986\) 67.6047 16.0226i 2.15297 0.510264i
\(987\) 0 0
\(988\) 2.14883 4.98155i 0.0683634 0.158484i
\(989\) −0.662412 3.75672i −0.0210635 0.119457i
\(990\) 0 0
\(991\) 2.53438 14.3732i 0.0805071 0.456579i −0.917729 0.397207i \(-0.869979\pi\)
0.998236 0.0593711i \(-0.0189095\pi\)
\(992\) 55.1582 + 36.2781i 1.75128 + 1.15183i
\(993\) 0 0
\(994\) −5.00234 + 6.71931i −0.158665 + 0.213123i
\(995\) −0.405170 6.95651i −0.0128448 0.220536i
\(996\) 0 0
\(997\) 1.67236 1.77260i 0.0529641 0.0561386i −0.700350 0.713800i \(-0.746973\pi\)
0.753314 + 0.657661i \(0.228454\pi\)
\(998\) −36.7468 + 63.6474i −1.16320 + 2.01472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.379.2 144
3.2 odd 2 729.2.g.c.379.7 144
9.2 odd 6 729.2.g.d.622.7 144
9.4 even 3 243.2.g.a.208.7 144
9.5 odd 6 81.2.g.a.16.2 144
9.7 even 3 729.2.g.a.622.2 144
81.5 odd 54 729.2.g.d.109.7 144
81.7 even 27 6561.2.a.d.1.59 72
81.22 even 27 243.2.g.a.118.7 144
81.32 odd 54 729.2.g.c.352.7 144
81.49 even 27 inner 729.2.g.b.352.2 144
81.59 odd 54 81.2.g.a.76.2 yes 144
81.74 odd 54 6561.2.a.c.1.14 72
81.76 even 27 729.2.g.a.109.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.2 144 9.5 odd 6
81.2.g.a.76.2 yes 144 81.59 odd 54
243.2.g.a.118.7 144 81.22 even 27
243.2.g.a.208.7 144 9.4 even 3
729.2.g.a.109.2 144 81.76 even 27
729.2.g.a.622.2 144 9.7 even 3
729.2.g.b.352.2 144 81.49 even 27 inner
729.2.g.b.379.2 144 1.1 even 1 trivial
729.2.g.c.352.7 144 81.32 odd 54
729.2.g.c.379.7 144 3.2 odd 2
729.2.g.d.109.7 144 81.5 odd 54
729.2.g.d.622.7 144 9.2 odd 6
6561.2.a.c.1.14 72 81.74 odd 54
6561.2.a.d.1.59 72 81.7 even 27