Properties

Label 729.2.g.b.352.5
Level $729$
Weight $2$
Character 729.352
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 352.5
Character \(\chi\) \(=\) 729.352
Dual form 729.2.g.b.379.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0909953 - 0.303945i) q^{2} +(1.58687 + 1.04370i) q^{4} +(-0.840209 + 1.94782i) q^{5} +(0.147894 + 2.53924i) q^{7} +(0.947719 - 0.795231i) q^{8} +(0.515577 + 0.432621i) q^{10} +(1.82733 - 2.45453i) q^{11} +(-3.78737 + 4.01438i) q^{13} +(0.785249 + 0.186107i) q^{14} +(1.34911 + 3.12759i) q^{16} +(0.745021 - 4.22522i) q^{17} +(-0.0105922 - 0.0600713i) q^{19} +(-3.36625 + 2.21402i) q^{20} +(-0.579765 - 0.778760i) q^{22} +(-0.248909 + 4.27360i) q^{23} +(0.343143 + 0.363710i) q^{25} +(0.875520 + 1.51644i) q^{26} +(-2.41553 + 4.18381i) q^{28} +(-10.3910 + 2.46271i) q^{29} +(4.12278 - 2.07054i) q^{31} +(3.53097 - 0.412711i) q^{32} +(-1.21644 - 0.610921i) q^{34} +(-5.07026 - 1.84542i) q^{35} +(-3.30730 + 1.20376i) q^{37} +(-0.0192222 - 0.00224676i) q^{38} +(0.752687 + 2.51415i) q^{40} +(0.722754 + 2.41417i) q^{41} +(0.770554 + 0.0900648i) q^{43} +(5.46154 - 1.98784i) q^{44} +(1.27629 + 0.464532i) q^{46} +(4.06294 + 2.04049i) q^{47} +(0.526786 - 0.0615725i) q^{49} +(0.141773 - 0.0712008i) q^{50} +(-10.1999 + 2.41742i) q^{52} +(-0.986349 + 1.70841i) q^{53} +(3.24565 + 5.62164i) q^{55} +(2.15945 + 2.28888i) q^{56} +(-0.197001 + 3.38238i) q^{58} +(-4.30754 - 5.78603i) q^{59} +(9.75766 - 6.41771i) q^{61} +(-0.254177 - 1.44151i) q^{62} +(-0.987085 + 5.59804i) q^{64} +(-4.63712 - 10.7501i) q^{65} +(-1.18028 - 0.279730i) q^{67} +(5.59213 - 5.92731i) q^{68} +(-1.02228 + 1.37316i) q^{70} +(10.9300 + 9.17137i) q^{71} +(7.44218 - 6.24473i) q^{73} +(0.0649282 + 1.11477i) q^{74} +(0.0458881 - 0.106381i) q^{76} +(6.50290 + 4.27703i) q^{77} +(-0.462085 + 1.54347i) q^{79} -7.22552 q^{80} +0.799542 q^{82} +(0.947094 - 3.16351i) q^{83} +(7.60402 + 5.00124i) q^{85} +(0.0974916 - 0.226011i) q^{86} +(-0.220122 - 3.77936i) q^{88} +(10.7606 - 9.02919i) q^{89} +(-10.7536 - 9.02336i) q^{91} +(-4.85535 + 6.52187i) q^{92} +(0.989905 - 1.04924i) q^{94} +(0.125908 + 0.0298407i) q^{95} +(2.78173 + 6.44878i) q^{97} +(0.0292204 - 0.165717i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{16}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0909953 0.303945i 0.0643434 0.214922i −0.919772 0.392454i \(-0.871626\pi\)
0.984115 + 0.177532i \(0.0568114\pi\)
\(3\) 0 0
\(4\) 1.58687 + 1.04370i 0.793436 + 0.521851i
\(5\) −0.840209 + 1.94782i −0.375753 + 0.871093i 0.620468 + 0.784232i \(0.286943\pi\)
−0.996220 + 0.0868610i \(0.972316\pi\)
\(6\) 0 0
\(7\) 0.147894 + 2.53924i 0.0558987 + 0.959744i 0.903359 + 0.428885i \(0.141093\pi\)
−0.847460 + 0.530859i \(0.821870\pi\)
\(8\) 0.947719 0.795231i 0.335069 0.281157i
\(9\) 0 0
\(10\) 0.515577 + 0.432621i 0.163040 + 0.136807i
\(11\) 1.82733 2.45453i 0.550961 0.740069i −0.436191 0.899854i \(-0.643673\pi\)
0.987152 + 0.159785i \(0.0510802\pi\)
\(12\) 0 0
\(13\) −3.78737 + 4.01438i −1.05043 + 1.11339i −0.0570649 + 0.998370i \(0.518174\pi\)
−0.993363 + 0.115018i \(0.963307\pi\)
\(14\) 0.785249 + 0.186107i 0.209867 + 0.0497393i
\(15\) 0 0
\(16\) 1.34911 + 3.12759i 0.337277 + 0.781897i
\(17\) 0.745021 4.22522i 0.180694 1.02477i −0.750670 0.660678i \(-0.770269\pi\)
0.931364 0.364090i \(-0.118620\pi\)
\(18\) 0 0
\(19\) −0.0105922 0.0600713i −0.00243002 0.0137813i 0.983569 0.180535i \(-0.0577828\pi\)
−0.985999 + 0.166753i \(0.946672\pi\)
\(20\) −3.36625 + 2.21402i −0.752717 + 0.495070i
\(21\) 0 0
\(22\) −0.579765 0.778760i −0.123606 0.166032i
\(23\) −0.248909 + 4.27360i −0.0519010 + 0.891107i 0.867415 + 0.497586i \(0.165780\pi\)
−0.919316 + 0.393521i \(0.871257\pi\)
\(24\) 0 0
\(25\) 0.343143 + 0.363710i 0.0686286 + 0.0727421i
\(26\) 0.875520 + 1.51644i 0.171704 + 0.297399i
\(27\) 0 0
\(28\) −2.41553 + 4.18381i −0.456491 + 0.790666i
\(29\) −10.3910 + 2.46271i −1.92956 + 0.457313i −0.934780 + 0.355227i \(0.884404\pi\)
−0.994776 + 0.102086i \(0.967448\pi\)
\(30\) 0 0
\(31\) 4.12278 2.07054i 0.740473 0.371880i −0.0382327 0.999269i \(-0.512173\pi\)
0.778706 + 0.627389i \(0.215877\pi\)
\(32\) 3.53097 0.412711i 0.624193 0.0729577i
\(33\) 0 0
\(34\) −1.21644 0.610921i −0.208618 0.104772i
\(35\) −5.07026 1.84542i −0.857030 0.311933i
\(36\) 0 0
\(37\) −3.30730 + 1.20376i −0.543716 + 0.197896i −0.599252 0.800560i \(-0.704535\pi\)
0.0555362 + 0.998457i \(0.482313\pi\)
\(38\) −0.0192222 0.00224676i −0.00311826 0.000364472i
\(39\) 0 0
\(40\) 0.752687 + 2.51415i 0.119010 + 0.397522i
\(41\) 0.722754 + 2.41417i 0.112875 + 0.377030i 0.995696 0.0926807i \(-0.0295436\pi\)
−0.882821 + 0.469710i \(0.844358\pi\)
\(42\) 0 0
\(43\) 0.770554 + 0.0900648i 0.117508 + 0.0137348i 0.174644 0.984632i \(-0.444123\pi\)
−0.0571354 + 0.998366i \(0.518197\pi\)
\(44\) 5.46154 1.98784i 0.823359 0.299678i
\(45\) 0 0
\(46\) 1.27629 + 0.464532i 0.188179 + 0.0684915i
\(47\) 4.06294 + 2.04049i 0.592641 + 0.297635i 0.719728 0.694256i \(-0.244267\pi\)
−0.127087 + 0.991892i \(0.540563\pi\)
\(48\) 0 0
\(49\) 0.526786 0.0615725i 0.0752551 0.00879607i
\(50\) 0.141773 0.0712008i 0.0200497 0.0100693i
\(51\) 0 0
\(52\) −10.1999 + 2.41742i −1.41447 + 0.335236i
\(53\) −0.986349 + 1.70841i −0.135485 + 0.234668i −0.925783 0.378056i \(-0.876593\pi\)
0.790297 + 0.612724i \(0.209926\pi\)
\(54\) 0 0
\(55\) 3.24565 + 5.62164i 0.437644 + 0.758021i
\(56\) 2.15945 + 2.28888i 0.288568 + 0.305864i
\(57\) 0 0
\(58\) −0.197001 + 3.38238i −0.0258676 + 0.444129i
\(59\) −4.30754 5.78603i −0.560794 0.753277i 0.427801 0.903873i \(-0.359288\pi\)
−0.988595 + 0.150596i \(0.951881\pi\)
\(60\) 0 0
\(61\) 9.75766 6.41771i 1.24934 0.821704i 0.259758 0.965674i \(-0.416357\pi\)
0.989582 + 0.143970i \(0.0459869\pi\)
\(62\) −0.254177 1.44151i −0.0322805 0.183072i
\(63\) 0 0
\(64\) −0.987085 + 5.59804i −0.123386 + 0.699755i
\(65\) −4.63712 10.7501i −0.575164 1.33338i
\(66\) 0 0
\(67\) −1.18028 0.279730i −0.144194 0.0341745i 0.157885 0.987457i \(-0.449532\pi\)
−0.302079 + 0.953283i \(0.597681\pi\)
\(68\) 5.59213 5.92731i 0.678145 0.718792i
\(69\) 0 0
\(70\) −1.02228 + 1.37316i −0.122186 + 0.164124i
\(71\) 10.9300 + 9.17137i 1.29715 + 1.08844i 0.990629 + 0.136579i \(0.0436107\pi\)
0.306525 + 0.951863i \(0.400834\pi\)
\(72\) 0 0
\(73\) 7.44218 6.24473i 0.871042 0.730891i −0.0932755 0.995640i \(-0.529734\pi\)
0.964317 + 0.264750i \(0.0852893\pi\)
\(74\) 0.0649282 + 1.11477i 0.00754775 + 0.129590i
\(75\) 0 0
\(76\) 0.0458881 0.106381i 0.00526373 0.0122027i
\(77\) 6.50290 + 4.27703i 0.741075 + 0.487412i
\(78\) 0 0
\(79\) −0.462085 + 1.54347i −0.0519886 + 0.173654i −0.980041 0.198796i \(-0.936297\pi\)
0.928052 + 0.372450i \(0.121482\pi\)
\(80\) −7.22552 −0.807838
\(81\) 0 0
\(82\) 0.799542 0.0882947
\(83\) 0.947094 3.16351i 0.103957 0.347241i −0.890147 0.455674i \(-0.849398\pi\)
0.994104 + 0.108433i \(0.0345834\pi\)
\(84\) 0 0
\(85\) 7.60402 + 5.00124i 0.824771 + 0.542461i
\(86\) 0.0974916 0.226011i 0.0105128 0.0243714i
\(87\) 0 0
\(88\) −0.220122 3.77936i −0.0234651 0.402881i
\(89\) 10.7606 9.02919i 1.14062 0.957092i 0.141159 0.989987i \(-0.454917\pi\)
0.999459 + 0.0328946i \(0.0104726\pi\)
\(90\) 0 0
\(91\) −10.7536 9.02336i −1.12729 0.945905i
\(92\) −4.85535 + 6.52187i −0.506205 + 0.679952i
\(93\) 0 0
\(94\) 0.989905 1.04924i 0.102101 0.108221i
\(95\) 0.125908 + 0.0298407i 0.0129179 + 0.00306160i
\(96\) 0 0
\(97\) 2.78173 + 6.44878i 0.282442 + 0.654774i 0.999090 0.0426612i \(-0.0135836\pi\)
−0.716648 + 0.697436i \(0.754324\pi\)
\(98\) 0.0292204 0.165717i 0.00295170 0.0167399i
\(99\) 0 0
\(100\) 0.164919 + 0.935301i 0.0164919 + 0.0935301i
\(101\) 9.06820 5.96425i 0.902320 0.593465i −0.0113443 0.999936i \(-0.503611\pi\)
0.913664 + 0.406471i \(0.133241\pi\)
\(102\) 0 0
\(103\) −7.42672 9.97581i −0.731776 0.982946i −0.999809 0.0195364i \(-0.993781\pi\)
0.268033 0.963410i \(-0.413626\pi\)
\(104\) −0.397007 + 6.81634i −0.0389297 + 0.668397i
\(105\) 0 0
\(106\) 0.429509 + 0.455253i 0.0417176 + 0.0442181i
\(107\) 2.48915 + 4.31134i 0.240636 + 0.416793i 0.960896 0.276911i \(-0.0893108\pi\)
−0.720260 + 0.693704i \(0.755977\pi\)
\(108\) 0 0
\(109\) −0.180626 + 0.312853i −0.0173008 + 0.0299659i −0.874546 0.484942i \(-0.838841\pi\)
0.857245 + 0.514908i \(0.172174\pi\)
\(110\) 2.00401 0.474959i 0.191075 0.0452856i
\(111\) 0 0
\(112\) −7.74218 + 3.88827i −0.731567 + 0.367407i
\(113\) −19.6084 + 2.29190i −1.84461 + 0.215604i −0.965389 0.260815i \(-0.916009\pi\)
−0.879219 + 0.476419i \(0.841935\pi\)
\(114\) 0 0
\(115\) −8.11508 4.07554i −0.756735 0.380047i
\(116\) −19.0595 6.93709i −1.76963 0.644092i
\(117\) 0 0
\(118\) −2.15060 + 0.782756i −0.197979 + 0.0720585i
\(119\) 10.8391 + 1.26690i 0.993614 + 0.116137i
\(120\) 0 0
\(121\) 0.469250 + 1.56740i 0.0426591 + 0.142491i
\(122\) −1.06273 3.54978i −0.0962154 0.321382i
\(123\) 0 0
\(124\) 8.70335 + 1.01728i 0.781584 + 0.0913541i
\(125\) −10.9637 + 3.99045i −0.980620 + 0.356916i
\(126\) 0 0
\(127\) 13.5556 + 4.93382i 1.20286 + 0.437806i 0.864222 0.503111i \(-0.167811\pi\)
0.338639 + 0.940916i \(0.390033\pi\)
\(128\) 7.96541 + 4.00038i 0.704050 + 0.353587i
\(129\) 0 0
\(130\) −3.68939 + 0.431227i −0.323581 + 0.0378211i
\(131\) −2.72986 + 1.37099i −0.238509 + 0.119784i −0.564040 0.825748i \(-0.690753\pi\)
0.325530 + 0.945532i \(0.394457\pi\)
\(132\) 0 0
\(133\) 0.150969 0.0357803i 0.0130907 0.00310255i
\(134\) −0.192422 + 0.333285i −0.0166228 + 0.0287915i
\(135\) 0 0
\(136\) −2.65396 4.59679i −0.227575 0.394171i
\(137\) 1.78765 + 1.89480i 0.152729 + 0.161883i 0.799221 0.601038i \(-0.205246\pi\)
−0.646492 + 0.762921i \(0.723764\pi\)
\(138\) 0 0
\(139\) 1.10383 18.9519i 0.0936252 1.60748i −0.545318 0.838229i \(-0.683591\pi\)
0.638943 0.769254i \(-0.279372\pi\)
\(140\) −6.11978 8.22030i −0.517216 0.694742i
\(141\) 0 0
\(142\) 3.78218 2.48758i 0.317393 0.208753i
\(143\) 2.93264 + 16.6318i 0.245240 + 1.39082i
\(144\) 0 0
\(145\) 3.93367 22.3090i 0.326674 1.85266i
\(146\) −1.22085 2.83026i −0.101039 0.234234i
\(147\) 0 0
\(148\) −6.50462 1.54162i −0.534677 0.126721i
\(149\) 2.81196 2.98051i 0.230365 0.244173i −0.601872 0.798592i \(-0.705578\pi\)
0.832237 + 0.554420i \(0.187060\pi\)
\(150\) 0 0
\(151\) 5.93650 7.97411i 0.483106 0.648923i −0.492018 0.870585i \(-0.663741\pi\)
0.975124 + 0.221662i \(0.0711480\pi\)
\(152\) −0.0578090 0.0485075i −0.00468893 0.00393448i
\(153\) 0 0
\(154\) 1.89172 1.58734i 0.152439 0.127911i
\(155\) 0.569045 + 9.77013i 0.0457068 + 0.784756i
\(156\) 0 0
\(157\) 4.57455 10.6050i 0.365089 0.846371i −0.632339 0.774692i \(-0.717905\pi\)
0.997428 0.0716789i \(-0.0228357\pi\)
\(158\) 0.427084 + 0.280897i 0.0339770 + 0.0223470i
\(159\) 0 0
\(160\) −2.16286 + 7.22446i −0.170989 + 0.571144i
\(161\) −10.8885 −0.858135
\(162\) 0 0
\(163\) −14.1333 −1.10700 −0.553502 0.832848i \(-0.686709\pi\)
−0.553502 + 0.832848i \(0.686709\pi\)
\(164\) −1.37275 + 4.58532i −0.107194 + 0.358053i
\(165\) 0 0
\(166\) −0.875354 0.575730i −0.0679407 0.0446853i
\(167\) 2.65513 6.15528i 0.205460 0.476310i −0.784064 0.620681i \(-0.786856\pi\)
0.989524 + 0.144370i \(0.0461157\pi\)
\(168\) 0 0
\(169\) −1.01518 17.4299i −0.0780905 1.34076i
\(170\) 2.21203 1.85612i 0.169655 0.142358i
\(171\) 0 0
\(172\) 1.12877 + 0.947150i 0.0860679 + 0.0722195i
\(173\) 8.83125 11.8624i 0.671427 0.901884i −0.327651 0.944799i \(-0.606257\pi\)
0.999079 + 0.0429151i \(0.0136645\pi\)
\(174\) 0 0
\(175\) −0.872800 + 0.925114i −0.0659775 + 0.0699321i
\(176\) 10.1420 + 2.40370i 0.764484 + 0.181186i
\(177\) 0 0
\(178\) −1.76522 4.09224i −0.132309 0.306726i
\(179\) 0.110050 0.624125i 0.00822552 0.0466493i −0.980419 0.196924i \(-0.936905\pi\)
0.988644 + 0.150275i \(0.0480159\pi\)
\(180\) 0 0
\(181\) −2.42311 13.7421i −0.180108 1.02145i −0.932081 0.362251i \(-0.882008\pi\)
0.751972 0.659195i \(-0.229103\pi\)
\(182\) −3.72114 + 2.44743i −0.275829 + 0.181416i
\(183\) 0 0
\(184\) 3.16260 + 4.24811i 0.233150 + 0.313175i
\(185\) 0.434113 7.45344i 0.0319166 0.547988i
\(186\) 0 0
\(187\) −9.00954 9.54956i −0.658843 0.698333i
\(188\) 4.31771 + 7.47849i 0.314901 + 0.545425i
\(189\) 0 0
\(190\) 0.0205270 0.0355538i 0.00148918 0.00257934i
\(191\) −8.26432 + 1.95868i −0.597985 + 0.141725i −0.518451 0.855107i \(-0.673491\pi\)
−0.0795338 + 0.996832i \(0.525343\pi\)
\(192\) 0 0
\(193\) 11.8416 5.94705i 0.852374 0.428078i 0.0317154 0.999497i \(-0.489903\pi\)
0.820659 + 0.571419i \(0.193607\pi\)
\(194\) 2.21320 0.258686i 0.158899 0.0185726i
\(195\) 0 0
\(196\) 0.900206 + 0.452100i 0.0643004 + 0.0322929i
\(197\) −7.09307 2.58167i −0.505360 0.183936i 0.0767431 0.997051i \(-0.475548\pi\)
−0.582103 + 0.813115i \(0.697770\pi\)
\(198\) 0 0
\(199\) 1.98595 0.722827i 0.140780 0.0512399i −0.270669 0.962672i \(-0.587245\pi\)
0.411449 + 0.911433i \(0.365023\pi\)
\(200\) 0.614437 + 0.0718174i 0.0434473 + 0.00507826i
\(201\) 0 0
\(202\) −0.987643 3.29896i −0.0694903 0.232114i
\(203\) −7.79017 26.0210i −0.546763 1.82632i
\(204\) 0 0
\(205\) −5.30964 0.620607i −0.370841 0.0433451i
\(206\) −3.70790 + 1.34957i −0.258342 + 0.0940287i
\(207\) 0 0
\(208\) −17.6649 6.42950i −1.22484 0.445805i
\(209\) −0.166802 0.0837713i −0.0115380 0.00579458i
\(210\) 0 0
\(211\) −0.652038 + 0.0762123i −0.0448882 + 0.00524667i −0.138507 0.990361i \(-0.544230\pi\)
0.0936192 + 0.995608i \(0.470156\pi\)
\(212\) −3.34828 + 1.68157i −0.229961 + 0.115491i
\(213\) 0 0
\(214\) 1.53691 0.364255i 0.105061 0.0249000i
\(215\) −0.822857 + 1.42523i −0.0561184 + 0.0971998i
\(216\) 0 0
\(217\) 5.86733 + 10.1625i 0.398301 + 0.689877i
\(218\) 0.0786542 + 0.0833686i 0.00532714 + 0.00564643i
\(219\) 0 0
\(220\) −0.716878 + 12.3083i −0.0483319 + 0.829827i
\(221\) 14.1400 + 18.9933i 0.951158 + 1.27763i
\(222\) 0 0
\(223\) −18.8077 + 12.3700i −1.25945 + 0.828356i −0.990860 0.134897i \(-0.956930\pi\)
−0.268595 + 0.963253i \(0.586559\pi\)
\(224\) 1.57018 + 8.90495i 0.104912 + 0.594987i
\(225\) 0 0
\(226\) −1.08766 + 6.16845i −0.0723503 + 0.410319i
\(227\) 5.31087 + 12.3120i 0.352495 + 0.817175i 0.998547 + 0.0538820i \(0.0171595\pi\)
−0.646052 + 0.763293i \(0.723581\pi\)
\(228\) 0 0
\(229\) 6.05564 + 1.43521i 0.400168 + 0.0948415i 0.425772 0.904831i \(-0.360003\pi\)
−0.0256038 + 0.999672i \(0.508151\pi\)
\(230\) −1.97718 + 2.09569i −0.130371 + 0.138185i
\(231\) 0 0
\(232\) −7.88931 + 10.5972i −0.517958 + 0.695739i
\(233\) 9.49107 + 7.96396i 0.621781 + 0.521736i 0.898363 0.439254i \(-0.144757\pi\)
−0.276582 + 0.960990i \(0.589202\pi\)
\(234\) 0 0
\(235\) −7.38822 + 6.19946i −0.481955 + 0.404408i
\(236\) −0.796623 13.6775i −0.0518557 0.890329i
\(237\) 0 0
\(238\) 1.37137 3.17920i 0.0888929 0.206077i
\(239\) −8.21456 5.40280i −0.531356 0.349478i 0.255308 0.966860i \(-0.417823\pi\)
−0.786664 + 0.617382i \(0.788193\pi\)
\(240\) 0 0
\(241\) 4.97235 16.6088i 0.320297 1.06987i −0.634577 0.772859i \(-0.718826\pi\)
0.954875 0.297009i \(-0.0959890\pi\)
\(242\) 0.519105 0.0333693
\(243\) 0 0
\(244\) 22.1823 1.42008
\(245\) −0.322678 + 1.07782i −0.0206151 + 0.0688594i
\(246\) 0 0
\(247\) 0.281266 + 0.184991i 0.0178965 + 0.0117707i
\(248\) 2.26068 5.24085i 0.143553 0.332794i
\(249\) 0 0
\(250\) 0.215237 + 3.69547i 0.0136128 + 0.233722i
\(251\) 19.1764 16.0909i 1.21040 1.01565i 0.211132 0.977458i \(-0.432285\pi\)
0.999270 0.0381908i \(-0.0121595\pi\)
\(252\) 0 0
\(253\) 10.0348 + 8.42023i 0.630885 + 0.529375i
\(254\) 2.73310 3.67120i 0.171490 0.230351i
\(255\) 0 0
\(256\) −5.86103 + 6.21233i −0.366314 + 0.388270i
\(257\) −2.34548 0.555890i −0.146307 0.0346755i 0.156810 0.987629i \(-0.449879\pi\)
−0.303117 + 0.952953i \(0.598027\pi\)
\(258\) 0 0
\(259\) −3.54576 8.22000i −0.220323 0.510766i
\(260\) 3.86134 21.8987i 0.239470 1.35810i
\(261\) 0 0
\(262\) 0.168301 + 0.954483i 0.0103977 + 0.0589682i
\(263\) −3.27743 + 2.15560i −0.202095 + 0.132920i −0.646523 0.762895i \(-0.723777\pi\)
0.444428 + 0.895815i \(0.353407\pi\)
\(264\) 0 0
\(265\) −2.49894 3.35665i −0.153508 0.206198i
\(266\) 0.00286221 0.0491422i 0.000175493 0.00301310i
\(267\) 0 0
\(268\) −1.58099 1.67575i −0.0965745 0.102363i
\(269\) 5.54513 + 9.60445i 0.338093 + 0.585594i 0.984074 0.177760i \(-0.0568849\pi\)
−0.645981 + 0.763353i \(0.723552\pi\)
\(270\) 0 0
\(271\) −0.397309 + 0.688159i −0.0241348 + 0.0418027i −0.877841 0.478953i \(-0.841016\pi\)
0.853706 + 0.520756i \(0.174350\pi\)
\(272\) 14.2199 3.37017i 0.862206 0.204347i
\(273\) 0 0
\(274\) 0.738582 0.370930i 0.0446194 0.0224087i
\(275\) 1.51977 0.177636i 0.0916458 0.0107119i
\(276\) 0 0
\(277\) 26.0832 + 13.0995i 1.56719 + 0.787070i 0.999349 0.0360708i \(-0.0114842\pi\)
0.567837 + 0.823141i \(0.307780\pi\)
\(278\) −5.65991 2.06004i −0.339459 0.123553i
\(279\) 0 0
\(280\) −6.27272 + 2.28308i −0.374867 + 0.136440i
\(281\) −27.4024 3.20288i −1.63469 0.191068i −0.751384 0.659865i \(-0.770613\pi\)
−0.883306 + 0.468798i \(0.844687\pi\)
\(282\) 0 0
\(283\) 1.46517 + 4.89400i 0.0870951 + 0.290918i 0.990430 0.138019i \(-0.0440735\pi\)
−0.903334 + 0.428937i \(0.858888\pi\)
\(284\) 7.77236 + 25.9615i 0.461205 + 1.54053i
\(285\) 0 0
\(286\) 5.32202 + 0.622055i 0.314698 + 0.0367829i
\(287\) −6.02327 + 2.19229i −0.355542 + 0.129407i
\(288\) 0 0
\(289\) −1.32268 0.481415i −0.0778046 0.0283185i
\(290\) −6.42277 3.22563i −0.377158 0.189416i
\(291\) 0 0
\(292\) 18.3274 2.14217i 1.07253 0.125361i
\(293\) 2.09418 1.05174i 0.122344 0.0614432i −0.386575 0.922258i \(-0.626342\pi\)
0.508918 + 0.860815i \(0.330046\pi\)
\(294\) 0 0
\(295\) 14.8894 3.52885i 0.866895 0.205458i
\(296\) −2.17712 + 3.77089i −0.126543 + 0.219178i
\(297\) 0 0
\(298\) −0.650036 1.12590i −0.0376556 0.0652214i
\(299\) −16.2131 17.1849i −0.937630 0.993829i
\(300\) 0 0
\(301\) −0.114736 + 1.96994i −0.00661328 + 0.113546i
\(302\) −1.88350 2.52998i −0.108383 0.145584i
\(303\) 0 0
\(304\) 0.173588 0.114171i 0.00995597 0.00654814i
\(305\) 4.30210 + 24.3984i 0.246337 + 1.39705i
\(306\) 0 0
\(307\) −2.80743 + 15.9217i −0.160228 + 0.908700i 0.793620 + 0.608413i \(0.208194\pi\)
−0.953849 + 0.300287i \(0.902918\pi\)
\(308\) 5.85534 + 13.5742i 0.333639 + 0.773462i
\(309\) 0 0
\(310\) 3.02137 + 0.716077i 0.171602 + 0.0406705i
\(311\) −14.5476 + 15.4196i −0.824919 + 0.874363i −0.993790 0.111276i \(-0.964506\pi\)
0.168871 + 0.985638i \(0.445988\pi\)
\(312\) 0 0
\(313\) −3.23147 + 4.34062i −0.182654 + 0.245346i −0.884014 0.467461i \(-0.845169\pi\)
0.701360 + 0.712807i \(0.252576\pi\)
\(314\) −2.80708 2.35542i −0.158413 0.132924i
\(315\) 0 0
\(316\) −2.34420 + 1.96701i −0.131871 + 0.110653i
\(317\) 0.507449 + 8.71256i 0.0285012 + 0.489346i 0.982111 + 0.188302i \(0.0602983\pi\)
−0.953610 + 0.301045i \(0.902665\pi\)
\(318\) 0 0
\(319\) −12.9430 + 30.0052i −0.724667 + 1.67997i
\(320\) −10.0746 6.62619i −0.563189 0.370415i
\(321\) 0 0
\(322\) −0.990803 + 3.30951i −0.0552153 + 0.184432i
\(323\) −0.261706 −0.0145617
\(324\) 0 0
\(325\) −2.75968 −0.153080
\(326\) −1.28606 + 4.29574i −0.0712283 + 0.237919i
\(327\) 0 0
\(328\) 2.60479 + 1.71320i 0.143825 + 0.0945954i
\(329\) −4.58040 + 10.6186i −0.252526 + 0.585421i
\(330\) 0 0
\(331\) 1.14258 + 19.6173i 0.0628019 + 1.07827i 0.871612 + 0.490196i \(0.163075\pi\)
−0.808810 + 0.588070i \(0.799888\pi\)
\(332\) 4.80468 4.03161i 0.263691 0.221263i
\(333\) 0 0
\(334\) −1.62927 1.36712i −0.0891495 0.0748053i
\(335\) 1.53654 2.06394i 0.0839504 0.112765i
\(336\) 0 0
\(337\) 5.04080 5.34293i 0.274590 0.291048i −0.575373 0.817891i \(-0.695143\pi\)
0.849962 + 0.526843i \(0.176625\pi\)
\(338\) −5.39012 1.27748i −0.293184 0.0694858i
\(339\) 0 0
\(340\) 6.84680 + 15.8727i 0.371320 + 0.860816i
\(341\) 2.45148 13.9030i 0.132755 0.752892i
\(342\) 0 0
\(343\) 3.32603 + 18.8629i 0.179589 + 1.01850i
\(344\) 0.801891 0.527412i 0.0432351 0.0284361i
\(345\) 0 0
\(346\) −2.80193 3.76364i −0.150633 0.202335i
\(347\) 1.05931 18.1877i 0.0568668 0.976365i −0.842369 0.538901i \(-0.818840\pi\)
0.899236 0.437464i \(-0.144123\pi\)
\(348\) 0 0
\(349\) 11.0555 + 11.7182i 0.591788 + 0.627258i 0.952178 0.305543i \(-0.0988380\pi\)
−0.360390 + 0.932802i \(0.617357\pi\)
\(350\) 0.201764 + 0.349465i 0.0107847 + 0.0186797i
\(351\) 0 0
\(352\) 5.43923 9.42103i 0.289912 0.502142i
\(353\) 16.7207 3.96288i 0.889953 0.210923i 0.239887 0.970801i \(-0.422890\pi\)
0.650066 + 0.759878i \(0.274741\pi\)
\(354\) 0 0
\(355\) −27.0477 + 13.5839i −1.43554 + 0.720957i
\(356\) 26.4994 3.09734i 1.40447 0.164159i
\(357\) 0 0
\(358\) −0.179686 0.0902416i −0.00949669 0.00476942i
\(359\) −26.7193 9.72505i −1.41019 0.513268i −0.479007 0.877811i \(-0.659003\pi\)
−0.931187 + 0.364543i \(0.881225\pi\)
\(360\) 0 0
\(361\) 17.8507 6.49711i 0.939509 0.341953i
\(362\) −4.39735 0.513977i −0.231120 0.0270140i
\(363\) 0 0
\(364\) −7.64692 25.5425i −0.400808 1.33879i
\(365\) 5.91065 + 19.7429i 0.309377 + 1.03339i
\(366\) 0 0
\(367\) −10.3069 1.20471i −0.538017 0.0628851i −0.157254 0.987558i \(-0.550264\pi\)
−0.380762 + 0.924673i \(0.624338\pi\)
\(368\) −13.7018 + 4.98706i −0.714258 + 0.259969i
\(369\) 0 0
\(370\) −2.22594 0.810174i −0.115721 0.0421190i
\(371\) −4.48394 2.25192i −0.232794 0.116914i
\(372\) 0 0
\(373\) −14.7918 + 1.72891i −0.765890 + 0.0895198i −0.490063 0.871687i \(-0.663026\pi\)
−0.275828 + 0.961207i \(0.588952\pi\)
\(374\) −3.72237 + 1.86944i −0.192479 + 0.0966667i
\(375\) 0 0
\(376\) 5.47318 1.29717i 0.282258 0.0668963i
\(377\) 29.4683 51.0405i 1.51769 2.62872i
\(378\) 0 0
\(379\) −5.81217 10.0670i −0.298551 0.517106i 0.677253 0.735750i \(-0.263170\pi\)
−0.975805 + 0.218644i \(0.929837\pi\)
\(380\) 0.168655 + 0.178764i 0.00865182 + 0.00917040i
\(381\) 0 0
\(382\) −0.156682 + 2.69013i −0.00801657 + 0.137639i
\(383\) 17.0286 + 22.8733i 0.870119 + 1.16877i 0.984508 + 0.175337i \(0.0561015\pi\)
−0.114389 + 0.993436i \(0.536491\pi\)
\(384\) 0 0
\(385\) −13.7947 + 9.07291i −0.703042 + 0.462398i
\(386\) −0.730054 4.14034i −0.0371588 0.210738i
\(387\) 0 0
\(388\) −2.31635 + 13.1367i −0.117595 + 0.666915i
\(389\) −1.21611 2.81926i −0.0616592 0.142942i 0.884601 0.466349i \(-0.154431\pi\)
−0.946260 + 0.323407i \(0.895172\pi\)
\(390\) 0 0
\(391\) 17.8715 + 4.23561i 0.903798 + 0.214204i
\(392\) 0.450281 0.477270i 0.0227426 0.0241058i
\(393\) 0 0
\(394\) −1.43012 + 1.92099i −0.0720485 + 0.0967779i
\(395\) −2.61816 2.19690i −0.131734 0.110538i
\(396\) 0 0
\(397\) −8.05095 + 6.75555i −0.404065 + 0.339051i −0.822063 0.569397i \(-0.807177\pi\)
0.417997 + 0.908448i \(0.362732\pi\)
\(398\) −0.0389878 0.669395i −0.00195428 0.0335537i
\(399\) 0 0
\(400\) −0.674598 + 1.56389i −0.0337299 + 0.0781947i
\(401\) 22.1390 + 14.5610i 1.10557 + 0.727143i 0.964822 0.262903i \(-0.0846799\pi\)
0.140745 + 0.990046i \(0.455050\pi\)
\(402\) 0 0
\(403\) −7.30258 + 24.3923i −0.363767 + 1.21507i
\(404\) 20.6150 1.02563
\(405\) 0 0
\(406\) −8.61783 −0.427696
\(407\) −3.08886 + 10.3175i −0.153109 + 0.511421i
\(408\) 0 0
\(409\) −22.0172 14.4809i −1.08868 0.716036i −0.127466 0.991843i \(-0.540684\pi\)
−0.961213 + 0.275807i \(0.911055\pi\)
\(410\) −0.671783 + 1.55737i −0.0331770 + 0.0769129i
\(411\) 0 0
\(412\) −1.37347 23.5816i −0.0676662 1.16178i
\(413\) 14.0551 11.7936i 0.691605 0.580326i
\(414\) 0 0
\(415\) 5.36621 + 4.50278i 0.263417 + 0.221033i
\(416\) −11.7163 + 15.7377i −0.574439 + 0.771606i
\(417\) 0 0
\(418\) −0.0406401 + 0.0430760i −0.00198777 + 0.00210692i
\(419\) −7.62045 1.80608i −0.372284 0.0882328i 0.0402151 0.999191i \(-0.487196\pi\)
−0.412499 + 0.910958i \(0.635344\pi\)
\(420\) 0 0
\(421\) −12.6159 29.2469i −0.614860 1.42541i −0.886373 0.462971i \(-0.846783\pi\)
0.271513 0.962435i \(-0.412476\pi\)
\(422\) −0.0361680 + 0.205119i −0.00176063 + 0.00998504i
\(423\) 0 0
\(424\) 0.423796 + 2.40347i 0.0205813 + 0.116723i
\(425\) 1.79241 1.17888i 0.0869445 0.0571843i
\(426\) 0 0
\(427\) 17.7392 + 23.8279i 0.858461 + 1.15311i
\(428\) −0.549788 + 9.43949i −0.0265750 + 0.456275i
\(429\) 0 0
\(430\) 0.358316 + 0.379793i 0.0172795 + 0.0183152i
\(431\) −16.6567 28.8502i −0.802324 1.38967i −0.918083 0.396389i \(-0.870263\pi\)
0.115759 0.993277i \(-0.463070\pi\)
\(432\) 0 0
\(433\) 2.75793 4.77688i 0.132538 0.229562i −0.792116 0.610370i \(-0.791021\pi\)
0.924654 + 0.380808i \(0.124354\pi\)
\(434\) 3.62275 0.858608i 0.173898 0.0412145i
\(435\) 0 0
\(436\) −0.613156 + 0.307939i −0.0293649 + 0.0147476i
\(437\) 0.259357 0.0303145i 0.0124067 0.00145014i
\(438\) 0 0
\(439\) −2.95797 1.48555i −0.141176 0.0709013i 0.376809 0.926291i \(-0.377021\pi\)
−0.517985 + 0.855390i \(0.673318\pi\)
\(440\) 7.54647 + 2.74669i 0.359764 + 0.130943i
\(441\) 0 0
\(442\) 7.05960 2.56948i 0.335791 0.122218i
\(443\) 17.0697 + 1.99516i 0.811004 + 0.0947928i 0.511479 0.859296i \(-0.329098\pi\)
0.299525 + 0.954088i \(0.403172\pi\)
\(444\) 0 0
\(445\) 8.54614 + 28.5461i 0.405126 + 1.35321i
\(446\) 2.04840 + 6.84212i 0.0969944 + 0.323984i
\(447\) 0 0
\(448\) −14.3608 1.67853i −0.678482 0.0793032i
\(449\) −16.5392 + 6.01977i −0.780532 + 0.284090i −0.701394 0.712773i \(-0.747439\pi\)
−0.0791375 + 0.996864i \(0.525217\pi\)
\(450\) 0 0
\(451\) 7.24636 + 2.63746i 0.341218 + 0.124193i
\(452\) −33.5082 16.8284i −1.57609 0.791543i
\(453\) 0 0
\(454\) 4.22544 0.493883i 0.198310 0.0231791i
\(455\) 26.6112 13.3646i 1.24755 0.626544i
\(456\) 0 0
\(457\) 17.3927 4.12215i 0.813597 0.192826i 0.197304 0.980342i \(-0.436782\pi\)
0.616294 + 0.787516i \(0.288633\pi\)
\(458\) 0.987261 1.70999i 0.0461317 0.0799024i
\(459\) 0 0
\(460\) −8.62394 14.9371i −0.402093 0.696446i
\(461\) −3.44987 3.65664i −0.160676 0.170307i 0.642034 0.766676i \(-0.278091\pi\)
−0.802710 + 0.596369i \(0.796609\pi\)
\(462\) 0 0
\(463\) −1.00039 + 17.1761i −0.0464922 + 0.798240i 0.891807 + 0.452416i \(0.149438\pi\)
−0.938299 + 0.345824i \(0.887599\pi\)
\(464\) −21.7209 29.1762i −1.00837 1.35447i
\(465\) 0 0
\(466\) 3.28425 2.16009i 0.152140 0.100064i
\(467\) 6.50441 + 36.8883i 0.300988 + 1.70699i 0.641812 + 0.766862i \(0.278183\pi\)
−0.340824 + 0.940127i \(0.610706\pi\)
\(468\) 0 0
\(469\) 0.535748 3.03838i 0.0247385 0.140299i
\(470\) 1.21200 + 2.80974i 0.0559055 + 0.129604i
\(471\) 0 0
\(472\) −8.68357 2.05804i −0.399694 0.0947292i
\(473\) 1.62912 1.72677i 0.0749072 0.0793970i
\(474\) 0 0
\(475\) 0.0182139 0.0244655i 0.000835712 0.00112256i
\(476\) 15.8779 + 13.3232i 0.727764 + 0.610666i
\(477\) 0 0
\(478\) −2.38964 + 2.00515i −0.109300 + 0.0917134i
\(479\) −0.199015 3.41695i −0.00909321 0.156124i −0.999798 0.0200954i \(-0.993603\pi\)
0.990705 0.136029i \(-0.0434340\pi\)
\(480\) 0 0
\(481\) 7.69362 17.8358i 0.350799 0.813244i
\(482\) −4.59571 3.02265i −0.209329 0.137678i
\(483\) 0 0
\(484\) −0.891264 + 2.97703i −0.0405120 + 0.135319i
\(485\) −14.8983 −0.676498
\(486\) 0 0
\(487\) −5.43342 −0.246212 −0.123106 0.992394i \(-0.539285\pi\)
−0.123106 + 0.992394i \(0.539285\pi\)
\(488\) 4.14396 13.8418i 0.187588 0.626588i
\(489\) 0 0
\(490\) 0.298236 + 0.196153i 0.0134729 + 0.00886129i
\(491\) −1.57397 + 3.64886i −0.0710321 + 0.164671i −0.950033 0.312149i \(-0.898951\pi\)
0.879001 + 0.476820i \(0.158211\pi\)
\(492\) 0 0
\(493\) 2.66399 + 45.7390i 0.119980 + 2.05998i
\(494\) 0.0818212 0.0686561i 0.00368131 0.00308898i
\(495\) 0 0
\(496\) 12.0379 + 10.1010i 0.540516 + 0.453547i
\(497\) −21.6719 + 29.1104i −0.972116 + 1.30578i
\(498\) 0 0
\(499\) 14.7243 15.6069i 0.659151 0.698659i −0.308423 0.951249i \(-0.599801\pi\)
0.967573 + 0.252591i \(0.0812826\pi\)
\(500\) −21.5628 5.11047i −0.964317 0.228547i
\(501\) 0 0
\(502\) −3.14579 7.29277i −0.140404 0.325492i
\(503\) −4.28340 + 24.2924i −0.190987 + 1.08314i 0.727031 + 0.686605i \(0.240900\pi\)
−0.918018 + 0.396538i \(0.870211\pi\)
\(504\) 0 0
\(505\) 3.99812 + 22.6745i 0.177914 + 1.00900i
\(506\) 3.47241 2.28384i 0.154368 0.101529i
\(507\) 0 0
\(508\) 16.3615 + 21.9773i 0.725924 + 0.975086i
\(509\) −0.427185 + 7.33448i −0.0189346 + 0.325095i 0.975519 + 0.219916i \(0.0705785\pi\)
−0.994453 + 0.105179i \(0.966459\pi\)
\(510\) 0 0
\(511\) 16.9576 + 17.9740i 0.750158 + 0.795121i
\(512\) 10.2684 + 17.7854i 0.453804 + 0.786011i
\(513\) 0 0
\(514\) −0.382388 + 0.662316i −0.0168664 + 0.0292135i
\(515\) 25.6711 6.08417i 1.13120 0.268100i
\(516\) 0 0
\(517\) 12.4328 6.24397i 0.546793 0.274610i
\(518\) −2.82108 + 0.329737i −0.123951 + 0.0144878i
\(519\) 0 0
\(520\) −12.9435 6.50045i −0.567608 0.285064i
\(521\) 25.5909 + 9.31432i 1.12116 + 0.408068i 0.835074 0.550137i \(-0.185425\pi\)
0.286082 + 0.958205i \(0.407647\pi\)
\(522\) 0 0
\(523\) −14.3006 + 5.20499i −0.625321 + 0.227598i −0.635193 0.772353i \(-0.719080\pi\)
0.00987267 + 0.999951i \(0.496857\pi\)
\(524\) −5.76285 0.673581i −0.251751 0.0294255i
\(525\) 0 0
\(526\) 0.356954 + 1.19231i 0.0155639 + 0.0519872i
\(527\) −5.67693 18.9623i −0.247291 0.826009i
\(528\) 0 0
\(529\) 4.64281 + 0.542667i 0.201861 + 0.0235942i
\(530\) −1.24763 + 0.454101i −0.0541936 + 0.0197249i
\(531\) 0 0
\(532\) 0.276913 + 0.100788i 0.0120057 + 0.00436972i
\(533\) −12.4287 6.24194i −0.538348 0.270368i
\(534\) 0 0
\(535\) −10.4891 + 1.22600i −0.453485 + 0.0530048i
\(536\) −1.34102 + 0.673486i −0.0579233 + 0.0290902i
\(537\) 0 0
\(538\) 3.42381 0.811458i 0.147611 0.0349844i
\(539\) 0.811481 1.40553i 0.0349530 0.0605403i
\(540\) 0 0
\(541\) −8.31159 14.3961i −0.357343 0.618937i 0.630173 0.776455i \(-0.282984\pi\)
−0.987516 + 0.157518i \(0.949651\pi\)
\(542\) 0.173009 + 0.183379i 0.00743139 + 0.00787682i
\(543\) 0 0
\(544\) 0.886848 15.2266i 0.0380233 0.652835i
\(545\) −0.457619 0.614690i −0.0196023 0.0263304i
\(546\) 0 0
\(547\) −9.42672 + 6.20005i −0.403057 + 0.265095i −0.734812 0.678271i \(-0.762730\pi\)
0.331755 + 0.943366i \(0.392359\pi\)
\(548\) 0.859166 + 4.87257i 0.0367018 + 0.208146i
\(549\) 0 0
\(550\) 0.0843006 0.478093i 0.00359459 0.0203859i
\(551\) 0.258001 + 0.598114i 0.0109912 + 0.0254805i
\(552\) 0 0
\(553\) −3.98759 0.945076i −0.169570 0.0401887i
\(554\) 6.35497 6.73587i 0.269997 0.286180i
\(555\) 0 0
\(556\) 21.5318 28.9223i 0.913153 1.22658i
\(557\) −22.3339 18.7404i −0.946318 0.794055i 0.0323557 0.999476i \(-0.489699\pi\)
−0.978674 + 0.205421i \(0.934144\pi\)
\(558\) 0 0
\(559\) −3.27993 + 2.75219i −0.138726 + 0.116405i
\(560\) −1.06861 18.3474i −0.0451571 0.775317i
\(561\) 0 0
\(562\) −3.46699 + 8.03739i −0.146246 + 0.339037i
\(563\) −17.9346 11.7958i −0.755853 0.497133i 0.112150 0.993691i \(-0.464226\pi\)
−0.868003 + 0.496559i \(0.834597\pi\)
\(564\) 0 0
\(565\) 12.0110 40.1195i 0.505306 1.68784i
\(566\) 1.62083 0.0681286
\(567\) 0 0
\(568\) 17.6519 0.740659
\(569\) −0.768966 + 2.56852i −0.0322367 + 0.107678i −0.972594 0.232511i \(-0.925306\pi\)
0.940357 + 0.340189i \(0.110491\pi\)
\(570\) 0 0
\(571\) 2.37346 + 1.56105i 0.0993261 + 0.0653278i 0.598200 0.801347i \(-0.295883\pi\)
−0.498874 + 0.866674i \(0.666253\pi\)
\(572\) −12.7050 + 29.4534i −0.531221 + 1.23151i
\(573\) 0 0
\(574\) 0.118248 + 2.03023i 0.00493556 + 0.0847403i
\(575\) −1.63976 + 1.37592i −0.0683828 + 0.0573800i
\(576\) 0 0
\(577\) 4.53692 + 3.80692i 0.188874 + 0.158484i 0.732322 0.680959i \(-0.238437\pi\)
−0.543447 + 0.839443i \(0.682881\pi\)
\(578\) −0.266681 + 0.358215i −0.0110925 + 0.0148998i
\(579\) 0 0
\(580\) 29.5262 31.2959i 1.22601 1.29949i
\(581\) 8.17300 + 1.93704i 0.339073 + 0.0803618i
\(582\) 0 0
\(583\) 2.39095 + 5.54285i 0.0990231 + 0.229561i
\(584\) 2.08710 11.8365i 0.0863646 0.489798i
\(585\) 0 0
\(586\) −0.129110 0.732221i −0.00533350 0.0302478i
\(587\) −9.41411 + 6.19176i −0.388562 + 0.255561i −0.728727 0.684805i \(-0.759888\pi\)
0.340165 + 0.940366i \(0.389517\pi\)
\(588\) 0 0
\(589\) −0.168049 0.225729i −0.00692435 0.00930101i
\(590\) 0.282287 4.84668i 0.0116216 0.199535i
\(591\) 0 0
\(592\) −8.22676 8.71985i −0.338118 0.358384i
\(593\) −4.74627 8.22078i −0.194906 0.337587i 0.751964 0.659205i \(-0.229107\pi\)
−0.946870 + 0.321617i \(0.895774\pi\)
\(594\) 0 0
\(595\) −11.5748 + 20.0481i −0.474519 + 0.821892i
\(596\) 7.57299 1.79483i 0.310202 0.0735191i
\(597\) 0 0
\(598\) −6.69860 + 3.36416i −0.273926 + 0.137571i
\(599\) 24.7821 2.89661i 1.01257 0.118352i 0.406405 0.913693i \(-0.366782\pi\)
0.606163 + 0.795341i \(0.292708\pi\)
\(600\) 0 0
\(601\) −10.2652 5.15539i −0.418728 0.210293i 0.226945 0.973908i \(-0.427126\pi\)
−0.645672 + 0.763615i \(0.723423\pi\)
\(602\) 0.588315 + 0.214129i 0.0239779 + 0.00872725i
\(603\) 0 0
\(604\) 17.7431 6.45795i 0.721955 0.262770i
\(605\) −3.44729 0.402931i −0.140152 0.0163815i
\(606\) 0 0
\(607\) −11.4303 38.1799i −0.463942 1.54967i −0.795328 0.606180i \(-0.792701\pi\)
0.331386 0.943495i \(-0.392484\pi\)
\(608\) −0.0621928 0.207738i −0.00252225 0.00842490i
\(609\) 0 0
\(610\) 7.80726 + 0.912537i 0.316107 + 0.0369476i
\(611\) −23.5792 + 8.58211i −0.953911 + 0.347195i
\(612\) 0 0
\(613\) −16.9065 6.15347i −0.682848 0.248536i −0.0227782 0.999741i \(-0.507251\pi\)
−0.660070 + 0.751204i \(0.729473\pi\)
\(614\) 4.58387 + 2.30211i 0.184990 + 0.0929054i
\(615\) 0 0
\(616\) 9.56415 1.11789i 0.385351 0.0450410i
\(617\) −16.3959 + 8.23431i −0.660072 + 0.331501i −0.747106 0.664704i \(-0.768557\pi\)
0.0870339 + 0.996205i \(0.472261\pi\)
\(618\) 0 0
\(619\) −43.7258 + 10.3632i −1.75749 + 0.416532i −0.977784 0.209617i \(-0.932778\pi\)
−0.779703 + 0.626149i \(0.784630\pi\)
\(620\) −9.29411 + 16.0979i −0.373260 + 0.646506i
\(621\) 0 0
\(622\) 3.36294 + 5.82478i 0.134842 + 0.233553i
\(623\) 24.5187 + 25.9883i 0.982322 + 1.04120i
\(624\) 0 0
\(625\) 1.29371 22.2122i 0.0517484 0.888487i
\(626\) 1.02526 + 1.37717i 0.0409778 + 0.0550427i
\(627\) 0 0
\(628\) 18.3277 12.0543i 0.731354 0.481019i
\(629\) 2.62214 + 14.8709i 0.104552 + 0.592941i
\(630\) 0 0
\(631\) 5.90645 33.4972i 0.235132 1.33350i −0.607203 0.794547i \(-0.707708\pi\)
0.842335 0.538954i \(-0.181180\pi\)
\(632\) 0.789489 + 1.83024i 0.0314042 + 0.0728031i
\(633\) 0 0
\(634\) 2.69432 + 0.638565i 0.107005 + 0.0253607i
\(635\) −20.9997 + 22.2584i −0.833348 + 0.883297i
\(636\) 0 0
\(637\) −1.74796 + 2.34792i −0.0692567 + 0.0930279i
\(638\) 7.94218 + 6.66428i 0.314434 + 0.263841i
\(639\) 0 0
\(640\) −14.4847 + 12.1541i −0.572556 + 0.480432i
\(641\) −0.0182934 0.314085i −0.000722545 0.0124056i 0.997928 0.0643465i \(-0.0204963\pi\)
−0.998650 + 0.0519409i \(0.983459\pi\)
\(642\) 0 0
\(643\) −13.1236 + 30.4240i −0.517546 + 1.19981i 0.436380 + 0.899762i \(0.356260\pi\)
−0.953926 + 0.300043i \(0.902999\pi\)
\(644\) −17.2787 11.3644i −0.680876 0.447819i
\(645\) 0 0
\(646\) −0.0238140 + 0.0795444i −0.000936950 + 0.00312963i
\(647\) −14.0510 −0.552403 −0.276201 0.961100i \(-0.589076\pi\)
−0.276201 + 0.961100i \(0.589076\pi\)
\(648\) 0 0
\(649\) −22.0733 −0.866453
\(650\) −0.251118 + 0.838793i −0.00984966 + 0.0329002i
\(651\) 0 0
\(652\) −22.4277 14.7509i −0.878337 0.577691i
\(653\) 17.7892 41.2399i 0.696144 1.61384i −0.0901041 0.995932i \(-0.528720\pi\)
0.786248 0.617911i \(-0.212021\pi\)
\(654\) 0 0
\(655\) −0.376789 6.46921i −0.0147223 0.252773i
\(656\) −6.57544 + 5.51745i −0.256728 + 0.215420i
\(657\) 0 0
\(658\) 2.81067 + 2.35843i 0.109571 + 0.0919413i
\(659\) 20.0167 26.8871i 0.779741 1.04737i −0.217709 0.976014i \(-0.569858\pi\)
0.997451 0.0713607i \(-0.0227341\pi\)
\(660\) 0 0
\(661\) −11.1359 + 11.8033i −0.433134 + 0.459096i −0.906770 0.421625i \(-0.861460\pi\)
0.473636 + 0.880721i \(0.342941\pi\)
\(662\) 6.06657 + 1.43780i 0.235784 + 0.0558818i
\(663\) 0 0
\(664\) −1.61814 3.75128i −0.0627962 0.145578i
\(665\) −0.0571518 + 0.324124i −0.00221625 + 0.0125690i
\(666\) 0 0
\(667\) −7.93821 45.0198i −0.307369 1.74317i
\(668\) 10.6376 6.99649i 0.411583 0.270702i
\(669\) 0 0
\(670\) −0.487506 0.654834i −0.0188340 0.0252985i
\(671\) 2.07799 35.6778i 0.0802200 1.37732i
\(672\) 0 0
\(673\) −1.34992 1.43083i −0.0520355 0.0551545i 0.700833 0.713325i \(-0.252812\pi\)
−0.752868 + 0.658171i \(0.771330\pi\)
\(674\) −1.16527 2.01831i −0.0448846 0.0777424i
\(675\) 0 0
\(676\) 16.5807 28.7186i 0.637719 1.10456i
\(677\) −19.9663 + 4.73209i −0.767366 + 0.181869i −0.595613 0.803271i \(-0.703091\pi\)
−0.171752 + 0.985140i \(0.554943\pi\)
\(678\) 0 0
\(679\) −15.9636 + 8.01723i −0.612627 + 0.307673i
\(680\) 11.1836 1.30718i 0.428872 0.0501279i
\(681\) 0 0
\(682\) −4.00270 2.01023i −0.153271 0.0769756i
\(683\) −20.1405 7.33055i −0.770656 0.280496i −0.0733852 0.997304i \(-0.523380\pi\)
−0.697271 + 0.716808i \(0.745602\pi\)
\(684\) 0 0
\(685\) −5.19273 + 1.89000i −0.198404 + 0.0722131i
\(686\) 6.03593 + 0.705500i 0.230453 + 0.0269361i
\(687\) 0 0
\(688\) 0.757876 + 2.53148i 0.0288937 + 0.0965118i
\(689\) −3.12252 10.4300i −0.118959 0.397350i
\(690\) 0 0
\(691\) −27.5730 3.22282i −1.04893 0.122602i −0.425875 0.904782i \(-0.640034\pi\)
−0.623052 + 0.782180i \(0.714108\pi\)
\(692\) 26.3949 9.60696i 1.00338 0.365202i
\(693\) 0 0
\(694\) −5.43167 1.97696i −0.206183 0.0750446i
\(695\) 35.9876 + 18.0737i 1.36509 + 0.685573i
\(696\) 0 0
\(697\) 10.7389 1.25519i 0.406763 0.0475438i
\(698\) 4.56768 2.29397i 0.172889 0.0868282i
\(699\) 0 0
\(700\) −2.35057 + 0.557095i −0.0888431 + 0.0210562i
\(701\) 0.354873 0.614659i 0.0134034 0.0232153i −0.859246 0.511563i \(-0.829067\pi\)
0.872649 + 0.488347i \(0.162400\pi\)
\(702\) 0 0
\(703\) 0.107343 + 0.185923i 0.00404851 + 0.00701223i
\(704\) 11.9368 + 12.6523i 0.449886 + 0.476852i
\(705\) 0 0
\(706\) 0.317006 5.44278i 0.0119307 0.204842i
\(707\) 16.4858 + 22.1443i 0.620013 + 0.832822i
\(708\) 0 0
\(709\) 16.8691 11.0950i 0.633533 0.416681i −0.191716 0.981450i \(-0.561405\pi\)
0.825249 + 0.564769i \(0.191035\pi\)
\(710\) 1.66754 + 9.45710i 0.0625817 + 0.354919i
\(711\) 0 0
\(712\) 3.01771 17.1143i 0.113093 0.641385i
\(713\) 7.82245 + 18.1345i 0.292953 + 0.679141i
\(714\) 0 0
\(715\) −34.8599 8.26195i −1.30369 0.308979i
\(716\) 0.826036 0.875547i 0.0308704 0.0327207i
\(717\) 0 0
\(718\) −5.38722 + 7.23629i −0.201049 + 0.270056i
\(719\) −12.8502 10.7826i −0.479231 0.402123i 0.370917 0.928666i \(-0.379043\pi\)
−0.850148 + 0.526543i \(0.823488\pi\)
\(720\) 0 0
\(721\) 24.2326 20.3336i 0.902471 0.757263i
\(722\) −0.350441 6.01683i −0.0130421 0.223923i
\(723\) 0 0
\(724\) 10.4975 24.3360i 0.390138 0.904442i
\(725\) −4.46130 2.93424i −0.165689 0.108975i
\(726\) 0 0
\(727\) 6.36767 21.2695i 0.236164 0.788842i −0.754945 0.655788i \(-0.772337\pi\)
0.991109 0.133054i \(-0.0424783\pi\)
\(728\) −17.3671 −0.643666
\(729\) 0 0
\(730\) 6.53862 0.242005
\(731\) 0.954622 3.18866i 0.0353080 0.117937i
\(732\) 0 0
\(733\) −3.25396 2.14016i −0.120188 0.0790488i 0.487992 0.872848i \(-0.337730\pi\)
−0.608180 + 0.793799i \(0.708100\pi\)
\(734\) −1.30405 + 3.02312i −0.0481332 + 0.111585i
\(735\) 0 0
\(736\) 0.884871 + 15.1927i 0.0326168 + 0.560009i
\(737\) −2.84336 + 2.38586i −0.104737 + 0.0878844i
\(738\) 0 0
\(739\) −15.2233 12.7738i −0.559997 0.469894i 0.318312 0.947986i \(-0.396884\pi\)
−0.878310 + 0.478092i \(0.841328\pi\)
\(740\) 8.46805 11.3746i 0.311292 0.418138i
\(741\) 0 0
\(742\) −1.09248 + 1.15796i −0.0401061 + 0.0425100i
\(743\) −6.05085 1.43408i −0.221984 0.0526112i 0.118119 0.992999i \(-0.462314\pi\)
−0.340103 + 0.940388i \(0.610462\pi\)
\(744\) 0 0
\(745\) 3.44286 + 7.98145i 0.126137 + 0.292418i
\(746\) −0.820489 + 4.65322i −0.0300402 + 0.170367i
\(747\) 0 0
\(748\) −4.33010 24.5572i −0.158324 0.897901i
\(749\) −10.5794 + 6.95819i −0.386563 + 0.254247i
\(750\) 0 0
\(751\) −9.62286 12.9257i −0.351143 0.471667i 0.591099 0.806599i \(-0.298694\pi\)
−0.942242 + 0.334932i \(0.891287\pi\)
\(752\) −0.900444 + 15.4600i −0.0328358 + 0.563769i
\(753\) 0 0
\(754\) −12.8321 13.6012i −0.467316 0.495326i
\(755\) 10.5442 + 18.2632i 0.383744 + 0.664665i
\(756\) 0 0
\(757\) 17.7618 30.7643i 0.645563 1.11815i −0.338608 0.940928i \(-0.609956\pi\)
0.984171 0.177221i \(-0.0567106\pi\)
\(758\) −3.58869 + 0.850536i −0.130347 + 0.0308929i
\(759\) 0 0
\(760\) 0.143056 0.0718453i 0.00518917 0.00260610i
\(761\) −20.2160 + 2.36292i −0.732831 + 0.0856556i −0.474320 0.880353i \(-0.657306\pi\)
−0.258511 + 0.966008i \(0.583232\pi\)
\(762\) 0 0
\(763\) −0.821124 0.412384i −0.0297267 0.0149293i
\(764\) −15.1587 5.51732i −0.548423 0.199610i
\(765\) 0 0
\(766\) 8.50177 3.09439i 0.307181 0.111805i
\(767\) 39.5416 + 4.62175i 1.42776 + 0.166882i
\(768\) 0 0
\(769\) 5.34047 + 17.8384i 0.192582 + 0.643270i 0.998674 + 0.0514792i \(0.0163936\pi\)
−0.806092 + 0.591791i \(0.798421\pi\)
\(770\) 1.50242 + 5.01843i 0.0541434 + 0.180852i
\(771\) 0 0
\(772\) 24.9980 + 2.92185i 0.899698 + 0.105160i
\(773\) −3.69733 + 1.34572i −0.132984 + 0.0484021i −0.407655 0.913136i \(-0.633653\pi\)
0.274671 + 0.961538i \(0.411431\pi\)
\(774\) 0 0
\(775\) 2.16778 + 0.789007i 0.0778689 + 0.0283420i
\(776\) 7.76457 + 3.89951i 0.278732 + 0.139984i
\(777\) 0 0
\(778\) −0.967561 + 0.113092i −0.0346888 + 0.00405453i
\(779\) 0.137367 0.0689881i 0.00492167 0.00247176i
\(780\) 0 0
\(781\) 42.4842 10.0689i 1.52020 0.360295i
\(782\) 2.91361 5.04653i 0.104191 0.180463i
\(783\) 0 0
\(784\) 0.903265 + 1.56450i 0.0322595 + 0.0558750i
\(785\) 16.8131 + 17.8208i 0.600085 + 0.636052i
\(786\) 0 0
\(787\) −0.428922 + 7.36431i −0.0152894 + 0.262509i 0.981997 + 0.188895i \(0.0604905\pi\)
−0.997287 + 0.0736146i \(0.976547\pi\)
\(788\) −8.56131 11.4998i −0.304984 0.409664i
\(789\) 0 0
\(790\) −0.905978 + 0.595871i −0.0322333 + 0.0212001i
\(791\) −8.71966 49.4517i −0.310035 1.75830i
\(792\) 0 0
\(793\) −11.1927 + 63.4772i −0.397466 + 2.25414i
\(794\) 1.32072 + 3.06177i 0.0468706 + 0.108658i
\(795\) 0 0
\(796\) 3.90587 + 0.925708i 0.138440 + 0.0328108i
\(797\) 10.2575 10.8723i 0.363340 0.385118i −0.519752 0.854317i \(-0.673976\pi\)
0.883093 + 0.469199i \(0.155457\pi\)
\(798\) 0 0
\(799\) 11.6485 15.6466i 0.412094 0.553538i
\(800\) 1.36173 + 1.14263i 0.0481446 + 0.0403981i
\(801\) 0 0
\(802\) 6.44030 5.40405i 0.227415 0.190824i
\(803\) −1.72856 29.6783i −0.0609996 1.04732i
\(804\) 0 0
\(805\) 9.14863 21.2089i 0.322447 0.747516i
\(806\) 6.74943 + 4.43917i 0.237739 + 0.156363i
\(807\) 0 0
\(808\) 3.85115 12.8637i 0.135483 0.452545i
\(809\) 28.6228 1.00633 0.503163 0.864192i \(-0.332170\pi\)
0.503163 + 0.864192i \(0.332170\pi\)
\(810\) 0 0
\(811\) 15.2720 0.536273 0.268136 0.963381i \(-0.413592\pi\)
0.268136 + 0.963381i \(0.413592\pi\)
\(812\) 14.7962 49.4226i 0.519244 1.73439i
\(813\) 0 0
\(814\) 2.85489 + 1.87769i 0.100064 + 0.0658131i
\(815\) 11.8749 27.5291i 0.415960 0.964303i
\(816\) 0 0
\(817\) −0.00275154 0.0472422i −9.62643e−5 0.00165279i
\(818\) −6.40487 + 5.37433i −0.223941 + 0.187909i
\(819\) 0 0
\(820\) −7.77799 6.52651i −0.271619 0.227915i
\(821\) 1.85868 2.49663i 0.0648682 0.0871331i −0.768505 0.639844i \(-0.778999\pi\)
0.833373 + 0.552711i \(0.186406\pi\)
\(822\) 0 0
\(823\) −26.4373 + 28.0219i −0.921546 + 0.976781i −0.999797 0.0201524i \(-0.993585\pi\)
0.0782513 + 0.996934i \(0.475066\pi\)
\(824\) −14.9715 3.54831i −0.521558 0.123611i
\(825\) 0 0
\(826\) −2.30567 5.34514i −0.0802245 0.185981i
\(827\) 1.37656 7.80687i 0.0478677 0.271471i −0.951475 0.307727i \(-0.900432\pi\)
0.999343 + 0.0362552i \(0.0115429\pi\)
\(828\) 0 0
\(829\) 5.51283 + 31.2648i 0.191469 + 1.08587i 0.917359 + 0.398061i \(0.130317\pi\)
−0.725890 + 0.687811i \(0.758572\pi\)
\(830\) 1.85690 1.22130i 0.0644540 0.0423920i
\(831\) 0 0
\(832\) −18.7342 25.1644i −0.649492 0.872419i
\(833\) 0.132309 2.27166i 0.00458424 0.0787084i
\(834\) 0 0
\(835\) 9.75854 + 10.3435i 0.337708 + 0.357950i
\(836\) −0.177262 0.307026i −0.00613073 0.0106187i
\(837\) 0 0
\(838\) −1.24238 + 2.15186i −0.0429172 + 0.0743347i
\(839\) −44.0468 + 10.4393i −1.52067 + 0.360404i −0.904246 0.427013i \(-0.859566\pi\)
−0.616420 + 0.787417i \(0.711418\pi\)
\(840\) 0 0
\(841\) 75.9921 38.1647i 2.62042 1.31602i
\(842\) −10.0374 + 1.17321i −0.345913 + 0.0404314i
\(843\) 0 0
\(844\) −1.11424 0.559595i −0.0383539 0.0192620i
\(845\) 34.8033 + 12.6674i 1.19727 + 0.435771i
\(846\) 0 0
\(847\) −3.91062 + 1.42335i −0.134370 + 0.0489069i
\(848\) −6.67388 0.780065i −0.229182 0.0267875i
\(849\) 0 0
\(850\) −0.195216 0.652067i −0.00669585 0.0223657i
\(851\) −4.32116 14.4337i −0.148127 0.494780i
\(852\) 0 0
\(853\) −46.3159 5.41356i −1.58583 0.185357i −0.722997 0.690851i \(-0.757236\pi\)
−0.862830 + 0.505494i \(0.831310\pi\)
\(854\) 8.85657 3.22353i 0.303066 0.110307i
\(855\) 0 0
\(856\) 5.78753 + 2.10649i 0.197814 + 0.0719983i
\(857\) 6.10059 + 3.06383i 0.208392 + 0.104659i 0.549934 0.835208i \(-0.314653\pi\)
−0.341542 + 0.939867i \(0.610949\pi\)
\(858\) 0 0
\(859\) −10.9129 + 1.27554i −0.372344 + 0.0435207i −0.300207 0.953874i \(-0.597056\pi\)
−0.0721365 + 0.997395i \(0.522982\pi\)
\(860\) −2.79328 + 1.40284i −0.0952502 + 0.0478365i
\(861\) 0 0
\(862\) −10.2846 + 2.43749i −0.350294 + 0.0830212i
\(863\) −27.8142 + 48.1756i −0.946807 + 1.63992i −0.194715 + 0.980860i \(0.562378\pi\)
−0.752092 + 0.659058i \(0.770955\pi\)
\(864\) 0 0
\(865\) 15.6858 + 27.1686i 0.533334 + 0.923761i
\(866\) −1.20095 1.27293i −0.0408100 0.0432561i
\(867\) 0 0
\(868\) −1.29594 + 22.2504i −0.0439870 + 0.755227i
\(869\) 2.94412 + 3.95464i 0.0998723 + 0.134152i
\(870\) 0 0
\(871\) 5.59309 3.67863i 0.189515 0.124646i
\(872\) 0.0776079 + 0.440136i 0.00262814 + 0.0149049i
\(873\) 0 0
\(874\) 0.0143863 0.0815889i 0.000486625 0.00275979i
\(875\) −11.7542 27.2492i −0.397364 0.921193i
\(876\) 0 0
\(877\) 24.0085 + 5.69012i 0.810710 + 0.192142i 0.615007 0.788522i \(-0.289153\pi\)
0.195703 + 0.980663i \(0.437301\pi\)
\(878\) −0.720687 + 0.763883i −0.0243220 + 0.0257798i
\(879\) 0 0
\(880\) −13.2034 + 17.7353i −0.445087 + 0.597856i
\(881\) 13.2241 + 11.0964i 0.445532 + 0.373846i 0.837775 0.546016i \(-0.183856\pi\)
−0.392243 + 0.919862i \(0.628301\pi\)
\(882\) 0 0
\(883\) −24.0818 + 20.2071i −0.810419 + 0.680022i −0.950708 0.310089i \(-0.899641\pi\)
0.140289 + 0.990111i \(0.455197\pi\)
\(884\) 2.61500 + 44.8979i 0.0879521 + 1.51008i
\(885\) 0 0
\(886\) 2.15968 5.00670i 0.0725558 0.168203i
\(887\) 36.9492 + 24.3019i 1.24063 + 0.815977i 0.988427 0.151696i \(-0.0484735\pi\)
0.252206 + 0.967674i \(0.418844\pi\)
\(888\) 0 0
\(889\) −10.5234 + 35.1505i −0.352943 + 1.17891i
\(890\) 9.45412 0.316903
\(891\) 0 0
\(892\) −42.7560 −1.43158
\(893\) 0.0795392 0.265679i 0.00266168 0.00889062i
\(894\) 0 0
\(895\) 1.12322 + 0.738753i 0.0375451 + 0.0246938i
\(896\) −8.97990 + 20.8178i −0.299998 + 0.695472i
\(897\) 0 0
\(898\) 0.324694 + 5.57478i 0.0108352 + 0.186033i
\(899\) −37.7406 + 31.6681i −1.25872 + 1.05619i
\(900\) 0 0
\(901\) 6.48355 + 5.44034i 0.215998 + 0.181244i
\(902\) 1.46103 1.96250i 0.0486469 0.0653442i
\(903\) 0 0
\(904\) −16.7607 + 17.7653i −0.557453 + 0.590866i
\(905\) 28.8032 + 6.82648i 0.957450 + 0.226920i
\(906\) 0 0
\(907\) 5.85457 + 13.5724i 0.194398 + 0.450665i 0.987337 0.158636i \(-0.0507096\pi\)
−0.792939 + 0.609301i \(0.791450\pi\)
\(908\) −4.42237 + 25.0805i −0.146762 + 0.832327i
\(909\) 0 0
\(910\) −1.64063 9.30447i −0.0543863 0.308440i
\(911\) −32.3790 + 21.2960i −1.07276 + 0.705567i −0.957693 0.287790i \(-0.907079\pi\)
−0.115069 + 0.993357i \(0.536709\pi\)
\(912\) 0 0
\(913\) −6.03429 8.10546i −0.199706 0.268251i
\(914\) 0.329747 5.66154i 0.0109071 0.187267i
\(915\) 0 0
\(916\) 8.11159 + 8.59779i 0.268015 + 0.284079i
\(917\) −3.88500 6.72903i −0.128294 0.222212i
\(918\) 0 0
\(919\) −20.8939 + 36.1894i −0.689228 + 1.19378i 0.282860 + 0.959161i \(0.408717\pi\)
−0.972088 + 0.234616i \(0.924617\pi\)
\(920\) −10.9318 + 2.59089i −0.360411 + 0.0854190i
\(921\) 0 0
\(922\) −1.42534 + 0.715834i −0.0469412 + 0.0235747i
\(923\) −78.2134 + 9.14184i −2.57443 + 0.300907i
\(924\) 0 0
\(925\) −1.57269 0.789837i −0.0517099 0.0259697i
\(926\) 5.12956 + 1.86701i 0.168568 + 0.0613536i
\(927\) 0 0
\(928\) −35.6738 + 12.9842i −1.17105 + 0.426227i
\(929\) −26.4446 3.09093i −0.867619 0.101410i −0.329375 0.944199i \(-0.606838\pi\)
−0.538244 + 0.842789i \(0.680912\pi\)
\(930\) 0 0
\(931\) −0.00927856 0.0309925i −0.000304092 0.00101574i
\(932\) 6.74912 + 22.5436i 0.221075 + 0.738442i
\(933\) 0 0
\(934\) 11.8039 + 1.37968i 0.386236 + 0.0451445i
\(935\) 26.1707 9.52537i 0.855875 0.311513i
\(936\) 0 0
\(937\) 10.5874 + 3.85350i 0.345875 + 0.125888i 0.509116 0.860698i \(-0.329972\pi\)
−0.163241 + 0.986586i \(0.552195\pi\)
\(938\) −0.874751 0.439316i −0.0285616 0.0143442i
\(939\) 0 0
\(940\) −18.1946 + 2.12664i −0.593441 + 0.0693633i
\(941\) −15.8260 + 7.94813i −0.515914 + 0.259102i −0.687651 0.726041i \(-0.741358\pi\)
0.171737 + 0.985143i \(0.445062\pi\)
\(942\) 0 0
\(943\) −10.4971 + 2.48785i −0.341832 + 0.0810156i
\(944\) 12.2850 21.2782i 0.399842 0.692546i
\(945\) 0 0
\(946\) −0.376601 0.652293i −0.0122444 0.0212079i
\(947\) −40.7779 43.2221i −1.32510 1.40453i −0.852018 0.523513i \(-0.824621\pi\)
−0.473086 0.881016i \(-0.656860\pi\)
\(948\) 0 0
\(949\) −3.11759 + 53.5269i −0.101201 + 1.73756i
\(950\) −0.00577881 0.00776229i −0.000187489 0.000251842i
\(951\) 0 0
\(952\) 11.2799 7.41888i 0.365582 0.240447i
\(953\) −9.46496 53.6784i −0.306600 1.73881i −0.615876 0.787843i \(-0.711198\pi\)
0.309277 0.950972i \(-0.399913\pi\)
\(954\) 0 0
\(955\) 3.12859 17.7431i 0.101239 0.574155i
\(956\) −7.39654 17.1471i −0.239221 0.554577i
\(957\) 0 0
\(958\) −1.05668 0.250437i −0.0341396 0.00809124i
\(959\) −4.54696 + 4.81950i −0.146829 + 0.155630i
\(960\) 0 0
\(961\) −5.80173 + 7.79308i −0.187153 + 0.251390i
\(962\) −4.72103 3.96142i −0.152212 0.127721i
\(963\) 0 0
\(964\) 25.2252 21.1664i 0.812448 0.681725i
\(965\) 1.63443 + 28.0620i 0.0526141 + 0.903349i
\(966\) 0 0
\(967\) 11.2247 26.0218i 0.360962 0.836804i −0.636869 0.770972i \(-0.719771\pi\)
0.997831 0.0658319i \(-0.0209701\pi\)
\(968\) 1.69117 + 1.11230i 0.0543561 + 0.0357506i
\(969\) 0 0
\(970\) −1.35568 + 4.52828i −0.0435282 + 0.145394i
\(971\) 34.6038 1.11049 0.555244 0.831687i \(-0.312625\pi\)
0.555244 + 0.831687i \(0.312625\pi\)
\(972\) 0 0
\(973\) 48.2868 1.54801
\(974\) −0.494416 + 1.65146i −0.0158421 + 0.0529163i
\(975\) 0 0
\(976\) 33.2361 + 21.8597i 1.06386 + 0.699713i
\(977\) 5.25612 12.1851i 0.168158 0.389835i −0.813210 0.581970i \(-0.802282\pi\)
0.981368 + 0.192135i \(0.0615413\pi\)
\(978\) 0 0
\(979\) −2.49931 42.9115i −0.0798782 1.37146i
\(980\) −1.63697 + 1.37358i −0.0522912 + 0.0438775i
\(981\) 0 0
\(982\) 0.965832 + 0.810430i 0.0308209 + 0.0258618i
\(983\) −21.4988 + 28.8779i −0.685706 + 0.921063i −0.999597 0.0283960i \(-0.990960\pi\)
0.313891 + 0.949459i \(0.398367\pi\)
\(984\) 0 0
\(985\) 10.9883 11.6469i 0.350116 0.371101i
\(986\) 14.1446 + 3.35232i 0.450455 + 0.106760i
\(987\) 0 0
\(988\) 0.253257 + 0.587116i 0.00805718 + 0.0186786i
\(989\) −0.576698 + 3.27062i −0.0183379 + 0.104000i
\(990\) 0 0
\(991\) 9.06181 + 51.3921i 0.287858 + 1.63252i 0.694895 + 0.719111i \(0.255451\pi\)
−0.407037 + 0.913412i \(0.633438\pi\)
\(992\) 13.7029 9.01252i 0.435066 0.286148i
\(993\) 0 0
\(994\) 6.87592 + 9.23597i 0.218091 + 0.292947i
\(995\) −0.260674 + 4.47561i −0.00826394 + 0.141886i
\(996\) 0 0
\(997\) −12.3868 13.1292i −0.392293 0.415806i 0.500882 0.865516i \(-0.333009\pi\)
−0.893175 + 0.449709i \(0.851528\pi\)
\(998\) −3.40379 5.89554i −0.107745 0.186620i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.352.5 144
3.2 odd 2 729.2.g.c.352.4 144
9.2 odd 6 81.2.g.a.76.5 yes 144
9.4 even 3 729.2.g.a.109.5 144
9.5 odd 6 729.2.g.d.109.4 144
9.7 even 3 243.2.g.a.118.4 144
81.11 odd 54 81.2.g.a.16.5 144
81.16 even 27 729.2.g.a.622.5 144
81.23 odd 54 6561.2.a.c.1.42 72
81.38 odd 54 729.2.g.c.379.4 144
81.43 even 27 inner 729.2.g.b.379.5 144
81.58 even 27 6561.2.a.d.1.31 72
81.65 odd 54 729.2.g.d.622.4 144
81.70 even 27 243.2.g.a.208.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.5 144 81.11 odd 54
81.2.g.a.76.5 yes 144 9.2 odd 6
243.2.g.a.118.4 144 9.7 even 3
243.2.g.a.208.4 144 81.70 even 27
729.2.g.a.109.5 144 9.4 even 3
729.2.g.a.622.5 144 81.16 even 27
729.2.g.b.352.5 144 1.1 even 1 trivial
729.2.g.b.379.5 144 81.43 even 27 inner
729.2.g.c.352.4 144 3.2 odd 2
729.2.g.c.379.4 144 81.38 odd 54
729.2.g.d.109.4 144 9.5 odd 6
729.2.g.d.622.4 144 81.65 odd 54
6561.2.a.c.1.42 72 81.23 odd 54
6561.2.a.d.1.31 72 81.58 even 27