Properties

Label 729.2.g.b.352.4
Level $729$
Weight $2$
Character 729.352
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 352.4
Character \(\chi\) \(=\) 729.352
Dual form 729.2.g.b.379.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.189684 + 0.633587i) q^{2} +(1.30552 + 0.858656i) q^{4} +(0.995544 - 2.30793i) q^{5} +(-0.239094 - 4.10508i) q^{7} +(-1.80495 + 1.51453i) q^{8} +(1.27344 + 1.06854i) q^{10} +(-1.76794 + 2.37476i) q^{11} +(2.22560 - 2.35899i) q^{13} +(2.64628 + 0.627180i) q^{14} +(0.620599 + 1.43871i) q^{16} +(0.572741 - 3.24818i) q^{17} +(-0.571121 - 3.23899i) q^{19} +(3.28142 - 2.15823i) q^{20} +(-1.16927 - 1.57060i) q^{22} +(0.145137 - 2.49190i) q^{23} +(-0.904231 - 0.958429i) q^{25} +(1.07247 + 1.85757i) q^{26} +(3.21271 - 5.56458i) q^{28} +(-5.41695 + 1.28384i) q^{29} +(5.73952 - 2.88249i) q^{31} +(-5.70979 + 0.667379i) q^{32} +(1.94936 + 0.979008i) q^{34} +(-9.71228 - 3.53498i) q^{35} +(-2.56937 + 0.935175i) q^{37} +(2.16052 + 0.252528i) q^{38} +(1.69853 + 5.67349i) q^{40} +(-2.59515 - 8.66839i) q^{41} +(7.76471 + 0.907565i) q^{43} +(-4.34719 + 1.58225i) q^{44} +(1.55131 + 0.564629i) q^{46} +(9.04350 + 4.54182i) q^{47} +(-9.84186 + 1.15035i) q^{49} +(0.778766 - 0.391111i) q^{50} +(4.93113 - 1.16870i) q^{52} +(-0.00494432 + 0.00856381i) q^{53} +(3.72072 + 6.44448i) q^{55} +(6.64883 + 7.04735i) q^{56} +(0.214081 - 3.67563i) q^{58} +(6.79150 + 9.12257i) q^{59} +(-7.52933 + 4.95212i) q^{61} +(0.737619 + 4.18325i) q^{62} +(0.116049 - 0.658144i) q^{64} +(-3.22872 - 7.48500i) q^{65} +(5.68771 + 1.34801i) q^{67} +(3.53679 - 3.74878i) q^{68} +(4.08198 - 5.48305i) q^{70} +(1.81817 + 1.52563i) q^{71} +(3.61987 - 3.03743i) q^{73} +(-0.105147 - 1.80531i) q^{74} +(2.03557 - 4.71897i) q^{76} +(10.1713 + 6.68977i) q^{77} +(-2.58181 + 8.62383i) q^{79} +3.93828 q^{80} +5.98444 q^{82} +(-1.06156 + 3.54585i) q^{83} +(-6.92638 - 4.55555i) q^{85} +(-2.04786 + 4.74747i) q^{86} +(-0.405603 - 6.96394i) q^{88} +(9.57258 - 8.03235i) q^{89} +(-10.2160 - 8.57223i) q^{91} +(2.32916 - 3.12861i) q^{92} +(-4.59304 + 4.86834i) q^{94} +(-8.04395 - 1.90645i) q^{95} +(-2.83273 - 6.56702i) q^{97} +(1.13799 - 6.45388i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{16}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.189684 + 0.633587i −0.134127 + 0.448014i −0.998495 0.0548454i \(-0.982533\pi\)
0.864368 + 0.502859i \(0.167719\pi\)
\(3\) 0 0
\(4\) 1.30552 + 0.858656i 0.652761 + 0.429328i
\(5\) 0.995544 2.30793i 0.445221 1.03214i −0.536859 0.843672i \(-0.680389\pi\)
0.982080 0.188466i \(-0.0603516\pi\)
\(6\) 0 0
\(7\) −0.239094 4.10508i −0.0903689 1.55157i −0.673494 0.739193i \(-0.735207\pi\)
0.583125 0.812382i \(-0.301830\pi\)
\(8\) −1.80495 + 1.51453i −0.638146 + 0.535468i
\(9\) 0 0
\(10\) 1.27344 + 1.06854i 0.402696 + 0.337902i
\(11\) −1.76794 + 2.37476i −0.533055 + 0.716018i −0.984324 0.176371i \(-0.943564\pi\)
0.451268 + 0.892388i \(0.350972\pi\)
\(12\) 0 0
\(13\) 2.22560 2.35899i 0.617269 0.654267i −0.341024 0.940055i \(-0.610774\pi\)
0.958293 + 0.285788i \(0.0922552\pi\)
\(14\) 2.64628 + 0.627180i 0.707248 + 0.167621i
\(15\) 0 0
\(16\) 0.620599 + 1.43871i 0.155150 + 0.359678i
\(17\) 0.572741 3.24818i 0.138910 0.787799i −0.833146 0.553052i \(-0.813463\pi\)
0.972057 0.234746i \(-0.0754260\pi\)
\(18\) 0 0
\(19\) −0.571121 3.23899i −0.131024 0.743075i −0.977546 0.210722i \(-0.932419\pi\)
0.846522 0.532354i \(-0.178692\pi\)
\(20\) 3.28142 2.15823i 0.733749 0.482594i
\(21\) 0 0
\(22\) −1.16927 1.57060i −0.249289 0.334853i
\(23\) 0.145137 2.49190i 0.0302631 0.519597i −0.948779 0.315940i \(-0.897680\pi\)
0.979042 0.203657i \(-0.0652827\pi\)
\(24\) 0 0
\(25\) −0.904231 0.958429i −0.180846 0.191686i
\(26\) 1.07247 + 1.85757i 0.210329 + 0.364300i
\(27\) 0 0
\(28\) 3.21271 5.56458i 0.607145 1.05161i
\(29\) −5.41695 + 1.28384i −1.00590 + 0.238403i −0.700371 0.713779i \(-0.746982\pi\)
−0.305531 + 0.952182i \(0.598834\pi\)
\(30\) 0 0
\(31\) 5.73952 2.88249i 1.03085 0.517711i 0.148798 0.988868i \(-0.452460\pi\)
0.882050 + 0.471157i \(0.156163\pi\)
\(32\) −5.70979 + 0.667379i −1.00936 + 0.117977i
\(33\) 0 0
\(34\) 1.94936 + 0.979008i 0.334313 + 0.167898i
\(35\) −9.71228 3.53498i −1.64167 0.597521i
\(36\) 0 0
\(37\) −2.56937 + 0.935175i −0.422402 + 0.153742i −0.544471 0.838780i \(-0.683269\pi\)
0.122069 + 0.992522i \(0.461047\pi\)
\(38\) 2.16052 + 0.252528i 0.350482 + 0.0409655i
\(39\) 0 0
\(40\) 1.69853 + 5.67349i 0.268561 + 0.897057i
\(41\) −2.59515 8.66839i −0.405294 1.35378i −0.880560 0.473934i \(-0.842834\pi\)
0.475267 0.879842i \(-0.342352\pi\)
\(42\) 0 0
\(43\) 7.76471 + 0.907565i 1.18411 + 0.138402i 0.685267 0.728292i \(-0.259685\pi\)
0.498840 + 0.866694i \(0.333759\pi\)
\(44\) −4.34719 + 1.58225i −0.655364 + 0.238533i
\(45\) 0 0
\(46\) 1.55131 + 0.564629i 0.228728 + 0.0832500i
\(47\) 9.04350 + 4.54182i 1.31913 + 0.662492i 0.962380 0.271708i \(-0.0875884\pi\)
0.356750 + 0.934200i \(0.383885\pi\)
\(48\) 0 0
\(49\) −9.84186 + 1.15035i −1.40598 + 0.164335i
\(50\) 0.778766 0.391111i 0.110134 0.0553115i
\(51\) 0 0
\(52\) 4.93113 1.16870i 0.683824 0.162069i
\(53\) −0.00494432 + 0.00856381i −0.000679154 + 0.00117633i −0.866365 0.499412i \(-0.833550\pi\)
0.865686 + 0.500588i \(0.166883\pi\)
\(54\) 0 0
\(55\) 3.72072 + 6.44448i 0.501702 + 0.868973i
\(56\) 6.64883 + 7.04735i 0.888488 + 0.941742i
\(57\) 0 0
\(58\) 0.214081 3.67563i 0.0281102 0.482634i
\(59\) 6.79150 + 9.12257i 0.884178 + 1.18766i 0.981319 + 0.192387i \(0.0616229\pi\)
−0.0971408 + 0.995271i \(0.530970\pi\)
\(60\) 0 0
\(61\) −7.52933 + 4.95212i −0.964032 + 0.634054i −0.930852 0.365396i \(-0.880934\pi\)
−0.0331796 + 0.999449i \(0.510563\pi\)
\(62\) 0.737619 + 4.18325i 0.0936777 + 0.531273i
\(63\) 0 0
\(64\) 0.116049 0.658144i 0.0145061 0.0822680i
\(65\) −3.22872 7.48500i −0.400473 0.928400i
\(66\) 0 0
\(67\) 5.68771 + 1.34801i 0.694864 + 0.164686i 0.562846 0.826562i \(-0.309706\pi\)
0.132018 + 0.991247i \(0.457854\pi\)
\(68\) 3.53679 3.74878i 0.428899 0.454607i
\(69\) 0 0
\(70\) 4.08198 5.48305i 0.487890 0.655349i
\(71\) 1.81817 + 1.52563i 0.215777 + 0.181058i 0.744269 0.667880i \(-0.232798\pi\)
−0.528492 + 0.848938i \(0.677242\pi\)
\(72\) 0 0
\(73\) 3.61987 3.03743i 0.423674 0.355505i −0.405885 0.913924i \(-0.633037\pi\)
0.829559 + 0.558420i \(0.188592\pi\)
\(74\) −0.105147 1.80531i −0.0122231 0.209863i
\(75\) 0 0
\(76\) 2.03557 4.71897i 0.233495 0.541303i
\(77\) 10.1713 + 6.68977i 1.15913 + 0.762370i
\(78\) 0 0
\(79\) −2.58181 + 8.62383i −0.290476 + 0.970257i 0.680834 + 0.732438i \(0.261618\pi\)
−0.971310 + 0.237819i \(0.923568\pi\)
\(80\) 3.93828 0.440313
\(81\) 0 0
\(82\) 5.98444 0.660871
\(83\) −1.06156 + 3.54585i −0.116521 + 0.389207i −0.996276 0.0862198i \(-0.972521\pi\)
0.879755 + 0.475427i \(0.157706\pi\)
\(84\) 0 0
\(85\) −6.92638 4.55555i −0.751272 0.494119i
\(86\) −2.04786 + 4.74747i −0.220826 + 0.511933i
\(87\) 0 0
\(88\) −0.405603 6.96394i −0.0432374 0.742358i
\(89\) 9.57258 8.03235i 1.01469 0.851427i 0.0257399 0.999669i \(-0.491806\pi\)
0.988951 + 0.148242i \(0.0473614\pi\)
\(90\) 0 0
\(91\) −10.2160 8.57223i −1.07093 0.898614i
\(92\) 2.32916 3.12861i 0.242832 0.326180i
\(93\) 0 0
\(94\) −4.59304 + 4.86834i −0.473736 + 0.502131i
\(95\) −8.04395 1.90645i −0.825291 0.195598i
\(96\) 0 0
\(97\) −2.83273 6.56702i −0.287621 0.666780i 0.711743 0.702440i \(-0.247906\pi\)
−0.999364 + 0.0356601i \(0.988647\pi\)
\(98\) 1.13799 6.45388i 0.114955 0.651940i
\(99\) 0 0
\(100\) −0.357534 2.02767i −0.0357534 0.202767i
\(101\) −1.75962 + 1.15732i −0.175089 + 0.115158i −0.634029 0.773310i \(-0.718600\pi\)
0.458939 + 0.888468i \(0.348229\pi\)
\(102\) 0 0
\(103\) −1.23334 1.65666i −0.121524 0.163235i 0.737198 0.675677i \(-0.236149\pi\)
−0.858722 + 0.512442i \(0.828741\pi\)
\(104\) −0.444315 + 7.62860i −0.0435687 + 0.748046i
\(105\) 0 0
\(106\) −0.00448806 0.00475707i −0.000435919 0.000462048i
\(107\) 7.13179 + 12.3526i 0.689456 + 1.19417i 0.972014 + 0.234923i \(0.0754838\pi\)
−0.282558 + 0.959250i \(0.591183\pi\)
\(108\) 0 0
\(109\) −6.70237 + 11.6088i −0.641970 + 1.11193i 0.343022 + 0.939327i \(0.388549\pi\)
−0.984992 + 0.172598i \(0.944784\pi\)
\(110\) −4.78890 + 1.13499i −0.456604 + 0.108217i
\(111\) 0 0
\(112\) 5.75764 2.89160i 0.544046 0.273230i
\(113\) −2.94032 + 0.343674i −0.276602 + 0.0323301i −0.253263 0.967398i \(-0.581504\pi\)
−0.0233389 + 0.999728i \(0.507430\pi\)
\(114\) 0 0
\(115\) −5.60664 2.81576i −0.522822 0.262571i
\(116\) −8.17432 2.97521i −0.758967 0.276241i
\(117\) 0 0
\(118\) −7.06818 + 2.57261i −0.650679 + 0.236828i
\(119\) −13.4710 1.57453i −1.23488 0.144337i
\(120\) 0 0
\(121\) 0.640970 + 2.14099i 0.0582700 + 0.194635i
\(122\) −1.70941 5.70982i −0.154763 0.516943i
\(123\) 0 0
\(124\) 9.96814 + 1.16511i 0.895165 + 0.104630i
\(125\) 8.69737 3.16558i 0.777917 0.283139i
\(126\) 0 0
\(127\) −11.3063 4.11514i −1.00327 0.365160i −0.212425 0.977177i \(-0.568136\pi\)
−0.790844 + 0.612017i \(0.790358\pi\)
\(128\) −9.87941 4.96162i −0.873224 0.438550i
\(129\) 0 0
\(130\) 5.35484 0.625891i 0.469650 0.0548943i
\(131\) 4.58993 2.30515i 0.401024 0.201402i −0.236844 0.971548i \(-0.576113\pi\)
0.637868 + 0.770146i \(0.279817\pi\)
\(132\) 0 0
\(133\) −13.1598 + 3.11892i −1.14110 + 0.270445i
\(134\) −1.93295 + 3.34796i −0.166981 + 0.289220i
\(135\) 0 0
\(136\) 3.88570 + 6.73023i 0.333196 + 0.577113i
\(137\) 1.30458 + 1.38277i 0.111458 + 0.118138i 0.780700 0.624906i \(-0.214863\pi\)
−0.669242 + 0.743044i \(0.733381\pi\)
\(138\) 0 0
\(139\) −0.544109 + 9.34199i −0.0461507 + 0.792377i 0.893251 + 0.449559i \(0.148419\pi\)
−0.939402 + 0.342819i \(0.888618\pi\)
\(140\) −9.64426 12.9545i −0.815089 1.09485i
\(141\) 0 0
\(142\) −1.31149 + 0.862583i −0.110058 + 0.0723864i
\(143\) 1.66732 + 9.45583i 0.139428 + 0.790736i
\(144\) 0 0
\(145\) −2.42980 + 13.7801i −0.201784 + 1.14437i
\(146\) 1.23785 + 2.86966i 0.102445 + 0.237494i
\(147\) 0 0
\(148\) −4.15737 0.985314i −0.341733 0.0809923i
\(149\) −0.609823 + 0.646375i −0.0499587 + 0.0529531i −0.751871 0.659310i \(-0.770848\pi\)
0.701912 + 0.712263i \(0.252330\pi\)
\(150\) 0 0
\(151\) −4.81223 + 6.46395i −0.391614 + 0.526029i −0.953583 0.301129i \(-0.902636\pi\)
0.561969 + 0.827158i \(0.310044\pi\)
\(152\) 5.93640 + 4.98123i 0.481506 + 0.404031i
\(153\) 0 0
\(154\) −6.16788 + 5.17546i −0.497022 + 0.417051i
\(155\) −0.938654 16.1161i −0.0753945 1.29447i
\(156\) 0 0
\(157\) −5.73149 + 13.2871i −0.457423 + 1.06042i 0.520952 + 0.853586i \(0.325577\pi\)
−0.978375 + 0.206839i \(0.933682\pi\)
\(158\) −4.97422 3.27160i −0.395728 0.260274i
\(159\) 0 0
\(160\) −4.14409 + 13.8422i −0.327619 + 1.09432i
\(161\) −10.2641 −0.808928
\(162\) 0 0
\(163\) 8.05495 0.630912 0.315456 0.948940i \(-0.397843\pi\)
0.315456 + 0.948940i \(0.397843\pi\)
\(164\) 4.05514 13.5451i 0.316654 1.05770i
\(165\) 0 0
\(166\) −2.04524 1.34518i −0.158742 0.104406i
\(167\) −6.68676 + 15.5017i −0.517437 + 1.19955i 0.436543 + 0.899683i \(0.356203\pi\)
−0.953980 + 0.299870i \(0.903057\pi\)
\(168\) 0 0
\(169\) 0.144308 + 2.47768i 0.0111006 + 0.190591i
\(170\) 4.20016 3.52435i 0.322138 0.270306i
\(171\) 0 0
\(172\) 9.35772 + 7.85206i 0.713520 + 0.598714i
\(173\) −4.01480 + 5.39281i −0.305239 + 0.410008i −0.928103 0.372322i \(-0.878562\pi\)
0.622864 + 0.782330i \(0.285969\pi\)
\(174\) 0 0
\(175\) −3.71823 + 3.94110i −0.281072 + 0.297919i
\(176\) −4.51378 1.06979i −0.340239 0.0806381i
\(177\) 0 0
\(178\) 3.27343 + 7.58867i 0.245354 + 0.568795i
\(179\) 2.64043 14.9746i 0.197355 1.11926i −0.711669 0.702515i \(-0.752060\pi\)
0.909024 0.416743i \(-0.136828\pi\)
\(180\) 0 0
\(181\) −0.973297 5.51984i −0.0723446 0.410287i −0.999377 0.0353044i \(-0.988760\pi\)
0.927032 0.374982i \(-0.122351\pi\)
\(182\) 7.36906 4.84671i 0.546231 0.359262i
\(183\) 0 0
\(184\) 3.51210 + 4.71757i 0.258915 + 0.347784i
\(185\) −0.399604 + 6.86094i −0.0293795 + 0.504427i
\(186\) 0 0
\(187\) 6.70107 + 7.10272i 0.490031 + 0.519403i
\(188\) 7.90664 + 13.6947i 0.576651 + 0.998788i
\(189\) 0 0
\(190\) 2.73371 4.73492i 0.198324 0.343507i
\(191\) 4.17988 0.990651i 0.302446 0.0716810i −0.0765910 0.997063i \(-0.524404\pi\)
0.379037 + 0.925382i \(0.376255\pi\)
\(192\) 0 0
\(193\) 2.53227 1.27175i 0.182277 0.0915427i −0.355321 0.934744i \(-0.615628\pi\)
0.537597 + 0.843202i \(0.319332\pi\)
\(194\) 4.69810 0.549129i 0.337304 0.0394252i
\(195\) 0 0
\(196\) −13.8365 6.94896i −0.988323 0.496354i
\(197\) −19.9667 7.26729i −1.42257 0.517773i −0.487777 0.872968i \(-0.662192\pi\)
−0.934792 + 0.355195i \(0.884414\pi\)
\(198\) 0 0
\(199\) −9.14529 + 3.32862i −0.648293 + 0.235959i −0.645174 0.764036i \(-0.723215\pi\)
−0.00311899 + 0.999995i \(0.500993\pi\)
\(200\) 3.08366 + 0.360429i 0.218048 + 0.0254861i
\(201\) 0 0
\(202\) −0.399493 1.33440i −0.0281082 0.0938881i
\(203\) 6.56543 + 21.9301i 0.460803 + 1.53919i
\(204\) 0 0
\(205\) −22.5896 2.64035i −1.57773 0.184410i
\(206\) 1.28358 0.467185i 0.0894313 0.0325503i
\(207\) 0 0
\(208\) 4.77511 + 1.73800i 0.331094 + 0.120508i
\(209\) 8.70154 + 4.37008i 0.601898 + 0.302285i
\(210\) 0 0
\(211\) −19.4458 + 2.27289i −1.33870 + 0.156472i −0.755123 0.655583i \(-0.772423\pi\)
−0.583581 + 0.812055i \(0.698349\pi\)
\(212\) −0.0138083 + 0.00693478i −0.000948357 + 0.000476283i
\(213\) 0 0
\(214\) −9.17925 + 2.17552i −0.627481 + 0.148716i
\(215\) 9.82471 17.0169i 0.670040 1.16054i
\(216\) 0 0
\(217\) −13.2052 22.8720i −0.896424 1.55265i
\(218\) −6.08388 6.44854i −0.412053 0.436750i
\(219\) 0 0
\(220\) −0.676102 + 11.6082i −0.0455828 + 0.782627i
\(221\) −6.38774 8.58022i −0.429686 0.577168i
\(222\) 0 0
\(223\) 13.5067 8.88352i 0.904478 0.594885i −0.00980880 0.999952i \(-0.503122\pi\)
0.914287 + 0.405067i \(0.132752\pi\)
\(224\) 4.10482 + 23.2796i 0.274265 + 1.55543i
\(225\) 0 0
\(226\) 0.339982 1.92814i 0.0226153 0.128258i
\(227\) −8.40893 19.4941i −0.558121 1.29387i −0.930671 0.365857i \(-0.880776\pi\)
0.372551 0.928012i \(-0.378483\pi\)
\(228\) 0 0
\(229\) −8.39688 1.99010i −0.554881 0.131509i −0.0563976 0.998408i \(-0.517961\pi\)
−0.498484 + 0.866899i \(0.666110\pi\)
\(230\) 2.84752 3.01819i 0.187760 0.199014i
\(231\) 0 0
\(232\) 7.83290 10.5214i 0.514255 0.690765i
\(233\) 11.4634 + 9.61890i 0.750989 + 0.630155i 0.935764 0.352626i \(-0.114711\pi\)
−0.184775 + 0.982781i \(0.559156\pi\)
\(234\) 0 0
\(235\) 19.4854 16.3502i 1.27109 1.06657i
\(236\) 1.03331 + 17.7413i 0.0672629 + 1.15486i
\(237\) 0 0
\(238\) 3.55282 8.23637i 0.230295 0.533885i
\(239\) −3.01654 1.98401i −0.195124 0.128335i 0.448188 0.893939i \(-0.352070\pi\)
−0.643311 + 0.765605i \(0.722440\pi\)
\(240\) 0 0
\(241\) 6.56533 21.9297i 0.422910 1.41262i −0.435747 0.900069i \(-0.643516\pi\)
0.858658 0.512550i \(-0.171299\pi\)
\(242\) −1.47808 −0.0950149
\(243\) 0 0
\(244\) −14.0819 −0.901500
\(245\) −7.14308 + 23.8596i −0.456355 + 1.52433i
\(246\) 0 0
\(247\) −8.91184 5.86141i −0.567047 0.372953i
\(248\) −5.99391 + 13.8954i −0.380614 + 0.882361i
\(249\) 0 0
\(250\) 0.355925 + 6.11100i 0.0225107 + 0.386494i
\(251\) 16.2193 13.6096i 1.02375 0.859031i 0.0336587 0.999433i \(-0.489284\pi\)
0.990095 + 0.140402i \(0.0448396\pi\)
\(252\) 0 0
\(253\) 5.66107 + 4.75020i 0.355909 + 0.298643i
\(254\) 4.75192 6.38293i 0.298162 0.400501i
\(255\) 0 0
\(256\) 5.93481 6.29053i 0.370926 0.393158i
\(257\) 7.57713 + 1.79581i 0.472649 + 0.112020i 0.460035 0.887901i \(-0.347837\pi\)
0.0126134 + 0.999920i \(0.495985\pi\)
\(258\) 0 0
\(259\) 4.45329 + 10.3239i 0.276714 + 0.641495i
\(260\) 2.21188 12.5442i 0.137175 0.777958i
\(261\) 0 0
\(262\) 0.589879 + 3.34537i 0.0364428 + 0.206678i
\(263\) 1.27536 0.838814i 0.0786418 0.0517235i −0.509579 0.860424i \(-0.670199\pi\)
0.588221 + 0.808700i \(0.299829\pi\)
\(264\) 0 0
\(265\) 0.0148424 + 0.0199368i 0.000911761 + 0.00122471i
\(266\) 0.520082 8.92947i 0.0318883 0.547501i
\(267\) 0 0
\(268\) 6.26795 + 6.64364i 0.382876 + 0.405825i
\(269\) −14.7193 25.4946i −0.897454 1.55444i −0.830738 0.556663i \(-0.812081\pi\)
−0.0667154 0.997772i \(-0.521252\pi\)
\(270\) 0 0
\(271\) −7.28643 + 12.6205i −0.442619 + 0.766639i −0.997883 0.0650354i \(-0.979284\pi\)
0.555264 + 0.831674i \(0.312617\pi\)
\(272\) 5.02863 1.19181i 0.304905 0.0722639i
\(273\) 0 0
\(274\) −1.12356 + 0.564275i −0.0678769 + 0.0340891i
\(275\) 3.87467 0.452884i 0.233651 0.0273099i
\(276\) 0 0
\(277\) 9.13881 + 4.58968i 0.549098 + 0.275767i 0.701642 0.712529i \(-0.252450\pi\)
−0.152545 + 0.988297i \(0.548747\pi\)
\(278\) −5.81576 2.11676i −0.348806 0.126955i
\(279\) 0 0
\(280\) 22.8840 8.32910i 1.36758 0.497759i
\(281\) 6.97618 + 0.815398i 0.416164 + 0.0486426i 0.321599 0.946876i \(-0.395780\pi\)
0.0945653 + 0.995519i \(0.469854\pi\)
\(282\) 0 0
\(283\) 6.20135 + 20.7140i 0.368632 + 1.23132i 0.918284 + 0.395923i \(0.129575\pi\)
−0.549651 + 0.835394i \(0.685239\pi\)
\(284\) 1.06367 + 3.55292i 0.0631175 + 0.210827i
\(285\) 0 0
\(286\) −6.30736 0.737224i −0.372962 0.0435930i
\(287\) −34.9640 + 12.7258i −2.06386 + 0.751183i
\(288\) 0 0
\(289\) 5.75215 + 2.09361i 0.338362 + 0.123154i
\(290\) −8.26998 4.15334i −0.485630 0.243893i
\(291\) 0 0
\(292\) 7.33393 0.857214i 0.429186 0.0501647i
\(293\) 9.76463 4.90398i 0.570456 0.286494i −0.140097 0.990138i \(-0.544741\pi\)
0.710553 + 0.703644i \(0.248445\pi\)
\(294\) 0 0
\(295\) 27.8155 6.59240i 1.61948 0.383824i
\(296\) 3.22124 5.57934i 0.187230 0.324293i
\(297\) 0 0
\(298\) −0.293862 0.508983i −0.0170229 0.0294846i
\(299\) −5.55536 5.88833i −0.321275 0.340531i
\(300\) 0 0
\(301\) 1.86913 32.0918i 0.107735 1.84974i
\(302\) −3.18268 4.27508i −0.183142 0.246003i
\(303\) 0 0
\(304\) 4.30553 2.83179i 0.246939 0.162414i
\(305\) 3.93337 + 22.3072i 0.225224 + 1.27731i
\(306\) 0 0
\(307\) 0.798574 4.52894i 0.0455770 0.258480i −0.953502 0.301386i \(-0.902551\pi\)
0.999079 + 0.0429063i \(0.0136617\pi\)
\(308\) 7.53465 + 17.4673i 0.429327 + 0.995291i
\(309\) 0 0
\(310\) 10.3890 + 2.46223i 0.590054 + 0.139845i
\(311\) −11.9674 + 12.6847i −0.678610 + 0.719285i −0.971547 0.236847i \(-0.923886\pi\)
0.292937 + 0.956132i \(0.405368\pi\)
\(312\) 0 0
\(313\) −9.45127 + 12.6953i −0.534217 + 0.717579i −0.984515 0.175300i \(-0.943910\pi\)
0.450298 + 0.892879i \(0.351318\pi\)
\(314\) −7.33136 6.15174i −0.413732 0.347163i
\(315\) 0 0
\(316\) −10.7755 + 9.04173i −0.606170 + 0.508637i
\(317\) 1.13979 + 19.5694i 0.0640169 + 1.09913i 0.865434 + 0.501022i \(0.167043\pi\)
−0.801418 + 0.598105i \(0.795920\pi\)
\(318\) 0 0
\(319\) 6.52805 15.1337i 0.365501 0.847326i
\(320\) −1.40342 0.923043i −0.0784535 0.0515997i
\(321\) 0 0
\(322\) 1.94694 6.50323i 0.108499 0.362411i
\(323\) −10.8479 −0.603594
\(324\) 0 0
\(325\) −4.27338 −0.237044
\(326\) −1.52789 + 5.10351i −0.0846221 + 0.282657i
\(327\) 0 0
\(328\) 17.8127 + 11.7156i 0.983541 + 0.646885i
\(329\) 16.4823 38.2102i 0.908698 2.10660i
\(330\) 0 0
\(331\) 1.27212 + 21.8415i 0.0699221 + 1.20052i 0.832651 + 0.553798i \(0.186822\pi\)
−0.762729 + 0.646719i \(0.776141\pi\)
\(332\) −4.43055 + 3.71767i −0.243158 + 0.204034i
\(333\) 0 0
\(334\) −8.55328 7.17706i −0.468015 0.392711i
\(335\) 8.77348 11.7848i 0.479346 0.643874i
\(336\) 0 0
\(337\) 6.15073 6.51940i 0.335052 0.355134i −0.537841 0.843046i \(-0.680760\pi\)
0.872893 + 0.487912i \(0.162241\pi\)
\(338\) −1.59720 0.378543i −0.0868761 0.0205900i
\(339\) 0 0
\(340\) −5.13090 11.8948i −0.278262 0.645084i
\(341\) −3.30191 + 18.7261i −0.178809 + 1.01407i
\(342\) 0 0
\(343\) 2.07706 + 11.7796i 0.112151 + 0.636040i
\(344\) −15.3895 + 10.1218i −0.829744 + 0.545731i
\(345\) 0 0
\(346\) −2.65527 3.56665i −0.142748 0.191744i
\(347\) 1.11823 19.1993i 0.0600299 1.03067i −0.824998 0.565135i \(-0.808824\pi\)
0.885028 0.465538i \(-0.154139\pi\)
\(348\) 0 0
\(349\) −14.6541 15.5324i −0.784414 0.831430i 0.204662 0.978833i \(-0.434390\pi\)
−0.989077 + 0.147402i \(0.952909\pi\)
\(350\) −1.79174 3.10339i −0.0957726 0.165883i
\(351\) 0 0
\(352\) 8.50973 14.7393i 0.453570 0.785607i
\(353\) 14.3157 3.39287i 0.761946 0.180584i 0.168768 0.985656i \(-0.446021\pi\)
0.593178 + 0.805071i \(0.297873\pi\)
\(354\) 0 0
\(355\) 5.33111 2.67738i 0.282946 0.142101i
\(356\) 19.3942 2.26686i 1.02789 0.120143i
\(357\) 0 0
\(358\) 8.98690 + 4.51339i 0.474972 + 0.238540i
\(359\) 10.0637 + 3.66289i 0.531142 + 0.193320i 0.593648 0.804725i \(-0.297687\pi\)
−0.0625063 + 0.998045i \(0.519909\pi\)
\(360\) 0 0
\(361\) 7.68928 2.79867i 0.404699 0.147298i
\(362\) 3.68192 + 0.430355i 0.193517 + 0.0226189i
\(363\) 0 0
\(364\) −5.97661 19.9633i −0.313259 1.04636i
\(365\) −3.40644 11.3783i −0.178301 0.595568i
\(366\) 0 0
\(367\) 3.93885 + 0.460386i 0.205606 + 0.0240319i 0.218273 0.975888i \(-0.429958\pi\)
−0.0126662 + 0.999920i \(0.504032\pi\)
\(368\) 3.67519 1.33766i 0.191583 0.0697304i
\(369\) 0 0
\(370\) −4.27121 1.55459i −0.222050 0.0808194i
\(371\) 0.0363373 + 0.0182493i 0.00188654 + 0.000947455i
\(372\) 0 0
\(373\) 23.5625 2.75406i 1.22002 0.142600i 0.518392 0.855143i \(-0.326531\pi\)
0.701628 + 0.712544i \(0.252457\pi\)
\(374\) −5.77128 + 2.89845i −0.298426 + 0.149875i
\(375\) 0 0
\(376\) −23.2018 + 5.49893i −1.19654 + 0.283586i
\(377\) −9.02736 + 15.6359i −0.464933 + 0.805287i
\(378\) 0 0
\(379\) 13.0094 + 22.5330i 0.668249 + 1.15744i 0.978393 + 0.206752i \(0.0662892\pi\)
−0.310145 + 0.950689i \(0.600377\pi\)
\(380\) −8.86457 9.39589i −0.454743 0.481999i
\(381\) 0 0
\(382\) −0.165192 + 2.83623i −0.00845194 + 0.145114i
\(383\) 17.5716 + 23.6027i 0.897864 + 1.20604i 0.977863 + 0.209246i \(0.0671010\pi\)
−0.0799988 + 0.996795i \(0.525492\pi\)
\(384\) 0 0
\(385\) 25.5655 16.8147i 1.30294 0.856956i
\(386\) 0.325437 + 1.84564i 0.0165643 + 0.0939407i
\(387\) 0 0
\(388\) 1.94061 11.0057i 0.0985194 0.558731i
\(389\) 10.4976 + 24.3363i 0.532252 + 1.23390i 0.946195 + 0.323596i \(0.104892\pi\)
−0.413943 + 0.910303i \(0.635849\pi\)
\(390\) 0 0
\(391\) −8.01100 1.89864i −0.405134 0.0960185i
\(392\) 16.0218 16.9821i 0.809224 0.857728i
\(393\) 0 0
\(394\) 8.39182 11.2722i 0.422774 0.567884i
\(395\) 17.3329 + 14.5440i 0.872114 + 0.731790i
\(396\) 0 0
\(397\) −21.8020 + 18.2941i −1.09421 + 0.918154i −0.997022 0.0771123i \(-0.975430\pi\)
−0.0971903 + 0.995266i \(0.530986\pi\)
\(398\) −0.374256 6.42573i −0.0187598 0.322093i
\(399\) 0 0
\(400\) 0.817736 1.89573i 0.0408868 0.0947863i
\(401\) −11.8828 7.81543i −0.593398 0.390284i 0.216993 0.976173i \(-0.430375\pi\)
−0.810391 + 0.585889i \(0.800745\pi\)
\(402\) 0 0
\(403\) 5.97406 19.9547i 0.297589 0.994017i
\(404\) −3.29097 −0.163732
\(405\) 0 0
\(406\) −15.1400 −0.751383
\(407\) 2.32169 7.75499i 0.115082 0.384400i
\(408\) 0 0
\(409\) −2.60169 1.71116i −0.128645 0.0846114i 0.483555 0.875314i \(-0.339345\pi\)
−0.612201 + 0.790702i \(0.709716\pi\)
\(410\) 5.95778 13.8117i 0.294234 0.682110i
\(411\) 0 0
\(412\) −0.187649 3.22181i −0.00924482 0.158727i
\(413\) 35.8251 30.0608i 1.76284 1.47920i
\(414\) 0 0
\(415\) 7.12674 + 5.98005i 0.349838 + 0.293549i
\(416\) −11.1333 + 14.9547i −0.545857 + 0.733213i
\(417\) 0 0
\(418\) −4.41937 + 4.68425i −0.216158 + 0.229114i
\(419\) 6.66640 + 1.57997i 0.325675 + 0.0771864i 0.390201 0.920730i \(-0.372405\pi\)
−0.0645262 + 0.997916i \(0.520554\pi\)
\(420\) 0 0
\(421\) −5.91445 13.7112i −0.288253 0.668245i 0.711141 0.703049i \(-0.248179\pi\)
−0.999394 + 0.0348039i \(0.988919\pi\)
\(422\) 2.24848 12.7517i 0.109454 0.620745i
\(423\) 0 0
\(424\) −0.00404592 0.0229456i −0.000196487 0.00111434i
\(425\) −3.63104 + 2.38817i −0.176131 + 0.115843i
\(426\) 0 0
\(427\) 22.1291 + 29.7245i 1.07090 + 1.43847i
\(428\) −1.29594 + 22.2504i −0.0626415 + 1.07551i
\(429\) 0 0
\(430\) 8.91811 + 9.45264i 0.430069 + 0.455847i
\(431\) 15.4334 + 26.7314i 0.743399 + 1.28760i 0.950939 + 0.309378i \(0.100121\pi\)
−0.207540 + 0.978227i \(0.566546\pi\)
\(432\) 0 0
\(433\) 14.3849 24.9154i 0.691295 1.19736i −0.280119 0.959965i \(-0.590374\pi\)
0.971414 0.237393i \(-0.0762928\pi\)
\(434\) 16.9962 4.02817i 0.815844 0.193359i
\(435\) 0 0
\(436\) −18.7181 + 9.40058i −0.896434 + 0.450206i
\(437\) −8.15413 + 0.953081i −0.390065 + 0.0455920i
\(438\) 0 0
\(439\) −3.95327 1.98541i −0.188679 0.0947582i 0.351952 0.936018i \(-0.385518\pi\)
−0.540631 + 0.841260i \(0.681814\pi\)
\(440\) −16.4761 5.99681i −0.785467 0.285886i
\(441\) 0 0
\(442\) 6.64797 2.41966i 0.316212 0.115092i
\(443\) −2.64954 0.309687i −0.125884 0.0147137i 0.0529177 0.998599i \(-0.483148\pi\)
−0.178801 + 0.983885i \(0.557222\pi\)
\(444\) 0 0
\(445\) −9.00818 30.0894i −0.427029 1.42637i
\(446\) 3.06648 + 10.2428i 0.145202 + 0.485009i
\(447\) 0 0
\(448\) −2.72948 0.319030i −0.128956 0.0150728i
\(449\) −39.1256 + 14.2405i −1.84645 + 0.672053i −0.859474 + 0.511179i \(0.829209\pi\)
−0.986975 + 0.160874i \(0.948569\pi\)
\(450\) 0 0
\(451\) 25.1735 + 9.16239i 1.18537 + 0.431440i
\(452\) −4.13375 2.07605i −0.194435 0.0976490i
\(453\) 0 0
\(454\) 13.9463 1.63008i 0.654530 0.0765036i
\(455\) −29.9546 + 15.0438i −1.40429 + 0.705262i
\(456\) 0 0
\(457\) 7.45826 1.76764i 0.348883 0.0826867i −0.0524384 0.998624i \(-0.516699\pi\)
0.401321 + 0.915937i \(0.368551\pi\)
\(458\) 2.85365 4.94267i 0.133342 0.230956i
\(459\) 0 0
\(460\) −4.90183 8.49022i −0.228549 0.395858i
\(461\) 15.1269 + 16.0335i 0.704528 + 0.746756i 0.976493 0.215551i \(-0.0691548\pi\)
−0.271965 + 0.962307i \(0.587673\pi\)
\(462\) 0 0
\(463\) −2.16064 + 37.0967i −0.100413 + 1.72403i 0.453331 + 0.891342i \(0.350236\pi\)
−0.553744 + 0.832687i \(0.686801\pi\)
\(464\) −5.20883 6.99667i −0.241814 0.324812i
\(465\) 0 0
\(466\) −8.26882 + 5.43849i −0.383046 + 0.251933i
\(467\) −1.44385 8.18848i −0.0668134 0.378918i −0.999818 0.0190543i \(-0.993934\pi\)
0.933005 0.359863i \(-0.117177\pi\)
\(468\) 0 0
\(469\) 4.17380 23.6708i 0.192728 1.09302i
\(470\) 6.66322 + 15.4471i 0.307351 + 0.712520i
\(471\) 0 0
\(472\) −26.0748 6.17983i −1.20019 0.284450i
\(473\) −15.8828 + 16.8348i −0.730293 + 0.774066i
\(474\) 0 0
\(475\) −2.58792 + 3.47617i −0.118742 + 0.159498i
\(476\) −16.2347 13.6225i −0.744115 0.624387i
\(477\) 0 0
\(478\) 1.82923 1.53491i 0.0836671 0.0702050i
\(479\) 0.148442 + 2.54865i 0.00678248 + 0.116451i 1.00000 0.000179474i \(5.71284e-5\pi\)
−0.993218 + 0.116271i \(0.962906\pi\)
\(480\) 0 0
\(481\) −3.51231 + 8.14245i −0.160148 + 0.371264i
\(482\) 12.6491 + 8.31942i 0.576149 + 0.378939i
\(483\) 0 0
\(484\) −1.00157 + 3.34548i −0.0455260 + 0.152067i
\(485\) −17.9763 −0.816263
\(486\) 0 0
\(487\) 16.3628 0.741468 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(488\) 6.08992 20.3417i 0.275678 0.920827i
\(489\) 0 0
\(490\) −13.7622 9.05153i −0.621712 0.408907i
\(491\) 14.4509 33.5009i 0.652159 1.51187i −0.195149 0.980774i \(-0.562519\pi\)
0.847308 0.531101i \(-0.178222\pi\)
\(492\) 0 0
\(493\) 1.06763 + 18.3305i 0.0480837 + 0.825565i
\(494\) 5.40415 4.53462i 0.243144 0.204022i
\(495\) 0 0
\(496\) 7.70901 + 6.46863i 0.346145 + 0.290450i
\(497\) 5.82811 7.82850i 0.261426 0.351156i
\(498\) 0 0
\(499\) 21.7797 23.0851i 0.974993 1.03343i −0.0244380 0.999701i \(-0.507780\pi\)
0.999431 0.0337308i \(-0.0107389\pi\)
\(500\) 14.0728 + 3.33531i 0.629353 + 0.149159i
\(501\) 0 0
\(502\) 5.54634 + 12.8579i 0.247545 + 0.573875i
\(503\) −1.04817 + 5.94449i −0.0467358 + 0.265052i −0.999218 0.0395428i \(-0.987410\pi\)
0.952482 + 0.304595i \(0.0985210\pi\)
\(504\) 0 0
\(505\) 0.919238 + 5.21326i 0.0409055 + 0.231987i
\(506\) −4.08348 + 2.68575i −0.181533 + 0.119396i
\(507\) 0 0
\(508\) −11.2271 15.0806i −0.498122 0.669094i
\(509\) 1.52941 26.2590i 0.0677899 1.16391i −0.777245 0.629198i \(-0.783384\pi\)
0.845035 0.534710i \(-0.179579\pi\)
\(510\) 0 0
\(511\) −13.3344 14.1336i −0.589879 0.625235i
\(512\) −8.19547 14.1950i −0.362192 0.627335i
\(513\) 0 0
\(514\) −2.57506 + 4.46014i −0.113581 + 0.196728i
\(515\) −5.05129 + 1.19718i −0.222586 + 0.0527540i
\(516\) 0 0
\(517\) −26.7741 + 13.4465i −1.17753 + 0.591376i
\(518\) −7.38580 + 0.863276i −0.324513 + 0.0379302i
\(519\) 0 0
\(520\) 17.1640 + 8.62006i 0.752689 + 0.378015i
\(521\) −23.7819 8.65589i −1.04190 0.379221i −0.236301 0.971680i \(-0.575935\pi\)
−0.805601 + 0.592459i \(0.798157\pi\)
\(522\) 0 0
\(523\) 2.76727 1.00720i 0.121004 0.0440420i −0.280808 0.959764i \(-0.590603\pi\)
0.401813 + 0.915722i \(0.368380\pi\)
\(524\) 7.97159 + 0.931745i 0.348240 + 0.0407035i
\(525\) 0 0
\(526\) 0.289548 + 0.967158i 0.0126249 + 0.0421701i
\(527\) −6.07559 20.2939i −0.264657 0.884016i
\(528\) 0 0
\(529\) 16.6560 + 1.94681i 0.724173 + 0.0846437i
\(530\) −0.0154471 + 0.00562227i −0.000670977 + 0.000244216i
\(531\) 0 0
\(532\) −19.8585 7.22789i −0.860973 0.313369i
\(533\) −26.2244 13.1704i −1.13591 0.570474i
\(534\) 0 0
\(535\) 35.6090 4.16210i 1.53951 0.179943i
\(536\) −12.3076 + 6.18112i −0.531609 + 0.266984i
\(537\) 0 0
\(538\) 18.9451 4.49007i 0.816781 0.193581i
\(539\) 14.6681 25.4058i 0.631798 1.09431i
\(540\) 0 0
\(541\) −8.84669 15.3229i −0.380349 0.658784i 0.610763 0.791813i \(-0.290863\pi\)
−0.991112 + 0.133030i \(0.957529\pi\)
\(542\) −6.61405 7.01049i −0.284098 0.301126i
\(543\) 0 0
\(544\) −1.10247 + 18.9287i −0.0472679 + 0.811559i
\(545\) 20.1199 + 27.0257i 0.861842 + 1.15765i
\(546\) 0 0
\(547\) −34.0467 + 22.3929i −1.45573 + 0.957449i −0.458083 + 0.888910i \(0.651464\pi\)
−0.997648 + 0.0685400i \(0.978166\pi\)
\(548\) 0.515831 + 2.92542i 0.0220352 + 0.124968i
\(549\) 0 0
\(550\) −0.448020 + 2.54085i −0.0191036 + 0.108342i
\(551\) 7.25208 + 16.8122i 0.308949 + 0.716224i
\(552\) 0 0
\(553\) 36.0188 + 8.53662i 1.53168 + 0.363014i
\(554\) −4.64144 + 4.91964i −0.197196 + 0.209016i
\(555\) 0 0
\(556\) −8.73190 + 11.7290i −0.370315 + 0.497419i
\(557\) 23.1644 + 19.4372i 0.981505 + 0.823581i 0.984316 0.176415i \(-0.0564501\pi\)
−0.00281036 + 0.999996i \(0.500895\pi\)
\(558\) 0 0
\(559\) 19.4220 16.2970i 0.821465 0.689291i
\(560\) −0.941618 16.1670i −0.0397906 0.683178i
\(561\) 0 0
\(562\) −1.83989 + 4.26535i −0.0776112 + 0.179923i
\(563\) −15.4390 10.1544i −0.650676 0.427956i 0.180798 0.983520i \(-0.442132\pi\)
−0.831474 + 0.555564i \(0.812502\pi\)
\(564\) 0 0
\(565\) −2.13404 + 7.12819i −0.0897797 + 0.299885i
\(566\) −14.3004 −0.601091
\(567\) 0 0
\(568\) −5.59232 −0.234648
\(569\) 2.58058 8.61972i 0.108183 0.361358i −0.886705 0.462335i \(-0.847012\pi\)
0.994889 + 0.100977i \(0.0321970\pi\)
\(570\) 0 0
\(571\) 14.1014 + 9.27464i 0.590125 + 0.388132i 0.809162 0.587585i \(-0.199921\pi\)
−0.219037 + 0.975717i \(0.570292\pi\)
\(572\) −5.94258 + 13.7765i −0.248472 + 0.576022i
\(573\) 0 0
\(574\) −1.43084 24.5666i −0.0597222 1.02539i
\(575\) −2.51954 + 2.11415i −0.105072 + 0.0881661i
\(576\) 0 0
\(577\) −24.0567 20.1860i −1.00149 0.840352i −0.0143022 0.999898i \(-0.504553\pi\)
−0.987191 + 0.159545i \(0.948997\pi\)
\(578\) −2.41757 + 3.24737i −0.100558 + 0.135073i
\(579\) 0 0
\(580\) −15.0045 + 15.9038i −0.623027 + 0.660370i
\(581\) 14.8098 + 3.50999i 0.614414 + 0.145619i
\(582\) 0 0
\(583\) −0.0115957 0.0268819i −0.000480246 0.00111334i
\(584\) −1.93340 + 10.9648i −0.0800045 + 0.453728i
\(585\) 0 0
\(586\) 1.25491 + 7.11695i 0.0518399 + 0.293999i
\(587\) −1.15028 + 0.756551i −0.0474771 + 0.0312262i −0.573026 0.819537i \(-0.694230\pi\)
0.525549 + 0.850764i \(0.323860\pi\)
\(588\) 0 0
\(589\) −12.6143 16.9440i −0.519764 0.698165i
\(590\) −1.09929 + 18.8740i −0.0452569 + 0.777031i
\(591\) 0 0
\(592\) −2.94000 3.11621i −0.120833 0.128076i
\(593\) −15.4929 26.8346i −0.636219 1.10196i −0.986256 0.165227i \(-0.947164\pi\)
0.350037 0.936736i \(-0.386169\pi\)
\(594\) 0 0
\(595\) −17.0449 + 29.5226i −0.698771 + 1.21031i
\(596\) −1.35115 + 0.320229i −0.0553453 + 0.0131171i
\(597\) 0 0
\(598\) 4.78453 2.40288i 0.195654 0.0982612i
\(599\) −24.0874 + 2.81541i −0.984185 + 0.115035i −0.592935 0.805250i \(-0.702031\pi\)
−0.391249 + 0.920285i \(0.627957\pi\)
\(600\) 0 0
\(601\) 6.77942 + 3.40476i 0.276539 + 0.138883i 0.581664 0.813429i \(-0.302402\pi\)
−0.305125 + 0.952312i \(0.598698\pi\)
\(602\) 19.9784 + 7.27154i 0.814258 + 0.296366i
\(603\) 0 0
\(604\) −11.8328 + 4.30678i −0.481469 + 0.175241i
\(605\) 5.57937 + 0.652135i 0.226834 + 0.0265130i
\(606\) 0 0
\(607\) −8.59397 28.7059i −0.348819 1.16514i −0.934908 0.354889i \(-0.884519\pi\)
0.586090 0.810246i \(-0.300667\pi\)
\(608\) 5.42262 + 18.1128i 0.219916 + 0.734571i
\(609\) 0 0
\(610\) −14.8797 1.73918i −0.602460 0.0704175i
\(611\) 30.8413 11.2253i 1.24770 0.454127i
\(612\) 0 0
\(613\) 11.4606 + 4.17132i 0.462890 + 0.168478i 0.562929 0.826505i \(-0.309675\pi\)
−0.100039 + 0.994984i \(0.531897\pi\)
\(614\) 2.71800 + 1.36503i 0.109690 + 0.0550882i
\(615\) 0 0
\(616\) −28.4906 + 3.33007i −1.14792 + 0.134172i
\(617\) 14.2000 7.13150i 0.571670 0.287103i −0.139387 0.990238i \(-0.544513\pi\)
0.711057 + 0.703135i \(0.248217\pi\)
\(618\) 0 0
\(619\) 22.6313 5.36373i 0.909630 0.215586i 0.250942 0.968002i \(-0.419260\pi\)
0.658688 + 0.752416i \(0.271112\pi\)
\(620\) 12.6127 21.8459i 0.506539 0.877351i
\(621\) 0 0
\(622\) −5.76686 9.98849i −0.231230 0.400502i
\(623\) −35.2622 37.3757i −1.41275 1.49743i
\(624\) 0 0
\(625\) 1.73574 29.8016i 0.0694297 1.19206i
\(626\) −6.25081 8.39629i −0.249832 0.335583i
\(627\) 0 0
\(628\) −18.8916 + 12.4252i −0.753858 + 0.495820i
\(629\) 1.56603 + 8.88139i 0.0624417 + 0.354124i
\(630\) 0 0
\(631\) 2.13182 12.0902i 0.0848665 0.481302i −0.912519 0.409035i \(-0.865866\pi\)
0.997385 0.0722670i \(-0.0230234\pi\)
\(632\) −8.40105 19.4758i −0.334176 0.774706i
\(633\) 0 0
\(634\) −12.6151 2.98984i −0.501011 0.118742i
\(635\) −20.7534 + 21.9973i −0.823572 + 0.872935i
\(636\) 0 0
\(637\) −19.1903 + 25.7771i −0.760349 + 1.02133i
\(638\) 8.35027 + 7.00671i 0.330590 + 0.277398i
\(639\) 0 0
\(640\) −21.2865 + 17.8615i −0.841422 + 0.706037i
\(641\) −0.544496 9.34864i −0.0215063 0.369249i −0.991841 0.127483i \(-0.959310\pi\)
0.970335 0.241766i \(-0.0777267\pi\)
\(642\) 0 0
\(643\) −7.78874 + 18.0563i −0.307158 + 0.712072i −0.999959 0.00905647i \(-0.997117\pi\)
0.692801 + 0.721129i \(0.256376\pi\)
\(644\) −13.4001 8.81337i −0.528037 0.347295i
\(645\) 0 0
\(646\) 2.05767 6.87311i 0.0809580 0.270419i
\(647\) 14.2593 0.560591 0.280295 0.959914i \(-0.409568\pi\)
0.280295 + 0.959914i \(0.409568\pi\)
\(648\) 0 0
\(649\) −33.6709 −1.32170
\(650\) 0.810590 2.70756i 0.0317940 0.106199i
\(651\) 0 0
\(652\) 10.5159 + 6.91643i 0.411835 + 0.270868i
\(653\) −16.1557 + 37.4532i −0.632223 + 1.46566i 0.237137 + 0.971476i \(0.423791\pi\)
−0.869359 + 0.494181i \(0.835468\pi\)
\(654\) 0 0
\(655\) −0.750648 12.8881i −0.0293302 0.503581i
\(656\) 10.8608 9.11326i 0.424042 0.355813i
\(657\) 0 0
\(658\) 21.0831 + 17.6908i 0.821905 + 0.689660i
\(659\) −1.54612 + 2.07679i −0.0602281 + 0.0809004i −0.831217 0.555949i \(-0.812355\pi\)
0.770989 + 0.636849i \(0.219763\pi\)
\(660\) 0 0
\(661\) −20.6098 + 21.8451i −0.801628 + 0.849676i −0.991225 0.132186i \(-0.957800\pi\)
0.189597 + 0.981862i \(0.439282\pi\)
\(662\) −14.0798 3.33697i −0.547227 0.129695i
\(663\) 0 0
\(664\) −3.45424 8.00784i −0.134051 0.310764i
\(665\) −5.90288 + 33.4769i −0.228904 + 1.29818i
\(666\) 0 0
\(667\) 2.41300 + 13.6848i 0.0934318 + 0.529878i
\(668\) −22.0403 + 14.4961i −0.852765 + 0.560872i
\(669\) 0 0
\(670\) 5.80253 + 7.79415i 0.224171 + 0.301114i
\(671\) 1.55134 26.6354i 0.0598887 1.02825i
\(672\) 0 0
\(673\) −9.51681 10.0872i −0.366846 0.388834i 0.517487 0.855691i \(-0.326868\pi\)
−0.884333 + 0.466857i \(0.845386\pi\)
\(674\) 2.96391 + 5.13365i 0.114166 + 0.197741i
\(675\) 0 0
\(676\) −1.93907 + 3.35858i −0.0745798 + 0.129176i
\(677\) −19.4975 + 4.62100i −0.749352 + 0.177600i −0.587510 0.809217i \(-0.699892\pi\)
−0.161842 + 0.986817i \(0.551743\pi\)
\(678\) 0 0
\(679\) −26.2808 + 13.1987i −1.00857 + 0.506521i
\(680\) 19.4013 2.26769i 0.744006 0.0869619i
\(681\) 0 0
\(682\) −11.2383 5.64408i −0.430336 0.216123i
\(683\) 29.9877 + 10.9146i 1.14745 + 0.417636i 0.844597 0.535402i \(-0.179840\pi\)
0.302849 + 0.953039i \(0.402062\pi\)
\(684\) 0 0
\(685\) 4.49011 1.63426i 0.171558 0.0624421i
\(686\) −7.85740 0.918398i −0.299997 0.0350646i
\(687\) 0 0
\(688\) 3.51305 + 11.7344i 0.133934 + 0.447370i
\(689\) 0.00919792 + 0.0307232i 0.000350413 + 0.00117046i
\(690\) 0 0
\(691\) −37.1904 4.34694i −1.41479 0.165365i −0.625902 0.779902i \(-0.715269\pi\)
−0.788888 + 0.614537i \(0.789343\pi\)
\(692\) −9.87198 + 3.59311i −0.375276 + 0.136589i
\(693\) 0 0
\(694\) 11.9523 + 4.35029i 0.453704 + 0.165135i
\(695\) 21.0190 + 10.5561i 0.797296 + 0.400417i
\(696\) 0 0
\(697\) −29.6428 + 3.46475i −1.12280 + 0.131237i
\(698\) 12.6208 6.33839i 0.477703 0.239912i
\(699\) 0 0
\(700\) −8.23828 + 1.95251i −0.311378 + 0.0737979i
\(701\) −11.5923 + 20.0785i −0.437836 + 0.758355i −0.997522 0.0703498i \(-0.977588\pi\)
0.559686 + 0.828705i \(0.310922\pi\)
\(702\) 0 0
\(703\) 4.49645 + 7.78807i 0.169587 + 0.293733i
\(704\) 1.35777 + 1.43915i 0.0511728 + 0.0542400i
\(705\) 0 0
\(706\) −0.565764 + 9.71379i −0.0212928 + 0.365583i
\(707\) 5.17162 + 6.94669i 0.194499 + 0.261257i
\(708\) 0 0
\(709\) −4.16080 + 2.73660i −0.156262 + 0.102775i −0.625232 0.780439i \(-0.714996\pi\)
0.468970 + 0.883214i \(0.344625\pi\)
\(710\) 0.685132 + 3.88558i 0.0257126 + 0.145823i
\(711\) 0 0
\(712\) −5.11277 + 28.9960i −0.191609 + 1.08667i
\(713\) −6.34987 14.7206i −0.237804 0.551293i
\(714\) 0 0
\(715\) 23.4833 + 5.56564i 0.878225 + 0.208143i
\(716\) 16.3052 17.2825i 0.609354 0.645878i
\(717\) 0 0
\(718\) −4.22968 + 5.68144i −0.157850 + 0.212030i
\(719\) −13.4111 11.2533i −0.500151 0.419677i 0.357497 0.933914i \(-0.383630\pi\)
−0.857648 + 0.514238i \(0.828075\pi\)
\(720\) 0 0
\(721\) −6.50583 + 5.45904i −0.242290 + 0.203305i
\(722\) 0.314671 + 5.40269i 0.0117108 + 0.201067i
\(723\) 0 0
\(724\) 3.46898 8.04201i 0.128924 0.298879i
\(725\) 6.12864 + 4.03087i 0.227612 + 0.149703i
\(726\) 0 0
\(727\) −2.30311 + 7.69291i −0.0854175 + 0.285314i −0.990017 0.140948i \(-0.954985\pi\)
0.904599 + 0.426263i \(0.140170\pi\)
\(728\) 31.4223 1.16459
\(729\) 0 0
\(730\) 7.85530 0.290738
\(731\) 7.39510 24.7014i 0.273518 0.913613i
\(732\) 0 0
\(733\) 25.1300 + 16.5282i 0.928197 + 0.610485i 0.921031 0.389490i \(-0.127349\pi\)
0.00716600 + 0.999974i \(0.497719\pi\)
\(734\) −1.03883 + 2.40828i −0.0383439 + 0.0888912i
\(735\) 0 0
\(736\) 0.834341 + 14.3251i 0.0307542 + 0.528030i
\(737\) −13.2568 + 11.1237i −0.488319 + 0.409748i
\(738\) 0 0
\(739\) 1.84741 + 1.55016i 0.0679580 + 0.0570236i 0.676134 0.736779i \(-0.263654\pi\)
−0.608176 + 0.793802i \(0.708098\pi\)
\(740\) −6.41288 + 8.61399i −0.235742 + 0.316657i
\(741\) 0 0
\(742\) −0.0184551 + 0.0195613i −0.000677508 + 0.000718116i
\(743\) −19.1318 4.53432i −0.701878 0.166348i −0.135844 0.990730i \(-0.543375\pi\)
−0.566034 + 0.824382i \(0.691523\pi\)
\(744\) 0 0
\(745\) 0.884683 + 2.05093i 0.0324123 + 0.0751401i
\(746\) −2.72448 + 15.4513i −0.0997503 + 0.565712i
\(747\) 0 0
\(748\) 2.64961 + 15.0267i 0.0968793 + 0.549430i
\(749\) 49.0034 32.2300i 1.79054 1.17766i
\(750\) 0 0
\(751\) −4.10222 5.51024i −0.149692 0.201071i 0.720952 0.692985i \(-0.243705\pi\)
−0.870644 + 0.491914i \(0.836298\pi\)
\(752\) −0.921971 + 15.8296i −0.0336208 + 0.577247i
\(753\) 0 0
\(754\) −8.19433 8.68549i −0.298420 0.316307i
\(755\) 10.1276 + 17.5415i 0.368580 + 0.638399i
\(756\) 0 0
\(757\) −6.50209 + 11.2620i −0.236323 + 0.409323i −0.959656 0.281176i \(-0.909276\pi\)
0.723334 + 0.690499i \(0.242609\pi\)
\(758\) −16.7443 + 3.96847i −0.608180 + 0.144141i
\(759\) 0 0
\(760\) 17.4063 8.74177i 0.631393 0.317097i
\(761\) 17.2877 2.02065i 0.626680 0.0732484i 0.203175 0.979142i \(-0.434874\pi\)
0.423504 + 0.905894i \(0.360800\pi\)
\(762\) 0 0
\(763\) 49.2577 + 24.7382i 1.78325 + 0.895581i
\(764\) 6.30756 + 2.29576i 0.228200 + 0.0830578i
\(765\) 0 0
\(766\) −18.2874 + 6.65607i −0.660751 + 0.240494i
\(767\) 36.6352 + 4.28204i 1.32282 + 0.154616i
\(768\) 0 0
\(769\) 5.34304 + 17.8470i 0.192675 + 0.643579i 0.998665 + 0.0516502i \(0.0164481\pi\)
−0.805990 + 0.591929i \(0.798367\pi\)
\(770\) 5.80422 + 19.3874i 0.209170 + 0.698675i
\(771\) 0 0
\(772\) 4.39793 + 0.514044i 0.158285 + 0.0185009i
\(773\) 27.2264 9.90961i 0.979267 0.356424i 0.197712 0.980260i \(-0.436649\pi\)
0.781555 + 0.623836i \(0.214427\pi\)
\(774\) 0 0
\(775\) −7.95251 2.89448i −0.285663 0.103973i
\(776\) 15.0589 + 7.56287i 0.540583 + 0.271491i
\(777\) 0 0
\(778\) −17.4104 + 2.03498i −0.624193 + 0.0729577i
\(779\) −26.5947 + 13.3564i −0.952854 + 0.478541i
\(780\) 0 0
\(781\) −6.83742 + 1.62050i −0.244662 + 0.0579860i
\(782\) 2.72251 4.71553i 0.0973568 0.168627i
\(783\) 0 0
\(784\) −7.76286 13.4457i −0.277245 0.480203i
\(785\) 24.9597 + 26.4558i 0.890851 + 0.944247i
\(786\) 0 0
\(787\) 0.861390 14.7895i 0.0307052 0.527188i −0.947527 0.319676i \(-0.896426\pi\)
0.978232 0.207513i \(-0.0665369\pi\)
\(788\) −19.8269 26.6321i −0.706304 0.948731i
\(789\) 0 0
\(790\) −12.5027 + 8.22315i −0.444826 + 0.292566i
\(791\) 2.11382 + 11.9881i 0.0751588 + 0.426247i
\(792\) 0 0
\(793\) −5.07523 + 28.7830i −0.180227 + 1.02212i
\(794\) −7.45541 17.2836i −0.264583 0.613371i
\(795\) 0 0
\(796\) −14.7975 3.50708i −0.524484 0.124305i
\(797\) 12.0822 12.8064i 0.427975 0.453627i −0.477119 0.878839i \(-0.658319\pi\)
0.905094 + 0.425212i \(0.139800\pi\)
\(798\) 0 0
\(799\) 19.9322 26.7736i 0.705151 0.947182i
\(800\) 5.80261 + 4.86896i 0.205153 + 0.172144i
\(801\) 0 0
\(802\) 7.20573 6.04632i 0.254443 0.213503i
\(803\) 0.813447 + 13.9663i 0.0287059 + 0.492862i
\(804\) 0 0
\(805\) −10.2184 + 23.6890i −0.360152 + 0.834926i
\(806\) 11.5099 + 7.57017i 0.405419 + 0.266648i
\(807\) 0 0
\(808\) 1.42323 4.75392i 0.0500690 0.167242i
\(809\) 13.3577 0.469632 0.234816 0.972040i \(-0.424551\pi\)
0.234816 + 0.972040i \(0.424551\pi\)
\(810\) 0 0
\(811\) 13.6700 0.480017 0.240009 0.970771i \(-0.422850\pi\)
0.240009 + 0.970771i \(0.422850\pi\)
\(812\) −10.2591 + 34.2676i −0.360022 + 1.20256i
\(813\) 0 0
\(814\) 4.47307 + 2.94199i 0.156781 + 0.103117i
\(815\) 8.01906 18.5903i 0.280895 0.651189i
\(816\) 0 0
\(817\) −1.49500 25.6682i −0.0523034 0.898015i
\(818\) 1.57767 1.32382i 0.0551619 0.0462863i
\(819\) 0 0
\(820\) −27.2241 22.8438i −0.950708 0.797739i
\(821\) −5.99568 + 8.05360i −0.209251 + 0.281073i −0.894341 0.447385i \(-0.852355\pi\)
0.685090 + 0.728458i \(0.259763\pi\)
\(822\) 0 0
\(823\) 20.7580 22.0022i 0.723579 0.766949i −0.256288 0.966600i \(-0.582500\pi\)
0.979867 + 0.199652i \(0.0639811\pi\)
\(824\) 4.73517 + 1.12226i 0.164957 + 0.0390956i
\(825\) 0 0
\(826\) 12.2507 + 28.4004i 0.426257 + 0.988175i
\(827\) 8.16805 46.3233i 0.284031 1.61082i −0.424695 0.905336i \(-0.639619\pi\)
0.708726 0.705483i \(-0.249270\pi\)
\(828\) 0 0
\(829\) −0.608907 3.45328i −0.0211482 0.119938i 0.972406 0.233295i \(-0.0749507\pi\)
−0.993554 + 0.113357i \(0.963840\pi\)
\(830\) −5.14071 + 3.38110i −0.178437 + 0.117360i
\(831\) 0 0
\(832\) −1.29428 1.73852i −0.0448711 0.0602723i
\(833\) −1.90030 + 32.6270i −0.0658416 + 1.13046i
\(834\) 0 0
\(835\) 29.1198 + 30.8652i 1.00773 + 1.06813i
\(836\) 7.60767 + 13.1769i 0.263117 + 0.455731i
\(837\) 0 0
\(838\) −2.26555 + 3.92405i −0.0782622 + 0.135554i
\(839\) −35.8223 + 8.49004i −1.23672 + 0.293109i −0.796422 0.604742i \(-0.793276\pi\)
−0.440301 + 0.897850i \(0.645128\pi\)
\(840\) 0 0
\(841\) 1.77973 0.893813i 0.0613699 0.0308211i
\(842\) 9.80915 1.14652i 0.338046 0.0395119i
\(843\) 0 0
\(844\) −27.3386 13.7299i −0.941032 0.472604i
\(845\) 5.86198 + 2.13359i 0.201658 + 0.0733976i
\(846\) 0 0
\(847\) 8.63568 3.14313i 0.296725 0.107999i
\(848\) −0.0153893 0.00179875i −0.000528470 6.17693e-5i
\(849\) 0 0
\(850\) −0.824367 2.75358i −0.0282755 0.0944469i
\(851\) 1.95745 + 6.53834i 0.0671006 + 0.224132i
\(852\) 0 0
\(853\) 36.6614 + 4.28510i 1.25526 + 0.146719i 0.717609 0.696447i \(-0.245237\pi\)
0.537654 + 0.843166i \(0.319311\pi\)
\(854\) −23.0306 + 8.38245i −0.788090 + 0.286841i
\(855\) 0 0
\(856\) −31.5810 11.4945i −1.07942 0.392875i
\(857\) −26.8999 13.5096i −0.918882 0.461480i −0.0744999 0.997221i \(-0.523736\pi\)
−0.844382 + 0.535741i \(0.820032\pi\)
\(858\) 0 0
\(859\) 19.3157 2.25768i 0.659043 0.0770311i 0.220004 0.975499i \(-0.429393\pi\)
0.439039 + 0.898468i \(0.355319\pi\)
\(860\) 27.4380 13.7799i 0.935630 0.469891i
\(861\) 0 0
\(862\) −19.8641 + 4.70788i −0.676574 + 0.160351i
\(863\) −14.3566 + 24.8664i −0.488706 + 0.846463i −0.999916 0.0129930i \(-0.995864\pi\)
0.511210 + 0.859456i \(0.329197\pi\)
\(864\) 0 0
\(865\) 8.44932 + 14.6347i 0.287286 + 0.497593i
\(866\) 13.0575 + 13.8401i 0.443712 + 0.470307i
\(867\) 0 0
\(868\) 2.39954 41.1986i 0.0814458 1.39837i
\(869\) −15.9151 21.3776i −0.539881 0.725187i
\(870\) 0 0
\(871\) 15.8385 10.4171i 0.536666 0.352971i
\(872\) −5.48453 31.1043i −0.185730 1.05333i
\(873\) 0 0
\(874\) 0.942844 5.34714i 0.0318922 0.180870i
\(875\) −15.0745 34.9466i −0.509610 1.18141i
\(876\) 0 0
\(877\) −18.6086 4.41032i −0.628368 0.148926i −0.0959205 0.995389i \(-0.530579\pi\)
−0.532447 + 0.846463i \(0.678728\pi\)
\(878\) 2.00780 2.12814i 0.0677599 0.0718213i
\(879\) 0 0
\(880\) −6.96266 + 9.35247i −0.234711 + 0.315272i
\(881\) −35.7695 30.0142i −1.20510 1.01120i −0.999469 0.0325741i \(-0.989630\pi\)
−0.205635 0.978629i \(-0.565926\pi\)
\(882\) 0 0
\(883\) −10.7311 + 9.00449i −0.361131 + 0.303025i −0.805241 0.592947i \(-0.797964\pi\)
0.444110 + 0.895972i \(0.353520\pi\)
\(884\) −0.971880 16.6865i −0.0326879 0.561229i
\(885\) 0 0
\(886\) 0.698789 1.61998i 0.0234763 0.0544241i
\(887\) −8.66156 5.69680i −0.290827 0.191280i 0.395709 0.918376i \(-0.370499\pi\)
−0.686535 + 0.727096i \(0.740869\pi\)
\(888\) 0 0
\(889\) −14.1897 + 47.3970i −0.475909 + 1.58965i
\(890\) 20.7730 0.696312
\(891\) 0 0
\(892\) 25.2612 0.845809
\(893\) 9.54596 31.8857i 0.319444 1.06702i
\(894\) 0 0
\(895\) −31.9318 21.0019i −1.06736 0.702015i
\(896\) −18.0058 + 41.7421i −0.601530 + 1.39450i
\(897\) 0 0
\(898\) −1.60115 27.4907i −0.0534310 0.917375i
\(899\) −27.3900 + 22.9829i −0.913508 + 0.766524i
\(900\) 0 0
\(901\) 0.0249850 + 0.0209649i 0.000832370 + 0.000698441i
\(902\) −10.5802 + 14.2116i −0.352281 + 0.473195i
\(903\) 0 0
\(904\) 4.78662 5.07352i 0.159201 0.168743i
\(905\) −13.7084 3.24895i −0.455682 0.107999i
\(906\) 0 0
\(907\) −14.2455 33.0247i −0.473013 1.09657i −0.973056 0.230568i \(-0.925942\pi\)
0.500043 0.866001i \(-0.333318\pi\)
\(908\) 5.76067 32.6704i 0.191174 1.08420i
\(909\) 0 0
\(910\) −3.84964 21.8324i −0.127614 0.723737i
\(911\) −5.31457 + 3.49545i −0.176079 + 0.115809i −0.634489 0.772932i \(-0.718790\pi\)
0.458410 + 0.888741i \(0.348419\pi\)
\(912\) 0 0
\(913\) −6.54377 8.78981i −0.216567 0.290900i
\(914\) −0.294755 + 5.06075i −0.00974963 + 0.167395i
\(915\) 0 0
\(916\) −9.25351 9.80814i −0.305744 0.324070i
\(917\) −10.5602 18.2909i −0.348730 0.604018i
\(918\) 0 0
\(919\) 23.2884 40.3367i 0.768213 1.33058i −0.170318 0.985389i \(-0.554480\pi\)
0.938531 0.345194i \(-0.112187\pi\)
\(920\) 14.3843 3.40914i 0.474235 0.112396i
\(921\) 0 0
\(922\) −13.0280 + 6.54289i −0.429053 + 0.215479i
\(923\) 7.64545 0.893625i 0.251653 0.0294140i
\(924\) 0 0
\(925\) 3.21960 + 1.61695i 0.105860 + 0.0531649i
\(926\) −23.0942 8.40558i −0.758921 0.276225i
\(927\) 0 0
\(928\) 30.0728 10.9456i 0.987189 0.359307i
\(929\) −44.6011 5.21312i −1.46331 0.171037i −0.653145 0.757233i \(-0.726551\pi\)
−0.810169 + 0.586196i \(0.800625\pi\)
\(930\) 0 0
\(931\) 9.34686 + 31.2207i 0.306331 + 1.02322i
\(932\) 6.70635 + 22.4008i 0.219674 + 0.733762i
\(933\) 0 0
\(934\) 5.46199 + 0.638415i 0.178722 + 0.0208896i
\(935\) 23.0638 8.39454i 0.754267 0.274531i
\(936\) 0 0
\(937\) −48.3251 17.5889i −1.57871 0.574605i −0.603790 0.797144i \(-0.706343\pi\)
−0.974924 + 0.222539i \(0.928565\pi\)
\(938\) 14.2058 + 7.13443i 0.463836 + 0.232947i
\(939\) 0 0
\(940\) 39.4778 4.61430i 1.28762 0.150502i
\(941\) −9.31783 + 4.67959i −0.303753 + 0.152550i −0.594146 0.804357i \(-0.702510\pi\)
0.290394 + 0.956907i \(0.406214\pi\)
\(942\) 0 0
\(943\) −21.9774 + 5.20874i −0.715683 + 0.169620i
\(944\) −8.90994 + 15.4325i −0.289994 + 0.502284i
\(945\) 0 0
\(946\) −7.65361 13.2564i −0.248840 0.431004i
\(947\) 30.9820 + 32.8390i 1.00678 + 1.06713i 0.997742 + 0.0671666i \(0.0213959\pi\)
0.00903943 + 0.999959i \(0.497123\pi\)
\(948\) 0 0
\(949\) 0.891086 15.2994i 0.0289259 0.496638i
\(950\) −1.71157 2.29904i −0.0555308 0.0745908i
\(951\) 0 0
\(952\) 26.6991 17.5603i 0.865323 0.569132i
\(953\) −5.08752 28.8527i −0.164801 0.934632i −0.949270 0.314463i \(-0.898175\pi\)
0.784469 0.620168i \(-0.212936\pi\)
\(954\) 0 0
\(955\) 1.87491 10.6331i 0.0606705 0.344080i
\(956\) −2.23458 5.18034i −0.0722715 0.167544i
\(957\) 0 0
\(958\) −1.64295 0.389386i −0.0530812 0.0125805i
\(959\) 5.36447 5.68601i 0.173228 0.183611i
\(960\) 0 0
\(961\) 6.12136 8.22241i 0.197463 0.265239i
\(962\) −4.49273 3.76985i −0.144851 0.121545i
\(963\) 0 0
\(964\) 27.4013 22.9924i 0.882536 0.740536i
\(965\) −0.414133 7.11039i −0.0133314 0.228891i
\(966\) 0 0
\(967\) 18.5707 43.0518i 0.597195 1.38445i −0.304680 0.952455i \(-0.598549\pi\)
0.901875 0.431998i \(-0.142191\pi\)
\(968\) −4.39952 2.89361i −0.141406 0.0930040i
\(969\) 0 0
\(970\) 3.40982 11.3896i 0.109483 0.365697i
\(971\) −45.6691 −1.46559 −0.732795 0.680449i \(-0.761785\pi\)
−0.732795 + 0.680449i \(0.761785\pi\)
\(972\) 0 0
\(973\) 38.4797 1.23360
\(974\) −3.10375 + 10.3673i −0.0994506 + 0.332188i
\(975\) 0 0
\(976\) −11.7974 7.75924i −0.377624 0.248367i
\(977\) 0.491028 1.13833i 0.0157094 0.0364184i −0.910181 0.414211i \(-0.864058\pi\)
0.925890 + 0.377793i \(0.123317\pi\)
\(978\) 0 0
\(979\) 2.15112 + 36.9333i 0.0687501 + 1.18039i
\(980\) −29.8126 + 25.0157i −0.952329 + 0.799099i
\(981\) 0 0
\(982\) 18.4847 + 15.5105i 0.589869 + 0.494959i
\(983\) 21.8473 29.3460i 0.696821 0.935993i −0.303035 0.952979i \(-0.598000\pi\)
0.999856 + 0.0169868i \(0.00540733\pi\)
\(984\) 0 0
\(985\) −36.6502 + 38.8469i −1.16777 + 1.23777i
\(986\) −11.8165 2.80056i −0.376314 0.0891880i
\(987\) 0 0
\(988\) −6.60168 15.3044i −0.210027 0.486898i
\(989\) 3.38850 19.2172i 0.107748 0.611070i
\(990\) 0 0
\(991\) −7.21791 40.9348i −0.229285 1.30034i −0.854323 0.519743i \(-0.826028\pi\)
0.625038 0.780594i \(-0.285083\pi\)
\(992\) −30.8477 + 20.2889i −0.979416 + 0.644172i
\(993\) 0 0
\(994\) 3.85454 + 5.17755i 0.122259 + 0.164222i
\(995\) −1.42233 + 24.4205i −0.0450910 + 0.774182i
\(996\) 0 0
\(997\) −14.5232 15.3937i −0.459954 0.487523i 0.455335 0.890320i \(-0.349520\pi\)
−0.915289 + 0.402797i \(0.868038\pi\)
\(998\) 10.4952 + 18.1782i 0.332220 + 0.575421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.352.4 144
3.2 odd 2 729.2.g.c.352.5 144
9.2 odd 6 81.2.g.a.76.4 yes 144
9.4 even 3 729.2.g.a.109.4 144
9.5 odd 6 729.2.g.d.109.5 144
9.7 even 3 243.2.g.a.118.5 144
81.11 odd 54 81.2.g.a.16.4 144
81.16 even 27 729.2.g.a.622.4 144
81.23 odd 54 6561.2.a.c.1.31 72
81.38 odd 54 729.2.g.c.379.5 144
81.43 even 27 inner 729.2.g.b.379.4 144
81.58 even 27 6561.2.a.d.1.42 72
81.65 odd 54 729.2.g.d.622.5 144
81.70 even 27 243.2.g.a.208.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.4 144 81.11 odd 54
81.2.g.a.76.4 yes 144 9.2 odd 6
243.2.g.a.118.5 144 9.7 even 3
243.2.g.a.208.5 144 81.70 even 27
729.2.g.a.109.4 144 9.4 even 3
729.2.g.a.622.4 144 81.16 even 27
729.2.g.b.352.4 144 1.1 even 1 trivial
729.2.g.b.379.4 144 81.43 even 27 inner
729.2.g.c.352.5 144 3.2 odd 2
729.2.g.c.379.5 144 81.38 odd 54
729.2.g.d.109.5 144 9.5 odd 6
729.2.g.d.622.5 144 81.65 odd 54
6561.2.a.c.1.31 72 81.23 odd 54
6561.2.a.d.1.42 72 81.58 even 27