Properties

Label 729.2.g.b.298.2
Level $729$
Weight $2$
Character 729.298
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 298.2
Character \(\chi\) \(=\) 729.298
Dual form 729.2.g.b.433.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71974 + 0.201009i) q^{2} +(0.971017 - 0.230135i) q^{4} +(1.23058 + 0.618019i) q^{5} +(-0.943081 - 3.15011i) q^{7} +(1.63042 - 0.593424i) q^{8} +(-2.24050 - 0.815476i) q^{10} +(-0.0119397 + 0.204997i) q^{11} +(3.13795 - 4.21500i) q^{13} +(2.25506 + 5.22781i) q^{14} +(-4.46816 + 2.24399i) q^{16} +(-3.88762 + 3.26210i) q^{17} +(-2.25026 - 1.88819i) q^{19} +(1.33714 + 0.316908i) q^{20} +(-0.0206730 - 0.354942i) q^{22} +(-1.07900 + 3.60410i) q^{23} +(-1.85342 - 2.48958i) q^{25} +(-4.54921 + 7.87946i) q^{26} +(-1.64070 - 2.84178i) q^{28} +(2.49856 - 5.79232i) q^{29} +(-3.48702 - 3.69602i) q^{31} +(4.33378 - 2.85037i) q^{32} +(6.03000 - 6.39142i) q^{34} +(0.786294 - 4.45930i) q^{35} +(1.44468 + 8.19321i) q^{37} +(4.24941 + 2.79488i) q^{38} +(2.37310 + 0.277376i) q^{40} +(-2.74384 - 0.320709i) q^{41} +(1.32558 + 0.871847i) q^{43} +(0.0355834 + 0.201803i) q^{44} +(1.13114 - 6.41502i) q^{46} +(-1.42828 + 1.51388i) q^{47} +(-3.18539 + 2.09506i) q^{49} +(3.68783 + 3.90887i) q^{50} +(2.07698 - 4.81499i) q^{52} +(-4.51663 - 7.82303i) q^{53} +(-0.141385 + 0.244885i) q^{55} +(-3.40697 - 4.57636i) q^{56} +(-3.13257 + 10.4635i) q^{58} +(-0.863215 - 14.8208i) q^{59} +(-1.46609 - 0.347469i) q^{61} +(6.73971 + 5.65528i) q^{62} +(0.780406 - 0.654838i) q^{64} +(6.46643 - 3.24756i) q^{65} +(-5.31098 - 12.3122i) q^{67} +(-3.02423 + 4.06224i) q^{68} +(-0.455864 + 7.82689i) q^{70} +(-4.39214 - 1.59861i) q^{71} +(15.3008 - 5.56905i) q^{73} +(-4.13139 - 13.7998i) q^{74} +(-2.61958 - 1.31560i) q^{76} +(0.657023 - 0.155717i) q^{77} +(1.47690 - 0.172625i) q^{79} -6.88524 q^{80} +4.78316 q^{82} +(-14.1551 + 1.65449i) q^{83} +(-6.80006 + 1.61164i) q^{85} +(-2.45490 - 1.23290i) q^{86} +(0.102183 + 0.341316i) q^{88} +(4.83016 - 1.75803i) q^{89} +(-16.2370 - 5.90980i) q^{91} +(-0.218294 + 3.74796i) q^{92} +(2.15196 - 2.89059i) q^{94} +(-1.60218 - 3.71427i) q^{95} +(-1.60445 + 0.805783i) q^{97} +(5.05691 - 4.24325i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{26}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.71974 + 0.201009i −1.21604 + 0.142135i −0.699819 0.714320i \(-0.746736\pi\)
−0.516222 + 0.856455i \(0.672662\pi\)
\(3\) 0 0
\(4\) 0.971017 0.230135i 0.485509 0.115068i
\(5\) 1.23058 + 0.618019i 0.550331 + 0.276386i 0.702159 0.712020i \(-0.252220\pi\)
−0.151828 + 0.988407i \(0.548516\pi\)
\(6\) 0 0
\(7\) −0.943081 3.15011i −0.356451 1.19063i −0.928788 0.370612i \(-0.879148\pi\)
0.572337 0.820019i \(-0.306037\pi\)
\(8\) 1.63042 0.593424i 0.576441 0.209807i
\(9\) 0 0
\(10\) −2.24050 0.815476i −0.708509 0.257876i
\(11\) −0.0119397 + 0.204997i −0.00359996 + 0.0618089i −0.999630 0.0272125i \(-0.991337\pi\)
0.996030 + 0.0890214i \(0.0283740\pi\)
\(12\) 0 0
\(13\) 3.13795 4.21500i 0.870310 1.16903i −0.114157 0.993463i \(-0.536417\pi\)
0.984468 0.175567i \(-0.0561757\pi\)
\(14\) 2.25506 + 5.22781i 0.602689 + 1.39719i
\(15\) 0 0
\(16\) −4.46816 + 2.24399i −1.11704 + 0.560998i
\(17\) −3.88762 + 3.26210i −0.942887 + 0.791176i −0.978085 0.208204i \(-0.933238\pi\)
0.0351981 + 0.999380i \(0.488794\pi\)
\(18\) 0 0
\(19\) −2.25026 1.88819i −0.516245 0.433181i 0.347075 0.937837i \(-0.387175\pi\)
−0.863320 + 0.504656i \(0.831619\pi\)
\(20\) 1.33714 + 0.316908i 0.298993 + 0.0708628i
\(21\) 0 0
\(22\) −0.0206730 0.354942i −0.00440750 0.0756738i
\(23\) −1.07900 + 3.60410i −0.224987 + 0.751508i 0.768729 + 0.639575i \(0.220889\pi\)
−0.993716 + 0.111933i \(0.964296\pi\)
\(24\) 0 0
\(25\) −1.85342 2.48958i −0.370684 0.497915i
\(26\) −4.54921 + 7.87946i −0.892173 + 1.54529i
\(27\) 0 0
\(28\) −1.64070 2.84178i −0.310063 0.537045i
\(29\) 2.49856 5.79232i 0.463971 1.07561i −0.512251 0.858836i \(-0.671188\pi\)
0.976223 0.216771i \(-0.0695524\pi\)
\(30\) 0 0
\(31\) −3.48702 3.69602i −0.626287 0.663825i 0.334086 0.942543i \(-0.391572\pi\)
−0.960373 + 0.278717i \(0.910091\pi\)
\(32\) 4.33378 2.85037i 0.766111 0.503879i
\(33\) 0 0
\(34\) 6.03000 6.39142i 1.03414 1.09612i
\(35\) 0.786294 4.45930i 0.132908 0.753759i
\(36\) 0 0
\(37\) 1.44468 + 8.19321i 0.237505 + 1.34696i 0.837274 + 0.546783i \(0.184148\pi\)
−0.599770 + 0.800173i \(0.704741\pi\)
\(38\) 4.24941 + 2.79488i 0.689345 + 0.453389i
\(39\) 0 0
\(40\) 2.37310 + 0.277376i 0.375221 + 0.0438570i
\(41\) −2.74384 0.320709i −0.428515 0.0500863i −0.100898 0.994897i \(-0.532172\pi\)
−0.327617 + 0.944811i \(0.606246\pi\)
\(42\) 0 0
\(43\) 1.32558 + 0.871847i 0.202149 + 0.132955i 0.646547 0.762874i \(-0.276212\pi\)
−0.444399 + 0.895829i \(0.646583\pi\)
\(44\) 0.0355834 + 0.201803i 0.00536439 + 0.0304230i
\(45\) 0 0
\(46\) 1.13114 6.41502i 0.166778 0.945843i
\(47\) −1.42828 + 1.51388i −0.208335 + 0.220823i −0.823113 0.567878i \(-0.807764\pi\)
0.614777 + 0.788701i \(0.289246\pi\)
\(48\) 0 0
\(49\) −3.18539 + 2.09506i −0.455055 + 0.299294i
\(50\) 3.68783 + 3.90887i 0.521538 + 0.552798i
\(51\) 0 0
\(52\) 2.07698 4.81499i 0.288026 0.667719i
\(53\) −4.51663 7.82303i −0.620407 1.07458i −0.989410 0.145148i \(-0.953634\pi\)
0.369003 0.929428i \(-0.379699\pi\)
\(54\) 0 0
\(55\) −0.141385 + 0.244885i −0.0190643 + 0.0330203i
\(56\) −3.40697 4.57636i −0.455276 0.611541i
\(57\) 0 0
\(58\) −3.13257 + 10.4635i −0.411327 + 1.37393i
\(59\) −0.863215 14.8208i −0.112381 1.92951i −0.312840 0.949806i \(-0.601280\pi\)
0.200459 0.979702i \(-0.435757\pi\)
\(60\) 0 0
\(61\) −1.46609 0.347469i −0.187713 0.0444888i 0.135684 0.990752i \(-0.456677\pi\)
−0.323397 + 0.946263i \(0.604825\pi\)
\(62\) 6.73971 + 5.65528i 0.855943 + 0.718222i
\(63\) 0 0
\(64\) 0.780406 0.654838i 0.0975508 0.0818548i
\(65\) 6.46643 3.24756i 0.802062 0.402811i
\(66\) 0 0
\(67\) −5.31098 12.3122i −0.648840 1.50418i −0.851185 0.524866i \(-0.824116\pi\)
0.202345 0.979314i \(-0.435144\pi\)
\(68\) −3.02423 + 4.06224i −0.366741 + 0.492619i
\(69\) 0 0
\(70\) −0.455864 + 7.82689i −0.0544862 + 0.935492i
\(71\) −4.39214 1.59861i −0.521252 0.189720i 0.0679763 0.997687i \(-0.478346\pi\)
−0.589228 + 0.807967i \(0.700568\pi\)
\(72\) 0 0
\(73\) 15.3008 5.56905i 1.79083 0.651808i 0.791662 0.610960i \(-0.209216\pi\)
0.999165 0.0408483i \(-0.0130060\pi\)
\(74\) −4.13139 13.7998i −0.480265 1.60420i
\(75\) 0 0
\(76\) −2.61958 1.31560i −0.300487 0.150910i
\(77\) 0.657023 0.155717i 0.0748747 0.0177456i
\(78\) 0 0
\(79\) 1.47690 0.172625i 0.166164 0.0194218i −0.0326039 0.999468i \(-0.510380\pi\)
0.198768 + 0.980047i \(0.436306\pi\)
\(80\) −6.88524 −0.769794
\(81\) 0 0
\(82\) 4.78316 0.528211
\(83\) −14.1551 + 1.65449i −1.55372 + 0.181604i −0.849197 0.528076i \(-0.822914\pi\)
−0.704524 + 0.709680i \(0.748840\pi\)
\(84\) 0 0
\(85\) −6.80006 + 1.61164i −0.737570 + 0.174807i
\(86\) −2.45490 1.23290i −0.264719 0.132947i
\(87\) 0 0
\(88\) 0.102183 + 0.341316i 0.0108928 + 0.0363844i
\(89\) 4.83016 1.75803i 0.511996 0.186351i −0.0730859 0.997326i \(-0.523285\pi\)
0.585082 + 0.810974i \(0.301062\pi\)
\(90\) 0 0
\(91\) −16.2370 5.90980i −1.70210 0.619515i
\(92\) −0.218294 + 3.74796i −0.0227587 + 0.390752i
\(93\) 0 0
\(94\) 2.15196 2.89059i 0.221958 0.298141i
\(95\) −1.60218 3.71427i −0.164380 0.381076i
\(96\) 0 0
\(97\) −1.60445 + 0.805783i −0.162907 + 0.0818149i −0.528384 0.849005i \(-0.677202\pi\)
0.365478 + 0.930820i \(0.380906\pi\)
\(98\) 5.05691 4.24325i 0.510825 0.428633i
\(99\) 0 0
\(100\) −2.37264 1.99088i −0.237264 0.199088i
\(101\) 11.1658 + 2.64633i 1.11103 + 0.263320i 0.744856 0.667225i \(-0.232518\pi\)
0.366178 + 0.930545i \(0.380666\pi\)
\(102\) 0 0
\(103\) −0.0290838 0.499350i −0.00286571 0.0492024i 0.996572 0.0827284i \(-0.0263634\pi\)
−0.999438 + 0.0335260i \(0.989326\pi\)
\(104\) 2.61489 8.73435i 0.256411 0.856473i
\(105\) 0 0
\(106\) 9.33994 + 12.5457i 0.907175 + 1.21855i
\(107\) 2.72183 4.71434i 0.263129 0.455752i −0.703943 0.710257i \(-0.748579\pi\)
0.967072 + 0.254504i \(0.0819123\pi\)
\(108\) 0 0
\(109\) −8.38980 14.5316i −0.803597 1.39187i −0.917234 0.398348i \(-0.869584\pi\)
0.113637 0.993522i \(-0.463750\pi\)
\(110\) 0.193921 0.449559i 0.0184896 0.0428638i
\(111\) 0 0
\(112\) 11.2827 + 11.9589i 1.06611 + 1.13001i
\(113\) −7.37939 + 4.85350i −0.694195 + 0.456579i −0.846941 0.531686i \(-0.821559\pi\)
0.152747 + 0.988265i \(0.451188\pi\)
\(114\) 0 0
\(115\) −3.55519 + 3.76829i −0.331524 + 0.351395i
\(116\) 1.09313 6.19945i 0.101495 0.575604i
\(117\) 0 0
\(118\) 4.46363 + 25.3145i 0.410910 + 2.33039i
\(119\) 13.9423 + 9.17002i 1.27809 + 0.840614i
\(120\) 0 0
\(121\) 10.8837 + 1.27213i 0.989431 + 0.115648i
\(122\) 2.59113 + 0.302860i 0.234590 + 0.0274197i
\(123\) 0 0
\(124\) −4.23654 2.78642i −0.380453 0.250228i
\(125\) −1.93778 10.9897i −0.173321 0.982950i
\(126\) 0 0
\(127\) −1.21170 + 6.87190i −0.107521 + 0.609783i 0.882662 + 0.470008i \(0.155749\pi\)
−0.990183 + 0.139775i \(0.955362\pi\)
\(128\) −8.32971 + 8.82898i −0.736249 + 0.780379i
\(129\) 0 0
\(130\) −10.4678 + 6.88478i −0.918087 + 0.603835i
\(131\) 3.87020 + 4.10217i 0.338141 + 0.358408i 0.874023 0.485884i \(-0.161502\pi\)
−0.535882 + 0.844293i \(0.680021\pi\)
\(132\) 0 0
\(133\) −3.82584 + 8.86929i −0.331742 + 0.769065i
\(134\) 11.6084 + 20.1063i 1.00281 + 1.73692i
\(135\) 0 0
\(136\) −4.40265 + 7.62561i −0.377524 + 0.653891i
\(137\) 0.665511 + 0.893937i 0.0568585 + 0.0763742i 0.829643 0.558294i \(-0.188544\pi\)
−0.772784 + 0.634669i \(0.781137\pi\)
\(138\) 0 0
\(139\) 1.36460 4.55809i 0.115744 0.386612i −0.880412 0.474210i \(-0.842734\pi\)
0.996156 + 0.0875977i \(0.0279190\pi\)
\(140\) −0.262736 4.51101i −0.0222053 0.381250i
\(141\) 0 0
\(142\) 7.87469 + 1.86634i 0.660829 + 0.156619i
\(143\) 0.826595 + 0.693595i 0.0691233 + 0.0580014i
\(144\) 0 0
\(145\) 6.65443 5.58373i 0.552621 0.463704i
\(146\) −25.1941 + 12.6529i −2.08507 + 1.04716i
\(147\) 0 0
\(148\) 3.28836 + 7.62328i 0.270302 + 0.626630i
\(149\) −4.58470 + 6.15832i −0.375593 + 0.504510i −0.949222 0.314606i \(-0.898128\pi\)
0.573629 + 0.819115i \(0.305535\pi\)
\(150\) 0 0
\(151\) −0.179593 + 3.08349i −0.0146150 + 0.250930i 0.983085 + 0.183149i \(0.0586291\pi\)
−0.997700 + 0.0677814i \(0.978408\pi\)
\(152\) −4.78937 1.74319i −0.388469 0.141391i
\(153\) 0 0
\(154\) −1.09861 + 0.399861i −0.0885285 + 0.0322217i
\(155\) −2.00683 6.70328i −0.161193 0.538421i
\(156\) 0 0
\(157\) 5.47868 + 2.75149i 0.437246 + 0.219593i 0.653784 0.756681i \(-0.273180\pi\)
−0.216538 + 0.976274i \(0.569477\pi\)
\(158\) −2.50519 + 0.593741i −0.199302 + 0.0472355i
\(159\) 0 0
\(160\) 7.09463 0.829244i 0.560880 0.0655575i
\(161\) 12.3709 0.974965
\(162\) 0 0
\(163\) −0.171894 −0.0134638 −0.00673188 0.999977i \(-0.502143\pi\)
−0.00673188 + 0.999977i \(0.502143\pi\)
\(164\) −2.73812 + 0.320040i −0.213811 + 0.0249909i
\(165\) 0 0
\(166\) 24.0105 5.69059i 1.86358 0.441676i
\(167\) 0.263030 + 0.132098i 0.0203538 + 0.0102221i 0.458947 0.888464i \(-0.348227\pi\)
−0.438593 + 0.898686i \(0.644523\pi\)
\(168\) 0 0
\(169\) −4.19103 13.9990i −0.322387 1.07685i
\(170\) 11.3704 4.13849i 0.872069 0.317407i
\(171\) 0 0
\(172\) 1.48780 + 0.541516i 0.113444 + 0.0412902i
\(173\) −0.156232 + 2.68241i −0.0118781 + 0.203940i 0.987148 + 0.159811i \(0.0510883\pi\)
−0.999026 + 0.0441291i \(0.985949\pi\)
\(174\) 0 0
\(175\) −6.09452 + 8.18636i −0.460702 + 0.618830i
\(176\) −0.406663 0.942751i −0.0306534 0.0710626i
\(177\) 0 0
\(178\) −7.95324 + 3.99427i −0.596121 + 0.299383i
\(179\) 1.83356 1.53854i 0.137047 0.114996i −0.571687 0.820471i \(-0.693711\pi\)
0.708734 + 0.705476i \(0.249267\pi\)
\(180\) 0 0
\(181\) 12.8278 + 10.7638i 0.953481 + 0.800065i 0.979880 0.199586i \(-0.0639598\pi\)
−0.0263995 + 0.999651i \(0.508404\pi\)
\(182\) 29.1114 + 6.89954i 2.15788 + 0.511428i
\(183\) 0 0
\(184\) 0.379543 + 6.51651i 0.0279803 + 0.480403i
\(185\) −3.28576 + 10.9752i −0.241574 + 0.806914i
\(186\) 0 0
\(187\) −0.622304 0.835899i −0.0455074 0.0611270i
\(188\) −1.03848 + 1.79870i −0.0757391 + 0.131184i
\(189\) 0 0
\(190\) 3.50193 + 6.06553i 0.254057 + 0.440040i
\(191\) −5.62068 + 13.0302i −0.406698 + 0.942833i 0.584615 + 0.811311i \(0.301246\pi\)
−0.991313 + 0.131522i \(0.958014\pi\)
\(192\) 0 0
\(193\) 2.86567 + 3.03743i 0.206275 + 0.218639i 0.822249 0.569127i \(-0.192719\pi\)
−0.615974 + 0.787766i \(0.711237\pi\)
\(194\) 2.59726 1.70825i 0.186473 0.122645i
\(195\) 0 0
\(196\) −2.61092 + 2.76741i −0.186494 + 0.197672i
\(197\) −3.59768 + 20.4035i −0.256324 + 1.45369i 0.536326 + 0.844011i \(0.319812\pi\)
−0.792650 + 0.609677i \(0.791299\pi\)
\(198\) 0 0
\(199\) 0.499478 + 2.83268i 0.0354071 + 0.200803i 0.997380 0.0723417i \(-0.0230472\pi\)
−0.961973 + 0.273145i \(0.911936\pi\)
\(200\) −4.49923 2.95919i −0.318144 0.209246i
\(201\) 0 0
\(202\) −19.7341 2.30659i −1.38849 0.162291i
\(203\) −20.6028 2.40812i −1.44603 0.169017i
\(204\) 0 0
\(205\) −3.17830 2.09040i −0.221982 0.146000i
\(206\) 0.150390 + 0.852907i 0.0104782 + 0.0594248i
\(207\) 0 0
\(208\) −4.56243 + 25.8748i −0.316347 + 1.79409i
\(209\) 0.413941 0.438752i 0.0286329 0.0303491i
\(210\) 0 0
\(211\) 8.86778 5.83243i 0.610483 0.401521i −0.206281 0.978493i \(-0.566136\pi\)
0.816764 + 0.576972i \(0.195766\pi\)
\(212\) −6.18608 6.55687i −0.424862 0.450327i
\(213\) 0 0
\(214\) −3.73321 + 8.65456i −0.255197 + 0.591613i
\(215\) 1.09241 + 1.89211i 0.0745016 + 0.129041i
\(216\) 0 0
\(217\) −8.35434 + 14.4701i −0.567130 + 0.982298i
\(218\) 17.3493 + 23.3041i 1.17504 + 1.57835i
\(219\) 0 0
\(220\) −0.0809302 + 0.270326i −0.00545631 + 0.0182254i
\(221\) 1.55059 + 26.6226i 0.104304 + 1.79083i
\(222\) 0 0
\(223\) −23.0369 5.45985i −1.54266 0.365618i −0.630746 0.775989i \(-0.717251\pi\)
−0.911919 + 0.410371i \(0.865399\pi\)
\(224\) −13.0661 10.9638i −0.873015 0.732547i
\(225\) 0 0
\(226\) 11.7150 9.83009i 0.779273 0.653888i
\(227\) −0.410190 + 0.206005i −0.0272253 + 0.0136730i −0.462360 0.886692i \(-0.652997\pi\)
0.435134 + 0.900365i \(0.356701\pi\)
\(228\) 0 0
\(229\) 6.33458 + 14.6852i 0.418601 + 0.970426i 0.988845 + 0.148951i \(0.0475896\pi\)
−0.570244 + 0.821476i \(0.693151\pi\)
\(230\) 5.35656 7.19511i 0.353201 0.474431i
\(231\) 0 0
\(232\) 0.636403 10.9266i 0.0417819 0.717368i
\(233\) 7.46875 + 2.71840i 0.489294 + 0.178089i 0.574873 0.818243i \(-0.305052\pi\)
−0.0855784 + 0.996331i \(0.527274\pi\)
\(234\) 0 0
\(235\) −2.69321 + 0.980249i −0.175686 + 0.0639444i
\(236\) −4.24899 14.1926i −0.276586 0.923862i
\(237\) 0 0
\(238\) −25.8205 12.9675i −1.67369 0.840560i
\(239\) 20.6455 4.89308i 1.33545 0.316507i 0.499977 0.866039i \(-0.333342\pi\)
0.835473 + 0.549532i \(0.185194\pi\)
\(240\) 0 0
\(241\) 17.9476 2.09777i 1.15611 0.135129i 0.483647 0.875263i \(-0.339312\pi\)
0.672460 + 0.740134i \(0.265238\pi\)
\(242\) −18.9729 −1.21963
\(243\) 0 0
\(244\) −1.50356 −0.0962556
\(245\) −5.21465 + 0.609505i −0.333152 + 0.0389398i
\(246\) 0 0
\(247\) −15.0199 + 3.55979i −0.955694 + 0.226504i
\(248\) −7.87862 3.95679i −0.500293 0.251256i
\(249\) 0 0
\(250\) 5.54152 + 18.5100i 0.350476 + 1.17067i
\(251\) −7.58786 + 2.76176i −0.478942 + 0.174321i −0.570199 0.821507i \(-0.693134\pi\)
0.0912569 + 0.995827i \(0.470912\pi\)
\(252\) 0 0
\(253\) −0.725947 0.264223i −0.0456399 0.0166116i
\(254\) 0.702500 12.0615i 0.0440788 0.756803i
\(255\) 0 0
\(256\) 11.3335 15.2236i 0.708346 0.951474i
\(257\) −6.54858 15.1813i −0.408489 0.946984i −0.990963 0.134135i \(-0.957174\pi\)
0.582474 0.812849i \(-0.302085\pi\)
\(258\) 0 0
\(259\) 24.4471 12.2778i 1.51907 0.762904i
\(260\) 5.53164 4.64160i 0.343058 0.287860i
\(261\) 0 0
\(262\) −7.48032 6.27673i −0.462135 0.387778i
\(263\) 0.0163370 + 0.00387195i 0.00100738 + 0.000238754i 0.231120 0.972925i \(-0.425761\pi\)
−0.230112 + 0.973164i \(0.573909\pi\)
\(264\) 0 0
\(265\) −0.723278 12.4182i −0.0444306 0.762844i
\(266\) 4.79665 16.0219i 0.294101 0.982366i
\(267\) 0 0
\(268\) −7.99054 10.7332i −0.488100 0.655632i
\(269\) 3.16338 5.47913i 0.192874 0.334068i −0.753327 0.657646i \(-0.771552\pi\)
0.946202 + 0.323578i \(0.104886\pi\)
\(270\) 0 0
\(271\) −9.98751 17.2989i −0.606698 1.05083i −0.991781 0.127950i \(-0.959160\pi\)
0.385082 0.922882i \(-0.374173\pi\)
\(272\) 10.0504 23.2994i 0.609394 1.41273i
\(273\) 0 0
\(274\) −1.32420 1.40357i −0.0799977 0.0847926i
\(275\) 0.532485 0.350221i 0.0321100 0.0211191i
\(276\) 0 0
\(277\) −4.29297 + 4.55028i −0.257940 + 0.273400i −0.843383 0.537314i \(-0.819439\pi\)
0.585443 + 0.810714i \(0.300921\pi\)
\(278\) −1.43055 + 8.11303i −0.0857985 + 0.486587i
\(279\) 0 0
\(280\) −1.36427 7.73713i −0.0815304 0.462382i
\(281\) −4.86386 3.19901i −0.290153 0.190837i 0.396084 0.918214i \(-0.370369\pi\)
−0.686238 + 0.727377i \(0.740739\pi\)
\(282\) 0 0
\(283\) 8.53883 + 0.998046i 0.507581 + 0.0593277i 0.366029 0.930603i \(-0.380717\pi\)
0.141551 + 0.989931i \(0.454791\pi\)
\(284\) −4.63274 0.541490i −0.274903 0.0321315i
\(285\) 0 0
\(286\) −1.56095 1.02665i −0.0923008 0.0607072i
\(287\) 1.57739 + 8.94585i 0.0931106 + 0.528057i
\(288\) 0 0
\(289\) 1.52028 8.62194i 0.0894282 0.507173i
\(290\) −10.3215 + 10.9402i −0.606101 + 0.642430i
\(291\) 0 0
\(292\) 13.5757 8.92891i 0.794460 0.522525i
\(293\) 4.41654 + 4.68126i 0.258017 + 0.273482i 0.843413 0.537265i \(-0.180543\pi\)
−0.585396 + 0.810747i \(0.699061\pi\)
\(294\) 0 0
\(295\) 8.09730 18.7717i 0.471443 1.09293i
\(296\) 7.21749 + 12.5011i 0.419508 + 0.726610i
\(297\) 0 0
\(298\) 6.64663 11.5123i 0.385029 0.666889i
\(299\) 11.8054 + 15.8575i 0.682726 + 0.917061i
\(300\) 0 0
\(301\) 1.49629 4.99794i 0.0862445 0.288077i
\(302\) −0.310955 5.33890i −0.0178935 0.307219i
\(303\) 0 0
\(304\) 14.2916 + 3.38717i 0.819680 + 0.194268i
\(305\) −1.58939 1.33366i −0.0910082 0.0763649i
\(306\) 0 0
\(307\) 18.8060 15.7801i 1.07332 0.900619i 0.0779670 0.996956i \(-0.475157\pi\)
0.995349 + 0.0963370i \(0.0307127\pi\)
\(308\) 0.602145 0.302409i 0.0343104 0.0172313i
\(309\) 0 0
\(310\) 4.79865 + 11.1245i 0.272545 + 0.631831i
\(311\) 7.75517 10.4170i 0.439755 0.590694i −0.525892 0.850552i \(-0.676268\pi\)
0.965647 + 0.259858i \(0.0836757\pi\)
\(312\) 0 0
\(313\) −0.303986 + 5.21924i −0.0171823 + 0.295009i 0.978760 + 0.205011i \(0.0657231\pi\)
−0.995942 + 0.0899978i \(0.971314\pi\)
\(314\) −9.97498 3.63060i −0.562921 0.204886i
\(315\) 0 0
\(316\) 1.39437 0.507509i 0.0784394 0.0285496i
\(317\) −8.76380 29.2731i −0.492224 1.64414i −0.737988 0.674814i \(-0.764224\pi\)
0.245764 0.969330i \(-0.420961\pi\)
\(318\) 0 0
\(319\) 1.15758 + 0.581356i 0.0648118 + 0.0325497i
\(320\) 1.36505 0.323523i 0.0763087 0.0180855i
\(321\) 0 0
\(322\) −21.2748 + 2.48667i −1.18560 + 0.138576i
\(323\) 14.9076 0.829483
\(324\) 0 0
\(325\) −16.3095 −0.904688
\(326\) 0.295613 0.0345522i 0.0163725 0.00191367i
\(327\) 0 0
\(328\) −4.66392 + 1.10537i −0.257522 + 0.0610338i
\(329\) 6.11588 + 3.07151i 0.337180 + 0.169338i
\(330\) 0 0
\(331\) −0.913088 3.04992i −0.0501878 0.167639i 0.929222 0.369523i \(-0.120479\pi\)
−0.979409 + 0.201884i \(0.935294\pi\)
\(332\) −13.3641 + 4.86412i −0.733449 + 0.266953i
\(333\) 0 0
\(334\) −0.478896 0.174304i −0.0262040 0.00953748i
\(335\) 1.07363 18.4334i 0.0586585 1.00713i
\(336\) 0 0
\(337\) −19.5699 + 26.2869i −1.06604 + 1.43194i −0.171372 + 0.985206i \(0.554820\pi\)
−0.894667 + 0.446733i \(0.852587\pi\)
\(338\) 10.0214 + 23.2322i 0.545093 + 1.26367i
\(339\) 0 0
\(340\) −6.23208 + 3.12987i −0.337982 + 0.169741i
\(341\) 0.799307 0.670699i 0.0432849 0.0363204i
\(342\) 0 0
\(343\) −8.02888 6.73703i −0.433519 0.363765i
\(344\) 2.67862 + 0.634846i 0.144422 + 0.0342286i
\(345\) 0 0
\(346\) −0.270509 4.64445i −0.0145426 0.249687i
\(347\) −6.42646 + 21.4659i −0.344990 + 1.15235i 0.592859 + 0.805306i \(0.297999\pi\)
−0.937850 + 0.347042i \(0.887186\pi\)
\(348\) 0 0
\(349\) 13.1779 + 17.7010i 0.705398 + 0.947514i 0.999967 0.00811637i \(-0.00258355\pi\)
−0.294569 + 0.955630i \(0.595176\pi\)
\(350\) 8.83546 15.3035i 0.472275 0.818005i
\(351\) 0 0
\(352\) 0.532573 + 0.922444i 0.0283863 + 0.0491664i
\(353\) 4.32393 10.0240i 0.230139 0.533523i −0.763542 0.645758i \(-0.776542\pi\)
0.993682 + 0.112235i \(0.0358008\pi\)
\(354\) 0 0
\(355\) −4.41690 4.68164i −0.234425 0.248476i
\(356\) 4.28558 2.81867i 0.227135 0.149389i
\(357\) 0 0
\(358\) −2.84399 + 3.01445i −0.150310 + 0.159319i
\(359\) 4.30460 24.4126i 0.227188 1.28845i −0.631269 0.775564i \(-0.717466\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(360\) 0 0
\(361\) −1.80092 10.2135i −0.0947851 0.537553i
\(362\) −24.2241 15.9324i −1.27319 0.837390i
\(363\) 0 0
\(364\) −17.1265 2.00180i −0.897673 0.104923i
\(365\) 22.2706 + 2.60306i 1.16570 + 0.136251i
\(366\) 0 0
\(367\) 10.7348 + 7.06040i 0.560353 + 0.368550i 0.797866 0.602834i \(-0.205962\pi\)
−0.237514 + 0.971384i \(0.576332\pi\)
\(368\) −3.26645 18.5250i −0.170276 0.965681i
\(369\) 0 0
\(370\) 3.44455 19.5350i 0.179074 1.01558i
\(371\) −20.3839 + 21.6057i −1.05828 + 1.12171i
\(372\) 0 0
\(373\) −1.86370 + 1.22577i −0.0964987 + 0.0634682i −0.596841 0.802359i \(-0.703578\pi\)
0.500343 + 0.865828i \(0.333207\pi\)
\(374\) 1.23823 + 1.31244i 0.0640271 + 0.0678648i
\(375\) 0 0
\(376\) −1.43031 + 3.31584i −0.0737628 + 0.171001i
\(377\) −16.5742 28.7074i −0.853617 1.47851i
\(378\) 0 0
\(379\) 3.67947 6.37302i 0.189001 0.327360i −0.755916 0.654668i \(-0.772808\pi\)
0.944918 + 0.327308i \(0.106142\pi\)
\(380\) −2.41053 3.23790i −0.123657 0.166101i
\(381\) 0 0
\(382\) 7.04693 23.5384i 0.360553 1.20433i
\(383\) 0.840550 + 14.4317i 0.0429501 + 0.737425i 0.949198 + 0.314679i \(0.101897\pi\)
−0.906248 + 0.422746i \(0.861066\pi\)
\(384\) 0 0
\(385\) 0.904754 + 0.214431i 0.0461105 + 0.0109284i
\(386\) −5.53876 4.64757i −0.281916 0.236555i
\(387\) 0 0
\(388\) −1.37251 + 1.15167i −0.0696784 + 0.0584671i
\(389\) 7.59957 3.81665i 0.385314 0.193512i −0.245589 0.969374i \(-0.578981\pi\)
0.630902 + 0.775862i \(0.282685\pi\)
\(390\) 0 0
\(391\) −7.56223 17.5312i −0.382438 0.886591i
\(392\) −3.95026 + 5.30611i −0.199518 + 0.267999i
\(393\) 0 0
\(394\) 2.08580 35.8119i 0.105081 1.80418i
\(395\) 1.92413 + 0.700325i 0.0968133 + 0.0352372i
\(396\) 0 0
\(397\) −5.16106 + 1.87847i −0.259026 + 0.0942779i −0.468269 0.883586i \(-0.655122\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(398\) −1.42837 4.77108i −0.0715976 0.239153i
\(399\) 0 0
\(400\) 13.8680 + 6.96476i 0.693399 + 0.348238i
\(401\) −9.15526 + 2.16984i −0.457192 + 0.108356i −0.452758 0.891634i \(-0.649560\pi\)
−0.00443443 + 0.999990i \(0.501412\pi\)
\(402\) 0 0
\(403\) −26.5208 + 3.09984i −1.32110 + 0.154414i
\(404\) 11.4512 0.569716
\(405\) 0 0
\(406\) 35.9155 1.78246
\(407\) −1.69683 + 0.198331i −0.0841088 + 0.00983091i
\(408\) 0 0
\(409\) −15.0060 + 3.55650i −0.742001 + 0.175857i −0.584196 0.811613i \(-0.698590\pi\)
−0.157805 + 0.987470i \(0.550442\pi\)
\(410\) 5.88604 + 2.95608i 0.290691 + 0.145990i
\(411\) 0 0
\(412\) −0.143159 0.478184i −0.00705294 0.0235584i
\(413\) −45.8732 + 16.6965i −2.25727 + 0.821580i
\(414\) 0 0
\(415\) −18.4414 6.71212i −0.905253 0.329485i
\(416\) 1.58487 27.2112i 0.0777047 1.33414i
\(417\) 0 0
\(418\) −0.623678 + 0.837746i −0.0305051 + 0.0409755i
\(419\) −9.78506 22.6843i −0.478031 1.10820i −0.971200 0.238267i \(-0.923421\pi\)
0.493168 0.869934i \(-0.335839\pi\)
\(420\) 0 0
\(421\) −0.166031 + 0.0833838i −0.00809185 + 0.00406388i −0.452841 0.891592i \(-0.649589\pi\)
0.444749 + 0.895655i \(0.353293\pi\)
\(422\) −14.0779 + 11.8128i −0.685302 + 0.575037i
\(423\) 0 0
\(424\) −12.0064 10.0746i −0.583082 0.489264i
\(425\) 15.3267 + 3.63249i 0.743452 + 0.176201i
\(426\) 0 0
\(427\) 0.288073 + 4.94603i 0.0139408 + 0.239355i
\(428\) 1.55800 5.20409i 0.0753089 0.251549i
\(429\) 0 0
\(430\) −2.25899 3.03435i −0.108938 0.146329i
\(431\) −7.27612 + 12.6026i −0.350478 + 0.607046i −0.986333 0.164762i \(-0.947314\pi\)
0.635855 + 0.771808i \(0.280648\pi\)
\(432\) 0 0
\(433\) 17.3096 + 29.9811i 0.831846 + 1.44080i 0.896573 + 0.442897i \(0.146049\pi\)
−0.0647264 + 0.997903i \(0.520617\pi\)
\(434\) 11.4587 26.5642i 0.550034 1.27512i
\(435\) 0 0
\(436\) −11.4909 12.1796i −0.550313 0.583297i
\(437\) 9.23327 6.07282i 0.441687 0.290502i
\(438\) 0 0
\(439\) 1.34902 1.42987i 0.0643851 0.0682442i −0.694380 0.719608i \(-0.744321\pi\)
0.758765 + 0.651364i \(0.225803\pi\)
\(440\) −0.0851954 + 0.483167i −0.00406153 + 0.0230341i
\(441\) 0 0
\(442\) −8.01800 45.4724i −0.381378 2.16290i
\(443\) 26.5757 + 17.4791i 1.26265 + 0.830456i 0.991248 0.132010i \(-0.0421433\pi\)
0.271399 + 0.962467i \(0.412514\pi\)
\(444\) 0 0
\(445\) 7.03038 + 0.821733i 0.333272 + 0.0389539i
\(446\) 40.7150 + 4.75890i 1.92791 + 0.225340i
\(447\) 0 0
\(448\) −2.79880 1.84080i −0.132231 0.0869696i
\(449\) 5.17251 + 29.3348i 0.244106 + 1.38439i 0.822560 + 0.568679i \(0.192545\pi\)
−0.578454 + 0.815715i \(0.696344\pi\)
\(450\) 0 0
\(451\) 0.0985049 0.558649i 0.00463841 0.0263057i
\(452\) −6.04855 + 6.41109i −0.284500 + 0.301552i
\(453\) 0 0
\(454\) 0.664012 0.436727i 0.0311636 0.0204966i
\(455\) −16.3286 17.3073i −0.765495 0.811377i
\(456\) 0 0
\(457\) 5.04859 11.7040i 0.236163 0.547488i −0.758380 0.651813i \(-0.774009\pi\)
0.994543 + 0.104325i \(0.0332681\pi\)
\(458\) −13.8457 23.9815i −0.646968 1.12058i
\(459\) 0 0
\(460\) −2.58494 + 4.47725i −0.120523 + 0.208753i
\(461\) −12.3421 16.5783i −0.574828 0.772129i 0.415690 0.909506i \(-0.363540\pi\)
−0.990519 + 0.137378i \(0.956133\pi\)
\(462\) 0 0
\(463\) 4.77533 15.9507i 0.221929 0.741293i −0.772418 0.635114i \(-0.780953\pi\)
0.994347 0.106179i \(-0.0338617\pi\)
\(464\) 1.83395 + 31.4878i 0.0851391 + 1.46178i
\(465\) 0 0
\(466\) −13.3908 3.17367i −0.620315 0.147017i
\(467\) 22.4416 + 18.8308i 1.03848 + 0.871384i 0.991835 0.127527i \(-0.0407041\pi\)
0.0466403 + 0.998912i \(0.485149\pi\)
\(468\) 0 0
\(469\) −33.7762 + 28.3416i −1.55964 + 1.30870i
\(470\) 4.43459 2.22713i 0.204552 0.102730i
\(471\) 0 0
\(472\) −10.2024 23.6519i −0.469606 1.08867i
\(473\) −0.194553 + 0.261330i −0.00894555 + 0.0120160i
\(474\) 0 0
\(475\) −0.530120 + 9.10181i −0.0243236 + 0.417620i
\(476\) 15.6486 + 5.69562i 0.717252 + 0.261059i
\(477\) 0 0
\(478\) −34.5215 + 12.5648i −1.57897 + 0.574700i
\(479\) 6.41347 + 21.4225i 0.293039 + 0.978819i 0.970062 + 0.242857i \(0.0780845\pi\)
−0.677023 + 0.735962i \(0.736730\pi\)
\(480\) 0 0
\(481\) 39.0677 + 19.6205i 1.78133 + 0.894619i
\(482\) −30.4436 + 7.21526i −1.38667 + 0.328646i
\(483\) 0 0
\(484\) 10.8611 1.26948i 0.493685 0.0577035i
\(485\) −2.47238 −0.112265
\(486\) 0 0
\(487\) 3.73936 0.169447 0.0847233 0.996405i \(-0.472999\pi\)
0.0847233 + 0.996405i \(0.472999\pi\)
\(488\) −2.59653 + 0.303491i −0.117540 + 0.0137384i
\(489\) 0 0
\(490\) 8.84533 2.09638i 0.399591 0.0947049i
\(491\) 1.07834 + 0.541563i 0.0486648 + 0.0244404i 0.472965 0.881081i \(-0.343184\pi\)
−0.424300 + 0.905521i \(0.639480\pi\)
\(492\) 0 0
\(493\) 9.18167 + 30.6689i 0.413522 + 1.38126i
\(494\) 25.1148 9.14105i 1.12997 0.411275i
\(495\) 0 0
\(496\) 23.8744 + 8.68957i 1.07199 + 0.390173i
\(497\) −0.893649 + 15.3434i −0.0400856 + 0.688244i
\(498\) 0 0
\(499\) 1.99325 2.67741i 0.0892303 0.119857i −0.755266 0.655418i \(-0.772492\pi\)
0.844497 + 0.535561i \(0.179900\pi\)
\(500\) −4.41074 10.2252i −0.197254 0.457287i
\(501\) 0 0
\(502\) 12.4940 6.27474i 0.557636 0.280055i
\(503\) −18.7108 + 15.7002i −0.834274 + 0.700039i −0.956268 0.292492i \(-0.905516\pi\)
0.121994 + 0.992531i \(0.461071\pi\)
\(504\) 0 0
\(505\) 12.1048 + 10.1572i 0.538658 + 0.451988i
\(506\) 1.30155 + 0.308474i 0.0578611 + 0.0137133i
\(507\) 0 0
\(508\) 0.404884 + 6.95159i 0.0179638 + 0.308427i
\(509\) 8.87341 29.6393i 0.393307 1.31374i −0.500675 0.865635i \(-0.666915\pi\)
0.893982 0.448102i \(-0.147900\pi\)
\(510\) 0 0
\(511\) −31.9731 42.9473i −1.41440 1.89988i
\(512\) −4.29252 + 7.43487i −0.189705 + 0.328578i
\(513\) 0 0
\(514\) 14.3134 + 24.7916i 0.631339 + 1.09351i
\(515\) 0.272818 0.632463i 0.0120218 0.0278696i
\(516\) 0 0
\(517\) −0.293288 0.310867i −0.0128988 0.0136719i
\(518\) −39.5747 + 26.0287i −1.73881 + 1.14364i
\(519\) 0 0
\(520\) 8.61582 9.13223i 0.377829 0.400475i
\(521\) −2.47495 + 14.0361i −0.108430 + 0.614934i 0.881365 + 0.472435i \(0.156625\pi\)
−0.989795 + 0.142499i \(0.954486\pi\)
\(522\) 0 0
\(523\) 0.234960 + 1.33253i 0.0102741 + 0.0582673i 0.989514 0.144439i \(-0.0461376\pi\)
−0.979240 + 0.202706i \(0.935026\pi\)
\(524\) 4.70209 + 3.09261i 0.205412 + 0.135101i
\(525\) 0 0
\(526\) −0.0288738 0.00337486i −0.00125896 0.000147151i
\(527\) 25.6130 + 2.99373i 1.11572 + 0.130409i
\(528\) 0 0
\(529\) 7.39088 + 4.86106i 0.321343 + 0.211350i
\(530\) 3.74002 + 21.2107i 0.162456 + 0.921335i
\(531\) 0 0
\(532\) −1.67382 + 9.49269i −0.0725692 + 0.411560i
\(533\) −9.96180 + 10.5589i −0.431493 + 0.457356i
\(534\) 0 0
\(535\) 6.26297 4.11922i 0.270772 0.178089i
\(536\) −15.9655 16.9225i −0.689605 0.730939i
\(537\) 0 0
\(538\) −4.33884 + 10.0586i −0.187060 + 0.433655i
\(539\) −0.391448 0.678008i −0.0168609 0.0292039i
\(540\) 0 0
\(541\) 12.5060 21.6611i 0.537676 0.931283i −0.461352 0.887217i \(-0.652636\pi\)
0.999029 0.0440659i \(-0.0140312\pi\)
\(542\) 20.6532 + 27.7420i 0.887130 + 1.19162i
\(543\) 0 0
\(544\) −7.54990 + 25.2184i −0.323699 + 1.08123i
\(545\) −1.34351 23.0672i −0.0575498 0.988092i
\(546\) 0 0
\(547\) 27.6336 + 6.54928i 1.18153 + 0.280027i 0.774011 0.633172i \(-0.218247\pi\)
0.407515 + 0.913199i \(0.366395\pi\)
\(548\) 0.851950 + 0.714871i 0.0363935 + 0.0305378i
\(549\) 0 0
\(550\) −0.845339 + 0.709324i −0.0360454 + 0.0302457i
\(551\) −16.5594 + 8.31645i −0.705455 + 0.354293i
\(552\) 0 0
\(553\) −1.93663 4.48960i −0.0823537 0.190917i
\(554\) 6.46815 8.68824i 0.274805 0.369128i
\(555\) 0 0
\(556\) 0.276075 4.74003i 0.0117082 0.201022i
\(557\) 34.6621 + 12.6160i 1.46868 + 0.534556i 0.947742 0.319039i \(-0.103360\pi\)
0.520938 + 0.853594i \(0.325582\pi\)
\(558\) 0 0
\(559\) 7.83442 2.85150i 0.331361 0.120605i
\(560\) 6.49335 + 21.6893i 0.274394 + 0.916540i
\(561\) 0 0
\(562\) 9.00761 + 4.52379i 0.379963 + 0.190825i
\(563\) −21.5598 + 5.10976i −0.908635 + 0.215351i −0.658253 0.752797i \(-0.728704\pi\)
−0.250382 + 0.968147i \(0.580556\pi\)
\(564\) 0 0
\(565\) −12.0805 + 1.41200i −0.508229 + 0.0594034i
\(566\) −14.8852 −0.625671
\(567\) 0 0
\(568\) −8.10969 −0.340275
\(569\) 6.35985 0.743360i 0.266619 0.0311633i 0.0182670 0.999833i \(-0.494185\pi\)
0.248352 + 0.968670i \(0.420111\pi\)
\(570\) 0 0
\(571\) −5.37491 + 1.27388i −0.224933 + 0.0533101i −0.341537 0.939868i \(-0.610947\pi\)
0.116604 + 0.993179i \(0.462799\pi\)
\(572\) 0.962259 + 0.483264i 0.0402341 + 0.0202063i
\(573\) 0 0
\(574\) −4.51091 15.0675i −0.188282 0.628904i
\(575\) 10.9725 3.99368i 0.457586 0.166548i
\(576\) 0 0
\(577\) 36.7599 + 13.3795i 1.53033 + 0.556996i 0.963703 0.266977i \(-0.0860246\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(578\) −0.881402 + 15.1331i −0.0366615 + 0.629454i
\(579\) 0 0
\(580\) 5.17656 6.95332i 0.214945 0.288721i
\(581\) 18.5612 + 43.0297i 0.770049 + 1.78517i
\(582\) 0 0
\(583\) 1.65763 0.832491i 0.0686518 0.0344782i
\(584\) 21.6420 18.1598i 0.895551 0.751457i
\(585\) 0 0
\(586\) −8.53628 7.16279i −0.352631 0.295892i
\(587\) −13.5333 3.20744i −0.558578 0.132385i −0.0583765 0.998295i \(-0.518592\pi\)
−0.500201 + 0.865909i \(0.666741\pi\)
\(588\) 0 0
\(589\) 0.867894 + 14.9012i 0.0357610 + 0.613992i
\(590\) −10.1520 + 33.9100i −0.417951 + 1.39605i
\(591\) 0 0
\(592\) −24.8406 33.3667i −1.02094 1.37136i
\(593\) −8.67989 + 15.0340i −0.356441 + 0.617373i −0.987363 0.158472i \(-0.949343\pi\)
0.630923 + 0.775846i \(0.282676\pi\)
\(594\) 0 0
\(595\) 11.4899 + 19.9010i 0.471039 + 0.815863i
\(596\) −3.03458 + 7.03494i −0.124301 + 0.288162i
\(597\) 0 0
\(598\) −23.4898 24.8977i −0.960570 1.01814i
\(599\) 34.7339 22.8449i 1.41919 0.933415i 0.419519 0.907747i \(-0.362199\pi\)
0.999671 0.0256686i \(-0.00817146\pi\)
\(600\) 0 0
\(601\) 6.33713 6.71697i 0.258497 0.273991i −0.585108 0.810956i \(-0.698948\pi\)
0.843605 + 0.536965i \(0.180429\pi\)
\(602\) −1.56859 + 8.89594i −0.0639311 + 0.362571i
\(603\) 0 0
\(604\) 0.535232 + 3.03545i 0.0217783 + 0.123511i
\(605\) 12.6071 + 8.29181i 0.512551 + 0.337110i
\(606\) 0 0
\(607\) 13.3985 + 1.56606i 0.543829 + 0.0635645i 0.383572 0.923511i \(-0.374694\pi\)
0.160257 + 0.987075i \(0.448768\pi\)
\(608\) −15.1342 1.76893i −0.613772 0.0717397i
\(609\) 0 0
\(610\) 3.00142 + 1.97406i 0.121524 + 0.0799275i
\(611\) 1.89916 + 10.7707i 0.0768317 + 0.435734i
\(612\) 0 0
\(613\) −0.675007 + 3.82815i −0.0272633 + 0.154618i −0.995400 0.0958034i \(-0.969458\pi\)
0.968137 + 0.250421i \(0.0805691\pi\)
\(614\) −29.1695 + 30.9179i −1.17719 + 1.24775i
\(615\) 0 0
\(616\) 0.978817 0.643778i 0.0394377 0.0259386i
\(617\) 16.4797 + 17.4674i 0.663447 + 0.703212i 0.968469 0.249133i \(-0.0801455\pi\)
−0.305023 + 0.952345i \(0.598664\pi\)
\(618\) 0 0
\(619\) −4.03156 + 9.34620i −0.162042 + 0.375656i −0.979821 0.199877i \(-0.935946\pi\)
0.817779 + 0.575532i \(0.195205\pi\)
\(620\) −3.49133 6.04716i −0.140215 0.242860i
\(621\) 0 0
\(622\) −11.2430 + 19.4734i −0.450802 + 0.780812i
\(623\) −10.0932 13.5576i −0.404377 0.543172i
\(624\) 0 0
\(625\) −0.0435457 + 0.145453i −0.00174183 + 0.00581812i
\(626\) −0.526337 9.03685i −0.0210366 0.361185i
\(627\) 0 0
\(628\) 5.95311 + 1.41091i 0.237555 + 0.0563015i
\(629\) −32.3435 27.1394i −1.28962 1.08212i
\(630\) 0 0
\(631\) −37.7162 + 31.6476i −1.50146 + 1.25987i −0.622836 + 0.782352i \(0.714020\pi\)
−0.878621 + 0.477520i \(0.841536\pi\)
\(632\) 2.30553 1.15788i 0.0917090 0.0460580i
\(633\) 0 0
\(634\) 20.9556 + 48.5806i 0.832255 + 1.92938i
\(635\) −5.73806 + 7.70755i −0.227708 + 0.305865i
\(636\) 0 0
\(637\) −1.16490 + 20.0006i −0.0461550 + 0.792452i
\(638\) −2.10759 0.767099i −0.0834402 0.0303698i
\(639\) 0 0
\(640\) −15.7068 + 5.71682i −0.620867 + 0.225977i
\(641\) −9.77403 32.6475i −0.386051 1.28950i −0.901574 0.432624i \(-0.857588\pi\)
0.515524 0.856875i \(-0.327597\pi\)
\(642\) 0 0
\(643\) −17.7621 8.92044i −0.700467 0.351788i 0.0626611 0.998035i \(-0.480041\pi\)
−0.763128 + 0.646247i \(0.776338\pi\)
\(644\) 12.0124 2.84699i 0.473354 0.112187i
\(645\) 0 0
\(646\) −25.6373 + 2.99657i −1.00869 + 0.117898i
\(647\) 37.1636 1.46105 0.730525 0.682886i \(-0.239275\pi\)
0.730525 + 0.682886i \(0.239275\pi\)
\(648\) 0 0
\(649\) 3.04853 0.119665
\(650\) 28.0481 3.27835i 1.10014 0.128588i
\(651\) 0 0
\(652\) −0.166912 + 0.0395588i −0.00653677 + 0.00154924i
\(653\) 4.92172 + 2.47178i 0.192602 + 0.0967283i 0.542487 0.840064i \(-0.317483\pi\)
−0.349885 + 0.936793i \(0.613779\pi\)
\(654\) 0 0
\(655\) 2.22736 + 7.43989i 0.0870301 + 0.290701i
\(656\) 12.9796 4.72418i 0.506767 0.184448i
\(657\) 0 0
\(658\) −11.1351 4.05286i −0.434093 0.157997i
\(659\) 2.21435 38.0190i 0.0862589 1.48101i −0.626402 0.779500i \(-0.715473\pi\)
0.712661 0.701509i \(-0.247490\pi\)
\(660\) 0 0
\(661\) −16.8265 + 22.6020i −0.654477 + 0.879115i −0.998201 0.0599557i \(-0.980904\pi\)
0.343724 + 0.939071i \(0.388311\pi\)
\(662\) 2.18334 + 5.06154i 0.0848578 + 0.196723i
\(663\) 0 0
\(664\) −22.0969 + 11.0975i −0.857526 + 0.430666i
\(665\) −10.1894 + 8.54990i −0.395127 + 0.331551i
\(666\) 0 0
\(667\) 18.1802 + 15.2550i 0.703939 + 0.590675i
\(668\) 0.285807 + 0.0677375i 0.0110582 + 0.00262084i
\(669\) 0 0
\(670\) 1.85893 + 31.9166i 0.0718167 + 1.23304i
\(671\) 0.0887347 0.296395i 0.00342556 0.0114422i
\(672\) 0 0
\(673\) 14.8365 + 19.9289i 0.571907 + 0.768204i 0.990132 0.140139i \(-0.0447550\pi\)
−0.418225 + 0.908343i \(0.637348\pi\)
\(674\) 28.3712 49.1404i 1.09282 1.89282i
\(675\) 0 0
\(676\) −7.29123 12.6288i −0.280432 0.485722i
\(677\) −13.9756 + 32.3992i −0.537128 + 1.24520i 0.406335 + 0.913724i \(0.366806\pi\)
−0.943463 + 0.331478i \(0.892453\pi\)
\(678\) 0 0
\(679\) 4.05143 + 4.29426i 0.155480 + 0.164799i
\(680\) −10.1306 + 6.66298i −0.388490 + 0.255514i
\(681\) 0 0
\(682\) −1.23979 + 1.31410i −0.0474739 + 0.0503193i
\(683\) 6.86569 38.9372i 0.262708 1.48989i −0.512774 0.858523i \(-0.671382\pi\)
0.775483 0.631369i \(-0.217507\pi\)
\(684\) 0 0
\(685\) 0.266493 + 1.51136i 0.0101822 + 0.0577460i
\(686\) 15.1618 + 9.97208i 0.578880 + 0.380736i
\(687\) 0 0
\(688\) −7.87931 0.920960i −0.300396 0.0351113i
\(689\) −47.1470 5.51069i −1.79616 0.209941i
\(690\) 0 0
\(691\) 14.1957 + 9.33667i 0.540031 + 0.355184i 0.790036 0.613061i \(-0.210062\pi\)
−0.250005 + 0.968245i \(0.580432\pi\)
\(692\) 0.465612 + 2.64062i 0.0176999 + 0.100381i
\(693\) 0 0
\(694\) 6.73702 38.2075i 0.255734 1.45034i
\(695\) 4.49623 4.76573i 0.170552 0.180774i
\(696\) 0 0
\(697\) 11.7132 7.70389i 0.443669 0.291805i
\(698\) −26.2207 27.7923i −0.992468 1.05195i
\(699\) 0 0
\(700\) −4.03391 + 9.35166i −0.152468 + 0.353460i
\(701\) −16.3741 28.3608i −0.618442 1.07117i −0.989770 0.142672i \(-0.954431\pi\)
0.371328 0.928502i \(-0.378903\pi\)
\(702\) 0 0
\(703\) 12.2194 21.1647i 0.460865 0.798241i
\(704\) 0.124922 + 0.167799i 0.00470818 + 0.00632418i
\(705\) 0 0
\(706\) −5.42113 + 18.1078i −0.204027 + 0.681497i
\(707\) −2.19397 37.6691i −0.0825129 1.41669i
\(708\) 0 0
\(709\) 31.9346 + 7.56865i 1.19933 + 0.284246i 0.781282 0.624178i \(-0.214566\pi\)
0.418048 + 0.908425i \(0.362714\pi\)
\(710\) 8.53698 + 7.16337i 0.320387 + 0.268837i
\(711\) 0 0
\(712\) 6.83193 5.73267i 0.256037 0.214841i
\(713\) 17.0833 8.57958i 0.639776 0.321308i
\(714\) 0 0
\(715\) 0.588533 + 1.36437i 0.0220099 + 0.0510247i
\(716\) 1.42635 1.91592i 0.0533051 0.0716012i
\(717\) 0 0
\(718\) −2.49565 + 42.8487i −0.0931368 + 1.59910i
\(719\) 15.8250 + 5.75983i 0.590173 + 0.214806i 0.619806 0.784755i \(-0.287211\pi\)
−0.0296323 + 0.999561i \(0.509434\pi\)
\(720\) 0 0
\(721\) −1.54558 + 0.562545i −0.0575604 + 0.0209503i
\(722\) 5.15012 + 17.2026i 0.191668 + 0.640214i
\(723\) 0 0
\(724\) 14.9331 + 7.49969i 0.554985 + 0.278724i
\(725\) −19.0513 + 4.51524i −0.707548 + 0.167692i
\(726\) 0 0
\(727\) 8.34602 0.975510i 0.309537 0.0361797i 0.0400936 0.999196i \(-0.487234\pi\)
0.269443 + 0.963016i \(0.413160\pi\)
\(728\) −29.9802 −1.11114
\(729\) 0 0
\(730\) −38.8230 −1.43690
\(731\) −7.99740 + 0.934762i −0.295795 + 0.0345734i
\(732\) 0 0
\(733\) 12.0138 2.84732i 0.443739 0.105168i −0.00267116 0.999996i \(-0.500850\pi\)
0.446411 + 0.894828i \(0.352702\pi\)
\(734\) −19.8803 9.98427i −0.733796 0.368526i
\(735\) 0 0
\(736\) 5.59690 + 18.6949i 0.206304 + 0.689105i
\(737\) 2.58738 0.941730i 0.0953075 0.0346891i
\(738\) 0 0
\(739\) 37.3973 + 13.6115i 1.37568 + 0.500707i 0.920866 0.389879i \(-0.127483\pi\)
0.454815 + 0.890586i \(0.349705\pi\)
\(740\) −0.664749 + 11.4133i −0.0244367 + 0.419561i
\(741\) 0 0
\(742\) 30.7121 41.2535i 1.12748 1.51446i
\(743\) −7.85752 18.2158i −0.288264 0.668272i 0.711130 0.703060i \(-0.248184\pi\)
−0.999395 + 0.0347882i \(0.988924\pi\)
\(744\) 0 0
\(745\) −9.44779 + 4.74486i −0.346140 + 0.173838i
\(746\) 2.95869 2.48263i 0.108325 0.0908957i
\(747\) 0 0
\(748\) −0.796638 0.668459i −0.0291280 0.0244413i
\(749\) −17.4176 4.12805i −0.636425 0.150836i
\(750\) 0 0
\(751\) −2.23147 38.3128i −0.0814274 1.39805i −0.753441 0.657515i \(-0.771607\pi\)
0.672014 0.740539i \(-0.265430\pi\)
\(752\) 2.98462 9.96932i 0.108838 0.363544i
\(753\) 0 0
\(754\) 34.2739 + 46.0378i 1.24818 + 1.67660i
\(755\) −2.12665 + 3.68347i −0.0773969 + 0.134055i
\(756\) 0 0
\(757\) 7.07444 + 12.2533i 0.257125 + 0.445353i 0.965470 0.260513i \(-0.0838915\pi\)
−0.708346 + 0.705866i \(0.750558\pi\)
\(758\) −5.04670 + 11.6996i −0.183304 + 0.424947i
\(759\) 0 0
\(760\) −4.81636 5.10504i −0.174708 0.185179i
\(761\) 7.91964 5.20883i 0.287087 0.188820i −0.397795 0.917474i \(-0.630224\pi\)
0.684881 + 0.728655i \(0.259854\pi\)
\(762\) 0 0
\(763\) −37.8638 + 40.1332i −1.37076 + 1.45292i
\(764\) −2.45907 + 13.9461i −0.0889660 + 0.504551i
\(765\) 0 0
\(766\) −4.34643 24.6498i −0.157043 0.890634i
\(767\) −65.1785 42.8685i −2.35346 1.54789i
\(768\) 0 0
\(769\) 12.4366 + 1.45363i 0.448476 + 0.0524193i 0.337334 0.941385i \(-0.390475\pi\)
0.111142 + 0.993804i \(0.464549\pi\)
\(770\) −1.59905 0.186902i −0.0576256 0.00673547i
\(771\) 0 0
\(772\) 3.48164 + 2.28991i 0.125307 + 0.0824156i
\(773\) −6.23462 35.3583i −0.224244 1.27175i −0.864125 0.503277i \(-0.832128\pi\)
0.639882 0.768474i \(-0.278983\pi\)
\(774\) 0 0
\(775\) −2.73862 + 15.5315i −0.0983742 + 0.557908i
\(776\) −2.13775 + 2.26588i −0.0767407 + 0.0813404i
\(777\) 0 0
\(778\) −12.3021 + 8.09123i −0.441052 + 0.290085i
\(779\) 5.56879 + 5.90257i 0.199522 + 0.211481i
\(780\) 0 0
\(781\) 0.380151 0.881289i 0.0136029 0.0315350i
\(782\) 16.5290 + 28.6291i 0.591076 + 1.02377i
\(783\) 0 0
\(784\) 9.53150 16.5091i 0.340411 0.589609i
\(785\) 5.04146 + 6.77185i 0.179937 + 0.241698i
\(786\) 0 0
\(787\) −11.4581 + 38.2728i −0.408438 + 1.36428i 0.468410 + 0.883511i \(0.344827\pi\)
−0.876848 + 0.480767i \(0.840358\pi\)
\(788\) 1.20215 + 20.6401i 0.0428248 + 0.735273i
\(789\) 0 0
\(790\) −3.44977 0.817611i −0.122737 0.0290893i
\(791\) 22.2484 + 18.6687i 0.791063 + 0.663781i
\(792\) 0 0
\(793\) −6.06508 + 5.08921i −0.215377 + 0.180723i
\(794\) 8.49811 4.26791i 0.301586 0.151462i
\(795\) 0 0
\(796\) 1.13690 + 2.63563i 0.0402964 + 0.0934176i
\(797\) 20.3548 27.3413i 0.721005 0.968478i −0.278962 0.960302i \(-0.589990\pi\)
0.999967 0.00817540i \(-0.00260234\pi\)
\(798\) 0 0
\(799\) 0.614153 10.5446i 0.0217272 0.373041i
\(800\) −15.1285 5.50634i −0.534875 0.194678i
\(801\) 0 0
\(802\) 15.3085 5.57185i 0.540563 0.196749i
\(803\) 0.958950 + 3.20312i 0.0338406 + 0.113036i
\(804\) 0 0
\(805\) 15.2234 + 7.64546i 0.536553 + 0.269467i
\(806\) 44.9858 10.6618i 1.58456 0.375547i
\(807\) 0 0
\(808\) 19.7753 2.31140i 0.695691 0.0813147i
\(809\) −7.57622 −0.266366 −0.133183 0.991091i \(-0.542520\pi\)
−0.133183 + 0.991091i \(0.542520\pi\)
\(810\) 0 0
\(811\) 20.5558 0.721810 0.360905 0.932602i \(-0.382468\pi\)
0.360905 + 0.932602i \(0.382468\pi\)
\(812\) −20.5599 + 2.40310i −0.721510 + 0.0843324i
\(813\) 0 0
\(814\) 2.87825 0.682157i 0.100882 0.0239096i
\(815\) −0.211529 0.106234i −0.00740952 0.00372120i
\(816\) 0 0
\(817\) −1.33668 4.46483i −0.0467646 0.156205i
\(818\) 25.0916 9.13260i 0.877308 0.319314i
\(819\) 0 0
\(820\) −3.56726 1.29838i −0.124574 0.0453412i
\(821\) −1.77197 + 30.4235i −0.0618420 + 1.06179i 0.814520 + 0.580135i \(0.197000\pi\)
−0.876363 + 0.481652i \(0.840037\pi\)
\(822\) 0 0
\(823\) −13.3276 + 17.9020i −0.464570 + 0.624026i −0.971237 0.238116i \(-0.923470\pi\)
0.506667 + 0.862142i \(0.330878\pi\)
\(824\) −0.343745 0.796891i −0.0119749 0.0277610i
\(825\) 0 0
\(826\) 75.5339 37.9346i 2.62816 1.31991i
\(827\) 27.2509 22.8662i 0.947606 0.795136i −0.0312864 0.999510i \(-0.509960\pi\)
0.978893 + 0.204374i \(0.0655159\pi\)
\(828\) 0 0
\(829\) −13.4520 11.2875i −0.467206 0.392032i 0.378568 0.925573i \(-0.376416\pi\)
−0.845774 + 0.533541i \(0.820861\pi\)
\(830\) 33.0637 + 7.83623i 1.14766 + 0.272000i
\(831\) 0 0
\(832\) −0.311267 5.34426i −0.0107913 0.185279i
\(833\) 5.54927 18.5359i 0.192271 0.642230i
\(834\) 0 0
\(835\) 0.242039 + 0.325114i 0.00837610 + 0.0112510i
\(836\) 0.300972 0.521298i 0.0104093 0.0180295i
\(837\) 0 0
\(838\) 21.3875 + 37.0443i 0.738820 + 1.27967i
\(839\) 15.1824 35.1966i 0.524153 1.21512i −0.426393 0.904538i \(-0.640216\pi\)
0.950546 0.310585i \(-0.100525\pi\)
\(840\) 0 0
\(841\) −7.40713 7.85110i −0.255418 0.270728i
\(842\) 0.268769 0.176772i 0.00926240 0.00609198i
\(843\) 0 0
\(844\) 7.26852 7.70418i 0.250193 0.265189i
\(845\) 3.49427 19.8170i 0.120206 0.681725i
\(846\) 0 0
\(847\) −6.25691 35.4847i −0.214990 1.21927i
\(848\) 37.7359 + 24.8193i 1.29586 + 0.852297i
\(849\) 0 0
\(850\) −27.0881 3.16614i −0.929113 0.108598i
\(851\) −31.0880 3.63367i −1.06568 0.124560i
\(852\) 0 0
\(853\) −7.01364 4.61295i −0.240143 0.157944i 0.423733 0.905787i \(-0.360719\pi\)
−0.663876 + 0.747843i \(0.731090\pi\)
\(854\) −1.48961 8.44799i −0.0509733 0.289084i
\(855\) 0 0
\(856\) 1.64011 9.30155i 0.0560580 0.317920i
\(857\) 33.0230 35.0023i 1.12804 1.19566i 0.149688 0.988733i \(-0.452173\pi\)
0.978357 0.206924i \(-0.0663453\pi\)
\(858\) 0 0
\(859\) −42.6770 + 28.0691i −1.45612 + 0.957706i −0.458505 + 0.888692i \(0.651615\pi\)
−0.997616 + 0.0690137i \(0.978015\pi\)
\(860\) 1.49619 + 1.58587i 0.0510196 + 0.0540776i
\(861\) 0 0
\(862\) 9.97981 23.1358i 0.339914 0.788008i
\(863\) 18.3885 + 31.8499i 0.625953 + 1.08418i 0.988356 + 0.152161i \(0.0486232\pi\)
−0.362403 + 0.932022i \(0.618043\pi\)
\(864\) 0 0
\(865\) −1.85003 + 3.20435i −0.0629031 + 0.108951i
\(866\) −35.7945 48.0804i −1.21635 1.63384i
\(867\) 0 0
\(868\) −4.78212 + 15.9734i −0.162316 + 0.542172i
\(869\) 0.0177538 + 0.304821i 0.000602257 + 0.0103404i
\(870\) 0 0
\(871\) −68.5616 16.2494i −2.32312 0.550590i
\(872\) −22.3023 18.7138i −0.755250 0.633730i
\(873\) 0 0
\(874\) −14.6581 + 12.2996i −0.495819 + 0.416042i
\(875\) −32.7913 + 16.4684i −1.10855 + 0.556734i
\(876\) 0 0
\(877\) −1.60802 3.72781i −0.0542990 0.125879i 0.888907 0.458088i \(-0.151465\pi\)
−0.943206 + 0.332209i \(0.892206\pi\)
\(878\) −2.03254 + 2.73018i −0.0685950 + 0.0921391i
\(879\) 0 0
\(880\) 0.0822078 1.41145i 0.00277122 0.0475801i
\(881\) −38.2223 13.9118i −1.28774 0.468700i −0.394758 0.918785i \(-0.629171\pi\)
−0.892986 + 0.450085i \(0.851394\pi\)
\(882\) 0 0
\(883\) −24.6043 + 8.95523i −0.828000 + 0.301367i −0.721038 0.692896i \(-0.756335\pi\)
−0.106962 + 0.994263i \(0.534112\pi\)
\(884\) 7.63246 + 25.4942i 0.256707 + 0.857462i
\(885\) 0 0
\(886\) −49.2167 24.7176i −1.65347 0.830403i
\(887\) −21.1533 + 5.01341i −0.710257 + 0.168334i −0.569837 0.821758i \(-0.692994\pi\)
−0.140420 + 0.990092i \(0.544845\pi\)
\(888\) 0 0
\(889\) 22.7900 2.66377i 0.764352 0.0893399i
\(890\) −12.2556 −0.410809
\(891\) 0 0
\(892\) −23.6257 −0.791048
\(893\) 6.07249 0.709773i 0.203208 0.0237516i
\(894\) 0 0
\(895\) 3.20718 0.760117i 0.107204 0.0254079i
\(896\) 35.6679 + 17.9131i 1.19158 + 0.598434i
\(897\) 0 0
\(898\) −14.7919 49.4085i −0.493614 1.64878i
\(899\) −30.1211 + 10.9632i −1.00459 + 0.365642i
\(900\) 0 0
\(901\) 43.0785 + 15.6793i 1.43515 + 0.522353i
\(902\) −0.0571095 + 0.980532i −0.00190154 + 0.0326481i
\(903\) 0 0
\(904\) −9.15132 + 12.2924i −0.304368 + 0.408838i
\(905\) 9.13334 + 21.1735i 0.303602 + 0.703830i
\(906\) 0 0
\(907\) −47.1055 + 23.6573i −1.56411 + 0.785527i −0.999214 0.0396329i \(-0.987381\pi\)
−0.564899 + 0.825160i \(0.691085\pi\)
\(908\) −0.350892 + 0.294434i −0.0116448 + 0.00977113i
\(909\) 0 0
\(910\) 31.5598 + 26.4818i 1.04620 + 0.877864i
\(911\) −41.8920 9.92859i −1.38794 0.328949i −0.532319 0.846544i \(-0.678679\pi\)
−0.855626 + 0.517595i \(0.826827\pi\)
\(912\) 0 0
\(913\) −0.170158 2.92150i −0.00563141 0.0966876i
\(914\) −6.32968 + 21.1426i −0.209367 + 0.699335i
\(915\) 0 0
\(916\) 9.53058 + 12.8018i 0.314899 + 0.422983i
\(917\) 9.27238 16.0602i 0.306201 0.530356i
\(918\) 0 0
\(919\) −25.2136 43.6712i −0.831719 1.44058i −0.896674 0.442691i \(-0.854024\pi\)
0.0649552 0.997888i \(-0.479310\pi\)
\(920\) −3.56027 + 8.25363i −0.117379 + 0.272114i
\(921\) 0 0
\(922\) 24.5576 + 26.0295i 0.808761 + 0.857237i
\(923\) −20.5204 + 13.4965i −0.675439 + 0.444243i
\(924\) 0 0
\(925\) 17.7200 18.7821i 0.582631 0.617552i
\(926\) −5.00610 + 28.3910i −0.164511 + 0.932987i
\(927\) 0 0
\(928\) −5.68204 32.2245i −0.186522 1.05782i
\(929\) −13.2760 8.73178i −0.435573 0.286481i 0.312725 0.949844i \(-0.398758\pi\)
−0.748298 + 0.663363i \(0.769128\pi\)
\(930\) 0 0
\(931\) 11.1238 + 1.30019i 0.364568 + 0.0426119i
\(932\) 7.87789 + 0.920793i 0.258049 + 0.0301616i
\(933\) 0 0
\(934\) −42.3790 27.8731i −1.38668 0.912036i
\(935\) −0.249191 1.41323i −0.00814943 0.0462177i
\(936\) 0 0
\(937\) 3.98093 22.5770i 0.130051 0.737557i −0.848128 0.529792i \(-0.822270\pi\)
0.978179 0.207765i \(-0.0666189\pi\)
\(938\) 52.3895 55.5296i 1.71058 1.81311i
\(939\) 0 0
\(940\) −2.38957 + 1.57164i −0.0779390 + 0.0512613i
\(941\) 9.70324 + 10.2848i 0.316317 + 0.335276i 0.865951 0.500130i \(-0.166714\pi\)
−0.549634 + 0.835406i \(0.685233\pi\)
\(942\) 0 0
\(943\) 4.11646 9.54303i 0.134050 0.310764i
\(944\) 37.1148 + 64.2848i 1.20799 + 2.09229i
\(945\) 0 0
\(946\) 0.282051 0.488527i 0.00917027 0.0158834i
\(947\) 34.0917 + 45.7931i 1.10783 + 1.48808i 0.853598 + 0.520932i \(0.174416\pi\)
0.254233 + 0.967143i \(0.418177\pi\)
\(948\) 0 0
\(949\) 24.5397 81.9683i 0.796593 2.66080i
\(950\) −0.917876 15.7593i −0.0297798 0.511300i
\(951\) 0 0
\(952\) 28.1736 + 6.67726i 0.913111 + 0.216411i
\(953\) 13.5816 + 11.3963i 0.439951 + 0.369163i 0.835691 0.549200i \(-0.185067\pi\)
−0.395740 + 0.918363i \(0.629512\pi\)
\(954\) 0 0
\(955\) −14.9696 + 12.5610i −0.484405 + 0.406464i
\(956\) 18.9211 9.50254i 0.611953 0.307334i
\(957\) 0 0
\(958\) −15.3356 35.5520i −0.495472 1.14863i
\(959\) 2.18837 2.93949i 0.0706661 0.0949211i
\(960\) 0 0
\(961\) 0.301197 5.17135i 0.00971602 0.166818i
\(962\) −71.1302 25.8893i −2.29333 0.834704i
\(963\) 0 0
\(964\) 16.9447 6.16735i 0.545751 0.198637i
\(965\) 1.64924 + 5.50883i 0.0530908 + 0.177336i
\(966\) 0 0
\(967\) −19.7655 9.92662i −0.635617 0.319219i 0.101650 0.994820i \(-0.467588\pi\)
−0.737267 + 0.675601i \(0.763884\pi\)
\(968\) 18.5000 4.38458i 0.594612 0.140926i
\(969\) 0 0
\(970\) 4.25186 0.496971i 0.136519 0.0159568i
\(971\) 5.09901 0.163635 0.0818176 0.996647i \(-0.473928\pi\)
0.0818176 + 0.996647i \(0.473928\pi\)
\(972\) 0 0
\(973\) −15.6454 −0.501569
\(974\) −6.43073 + 0.751645i −0.206054 + 0.0240843i
\(975\) 0 0
\(976\) 7.33043 1.73734i 0.234641 0.0556110i
\(977\) −20.7615 10.4268i −0.664218 0.333583i 0.0845457 0.996420i \(-0.473056\pi\)
−0.748764 + 0.662837i \(0.769352\pi\)
\(978\) 0 0
\(979\) 0.302721 + 1.01116i 0.00967500 + 0.0323167i
\(980\) −4.92325 + 1.79191i −0.157267 + 0.0572406i
\(981\) 0 0
\(982\) −1.96332 0.714592i −0.0626522 0.0228035i
\(983\) −0.979980 + 16.8256i −0.0312565 + 0.536653i 0.945943 + 0.324332i \(0.105139\pi\)
−0.977200 + 0.212321i \(0.931898\pi\)
\(984\) 0 0
\(985\) −17.0370 + 22.8846i −0.542843 + 0.729164i
\(986\) −21.9548 50.8970i −0.699184 1.62089i
\(987\) 0 0
\(988\) −13.7654 + 6.91323i −0.437935 + 0.219939i
\(989\) −4.57252 + 3.83680i −0.145398 + 0.122003i
\(990\) 0 0
\(991\) −0.316451 0.265534i −0.0100524 0.00843496i 0.637748 0.770245i \(-0.279866\pi\)
−0.647800 + 0.761810i \(0.724311\pi\)
\(992\) −25.6470 6.07845i −0.814293 0.192991i
\(993\) 0 0
\(994\) −1.54731 26.5663i −0.0490776 0.842630i
\(995\) −1.13600 + 3.79452i −0.0360137 + 0.120294i
\(996\) 0 0
\(997\) 3.48850 + 4.68587i 0.110482 + 0.148403i 0.853925 0.520397i \(-0.174216\pi\)
−0.743443 + 0.668799i \(0.766808\pi\)
\(998\) −2.88970 + 5.00511i −0.0914719 + 0.158434i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.298.2 144
3.2 odd 2 729.2.g.c.298.7 144
9.2 odd 6 729.2.g.d.541.2 144
9.4 even 3 243.2.g.a.181.7 144
9.5 odd 6 81.2.g.a.34.2 yes 144
9.7 even 3 729.2.g.a.541.7 144
81.2 odd 54 6561.2.a.c.1.17 72
81.4 even 27 inner 729.2.g.b.433.2 144
81.23 odd 54 81.2.g.a.31.2 144
81.31 even 27 729.2.g.a.190.7 144
81.50 odd 54 729.2.g.d.190.2 144
81.58 even 27 243.2.g.a.145.7 144
81.77 odd 54 729.2.g.c.433.7 144
81.79 even 27 6561.2.a.d.1.56 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.31.2 144 81.23 odd 54
81.2.g.a.34.2 yes 144 9.5 odd 6
243.2.g.a.145.7 144 81.58 even 27
243.2.g.a.181.7 144 9.4 even 3
729.2.g.a.190.7 144 81.31 even 27
729.2.g.a.541.7 144 9.7 even 3
729.2.g.b.298.2 144 1.1 even 1 trivial
729.2.g.b.433.2 144 81.4 even 27 inner
729.2.g.c.298.7 144 3.2 odd 2
729.2.g.c.433.7 144 81.77 odd 54
729.2.g.d.190.2 144 81.50 odd 54
729.2.g.d.541.2 144 9.2 odd 6
6561.2.a.c.1.17 72 81.2 odd 54
6561.2.a.d.1.56 72 81.79 even 27