Properties

Label 729.2.g.b.136.4
Level $729$
Weight $2$
Character 729.136
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 136.4
Character \(\chi\) \(=\) 729.136
Dual form 729.2.g.b.595.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.235229 - 0.0557502i) q^{2} +(-1.73504 - 0.871370i) q^{4} +(2.53668 - 3.40735i) q^{5} +(0.962610 + 0.633118i) q^{7} +(0.729927 + 0.612481i) q^{8} +(-0.786660 + 0.660086i) q^{10} +(1.96124 - 0.229235i) q^{11} +(1.14870 - 3.83692i) q^{13} +(-0.191137 - 0.202593i) q^{14} +(2.18128 + 2.92997i) q^{16} +(0.731666 + 4.14948i) q^{17} +(0.525049 - 2.97770i) q^{19} +(-7.37031 + 3.70151i) q^{20} +(-0.474118 - 0.0554165i) q^{22} +(-1.01926 + 0.670375i) q^{23} +(-3.74129 - 12.4968i) q^{25} +(-0.484116 + 0.838513i) q^{26} +(-1.11849 - 1.93728i) q^{28} +(-0.409584 + 0.434134i) q^{29} +(0.113119 + 1.94217i) q^{31} +(-1.10456 - 2.56067i) q^{32} +(0.0592258 - 1.01687i) q^{34} +(4.59909 - 1.67393i) q^{35} +(-4.95333 - 1.80287i) q^{37} +(-0.289514 + 0.671168i) q^{38} +(3.93853 - 0.933449i) q^{40} +(-5.57409 + 1.32108i) q^{41} +(2.89097 - 6.70201i) q^{43} +(-3.60257 - 1.31123i) q^{44} +(0.277132 - 0.100868i) q^{46} +(-0.0253896 + 0.435922i) q^{47} +(-2.24678 - 5.20862i) q^{49} +(0.183360 + 3.14818i) q^{50} +(-5.33642 + 5.65627i) q^{52} +(2.23695 + 3.87450i) q^{53} +(4.19394 - 7.26412i) q^{55} +(0.314861 + 1.05171i) q^{56} +(0.120549 - 0.0792863i) q^{58} +(8.27664 + 0.967400i) q^{59} +(-9.42504 + 4.73343i) q^{61} +(0.0816677 - 0.463161i) q^{62} +(-1.15153 - 6.53063i) q^{64} +(-10.1599 - 13.6471i) q^{65} +(-5.02725 - 5.32857i) q^{67} +(2.34627 - 7.83708i) q^{68} +(-1.17516 + 0.137356i) q^{70} +(3.66891 - 3.07858i) q^{71} +(5.52198 + 4.63349i) q^{73} +(1.06466 + 0.700235i) q^{74} +(-3.50566 + 4.70892i) q^{76} +(2.03304 + 1.02103i) q^{77} +(12.2632 + 2.90642i) q^{79} +15.5167 q^{80} +1.38483 q^{82} +(11.2643 + 2.66968i) q^{83} +(15.9948 + 8.03287i) q^{85} +(-1.05368 + 1.41533i) q^{86} +(1.57196 + 1.03389i) q^{88} +(-8.43420 - 7.07713i) q^{89} +(3.53497 - 2.96620i) q^{91} +(2.35260 - 0.274979i) q^{92} +(0.0302751 - 0.101126i) q^{94} +(-8.81419 - 9.34250i) q^{95} +(3.75478 + 5.04355i) q^{97} +(0.238125 + 1.35047i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.235229 0.0557502i −0.166332 0.0394213i 0.146606 0.989195i \(-0.453165\pi\)
−0.312938 + 0.949774i \(0.601313\pi\)
\(3\) 0 0
\(4\) −1.73504 0.871370i −0.867520 0.435685i
\(5\) 2.53668 3.40735i 1.13444 1.52381i 0.316422 0.948619i \(-0.397518\pi\)
0.818016 0.575196i \(-0.195074\pi\)
\(6\) 0 0
\(7\) 0.962610 + 0.633118i 0.363832 + 0.239296i 0.718241 0.695794i \(-0.244948\pi\)
−0.354409 + 0.935091i \(0.615318\pi\)
\(8\) 0.729927 + 0.612481i 0.258068 + 0.216545i
\(9\) 0 0
\(10\) −0.786660 + 0.660086i −0.248764 + 0.208738i
\(11\) 1.96124 0.229235i 0.591335 0.0691171i 0.184837 0.982769i \(-0.440824\pi\)
0.406497 + 0.913652i \(0.366750\pi\)
\(12\) 0 0
\(13\) 1.14870 3.83692i 0.318592 1.06417i −0.637340 0.770583i \(-0.719965\pi\)
0.955932 0.293588i \(-0.0948494\pi\)
\(14\) −0.191137 0.202593i −0.0510835 0.0541453i
\(15\) 0 0
\(16\) 2.18128 + 2.92997i 0.545321 + 0.732493i
\(17\) 0.731666 + 4.14948i 0.177455 + 1.00640i 0.935272 + 0.353930i \(0.115155\pi\)
−0.757817 + 0.652467i \(0.773734\pi\)
\(18\) 0 0
\(19\) 0.525049 2.97770i 0.120454 0.683131i −0.863450 0.504435i \(-0.831701\pi\)
0.983904 0.178696i \(-0.0571880\pi\)
\(20\) −7.37031 + 3.70151i −1.64805 + 0.827682i
\(21\) 0 0
\(22\) −0.474118 0.0554165i −0.101082 0.0118148i
\(23\) −1.01926 + 0.670375i −0.212529 + 0.139783i −0.651311 0.758811i \(-0.725781\pi\)
0.438781 + 0.898594i \(0.355410\pi\)
\(24\) 0 0
\(25\) −3.74129 12.4968i −0.748258 2.49936i
\(26\) −0.484116 + 0.838513i −0.0949430 + 0.164446i
\(27\) 0 0
\(28\) −1.11849 1.93728i −0.211374 0.366111i
\(29\) −0.409584 + 0.434134i −0.0760579 + 0.0806166i −0.764285 0.644879i \(-0.776908\pi\)
0.688227 + 0.725495i \(0.258389\pi\)
\(30\) 0 0
\(31\) 0.113119 + 1.94217i 0.0203167 + 0.348824i 0.993113 + 0.117162i \(0.0373796\pi\)
−0.972796 + 0.231663i \(0.925583\pi\)
\(32\) −1.10456 2.56067i −0.195261 0.452666i
\(33\) 0 0
\(34\) 0.0592258 1.01687i 0.0101571 0.174391i
\(35\) 4.59909 1.67393i 0.777388 0.282946i
\(36\) 0 0
\(37\) −4.95333 1.80287i −0.814323 0.296389i −0.0989148 0.995096i \(-0.531537\pi\)
−0.715408 + 0.698706i \(0.753759\pi\)
\(38\) −0.289514 + 0.671168i −0.0469653 + 0.108878i
\(39\) 0 0
\(40\) 3.93853 0.933449i 0.622736 0.147591i
\(41\) −5.57409 + 1.32108i −0.870526 + 0.206318i −0.641520 0.767106i \(-0.721696\pi\)
−0.229006 + 0.973425i \(0.573548\pi\)
\(42\) 0 0
\(43\) 2.89097 6.70201i 0.440868 1.02205i −0.542439 0.840095i \(-0.682499\pi\)
0.983307 0.181952i \(-0.0582416\pi\)
\(44\) −3.60257 1.31123i −0.543108 0.197675i
\(45\) 0 0
\(46\) 0.277132 0.100868i 0.0408608 0.0148721i
\(47\) −0.0253896 + 0.435922i −0.00370345 + 0.0635858i −0.999654 0.0263225i \(-0.991620\pi\)
0.995950 + 0.0899082i \(0.0286574\pi\)
\(48\) 0 0
\(49\) −2.24678 5.20862i −0.320969 0.744089i
\(50\) 0.183360 + 3.14818i 0.0259311 + 0.445219i
\(51\) 0 0
\(52\) −5.33642 + 5.65627i −0.740028 + 0.784384i
\(53\) 2.23695 + 3.87450i 0.307268 + 0.532204i 0.977764 0.209710i \(-0.0672518\pi\)
−0.670496 + 0.741913i \(0.733919\pi\)
\(54\) 0 0
\(55\) 4.19394 7.26412i 0.565511 0.979493i
\(56\) 0.314861 + 1.05171i 0.0420751 + 0.140541i
\(57\) 0 0
\(58\) 0.120549 0.0792863i 0.0158289 0.0104108i
\(59\) 8.27664 + 0.967400i 1.07753 + 0.125945i 0.636293 0.771448i \(-0.280467\pi\)
0.441234 + 0.897392i \(0.354541\pi\)
\(60\) 0 0
\(61\) −9.42504 + 4.73343i −1.20675 + 0.606054i −0.934428 0.356151i \(-0.884089\pi\)
−0.272325 + 0.962205i \(0.587792\pi\)
\(62\) 0.0816677 0.463161i 0.0103718 0.0588215i
\(63\) 0 0
\(64\) −1.15153 6.53063i −0.143941 0.816329i
\(65\) −10.1599 13.6471i −1.26018 1.69271i
\(66\) 0 0
\(67\) −5.02725 5.32857i −0.614176 0.650989i 0.343393 0.939192i \(-0.388424\pi\)
−0.957569 + 0.288203i \(0.906942\pi\)
\(68\) 2.34627 7.83708i 0.284527 0.950385i
\(69\) 0 0
\(70\) −1.17516 + 0.137356i −0.140458 + 0.0164172i
\(71\) 3.66891 3.07858i 0.435420 0.365361i −0.398572 0.917137i \(-0.630494\pi\)
0.833992 + 0.551776i \(0.186050\pi\)
\(72\) 0 0
\(73\) 5.52198 + 4.63349i 0.646298 + 0.542309i 0.905945 0.423395i \(-0.139162\pi\)
−0.259647 + 0.965704i \(0.583606\pi\)
\(74\) 1.06466 + 0.700235i 0.123764 + 0.0814007i
\(75\) 0 0
\(76\) −3.50566 + 4.70892i −0.402127 + 0.540150i
\(77\) 2.03304 + 1.02103i 0.231686 + 0.116357i
\(78\) 0 0
\(79\) 12.2632 + 2.90642i 1.37971 + 0.326998i 0.852497 0.522732i \(-0.175087\pi\)
0.527217 + 0.849731i \(0.323235\pi\)
\(80\) 15.5167 1.73482
\(81\) 0 0
\(82\) 1.38483 0.152929
\(83\) 11.2643 + 2.66968i 1.23641 + 0.293035i 0.796297 0.604905i \(-0.206789\pi\)
0.440116 + 0.897941i \(0.354937\pi\)
\(84\) 0 0
\(85\) 15.9948 + 8.03287i 1.73487 + 0.871287i
\(86\) −1.05368 + 1.41533i −0.113621 + 0.152619i
\(87\) 0 0
\(88\) 1.57196 + 1.03389i 0.167572 + 0.110214i
\(89\) −8.43420 7.07713i −0.894023 0.750174i 0.0749899 0.997184i \(-0.476108\pi\)
−0.969013 + 0.247010i \(0.920552\pi\)
\(90\) 0 0
\(91\) 3.53497 2.96620i 0.370566 0.310942i
\(92\) 2.35260 0.274979i 0.245275 0.0286685i
\(93\) 0 0
\(94\) 0.0302751 0.101126i 0.00312264 0.0104303i
\(95\) −8.81419 9.34250i −0.904317 0.958520i
\(96\) 0 0
\(97\) 3.75478 + 5.04355i 0.381241 + 0.512095i 0.950779 0.309870i \(-0.100285\pi\)
−0.569538 + 0.821965i \(0.692878\pi\)
\(98\) 0.238125 + 1.35047i 0.0240543 + 0.136419i
\(99\) 0 0
\(100\) −4.39803 + 24.9425i −0.439803 + 2.49425i
\(101\) 3.61725 1.81665i 0.359930 0.180764i −0.259639 0.965706i \(-0.583604\pi\)
0.619569 + 0.784942i \(0.287307\pi\)
\(102\) 0 0
\(103\) −8.22877 0.961806i −0.810805 0.0947695i −0.299420 0.954121i \(-0.596793\pi\)
−0.511385 + 0.859352i \(0.670867\pi\)
\(104\) 3.18851 2.09712i 0.312659 0.205639i
\(105\) 0 0
\(106\) −0.310189 1.03610i −0.0301282 0.100635i
\(107\) −7.95369 + 13.7762i −0.768912 + 1.33179i 0.169241 + 0.985575i \(0.445868\pi\)
−0.938153 + 0.346220i \(0.887465\pi\)
\(108\) 0 0
\(109\) 1.81056 + 3.13598i 0.173420 + 0.300372i 0.939613 0.342238i \(-0.111185\pi\)
−0.766193 + 0.642610i \(0.777852\pi\)
\(110\) −1.39151 + 1.47491i −0.132675 + 0.140628i
\(111\) 0 0
\(112\) 0.244705 + 4.20143i 0.0231225 + 0.396998i
\(113\) 3.76083 + 8.71858i 0.353789 + 0.820175i 0.998447 + 0.0557040i \(0.0177403\pi\)
−0.644659 + 0.764471i \(0.723000\pi\)
\(114\) 0 0
\(115\) −0.301321 + 5.17349i −0.0280984 + 0.482430i
\(116\) 1.08894 0.396341i 0.101105 0.0367993i
\(117\) 0 0
\(118\) −1.89297 0.688984i −0.174262 0.0634261i
\(119\) −1.92281 + 4.45756i −0.176263 + 0.408624i
\(120\) 0 0
\(121\) −6.90960 + 1.63761i −0.628145 + 0.148873i
\(122\) 2.48093 0.587991i 0.224613 0.0532342i
\(123\) 0 0
\(124\) 1.49609 3.46832i 0.134352 0.311464i
\(125\) −32.1127 11.6881i −2.87225 1.04541i
\(126\) 0 0
\(127\) −10.4753 + 3.81269i −0.929532 + 0.338322i −0.762024 0.647549i \(-0.775794\pi\)
−0.167508 + 0.985871i \(0.553572\pi\)
\(128\) −0.417514 + 7.16844i −0.0369034 + 0.633606i
\(129\) 0 0
\(130\) 1.62906 + 3.77659i 0.142878 + 0.331229i
\(131\) 0.705371 + 12.1107i 0.0616285 + 1.05812i 0.877404 + 0.479752i \(0.159273\pi\)
−0.815775 + 0.578369i \(0.803690\pi\)
\(132\) 0 0
\(133\) 2.39065 2.53394i 0.207296 0.219721i
\(134\) 0.885484 + 1.53370i 0.0764941 + 0.132492i
\(135\) 0 0
\(136\) −2.00742 + 3.47695i −0.172135 + 0.298146i
\(137\) −0.0858165 0.286647i −0.00733180 0.0244899i 0.954245 0.299025i \(-0.0966613\pi\)
−0.961577 + 0.274535i \(0.911476\pi\)
\(138\) 0 0
\(139\) 4.68674 3.08252i 0.397524 0.261456i −0.334970 0.942229i \(-0.608726\pi\)
0.732495 + 0.680773i \(0.238356\pi\)
\(140\) −9.43822 1.10317i −0.797675 0.0932349i
\(141\) 0 0
\(142\) −1.03466 + 0.519628i −0.0868271 + 0.0436062i
\(143\) 1.37331 7.78843i 0.114842 0.651301i
\(144\) 0 0
\(145\) 0.440263 + 2.49686i 0.0365619 + 0.207353i
\(146\) −1.04061 1.39778i −0.0861214 0.115681i
\(147\) 0 0
\(148\) 7.02327 + 7.44424i 0.577310 + 0.611912i
\(149\) −3.90806 + 13.0538i −0.320161 + 1.06941i 0.634799 + 0.772677i \(0.281083\pi\)
−0.954960 + 0.296735i \(0.904102\pi\)
\(150\) 0 0
\(151\) 9.38937 1.09746i 0.764096 0.0893101i 0.274887 0.961476i \(-0.411359\pi\)
0.489209 + 0.872166i \(0.337285\pi\)
\(152\) 2.20703 1.85192i 0.179014 0.150211i
\(153\) 0 0
\(154\) −0.421306 0.353517i −0.0339498 0.0284872i
\(155\) 6.90461 + 4.54123i 0.554592 + 0.364761i
\(156\) 0 0
\(157\) −5.44744 + 7.31718i −0.434753 + 0.583975i −0.964468 0.264201i \(-0.914892\pi\)
0.529714 + 0.848176i \(0.322299\pi\)
\(158\) −2.72261 1.36735i −0.216600 0.108780i
\(159\) 0 0
\(160\) −11.5270 2.73195i −0.911291 0.215980i
\(161\) −1.40557 −0.110775
\(162\) 0 0
\(163\) 7.94158 0.622033 0.311016 0.950405i \(-0.399331\pi\)
0.311016 + 0.950405i \(0.399331\pi\)
\(164\) 10.8224 + 2.56496i 0.845089 + 0.200290i
\(165\) 0 0
\(166\) −2.50084 1.25597i −0.194103 0.0974822i
\(167\) 2.65433 3.56538i 0.205398 0.275897i −0.687473 0.726210i \(-0.741280\pi\)
0.892871 + 0.450312i \(0.148687\pi\)
\(168\) 0 0
\(169\) −2.54112 1.67132i −0.195471 0.128563i
\(170\) −3.31459 2.78127i −0.254217 0.213314i
\(171\) 0 0
\(172\) −10.8559 + 9.10916i −0.827753 + 0.694567i
\(173\) 3.09739 0.362033i 0.235491 0.0275249i 0.00247098 0.999997i \(-0.499213\pi\)
0.233020 + 0.972472i \(0.425139\pi\)
\(174\) 0 0
\(175\) 4.31054 14.3982i 0.325846 1.08840i
\(176\) 4.94966 + 5.24634i 0.373095 + 0.395458i
\(177\) 0 0
\(178\) 1.58941 + 2.13495i 0.119132 + 0.160021i
\(179\) 2.47200 + 14.0194i 0.184766 + 1.04786i 0.926255 + 0.376897i \(0.123009\pi\)
−0.741489 + 0.670965i \(0.765880\pi\)
\(180\) 0 0
\(181\) 2.75966 15.6508i 0.205124 1.16332i −0.692120 0.721783i \(-0.743323\pi\)
0.897244 0.441535i \(-0.145566\pi\)
\(182\) −0.996893 + 0.500658i −0.0738946 + 0.0371113i
\(183\) 0 0
\(184\) −1.15457 0.134950i −0.0851163 0.00994867i
\(185\) −18.7080 + 12.3045i −1.37544 + 0.904642i
\(186\) 0 0
\(187\) 2.38618 + 7.97039i 0.174495 + 0.582853i
\(188\) 0.423901 0.734219i 0.0309162 0.0535484i
\(189\) 0 0
\(190\) 1.55250 + 2.68901i 0.112630 + 0.195082i
\(191\) 13.9359 14.7712i 1.00836 1.06880i 0.0107379 0.999942i \(-0.496582\pi\)
0.997626 0.0688612i \(-0.0219366\pi\)
\(192\) 0 0
\(193\) 0.155389 + 2.66793i 0.0111852 + 0.192042i 0.999272 + 0.0381456i \(0.0121451\pi\)
−0.988087 + 0.153896i \(0.950818\pi\)
\(194\) −0.602053 1.39572i −0.0432249 0.100207i
\(195\) 0 0
\(196\) −0.640383 + 10.9949i −0.0457416 + 0.785353i
\(197\) 15.7132 5.71915i 1.11952 0.407473i 0.285044 0.958514i \(-0.407992\pi\)
0.834478 + 0.551042i \(0.185770\pi\)
\(198\) 0 0
\(199\) −1.83812 0.669021i −0.130301 0.0474257i 0.276047 0.961144i \(-0.410976\pi\)
−0.406348 + 0.913719i \(0.633198\pi\)
\(200\) 4.92317 11.4132i 0.348121 0.807035i
\(201\) 0 0
\(202\) −0.952160 + 0.225666i −0.0669937 + 0.0158778i
\(203\) −0.669128 + 0.158586i −0.0469636 + 0.0111306i
\(204\) 0 0
\(205\) −9.63828 + 22.3440i −0.673167 + 1.56058i
\(206\) 1.88202 + 0.685000i 0.131127 + 0.0477262i
\(207\) 0 0
\(208\) 13.7477 5.00376i 0.953233 0.346948i
\(209\) 0.347150 5.96033i 0.0240128 0.412285i
\(210\) 0 0
\(211\) 4.10509 + 9.51668i 0.282606 + 0.655155i 0.999099 0.0424394i \(-0.0135129\pi\)
−0.716493 + 0.697595i \(0.754254\pi\)
\(212\) −0.505065 8.67163i −0.0346880 0.595570i
\(213\) 0 0
\(214\) 2.63896 2.79713i 0.180396 0.191208i
\(215\) −15.5027 26.8514i −1.05727 1.83125i
\(216\) 0 0
\(217\) −1.12074 + 1.94117i −0.0760805 + 0.131775i
\(218\) −0.251063 0.838610i −0.0170042 0.0567978i
\(219\) 0 0
\(220\) −13.6064 + 8.94906i −0.917343 + 0.603346i
\(221\) 16.7617 + 1.95916i 1.12751 + 0.131788i
\(222\) 0 0
\(223\) 6.54862 3.28884i 0.438528 0.220237i −0.215816 0.976434i \(-0.569241\pi\)
0.654344 + 0.756197i \(0.272945\pi\)
\(224\) 0.557941 3.16424i 0.0372790 0.211420i
\(225\) 0 0
\(226\) −0.398592 2.26052i −0.0265139 0.150368i
\(227\) 13.9005 + 18.6716i 0.922608 + 1.23928i 0.970666 + 0.240434i \(0.0772897\pi\)
−0.0480571 + 0.998845i \(0.515303\pi\)
\(228\) 0 0
\(229\) 0.0342534 + 0.0363064i 0.00226353 + 0.00239920i 0.728504 0.685041i \(-0.240216\pi\)
−0.726241 + 0.687440i \(0.758734\pi\)
\(230\) 0.359302 1.20015i 0.0236917 0.0791358i
\(231\) 0 0
\(232\) −0.564865 + 0.0660233i −0.0370852 + 0.00433464i
\(233\) 17.1664 14.4043i 1.12461 0.943660i 0.125782 0.992058i \(-0.459856\pi\)
0.998828 + 0.0483977i \(0.0154115\pi\)
\(234\) 0 0
\(235\) 1.42093 + 1.19231i 0.0926916 + 0.0777775i
\(236\) −13.5173 8.89050i −0.879904 0.578722i
\(237\) 0 0
\(238\) 0.700809 0.941349i 0.0454267 0.0610186i
\(239\) 18.3490 + 9.21523i 1.18690 + 0.596084i 0.928997 0.370087i \(-0.120672\pi\)
0.257903 + 0.966171i \(0.416968\pi\)
\(240\) 0 0
\(241\) −28.0110 6.63872i −1.80435 0.427638i −0.815772 0.578374i \(-0.803688\pi\)
−0.988574 + 0.150736i \(0.951836\pi\)
\(242\) 1.71663 0.110349
\(243\) 0 0
\(244\) 20.4774 1.31093
\(245\) −23.4470 5.55703i −1.49797 0.355026i
\(246\) 0 0
\(247\) −10.8221 5.43505i −0.688592 0.345824i
\(248\) −1.10698 + 1.48693i −0.0702930 + 0.0944199i
\(249\) 0 0
\(250\) 6.90221 + 4.53966i 0.436534 + 0.287113i
\(251\) 7.80826 + 6.55190i 0.492853 + 0.413553i 0.855047 0.518550i \(-0.173528\pi\)
−0.362195 + 0.932102i \(0.617972\pi\)
\(252\) 0 0
\(253\) −1.84533 + 1.54841i −0.116015 + 0.0973479i
\(254\) 2.67665 0.312855i 0.167948 0.0196303i
\(255\) 0 0
\(256\) −3.30595 + 11.0426i −0.206622 + 0.690165i
\(257\) 4.15896 + 4.40824i 0.259429 + 0.274978i 0.843976 0.536382i \(-0.180209\pi\)
−0.584547 + 0.811360i \(0.698728\pi\)
\(258\) 0 0
\(259\) −3.62670 4.87150i −0.225352 0.302700i
\(260\) 5.73613 + 32.5312i 0.355740 + 2.01750i
\(261\) 0 0
\(262\) 0.509253 2.88812i 0.0314618 0.178429i
\(263\) −11.9907 + 6.02194i −0.739376 + 0.371329i −0.778283 0.627914i \(-0.783909\pi\)
0.0389065 + 0.999243i \(0.487613\pi\)
\(264\) 0 0
\(265\) 18.8762 + 2.20631i 1.15956 + 0.135533i
\(266\) −0.703618 + 0.462777i −0.0431416 + 0.0283747i
\(267\) 0 0
\(268\) 4.07932 + 13.6259i 0.249184 + 0.832333i
\(269\) −1.44120 + 2.49623i −0.0878715 + 0.152198i −0.906611 0.421967i \(-0.861340\pi\)
0.818740 + 0.574165i \(0.194673\pi\)
\(270\) 0 0
\(271\) −1.60573 2.78120i −0.0975410 0.168946i 0.813125 0.582089i \(-0.197764\pi\)
−0.910666 + 0.413143i \(0.864431\pi\)
\(272\) −10.5619 + 11.1950i −0.640409 + 0.678794i
\(273\) 0 0
\(274\) 0.00420586 + 0.0722119i 0.000254086 + 0.00436248i
\(275\) −10.2023 23.6515i −0.615219 1.42624i
\(276\) 0 0
\(277\) 0.198058 3.40052i 0.0119001 0.204317i −0.987117 0.159998i \(-0.948851\pi\)
0.999017 0.0443191i \(-0.0141118\pi\)
\(278\) −1.27431 + 0.463810i −0.0764278 + 0.0278174i
\(279\) 0 0
\(280\) 4.38225 + 1.59501i 0.261889 + 0.0953200i
\(281\) 4.54892 10.5456i 0.271366 0.629097i −0.726976 0.686663i \(-0.759075\pi\)
0.998342 + 0.0575661i \(0.0183340\pi\)
\(282\) 0 0
\(283\) 24.6585 5.84418i 1.46580 0.347401i 0.581202 0.813759i \(-0.302582\pi\)
0.884596 + 0.466358i \(0.154434\pi\)
\(284\) −9.04830 + 2.14449i −0.536918 + 0.127252i
\(285\) 0 0
\(286\) −0.757248 + 1.75550i −0.0447770 + 0.103805i
\(287\) −6.20207 2.25737i −0.366097 0.133248i
\(288\) 0 0
\(289\) −0.708104 + 0.257729i −0.0416532 + 0.0151605i
\(290\) 0.0356378 0.611877i 0.00209272 0.0359306i
\(291\) 0 0
\(292\) −5.54337 12.8510i −0.324401 0.752047i
\(293\) −0.233518 4.00934i −0.0136422 0.234228i −0.998236 0.0593708i \(-0.981091\pi\)
0.984594 0.174858i \(-0.0559465\pi\)
\(294\) 0 0
\(295\) 24.2915 25.7474i 1.41430 1.49907i
\(296\) −2.51135 4.34978i −0.145969 0.252826i
\(297\) 0 0
\(298\) 1.64704 2.85276i 0.0954106 0.165256i
\(299\) 1.40136 + 4.68086i 0.0810427 + 0.270701i
\(300\) 0 0
\(301\) 7.02604 4.62110i 0.404974 0.266356i
\(302\) −2.26983 0.265305i −0.130614 0.0152666i
\(303\) 0 0
\(304\) 9.86986 4.95683i 0.566075 0.284294i
\(305\) −7.77984 + 44.1216i −0.445472 + 2.52640i
\(306\) 0 0
\(307\) 3.45206 + 19.5776i 0.197020 + 1.11735i 0.909513 + 0.415675i \(0.136455\pi\)
−0.712493 + 0.701679i \(0.752434\pi\)
\(308\) −2.63771 3.54306i −0.150297 0.201884i
\(309\) 0 0
\(310\) −1.37099 1.45316i −0.0778668 0.0825340i
\(311\) 0.442878 1.47932i 0.0251133 0.0838843i −0.944514 0.328470i \(-0.893467\pi\)
0.969628 + 0.244586i \(0.0786521\pi\)
\(312\) 0 0
\(313\) 17.3808 2.03153i 0.982423 0.114829i 0.390310 0.920684i \(-0.372368\pi\)
0.592113 + 0.805855i \(0.298294\pi\)
\(314\) 1.68933 1.41751i 0.0953343 0.0799950i
\(315\) 0 0
\(316\) −18.7445 15.7285i −1.05446 0.884799i
\(317\) 1.64131 + 1.07951i 0.0921853 + 0.0606312i 0.594765 0.803900i \(-0.297245\pi\)
−0.502579 + 0.864531i \(0.667616\pi\)
\(318\) 0 0
\(319\) −0.703772 + 0.945330i −0.0394037 + 0.0529283i
\(320\) −25.1732 12.6425i −1.40723 0.706736i
\(321\) 0 0
\(322\) 0.330631 + 0.0783609i 0.0184253 + 0.00436688i
\(323\) 12.7401 0.708877
\(324\) 0 0
\(325\) −52.2468 −2.89813
\(326\) −1.86809 0.442745i −0.103464 0.0245214i
\(327\) 0 0
\(328\) −4.87781 2.44973i −0.269332 0.135264i
\(329\) −0.300430 + 0.403548i −0.0165633 + 0.0222483i
\(330\) 0 0
\(331\) −28.8095 18.9483i −1.58351 1.04149i −0.967208 0.253986i \(-0.918258\pi\)
−0.616305 0.787507i \(-0.711371\pi\)
\(332\) −17.2177 14.4474i −0.944943 0.792901i
\(333\) 0 0
\(334\) −0.823144 + 0.690700i −0.0450405 + 0.0377934i
\(335\) −30.9088 + 3.61273i −1.68873 + 0.197384i
\(336\) 0 0
\(337\) −4.63935 + 15.4965i −0.252722 + 0.844149i 0.733637 + 0.679541i \(0.237821\pi\)
−0.986359 + 0.164608i \(0.947364\pi\)
\(338\) 0.504568 + 0.534811i 0.0274449 + 0.0290899i
\(339\) 0 0
\(340\) −20.7520 27.8747i −1.12543 1.51172i
\(341\) 0.667067 + 3.78313i 0.0361237 + 0.204868i
\(342\) 0 0
\(343\) 2.53539 14.3789i 0.136898 0.776387i
\(344\) 6.21505 3.12132i 0.335093 0.168290i
\(345\) 0 0
\(346\) −0.748779 0.0875197i −0.0402546 0.00470509i
\(347\) 26.5809 17.4825i 1.42694 0.938511i 0.427532 0.904000i \(-0.359383\pi\)
0.999404 0.0345108i \(-0.0109873\pi\)
\(348\) 0 0
\(349\) 4.97182 + 16.6070i 0.266135 + 0.888954i 0.981704 + 0.190412i \(0.0609824\pi\)
−0.715569 + 0.698542i \(0.753832\pi\)
\(350\) −1.81666 + 3.14655i −0.0971048 + 0.168190i
\(351\) 0 0
\(352\) −2.75331 4.76887i −0.146752 0.254181i
\(353\) −2.33309 + 2.47293i −0.124178 + 0.131621i −0.786479 0.617617i \(-0.788098\pi\)
0.662301 + 0.749237i \(0.269580\pi\)
\(354\) 0 0
\(355\) −1.18296 20.3107i −0.0627851 1.07798i
\(356\) 8.46687 + 19.6284i 0.448743 + 1.04030i
\(357\) 0 0
\(358\) 0.200100 3.43559i 0.0105756 0.181576i
\(359\) −9.53489 + 3.47042i −0.503232 + 0.183162i −0.581147 0.813798i \(-0.697396\pi\)
0.0779150 + 0.996960i \(0.475174\pi\)
\(360\) 0 0
\(361\) 9.26314 + 3.37151i 0.487534 + 0.177448i
\(362\) −1.52169 + 3.52767i −0.0799782 + 0.185410i
\(363\) 0 0
\(364\) −8.71798 + 2.06620i −0.456946 + 0.108298i
\(365\) 29.7954 7.06164i 1.55956 0.369623i
\(366\) 0 0
\(367\) 5.88732 13.6483i 0.307315 0.712437i −0.692646 0.721278i \(-0.743555\pi\)
0.999961 + 0.00884100i \(0.00281421\pi\)
\(368\) −4.18747 1.52411i −0.218287 0.0794499i
\(369\) 0 0
\(370\) 5.08664 1.85138i 0.264442 0.0962489i
\(371\) −0.299714 + 5.14588i −0.0155604 + 0.267161i
\(372\) 0 0
\(373\) −8.34970 19.3568i −0.432331 1.00226i −0.985575 0.169237i \(-0.945870\pi\)
0.553244 0.833019i \(-0.313390\pi\)
\(374\) −0.116946 2.00789i −0.00604716 0.103826i
\(375\) 0 0
\(376\) −0.285527 + 0.302640i −0.0147249 + 0.0156075i
\(377\) 1.19525 + 2.07023i 0.0615585 + 0.106622i
\(378\) 0 0
\(379\) −3.47462 + 6.01822i −0.178479 + 0.309135i −0.941360 0.337404i \(-0.890451\pi\)
0.762880 + 0.646540i \(0.223784\pi\)
\(380\) 7.15221 + 23.8900i 0.366901 + 1.22553i
\(381\) 0 0
\(382\) −4.10161 + 2.69767i −0.209857 + 0.138025i
\(383\) −35.0934 4.10183i −1.79319 0.209594i −0.846643 0.532161i \(-0.821380\pi\)
−0.946547 + 0.322567i \(0.895454\pi\)
\(384\) 0 0
\(385\) 8.63617 4.33725i 0.440140 0.221047i
\(386\) 0.112186 0.636236i 0.00571010 0.0323836i
\(387\) 0 0
\(388\) −2.11990 12.0226i −0.107622 0.610354i
\(389\) 15.3611 + 20.6335i 0.778837 + 1.04616i 0.997521 + 0.0703643i \(0.0224162\pi\)
−0.218684 + 0.975796i \(0.570176\pi\)
\(390\) 0 0
\(391\) −3.52746 3.73889i −0.178392 0.189084i
\(392\) 1.55020 5.17802i 0.0782968 0.261530i
\(393\) 0 0
\(394\) −4.01505 + 0.469291i −0.202275 + 0.0236426i
\(395\) 41.0109 34.4123i 2.06348 1.73147i
\(396\) 0 0
\(397\) 14.2470 + 11.9547i 0.715038 + 0.599988i 0.926008 0.377504i \(-0.123218\pi\)
−0.210970 + 0.977493i \(0.567662\pi\)
\(398\) 0.395080 + 0.259848i 0.0198036 + 0.0130250i
\(399\) 0 0
\(400\) 28.4544 38.2209i 1.42272 1.91105i
\(401\) 4.13190 + 2.07512i 0.206337 + 0.103626i 0.548967 0.835844i \(-0.315021\pi\)
−0.342630 + 0.939471i \(0.611318\pi\)
\(402\) 0 0
\(403\) 7.58190 + 1.79694i 0.377682 + 0.0895122i
\(404\) −7.85906 −0.391003
\(405\) 0 0
\(406\) 0.166239 0.00825031
\(407\) −10.1279 2.40036i −0.502023 0.118982i
\(408\) 0 0
\(409\) −9.77547 4.90943i −0.483366 0.242756i 0.190391 0.981708i \(-0.439024\pi\)
−0.673757 + 0.738953i \(0.735321\pi\)
\(410\) 3.51288 4.71862i 0.173489 0.233036i
\(411\) 0 0
\(412\) 13.4392 + 8.83908i 0.662100 + 0.435470i
\(413\) 7.35469 + 6.17132i 0.361901 + 0.303671i
\(414\) 0 0
\(415\) 37.6704 31.6092i 1.84917 1.55163i
\(416\) −11.0939 + 1.29669i −0.543923 + 0.0635755i
\(417\) 0 0
\(418\) −0.413949 + 1.38269i −0.0202469 + 0.0676294i
\(419\) −23.0174 24.3970i −1.12447 1.19187i −0.979289 0.202466i \(-0.935105\pi\)
−0.145182 0.989405i \(-0.546377\pi\)
\(420\) 0 0
\(421\) 0.990474 + 1.33044i 0.0482727 + 0.0648415i 0.825604 0.564250i \(-0.190835\pi\)
−0.777331 + 0.629091i \(0.783427\pi\)
\(422\) −0.435079 2.46745i −0.0211793 0.120114i
\(423\) 0 0
\(424\) −0.740254 + 4.19819i −0.0359499 + 0.203882i
\(425\) 49.1178 24.6679i 2.38256 1.19657i
\(426\) 0 0
\(427\) −12.0695 1.41072i −0.584082 0.0682694i
\(428\) 25.8041 16.9716i 1.24729 0.820356i
\(429\) 0 0
\(430\) 2.14970 + 7.18049i 0.103668 + 0.346274i
\(431\) −7.55425 + 13.0843i −0.363876 + 0.630251i −0.988595 0.150598i \(-0.951880\pi\)
0.624720 + 0.780849i \(0.285213\pi\)
\(432\) 0 0
\(433\) −2.46655 4.27218i −0.118535 0.205308i 0.800653 0.599129i \(-0.204486\pi\)
−0.919187 + 0.393821i \(0.871153\pi\)
\(434\) 0.371850 0.394138i 0.0178494 0.0189192i
\(435\) 0 0
\(436\) −0.408793 7.01871i −0.0195777 0.336135i
\(437\) 1.46102 + 3.38702i 0.0698899 + 0.162023i
\(438\) 0 0
\(439\) 1.17340 20.1465i 0.0560033 0.961539i −0.846915 0.531728i \(-0.821543\pi\)
0.902919 0.429812i \(-0.141420\pi\)
\(440\) 7.51040 2.73356i 0.358044 0.130318i
\(441\) 0 0
\(442\) −3.83361 1.39532i −0.182346 0.0663686i
\(443\) −11.1640 + 25.8811i −0.530419 + 1.22965i 0.416781 + 0.909007i \(0.363158\pi\)
−0.947200 + 0.320643i \(0.896101\pi\)
\(444\) 0 0
\(445\) −45.5091 + 10.7859i −2.15734 + 0.511299i
\(446\) −1.72378 + 0.408542i −0.0816232 + 0.0193450i
\(447\) 0 0
\(448\) 3.02619 7.01550i 0.142974 0.331451i
\(449\) 0.407937 + 0.148477i 0.0192517 + 0.00700706i 0.351628 0.936140i \(-0.385628\pi\)
−0.332376 + 0.943147i \(0.607850\pi\)
\(450\) 0 0
\(451\) −10.6293 + 3.86873i −0.500512 + 0.182171i
\(452\) 1.07192 18.4042i 0.0504189 0.865659i
\(453\) 0 0
\(454\) −2.22885 5.16705i −0.104605 0.242502i
\(455\) −1.13978 19.5692i −0.0534335 0.917418i
\(456\) 0 0
\(457\) −18.5985 + 19.7132i −0.870000 + 0.922146i −0.997569 0.0696833i \(-0.977801\pi\)
0.127569 + 0.991830i \(0.459283\pi\)
\(458\) −0.00603328 0.0104499i −0.000281917 0.000488294i
\(459\) 0 0
\(460\) 5.03083 8.71365i 0.234564 0.406276i
\(461\) −12.2540 40.9313i −0.570727 1.90636i −0.381236 0.924478i \(-0.624501\pi\)
−0.189491 0.981882i \(-0.560684\pi\)
\(462\) 0 0
\(463\) 25.3500 16.6730i 1.17812 0.774859i 0.199368 0.979925i \(-0.436111\pi\)
0.978748 + 0.205065i \(0.0657407\pi\)
\(464\) −2.16542 0.253101i −0.100527 0.0117499i
\(465\) 0 0
\(466\) −4.84108 + 2.43128i −0.224259 + 0.112627i
\(467\) −2.33662 + 13.2516i −0.108126 + 0.613212i 0.881800 + 0.471624i \(0.156332\pi\)
−0.989926 + 0.141588i \(0.954779\pi\)
\(468\) 0 0
\(469\) −1.46566 8.31218i −0.0676779 0.383821i
\(470\) −0.267773 0.359682i −0.0123515 0.0165909i
\(471\) 0 0
\(472\) 5.44882 + 5.77542i 0.250802 + 0.265835i
\(473\) 4.13352 13.8069i 0.190060 0.634843i
\(474\) 0 0
\(475\) −39.1760 + 4.57902i −1.79752 + 0.210100i
\(476\) 7.22033 6.05858i 0.330943 0.277695i
\(477\) 0 0
\(478\) −3.80246 3.19065i −0.173921 0.145937i
\(479\) −21.7030 14.2743i −0.991636 0.652209i −0.0535333 0.998566i \(-0.517048\pi\)
−0.938103 + 0.346357i \(0.887419\pi\)
\(480\) 0 0
\(481\) −12.6074 + 16.9346i −0.574846 + 0.772152i
\(482\) 6.21887 + 3.12324i 0.283262 + 0.142259i
\(483\) 0 0
\(484\) 13.4154 + 3.17951i 0.609791 + 0.144523i
\(485\) 26.7098 1.21283
\(486\) 0 0
\(487\) 2.70578 0.122611 0.0613053 0.998119i \(-0.480474\pi\)
0.0613053 + 0.998119i \(0.480474\pi\)
\(488\) −9.77873 2.31760i −0.442662 0.104913i
\(489\) 0 0
\(490\) 5.20559 + 2.61435i 0.235165 + 0.118104i
\(491\) −23.7715 + 31.9306i −1.07279 + 1.44101i −0.183868 + 0.982951i \(0.558862\pi\)
−0.888923 + 0.458057i \(0.848545\pi\)
\(492\) 0 0
\(493\) −2.10111 1.38192i −0.0946292 0.0622386i
\(494\) 2.24266 + 1.88181i 0.100902 + 0.0846667i
\(495\) 0 0
\(496\) −5.44377 + 4.56786i −0.244432 + 0.205103i
\(497\) 5.48084 0.640618i 0.245849 0.0287356i
\(498\) 0 0
\(499\) −0.712812 + 2.38096i −0.0319099 + 0.106586i −0.972461 0.233066i \(-0.925124\pi\)
0.940551 + 0.339652i \(0.110309\pi\)
\(500\) 45.5322 + 48.2613i 2.03626 + 2.15831i
\(501\) 0 0
\(502\) −1.47145 1.97651i −0.0656742 0.0882158i
\(503\) 2.56729 + 14.5598i 0.114470 + 0.649191i 0.987011 + 0.160651i \(0.0513594\pi\)
−0.872541 + 0.488540i \(0.837530\pi\)
\(504\) 0 0
\(505\) 2.98584 16.9335i 0.132868 0.753532i
\(506\) 0.520398 0.261354i 0.0231345 0.0116186i
\(507\) 0 0
\(508\) 21.4973 + 2.51268i 0.953790 + 0.111482i
\(509\) −20.0592 + 13.1931i −0.889107 + 0.584775i −0.909817 0.415011i \(-0.863778\pi\)
0.0207096 + 0.999786i \(0.493407\pi\)
\(510\) 0 0
\(511\) 2.38196 + 7.95630i 0.105372 + 0.351966i
\(512\) 8.57387 14.8504i 0.378915 0.656300i
\(513\) 0 0
\(514\) −0.732546 1.26881i −0.0323112 0.0559646i
\(515\) −24.1510 + 25.5985i −1.06422 + 1.12801i
\(516\) 0 0
\(517\) 0.0501339 + 0.860766i 0.00220489 + 0.0378564i
\(518\) 0.581516 + 1.34811i 0.0255504 + 0.0592324i
\(519\) 0 0
\(520\) 0.942616 16.1841i 0.0413364 0.709719i
\(521\) −18.5919 + 6.76690i −0.814526 + 0.296463i −0.715492 0.698621i \(-0.753798\pi\)
−0.0990342 + 0.995084i \(0.531575\pi\)
\(522\) 0 0
\(523\) 32.2975 + 11.7553i 1.41227 + 0.514025i 0.931796 0.362982i \(-0.118241\pi\)
0.480477 + 0.877007i \(0.340464\pi\)
\(524\) 9.32910 21.6273i 0.407544 0.944792i
\(525\) 0 0
\(526\) 3.15627 0.748050i 0.137620 0.0326165i
\(527\) −7.97625 + 1.89041i −0.347451 + 0.0823473i
\(528\) 0 0
\(529\) −8.52036 + 19.7524i −0.370450 + 0.858800i
\(530\) −4.31722 1.57134i −0.187528 0.0682547i
\(531\) 0 0
\(532\) −6.35588 + 2.31335i −0.275563 + 0.100297i
\(533\) −1.33406 + 22.9049i −0.0577844 + 0.992120i
\(534\) 0 0
\(535\) 26.7644 + 62.0468i 1.15712 + 2.68252i
\(536\) −0.405873 6.96856i −0.0175310 0.300996i
\(537\) 0 0
\(538\) 0.478177 0.506838i 0.0206157 0.0218513i
\(539\) −5.60046 9.70029i −0.241229 0.417821i
\(540\) 0 0
\(541\) −18.0270 + 31.2237i −0.775042 + 1.34241i 0.159728 + 0.987161i \(0.448938\pi\)
−0.934771 + 0.355252i \(0.884395\pi\)
\(542\) 0.222661 + 0.743738i 0.00956409 + 0.0319463i
\(543\) 0 0
\(544\) 9.81728 6.45692i 0.420912 0.276838i
\(545\) 15.2782 + 1.78576i 0.654445 + 0.0764937i
\(546\) 0 0
\(547\) 7.72112 3.87769i 0.330131 0.165798i −0.276011 0.961155i \(-0.589013\pi\)
0.606142 + 0.795356i \(0.292716\pi\)
\(548\) −0.100881 + 0.572123i −0.00430941 + 0.0244399i
\(549\) 0 0
\(550\) 1.08129 + 6.13228i 0.0461062 + 0.261481i
\(551\) 1.07767 + 1.44756i 0.0459102 + 0.0616681i
\(552\) 0 0
\(553\) 9.96453 + 10.5618i 0.423735 + 0.449133i
\(554\) −0.236168 + 0.788858i −0.0100338 + 0.0335153i
\(555\) 0 0
\(556\) −10.8177 + 1.26441i −0.458773 + 0.0536228i
\(557\) −16.3664 + 13.7330i −0.693466 + 0.581887i −0.919906 0.392138i \(-0.871736\pi\)
0.226441 + 0.974025i \(0.427291\pi\)
\(558\) 0 0
\(559\) −22.3943 18.7910i −0.947176 0.794775i
\(560\) 14.9365 + 9.82389i 0.631182 + 0.415135i
\(561\) 0 0
\(562\) −1.65795 + 2.22702i −0.0699366 + 0.0939412i
\(563\) −24.7195 12.4146i −1.04180 0.523213i −0.156234 0.987720i \(-0.549935\pi\)
−0.885569 + 0.464507i \(0.846232\pi\)
\(564\) 0 0
\(565\) 39.2473 + 9.30178i 1.65115 + 0.391329i
\(566\) −6.12621 −0.257504
\(567\) 0 0
\(568\) 4.56361 0.191485
\(569\) −21.5106 5.09810i −0.901769 0.213723i −0.246522 0.969137i \(-0.579288\pi\)
−0.655248 + 0.755414i \(0.727436\pi\)
\(570\) 0 0
\(571\) 1.90182 + 0.955132i 0.0795889 + 0.0399710i 0.488148 0.872761i \(-0.337672\pi\)
−0.408560 + 0.912732i \(0.633969\pi\)
\(572\) −9.16936 + 12.3166i −0.383390 + 0.514982i
\(573\) 0 0
\(574\) 1.33306 + 0.876764i 0.0556407 + 0.0365954i
\(575\) 12.1909 + 10.2293i 0.508394 + 0.426593i
\(576\) 0 0
\(577\) −15.8954 + 13.3378i −0.661733 + 0.555260i −0.910606 0.413276i \(-0.864384\pi\)
0.248872 + 0.968536i \(0.419940\pi\)
\(578\) 0.180935 0.0211482i 0.00752589 0.000879651i
\(579\) 0 0
\(580\) 1.41181 4.71578i 0.0586223 0.195812i
\(581\) 9.15287 + 9.70147i 0.379725 + 0.402485i
\(582\) 0 0
\(583\) 5.27535 + 7.08602i 0.218483 + 0.293473i
\(584\) 1.19271 + 6.76421i 0.0493548 + 0.279905i
\(585\) 0 0
\(586\) −0.168592 + 0.956131i −0.00696446 + 0.0394974i
\(587\) −10.4955 + 5.27105i −0.433196 + 0.217559i −0.652015 0.758206i \(-0.726076\pi\)
0.218819 + 0.975766i \(0.429780\pi\)
\(588\) 0 0
\(589\) 5.84260 + 0.682902i 0.240740 + 0.0281385i
\(590\) −7.14947 + 4.70228i −0.294339 + 0.193590i
\(591\) 0 0
\(592\) −5.52228 18.4457i −0.226964 0.758114i
\(593\) −10.8840 + 18.8516i −0.446952 + 0.774144i −0.998186 0.0602070i \(-0.980824\pi\)
0.551234 + 0.834351i \(0.314157\pi\)
\(594\) 0 0
\(595\) 10.3109 + 17.8591i 0.422708 + 0.732151i
\(596\) 18.1554 19.2436i 0.743673 0.788247i
\(597\) 0 0
\(598\) −0.0686805 1.17920i −0.00280855 0.0482210i
\(599\) −4.05744 9.40621i −0.165783 0.384327i 0.814992 0.579473i \(-0.196741\pi\)
−0.980774 + 0.195145i \(0.937482\pi\)
\(600\) 0 0
\(601\) −0.164117 + 2.81778i −0.00669448 + 0.114940i −1.00000 0.000578543i \(-0.999816\pi\)
0.993305 + 0.115518i \(0.0368529\pi\)
\(602\) −1.91035 + 0.695311i −0.0778601 + 0.0283388i
\(603\) 0 0
\(604\) −17.2472 6.27748i −0.701780 0.255427i
\(605\) −11.9475 + 27.6975i −0.485737 + 1.12606i
\(606\) 0 0
\(607\) 13.2373 3.13730i 0.537285 0.127339i 0.0469899 0.998895i \(-0.485037\pi\)
0.490295 + 0.871556i \(0.336889\pi\)
\(608\) −8.20485 + 1.94458i −0.332751 + 0.0788633i
\(609\) 0 0
\(610\) 4.28983 9.94494i 0.173690 0.402659i
\(611\) 1.64343 + 0.598161i 0.0664862 + 0.0241990i
\(612\) 0 0
\(613\) 15.3111 5.57278i 0.618410 0.225083i −0.0137693 0.999905i \(-0.504383\pi\)
0.632179 + 0.774823i \(0.282161\pi\)
\(614\) 0.279432 4.79767i 0.0112770 0.193618i
\(615\) 0 0
\(616\) 0.858606 + 1.99047i 0.0345942 + 0.0801985i
\(617\) −0.451265 7.74792i −0.0181672 0.311919i −0.995134 0.0985288i \(-0.968586\pi\)
0.976967 0.213391i \(-0.0684507\pi\)
\(618\) 0 0
\(619\) −30.0734 + 31.8760i −1.20875 + 1.28120i −0.259844 + 0.965651i \(0.583671\pi\)
−0.948908 + 0.315552i \(0.897810\pi\)
\(620\) −8.02269 13.8957i −0.322199 0.558065i
\(621\) 0 0
\(622\) −0.186650 + 0.323287i −0.00748397 + 0.0129626i
\(623\) −3.63818 12.1524i −0.145760 0.486874i
\(624\) 0 0
\(625\) −66.7912 + 43.9292i −2.67165 + 1.75717i
\(626\) −4.20173 0.491111i −0.167935 0.0196288i
\(627\) 0 0
\(628\) 15.8275 7.94888i 0.631586 0.317195i
\(629\) 3.85678 21.8729i 0.153780 0.872129i
\(630\) 0 0
\(631\) 3.55734 + 20.1747i 0.141615 + 0.803141i 0.970023 + 0.243015i \(0.0781363\pi\)
−0.828407 + 0.560126i \(0.810753\pi\)
\(632\) 7.17108 + 9.63244i 0.285250 + 0.383158i
\(633\) 0 0
\(634\) −0.325901 0.345435i −0.0129432 0.0137190i
\(635\) −13.5813 + 45.3646i −0.538956 + 1.80024i
\(636\) 0 0
\(637\) −22.5660 + 2.63758i −0.894096 + 0.104505i
\(638\) 0.218250 0.183133i 0.00864058 0.00725031i
\(639\) 0 0
\(640\) 23.3663 + 19.6066i 0.923634 + 0.775021i
\(641\) 28.8733 + 18.9903i 1.14043 + 0.750071i 0.971846 0.235617i \(-0.0757112\pi\)
0.168581 + 0.985688i \(0.446082\pi\)
\(642\) 0 0
\(643\) 17.7604 23.8564i 0.700402 0.940803i −0.299510 0.954093i \(-0.596823\pi\)
0.999912 + 0.0132902i \(0.00423054\pi\)
\(644\) 2.43872 + 1.22477i 0.0960992 + 0.0482628i
\(645\) 0 0
\(646\) −2.99683 0.710262i −0.117909 0.0279449i
\(647\) −43.1443 −1.69618 −0.848089 0.529853i \(-0.822247\pi\)
−0.848089 + 0.529853i \(0.822247\pi\)
\(648\) 0 0
\(649\) 16.4542 0.645884
\(650\) 12.2899 + 2.91277i 0.482051 + 0.114248i
\(651\) 0 0
\(652\) −13.7790 6.92006i −0.539626 0.271010i
\(653\) 18.6252 25.0179i 0.728859 0.979028i −0.271006 0.962578i \(-0.587356\pi\)
0.999865 0.0164499i \(-0.00523641\pi\)
\(654\) 0 0
\(655\) 43.0549 + 28.3176i 1.68229 + 1.10646i
\(656\) −16.0294 13.4503i −0.625843 0.525145i
\(657\) 0 0
\(658\) 0.0931677 0.0781770i 0.00363205 0.00304766i
\(659\) 40.3919 4.72113i 1.57344 0.183909i 0.715856 0.698248i \(-0.246037\pi\)
0.857587 + 0.514339i \(0.171963\pi\)
\(660\) 0 0
\(661\) −4.97967 + 16.6332i −0.193687 + 0.646958i 0.804880 + 0.593437i \(0.202230\pi\)
−0.998567 + 0.0535209i \(0.982956\pi\)
\(662\) 5.72044 + 6.06332i 0.222331 + 0.235658i
\(663\) 0 0
\(664\) 6.58696 + 8.84782i 0.255624 + 0.343362i
\(665\) −2.56972 14.5736i −0.0996494 0.565140i
\(666\) 0 0
\(667\) 0.126439 0.717068i 0.00489572 0.0277650i
\(668\) −7.71214 + 3.87318i −0.298391 + 0.149858i
\(669\) 0 0
\(670\) 7.47205 + 0.873358i 0.288671 + 0.0337408i
\(671\) −17.3997 + 11.4439i −0.671706 + 0.441788i
\(672\) 0 0
\(673\) −12.6447 42.2363i −0.487418 1.62809i −0.748759 0.662843i \(-0.769350\pi\)
0.261341 0.965247i \(-0.415835\pi\)
\(674\) 1.95524 3.38658i 0.0753131 0.130446i
\(675\) 0 0
\(676\) 2.95261 + 5.11407i 0.113562 + 0.196695i
\(677\) 23.8082 25.2352i 0.915022 0.969867i −0.0846257 0.996413i \(-0.526969\pi\)
0.999648 + 0.0265462i \(0.00845092\pi\)
\(678\) 0 0
\(679\) 0.421227 + 7.23219i 0.0161652 + 0.277546i
\(680\) 6.75502 + 15.6599i 0.259043 + 0.600529i
\(681\) 0 0
\(682\) 0.0539967 0.927088i 0.00206764 0.0355000i
\(683\) 40.1564 14.6157i 1.53654 0.559256i 0.571329 0.820721i \(-0.306428\pi\)
0.965213 + 0.261465i \(0.0842057\pi\)
\(684\) 0 0
\(685\) −1.19440 0.434725i −0.0456356 0.0166100i
\(686\) −1.39802 + 3.24098i −0.0533767 + 0.123741i
\(687\) 0 0
\(688\) 25.9427 6.14854i 0.989057 0.234411i
\(689\) 17.4357 4.13235i 0.664249 0.157430i
\(690\) 0 0
\(691\) −6.34997 + 14.7209i −0.241564 + 0.560009i −0.995264 0.0972100i \(-0.969008\pi\)
0.753700 + 0.657219i \(0.228267\pi\)
\(692\) −5.68957 2.07083i −0.216285 0.0787213i
\(693\) 0 0
\(694\) −7.22724 + 2.63050i −0.274342 + 0.0998524i
\(695\) 1.38554 23.7887i 0.0525564 0.902358i
\(696\) 0 0
\(697\) −9.56018 22.1630i −0.362118 0.839483i
\(698\) −0.243669 4.18363i −0.00922299 0.158353i
\(699\) 0 0
\(700\) −20.0251 + 21.2254i −0.756878 + 0.802244i
\(701\) −20.8919 36.1858i −0.789075 1.36672i −0.926534 0.376211i \(-0.877227\pi\)
0.137459 0.990507i \(-0.456106\pi\)
\(702\) 0 0
\(703\) −7.96914 + 13.8029i −0.300562 + 0.520588i
\(704\) −3.75547 12.5441i −0.141540 0.472775i
\(705\) 0 0
\(706\) 0.686676 0.451634i 0.0258434 0.0169975i
\(707\) 4.63216 + 0.541421i 0.174210 + 0.0203623i
\(708\) 0 0
\(709\) −15.0984 + 7.58272i −0.567034 + 0.284775i −0.709130 0.705078i \(-0.750912\pi\)
0.142096 + 0.989853i \(0.454616\pi\)
\(710\) −0.854057 + 4.84360i −0.0320522 + 0.181777i
\(711\) 0 0
\(712\) −1.82174 10.3316i −0.0682724 0.387192i
\(713\) −1.41728 1.90374i −0.0530776 0.0712955i
\(714\) 0 0
\(715\) −23.0543 24.4361i −0.862181 0.913858i
\(716\) 7.92709 26.4783i 0.296249 0.989541i
\(717\) 0 0
\(718\) 2.43635 0.284769i 0.0909239 0.0106275i
\(719\) 12.7933 10.7349i 0.477111 0.400344i −0.372269 0.928125i \(-0.621420\pi\)
0.849381 + 0.527781i \(0.176976\pi\)
\(720\) 0 0
\(721\) −7.31216 6.13563i −0.272319 0.228503i
\(722\) −1.99099 1.30950i −0.0740971 0.0487344i
\(723\) 0 0
\(724\) −18.4258 + 24.7502i −0.684790 + 0.919832i
\(725\) 6.95765 + 3.49426i 0.258401 + 0.129774i
\(726\) 0 0
\(727\) 21.5230 + 5.10104i 0.798244 + 0.189187i 0.609445 0.792829i \(-0.291392\pi\)
0.188799 + 0.982016i \(0.439541\pi\)
\(728\) 4.39701 0.162964
\(729\) 0 0
\(730\) −7.40242 −0.273976
\(731\) 29.9251 + 7.09238i 1.10682 + 0.262321i
\(732\) 0 0
\(733\) −11.7394 5.89576i −0.433605 0.217765i 0.218588 0.975817i \(-0.429855\pi\)
−0.652194 + 0.758052i \(0.726151\pi\)
\(734\) −2.14576 + 2.88226i −0.0792015 + 0.106386i
\(735\) 0 0
\(736\) 2.84244 + 1.86950i 0.104774 + 0.0689108i
\(737\) −11.0811 9.29816i −0.408178 0.342502i
\(738\) 0 0
\(739\) −34.4177 + 28.8799i −1.26608 + 1.06236i −0.271070 + 0.962560i \(0.587378\pi\)
−0.995007 + 0.0998052i \(0.968178\pi\)
\(740\) 43.1809 5.04713i 1.58736 0.185536i
\(741\) 0 0
\(742\) 0.357385 1.19375i 0.0131200 0.0438239i
\(743\) −15.3510 16.2712i −0.563175 0.596931i 0.381731 0.924274i \(-0.375328\pi\)
−0.944906 + 0.327343i \(0.893847\pi\)
\(744\) 0 0
\(745\) 34.5655 + 46.4296i 1.26638 + 1.70105i
\(746\) 0.884944 + 5.01877i 0.0324001 + 0.183750i
\(747\) 0 0
\(748\) 2.80504 15.9082i 0.102563 0.581661i
\(749\) −16.3783 + 8.22547i −0.598448 + 0.300552i
\(750\) 0 0
\(751\) −11.8057 1.37988i −0.430795 0.0503527i −0.102067 0.994777i \(-0.532546\pi\)
−0.328728 + 0.944425i \(0.606620\pi\)
\(752\) −1.33262 + 0.876479i −0.0485957 + 0.0319619i
\(753\) 0 0
\(754\) −0.165741 0.553613i −0.00603593 0.0201614i
\(755\) 20.0784 34.7768i 0.730728 1.26566i
\(756\) 0 0
\(757\) −2.60890 4.51875i −0.0948221 0.164237i 0.814712 0.579865i \(-0.196895\pi\)
−0.909534 + 0.415629i \(0.863562\pi\)
\(758\) 1.15285 1.22195i 0.0418733 0.0443831i
\(759\) 0 0
\(760\) −0.711609 12.2179i −0.0258128 0.443188i
\(761\) 0.276625 + 0.641289i 0.0100276 + 0.0232467i 0.923156 0.384425i \(-0.125600\pi\)
−0.913129 + 0.407671i \(0.866341\pi\)
\(762\) 0 0
\(763\) −0.242585 + 4.16502i −0.00878215 + 0.150784i
\(764\) −37.0505 + 13.4853i −1.34044 + 0.487880i
\(765\) 0 0
\(766\) 8.02630 + 2.92133i 0.290002 + 0.105552i
\(767\) 13.2192 30.6456i 0.477318 1.10655i
\(768\) 0 0
\(769\) 10.8267 2.56597i 0.390419 0.0925311i −0.0307176 0.999528i \(-0.509779\pi\)
0.421137 + 0.906997i \(0.361631\pi\)
\(770\) −2.27328 + 0.538776i −0.0819232 + 0.0194162i
\(771\) 0 0
\(772\) 2.05515 4.76437i 0.0739664 0.171473i
\(773\) 14.5554 + 5.29774i 0.523522 + 0.190546i 0.590243 0.807225i \(-0.299032\pi\)
−0.0667217 + 0.997772i \(0.521254\pi\)
\(774\) 0 0
\(775\) 23.8477 8.67985i 0.856634 0.311789i
\(776\) −0.348363 + 5.98116i −0.0125055 + 0.214711i
\(777\) 0 0
\(778\) −2.46304 5.70997i −0.0883043 0.204712i
\(779\) 1.00712 + 17.2916i 0.0360838 + 0.619535i
\(780\) 0 0
\(781\) 6.48988 6.87887i 0.232226 0.246145i
\(782\) 0.621316 + 1.07615i 0.0222182 + 0.0384831i
\(783\) 0 0
\(784\) 10.3603 17.9445i 0.370009 0.640875i
\(785\) 11.1138 + 37.1227i 0.396669 + 1.32497i
\(786\) 0 0
\(787\) 29.4391 19.3624i 1.04939 0.690195i 0.0970652 0.995278i \(-0.469054\pi\)
0.952326 + 0.305083i \(0.0986841\pi\)
\(788\) −32.2466 3.76909i −1.14874 0.134268i
\(789\) 0 0
\(790\) −11.5654 + 5.80838i −0.411480 + 0.206653i
\(791\) −1.89968 + 10.7736i −0.0675449 + 0.383066i
\(792\) 0 0
\(793\) 7.33528 + 41.6004i 0.260483 + 1.47728i
\(794\) −2.68483 3.60636i −0.0952812 0.127985i
\(795\) 0 0
\(796\) 2.60625 + 2.76246i 0.0923761 + 0.0979129i
\(797\) −7.60395 + 25.3990i −0.269346 + 0.899678i 0.711134 + 0.703057i \(0.248182\pi\)
−0.980480 + 0.196621i \(0.937003\pi\)
\(798\) 0 0
\(799\) −1.82743 + 0.213596i −0.0646498 + 0.00755647i
\(800\) −27.8676 + 23.3837i −0.985268 + 0.826738i
\(801\) 0 0
\(802\) −0.856252 0.718481i −0.0302353 0.0253704i
\(803\) 11.8921 + 7.82153i 0.419661 + 0.276016i
\(804\) 0 0
\(805\) −3.56549 + 4.78928i −0.125667 + 0.168800i
\(806\) −1.68330 0.845385i −0.0592917 0.0297774i
\(807\) 0 0
\(808\) 3.75299 + 0.889476i 0.132030 + 0.0312917i
\(809\) 4.72350 0.166070 0.0830348 0.996547i \(-0.473539\pi\)
0.0830348 + 0.996547i \(0.473539\pi\)
\(810\) 0 0
\(811\) −14.2884 −0.501733 −0.250866 0.968022i \(-0.580716\pi\)
−0.250866 + 0.968022i \(0.580716\pi\)
\(812\) 1.29915 + 0.307904i 0.0455913 + 0.0108053i
\(813\) 0 0
\(814\) 2.24856 + 1.12927i 0.0788119 + 0.0395808i
\(815\) 20.1453 27.0598i 0.705657 0.947862i
\(816\) 0 0
\(817\) −18.4387 12.1273i −0.645088 0.424281i
\(818\) 2.02577 + 1.69982i 0.0708294 + 0.0594329i
\(819\) 0 0
\(820\) 36.1927 30.3693i 1.26391 1.06054i
\(821\) −21.7224 + 2.53899i −0.758118 + 0.0886113i −0.486365 0.873756i \(-0.661677\pi\)
−0.271753 + 0.962367i \(0.587603\pi\)
\(822\) 0 0
\(823\) −6.74214 + 22.5203i −0.235016 + 0.785009i 0.756382 + 0.654130i \(0.226965\pi\)
−0.991398 + 0.130879i \(0.958220\pi\)
\(824\) −5.41731 5.74202i −0.188721 0.200033i
\(825\) 0 0
\(826\) −1.38598 1.86170i −0.0482245 0.0647767i
\(827\) −3.09330 17.5430i −0.107565 0.610030i −0.990165 0.139905i \(-0.955320\pi\)
0.882600 0.470124i \(-0.155791\pi\)
\(828\) 0 0
\(829\) −9.35023 + 53.0278i −0.324747 + 1.84173i 0.186700 + 0.982417i \(0.440221\pi\)
−0.511447 + 0.859315i \(0.670890\pi\)
\(830\) −10.6234 + 5.33526i −0.368743 + 0.185189i
\(831\) 0 0
\(832\) −26.3803 3.08341i −0.914572 0.106898i
\(833\) 19.9692 13.1339i 0.691892 0.455064i
\(834\) 0 0
\(835\) −5.41533 18.0885i −0.187405 0.625977i
\(836\) −5.79597 + 10.0389i −0.200458 + 0.347203i
\(837\) 0 0
\(838\) 4.05420 + 7.02209i 0.140050 + 0.242574i
\(839\) −35.7416 + 37.8839i −1.23394 + 1.30790i −0.298498 + 0.954410i \(0.596486\pi\)
−0.935440 + 0.353487i \(0.884996\pi\)
\(840\) 0 0
\(841\) 1.66549 + 28.5953i 0.0574306 + 0.986045i
\(842\) −0.158816 0.368176i −0.00547315 0.0126882i
\(843\) 0 0
\(844\) 1.17004 20.0889i 0.0402746 0.691488i
\(845\) −12.1408 + 4.41889i −0.417656 + 0.152014i
\(846\) 0 0
\(847\) −7.68804 2.79822i −0.264164 0.0961480i
\(848\) −6.47278 + 15.0056i −0.222276 + 0.515294i
\(849\) 0 0
\(850\) −12.9291 + 3.06426i −0.443466 + 0.105103i
\(851\) 6.25731 1.48301i 0.214498 0.0508369i
\(852\) 0 0
\(853\) 19.2347 44.5911i 0.658585 1.52677i −0.180966 0.983489i \(-0.557922\pi\)
0.839550 0.543282i \(-0.182818\pi\)
\(854\) 2.76043 + 1.00472i 0.0944601 + 0.0343807i
\(855\) 0 0
\(856\) −14.2433 + 5.18412i −0.486825 + 0.177190i
\(857\) 2.53509 43.5259i 0.0865971 1.48682i −0.623008 0.782215i \(-0.714090\pi\)
0.709605 0.704600i \(-0.248873\pi\)
\(858\) 0 0
\(859\) 6.45769 + 14.9706i 0.220333 + 0.510790i 0.992150 0.125055i \(-0.0399108\pi\)
−0.771816 + 0.635845i \(0.780652\pi\)
\(860\) 3.50024 + 60.0968i 0.119357 + 2.04929i
\(861\) 0 0
\(862\) 2.50643 2.65666i 0.0853694 0.0904862i
\(863\) 25.0920 + 43.4607i 0.854142 + 1.47942i 0.877439 + 0.479689i \(0.159251\pi\)
−0.0232963 + 0.999729i \(0.507416\pi\)
\(864\) 0 0
\(865\) 6.62352 11.4723i 0.225207 0.390069i
\(866\) 0.342027 + 1.14245i 0.0116226 + 0.0388220i
\(867\) 0 0
\(868\) 3.63600 2.39144i 0.123414 0.0811706i
\(869\) 24.7172 + 2.88903i 0.838474 + 0.0980035i
\(870\) 0 0
\(871\) −26.2201 + 13.1682i −0.888435 + 0.446189i
\(872\) −0.599153 + 3.39796i −0.0202899 + 0.115070i
\(873\) 0 0
\(874\) −0.154846 0.878175i −0.00523774 0.0297047i
\(875\) −23.5121 31.5822i −0.794853 1.06767i
\(876\) 0 0
\(877\) 30.7887 + 32.6341i 1.03966 + 1.10198i 0.994683 + 0.102988i \(0.0328403\pi\)
0.0449780 + 0.998988i \(0.485678\pi\)
\(878\) −1.39919 + 4.67361i −0.0472203 + 0.157727i
\(879\) 0 0
\(880\) 30.4318 3.55697i 1.02586 0.119905i
\(881\) −13.9661 + 11.7190i −0.470531 + 0.394822i −0.846988 0.531612i \(-0.821587\pi\)
0.376457 + 0.926434i \(0.377142\pi\)
\(882\) 0 0
\(883\) −13.4700 11.3026i −0.453300 0.380364i 0.387359 0.921929i \(-0.373388\pi\)
−0.840659 + 0.541565i \(0.817832\pi\)
\(884\) −27.3751 18.0049i −0.920724 0.605570i
\(885\) 0 0
\(886\) 4.06898 5.46559i 0.136700 0.183620i
\(887\) 29.4603 + 14.7955i 0.989182 + 0.496786i 0.868385 0.495891i \(-0.165159\pi\)
0.120797 + 0.992677i \(0.461455\pi\)
\(888\) 0 0
\(889\) −12.4975 2.96196i −0.419153 0.0993410i
\(890\) 11.3064 0.378990
\(891\) 0 0
\(892\) −14.2279 −0.476386
\(893\) 1.28471 + 0.304483i 0.0429913 + 0.0101891i
\(894\) 0 0
\(895\) 54.0398 + 27.1398i 1.80635 + 0.907184i
\(896\) −4.94037 + 6.63607i −0.165046 + 0.221696i
\(897\) 0 0
\(898\) −0.0876808 0.0576686i −0.00292595 0.00192443i
\(899\) −0.889494 0.746374i −0.0296663 0.0248930i
\(900\) 0 0
\(901\) −14.4405 + 12.1170i −0.481082 + 0.403676i
\(902\) 2.71599 0.317453i 0.0904325 0.0105700i
\(903\) 0 0
\(904\) −2.59484 + 8.66736i −0.0863030 + 0.288272i
\(905\) −46.3275 49.1043i −1.53998 1.63228i
\(906\) 0 0
\(907\) −23.4421 31.4881i −0.778381 1.04555i −0.997557 0.0698614i \(-0.977744\pi\)
0.219176 0.975685i \(-0.429663\pi\)
\(908\) −7.84805 44.5085i −0.260447 1.47707i
\(909\) 0 0
\(910\) −0.822878 + 4.66678i −0.0272782 + 0.154702i
\(911\) −13.6097 + 6.83505i −0.450910 + 0.226455i −0.659736 0.751497i \(-0.729332\pi\)
0.208826 + 0.977953i \(0.433036\pi\)
\(912\) 0 0
\(913\) 22.7039 + 2.65370i 0.751388 + 0.0878247i
\(914\) 5.47391 3.60025i 0.181061 0.119086i
\(915\) 0 0
\(916\) −0.0277946 0.0928405i −0.000918361 0.00306754i
\(917\) −6.98854 + 12.1045i −0.230782 + 0.399726i
\(918\) 0 0
\(919\) −7.39953 12.8164i −0.244088 0.422773i 0.717787 0.696263i \(-0.245155\pi\)
−0.961875 + 0.273490i \(0.911822\pi\)
\(920\) −3.38861 + 3.59171i −0.111719 + 0.118415i
\(921\) 0 0
\(922\) 0.600569 + 10.3114i 0.0197787 + 0.339587i
\(923\) −7.59781 17.6137i −0.250085 0.579762i
\(924\) 0 0
\(925\) −3.99816 + 68.6458i −0.131459 + 2.25706i
\(926\) −6.89258 + 2.50869i −0.226504 + 0.0824407i
\(927\) 0 0
\(928\) 1.56408 + 0.569280i 0.0513436 + 0.0186875i
\(929\) −12.1228 + 28.1039i −0.397737 + 0.922059i 0.595217 + 0.803565i \(0.297066\pi\)
−0.992955 + 0.118494i \(0.962193\pi\)
\(930\) 0 0
\(931\) −16.6894 + 3.95546i −0.546972 + 0.129635i
\(932\) −42.3360 + 10.0338i −1.38676 + 0.328668i
\(933\) 0 0
\(934\) 1.28842 2.98689i 0.0421584 0.0977341i
\(935\) 33.2109 + 12.0878i 1.08611 + 0.395313i
\(936\) 0 0
\(937\) 3.22880 1.17519i 0.105480 0.0383917i −0.288741 0.957407i \(-0.593237\pi\)
0.394221 + 0.919016i \(0.371014\pi\)
\(938\) −0.118640 + 2.03697i −0.00387374 + 0.0665095i
\(939\) 0 0
\(940\) −1.42644 3.30686i −0.0465253 0.107858i
\(941\) −1.12635 19.3387i −0.0367180 0.630423i −0.965598 0.260041i \(-0.916264\pi\)
0.928880 0.370382i \(-0.120773\pi\)
\(942\) 0 0
\(943\) 4.79580 5.08325i 0.156173 0.165533i
\(944\) 15.2192 + 26.3605i 0.495344 + 0.857961i
\(945\) 0 0
\(946\) −1.74206 + 3.01734i −0.0566393 + 0.0981022i
\(947\) 3.95475 + 13.2098i 0.128512 + 0.429260i 0.997893 0.0648825i \(-0.0206672\pi\)
−0.869381 + 0.494143i \(0.835482\pi\)
\(948\) 0 0
\(949\) 24.1214 15.8649i 0.783015 0.514997i
\(950\) 9.47060 + 1.10695i 0.307267 + 0.0359143i
\(951\) 0 0
\(952\) −4.13368 + 2.07601i −0.133973 + 0.0672839i
\(953\) 6.51937 36.9732i 0.211183 1.19768i −0.676225 0.736695i \(-0.736385\pi\)
0.887408 0.460984i \(-0.152503\pi\)
\(954\) 0 0
\(955\) −14.9797 84.9541i −0.484732 2.74905i
\(956\) −23.8064 31.9776i −0.769955 1.03423i
\(957\) 0 0
\(958\) 4.30937 + 4.56767i 0.139230 + 0.147575i
\(959\) 0.0988737 0.330261i 0.00319280 0.0106647i
\(960\) 0 0
\(961\) 27.0312 3.15949i 0.871973 0.101919i
\(962\) 3.90972 3.28064i 0.126054 0.105772i
\(963\) 0 0
\(964\) 42.8154 + 35.9264i 1.37899 + 1.15711i
\(965\) 9.48475 + 6.23822i 0.305325 + 0.200815i
\(966\) 0 0
\(967\) 14.6794 19.7178i 0.472057 0.634082i −0.500780 0.865575i \(-0.666953\pi\)
0.972837 + 0.231492i \(0.0743608\pi\)
\(968\) −6.04650 3.03667i −0.194342 0.0976022i
\(969\) 0 0
\(970\) −6.28292 1.48908i −0.201732 0.0478114i
\(971\) −13.0415 −0.418522 −0.209261 0.977860i \(-0.567106\pi\)
−0.209261 + 0.977860i \(0.567106\pi\)
\(972\) 0 0
\(973\) 6.46310 0.207197
\(974\) −0.636477 0.150848i −0.0203940 0.00483348i
\(975\) 0 0
\(976\) −34.4275 17.2902i −1.10200 0.553444i
\(977\) −28.9261 + 38.8545i −0.925427 + 1.24306i 0.0443362 + 0.999017i \(0.485883\pi\)
−0.969763 + 0.244048i \(0.921525\pi\)
\(978\) 0 0
\(979\) −18.1638 11.9465i −0.580517 0.381812i
\(980\) 35.8392 + 30.0727i 1.14484 + 0.960636i
\(981\) 0 0
\(982\) 7.37186 6.18573i 0.235246 0.197394i
\(983\) −32.8784 + 3.84293i −1.04866 + 0.122570i −0.622927 0.782280i \(-0.714057\pi\)
−0.425730 + 0.904850i \(0.639983\pi\)
\(984\) 0 0
\(985\) 20.3723 68.0482i 0.649115 2.16820i
\(986\) 0.417199 + 0.442205i 0.0132863 + 0.0140827i
\(987\) 0 0
\(988\) 14.0408 + 18.8601i 0.446698 + 0.600019i
\(989\) 1.54623 + 8.76910i 0.0491672 + 0.278841i
\(990\) 0 0
\(991\) −3.02007 + 17.1276i −0.0959355 + 0.544078i 0.898521 + 0.438930i \(0.144642\pi\)
−0.994457 + 0.105147i \(0.966469\pi\)
\(992\) 4.84831 2.43491i 0.153934 0.0773086i
\(993\) 0 0
\(994\) −1.32496 0.154866i −0.0420253 0.00491205i
\(995\) −6.94232 + 4.56603i −0.220086 + 0.144753i
\(996\) 0 0
\(997\) 4.95693 + 16.5573i 0.156987 + 0.524375i 0.999907 0.0136656i \(-0.00435005\pi\)
−0.842919 + 0.538040i \(0.819165\pi\)
\(998\) 0.300413 0.520330i 0.00950940 0.0164708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.b.136.4 144
3.2 odd 2 729.2.g.c.136.5 144
9.2 odd 6 729.2.g.d.379.4 144
9.4 even 3 243.2.g.a.127.5 144
9.5 odd 6 81.2.g.a.70.4 yes 144
9.7 even 3 729.2.g.a.379.5 144
81.5 odd 54 729.2.g.c.595.5 144
81.20 odd 54 6561.2.a.c.1.41 72
81.22 even 27 729.2.g.a.352.5 144
81.32 odd 54 81.2.g.a.22.4 144
81.49 even 27 243.2.g.a.199.5 144
81.59 odd 54 729.2.g.d.352.4 144
81.61 even 27 6561.2.a.d.1.32 72
81.76 even 27 inner 729.2.g.b.595.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.4 144 81.32 odd 54
81.2.g.a.70.4 yes 144 9.5 odd 6
243.2.g.a.127.5 144 9.4 even 3
243.2.g.a.199.5 144 81.49 even 27
729.2.g.a.352.5 144 81.22 even 27
729.2.g.a.379.5 144 9.7 even 3
729.2.g.b.136.4 144 1.1 even 1 trivial
729.2.g.b.595.4 144 81.76 even 27 inner
729.2.g.c.136.5 144 3.2 odd 2
729.2.g.c.595.5 144 81.5 odd 54
729.2.g.d.352.4 144 81.59 odd 54
729.2.g.d.379.4 144 9.2 odd 6
6561.2.a.c.1.41 72 81.20 odd 54
6561.2.a.d.1.32 72 81.61 even 27